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Detecting the position of nonlinear component in periodic structures from the system responses to dual sinusoidal excitations

Based on the Nonlinear Output Frequency Response Functions (NOFRFs), a novel method is developed to detect the position of nonlinear components in periodic structures. The detection procedure requires exciting the nonlinear systems twice using two sinusoidal inputs separately. The frequencies of the two inputs are different; one frequency is twice as high as the other one. The validity of this method is demonstrated by numerical studies. Since the position of a nonlinear component often corresponds to the location of defect in periodic structures, this new method is of great practical significance in fault diagnosis for mechanical and structural systems.

Periodic structures are defined as structures consisting of identical substructures connected to each other in identical manner. The real life systems which can be modelled as either finite or infinite, one-dimension or multi-dimension periodic structures range from the simple structures like periodically supported beams [START_REF] Duhame | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF]~ [START_REF] Yuan | On the determination of phase constants for the study of the free vibration of periodic structures[END_REF], plates [START_REF] Mukherjee | Normal modes and acoustic response of finite one-and two-dimensional multi-bay periodic panels[END_REF][6] and building block [START_REF] Fassois | Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation[END_REF]. Analysis of the free and forced vibration and the mode analysis of linear periodic structures are of particular interests [START_REF] Duhame | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF]- [START_REF] Yuan | On the determination of phase constants for the study of the free vibration of periodic structures[END_REF]. Mead [START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995[END_REF] provides an excellent review about periodic structure studies.

Attentions also have been paid to the study of nonlinear periodic structures [START_REF] Chi | On damped Non-linear Dynamic systems with many degrees of freedom[END_REF]- [START_REF] Marathe | Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[END_REF]. Chi and Rosenberg [START_REF] Chi | On damped Non-linear Dynamic systems with many degrees of freedom[END_REF] have studied the existence of classical normal mode motion in onedimension non-linear mass-spring-damper systems with many degrees of freedom where all springs and / or all dampers may be strongly non-linear. Using exact and asymptotic techniques, Vakakis et al [START_REF] Vakakis | Forced Localization in a periodic chain of non-linear oscillators[END_REF] have studied the localized responses of a nonlinear periodic oscillator chain subjected to harmonic excitations with general spatial distributions. Royston and Singh [START_REF] Royston | Periodic response of mechanical systems with local nonlinearities using an enhanced Galerkin technique[END_REF] have studied the periodic response of mechanical systems with local nonlinearity using an enhanced Galerkin technique where a new semi-

A c c e p t e d m a n u s c r i p t

2 analytical framework for the study of mechanical systems with local nonlinearities has been presented. Chakraborty and Mallik [START_REF] Chakraborty | Dynamics of a weakly non-linear periodic chain[END_REF] have investigated the harmonic vibration propagation in an infinite, non-linear periodic chain using a perturbation approach where the case of cyclic one-dimension nonlinear chain has also been discussed. Marathe and Chatterjee [START_REF] Marathe | Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[END_REF] have studied the Wave attenuation in onedimension nonlinear periodic structures using harmonic balance and multiple scale method. In engineering practices, there are considerable periodic structures that behave nonlinearly just because one or a few components have nonlinear properties, and the nonlinear component is often the component where a fault or abnormal condition occurs.

One of the well known examples is beam structures [START_REF] Neild | A discrete model of vibrating beam using time-stepping approach[END_REF] with breathing cracks, the global nonlinear behaviors of which are caused only by a few cracked elements. Therefore it is of great significance to effectively detect the position of the nonlinear component in a periodic structure. The detection of damage in large periodic structures has been studied by Zhu and Wu [START_REF] Zhu | The Characteristic receptance method for damage detection in large Mono-coupled Periodic structures[END_REF]. In their studies, the periodic structure with damage is still considered to be linear and the locations and magnitude of damage in large monocoupled periodic systems have been estimated using measured changes in the natural frequencies. Based on a one-dimensional periodic structure model, Sakellariou and Fassois [START_REF] Fassois | Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation[END_REF][16] have used a stochastic output error vibration-based methodology to detect the damage in structures where the damage elements were modeled as components of cubic stiffness.

The Volterra series approach [START_REF] Worden | A harmonic probing algorithm for the multi-input Volterra series[END_REF] is a powerful method for the analysis of nonlinear systems, and extends the familiar concept of the convolution integral for linear systems to a series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra kernels are known as the kernel transforms, Higher-order Frequency Response Functions (HFRFs) [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF], or more usually Generalised Frequency Response Functions (GFRFs). These provide a convenient concept for analyzing nonlinear systems in the frequency domain. If a differential equation or discrete-time model is available for a nonlinear system, the GFRFs can be determined using the algorithm in [START_REF] Billings | Spectral analysis for nonlinear system, part I: parametric non-linear spectral analysis[END_REF]~ [START_REF] Peyton Jones | A recursive algorithm for the computing the frequency response of a class of nonlinear difference equation models[END_REF]. The GFRFs can be regarded as the extension of the classical frequency response function (FRF) for linear systems to the nonlinear case. The concept of Nonlinear Output Frequency Response Functions (NOFRFs) [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF] is an alternative extension of the FRF to the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow the analysis of nonlinear systems to be implemented in a manner similar to the analysis of linear systems, and which provides great insight into the mechanisms which dominate many important nonlinear behaviors. The paper is organized as follows. Section 2 gives a brief introduction to the new concept of NOFRFs. Some important properties of the NOFRFs for locally nonlinear MDOF systems, which were first revealed in the authors' recent studies [START_REF] Peng | Nonlinear Output Frequency Response Functions of MDOF Systems with Multiple Nonlinear Components[END_REF], are introduced in Section 3. The novel method for the nonlinear component position detection is presented in Section 4. In Section 5, three numerical case studies are used to verify the effectiveness of the proposed method. Finally conclusions are given in Section 6.

Output Frequency Response Functions of Nonlinear Systems

Output Frequency Response Functions under General Input

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. The Volterra series extends the well-known convolution integral description for linear systems to a series of multi-dimensional convolution integrals, which can be used to represent a wide class of nonlinear systems [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF].

Consider the class of nonlinear systems which are stable at zero equilibrium and which can be described in the neighbourhood of the equilibrium by the Volterra series
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where x(t) and u(t) are the output and input of the system, ) ,..., (

n 1 n h τ τ
is the nth order Volterra kernel, and N denotes the order of the Volterra series representation. Lang and Billings [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF] derived an expression for the output frequency response of this class of nonlinear systems to a general input. The result is
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This expression reveals how nonlinear mechanisms operate on the input spectra to produce the system output frequency response. In (2), )

( ω j X
is the spectrum of the system output, )

( ω j X n represents the nth order output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF], and . Equation ( 2) is a natural extension of the well-known linear relationship
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is the frequency response function, to the nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the input. For nonlinear systems described by equation (1), however, the relationship between the input and output frequencies is more complicated. Given the frequency range of an input, the output frequencies of system (1) can be determined using the explicit expression derived by Lang and Billings in [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF] [START_REF] Lang | Output frequencies of nonlinear systems[END_REF].

Based on the above results for the output frequency response of nonlinear systems, a new concept known as the Nonlinear Output Frequency Response Function (NOFRF) was recently introduced by Lang and Billings [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF]. The NOFRF is defined as
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is valid over the frequency range of )
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, which can be determined using the algorithm in [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF].

By introducing the NOFRFs

)
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, equation (2) can be written as
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which is similar to the description of the output frequency response for linear systems. The NOFRFs reflect a combined contribution of the system and the input to the system is that it is one dimensional, and thus allows the analysis of nonlinear systems to be implemented in a convenient manner similar to the analysis of linear systems. Moreover, there is an effective algorithm [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF] available which allows the estimation of the NOFRFs to be implemented directly using system input output data.

Output Frequency Response Functions under Harmonic Inputs

When system (1) is subject to a harmonic input
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Lang and Billings [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF] showed that equation (2) can be expressed as
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Define the frequency components of nth order output of the system as n Ω . Then according to equation ( 8), the frequency components in the system output can be expressed as
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and n Ω is determined by the set of frequencies
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6 Equation ( 13) explains why superharmonic components are generated when a nonlinear system is subjected to a harmonic excitation. In the following, only those components with positive frequencies will be considered.

The NOFRFs defined in equation ( 4) can be extended to the case of harmonic inputs [START_REF] Peng | Resonances and resonant frequencies for a class of nonlinear systems[END_REF] as
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Ω defined by equation [START_REF] Chakraborty | Dynamics of a weakly non-linear periodic chain[END_REF]. Consequently, the output spectrum )

( ω j X of nonlinear systems under a harmonic input can be expressed as 
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Substituting equations ( 17) and ( 18) into ( 16), it can be derived that the output spectrum )

( ω j Y of nonlinear systems subjected to a harmonic input can be expressed as
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where [•] denotes the operator of taking the integral. 

NOFRFs of Nonlinear Periodic Structures

Consider the one-dimension nonlinear periodic structures where the Lth component is nonlinear, which have be used in [START_REF] Fassois | Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation[END_REF], [START_REF] Chakraborty | Dynamics of a weakly non-linear periodic chain[END_REF], [START_REF] Marathe | Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[END_REF] and [START_REF] Zhu | The Characteristic receptance method for damage detection in large Mono-coupled Periodic structures[END_REF], shown in Figure 1. 
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where P is the degree of the polynomial. Without loss of generality, further assume
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Then the motion of the nonlinear oscillator in Figure 1 is described in a matrix form as.
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where M is the system mass matrix,
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are the system mass, damping and stiffness matrix respectively. ' 1 ) , , (
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is the displacement vector, and

m n k n m n-1 m L-1 m 1 k L-1 k 1 x 1 x L-1 x n-1 x n u(t) m L+1 k L+1 m L k L x L x L+1
A c c e p t e d m a n u s c r i p t

8 ' 1 ) 0 , , 0 ), ( , 0 , , 0 ( ) ( J n J t u t F - - =
(24) is the external force vector acting on the J th mass of the oscillator.

The system described by equation ( 23) is a typical locally nonlinear periodic structure. The Lth nonlinear component can lead the whole system to behave nonlinearly. In this case, the Volterra series can be used to describe the relationships between the displacements ) (t

x i ( n i , , 1 =
) and the input force
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is the jth order Volterra kernel associated to the ith mass. In the frequency domain, the relationship ( 16) can be expressed as
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is the lth order NOFRF associated to the ith mass.

Without loss of generality, assume L<J, as revealed in [START_REF] Peng | Nonlinear Output Frequency Response Functions of MDOF Systems with Multiple Nonlinear Components[END_REF], for any two consecutive masses, the NOFRFs of system (23) satisfy following relationships
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Based on these relationships of the NOFRFs, a novel method can be developed to determine the position of the nonlinear element in system [START_REF] Peng | Nonlinear Output Frequency Response Functions of MDOF Systems with Multiple Nonlinear Components[END_REF].

As equations ( 27)~(29) are the basis of this study, but the derivation and justification of these equations can take quite a lot of contents and, therefore, the elaboration of them are not given in this paper. However, for the sake of completion, a numerical case is given here to justify equations (27)~(29). The numerical case study is conducted on a damped 8-DOF oscillator whose fourth spring (L = 4) was nonlinear. As widely used in modal analysis, the damping was assumed to be proportional to the stiffness, e.g., K C μ = . The values of the system parameters are taken as 1 16) and ( 17), the frequency components of the outputs of the 8 masses can be written as 30), it can be seen that, using the method in [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF], two different inputs with the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4P th P order. Therefore, in this numerical study, two different inputs are used with A=0.8 and A=1.0 respectively. The simulation studies were conducted using a fourth-order Runge-Kutta method to obtain the forced response of the system.
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ω for all masses are given in Table 1. According to relationships (27)~(29), it is known that the following relationships should be tenable. ) From the NOFRFs in Table 1,
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) can be evaluated, and the results are given in Tables 2. The results shown in Tables 2 have a strict accordance with the relationships in (31). Therefore, the numerical study verifies relationships (27)~(29). 

The Nonlinear Component Position Detection Method
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(34) According to equation [START_REF] Billings | Spectral analysis for nonlinear system, part I: parametric non-linear spectral analysis[END_REF], the first harmonic components of
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For the masses located between the nonlinear spring and the input force, substituting equation ( 33) into (35) yields,
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When using two sinusoidal inputs, the frequencies of which are 1 F ω and 2 F ω , to excite the nonlinear system under study, it is easy to extract the harmonic components from the
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12 FFT spectra of the system responses, denote them as

) ( 1 ) , 1 ( F i F jD X ω and ) ( 2 ) , 2 ( F i F jD X ω ( n i , , 1 = ; , 2 , 1 = D
) respectively. It can be known from (37), ( 39) and (43) that

) ( ) ( ) ( 2 ) 1 , 2 ( 2 ) , 2 ( 2 1 , 
F i F F i F F i i j X j X j ω ω ω λ + + = ( 2 1 - ≤ ≤ L i or 1 - ≤ ≤ n i J ) (44) ) ( ) ( ) ( 2 ) 1 , 2 ( 2 ) , 2 ( 2 1 , 
F i F F i F F i i j X j X j ω ω ω λ + + ≠ ( 1 1 - ≤ ≤ - J i L ) (45) ) ( ) ( ) ( 1 ) 1 , 1 ( 1 ) , 1 ( 1 1 , 
F i F F i F F i i jD X jD X jD ω ω ω λ + + = ) 1 , , 1 ( - = n i (46) If P F F 2 1 ω ω =
and P is an integral, then for the P th harmonic components of

) , 1 ( i F X ) , , 1 ( n i =
, obviously, equation ( 46) can be rewritten as

) ( ) ( ) ( ) ( 2 1 , 1 ) 1 , 1 ( 1 ) , 1 ( 1 1 
, F i i F i F F i F F i i j jP X jP X jP ω λ ω ω ω λ + + + = = ) 1 , , 1 ( - = n i (47)
From ( 44), ( 45) and (47) it can be known that ) (

F i F F i F F i F F i F j X j X jP X jP X ω ω ω ω + + = ( 2 1 - ≤ ≤ L i or 1 - ≤ ≤ n i J ) ) ( ) ( ) ( 2 ) 1 , 2 ( 2 ) , 2 ( 1 ) 1 , 1 ( 1 ) , 1 ( 
F i F F i F F i F F i F j X j X jP X jP X ω ω ω ω + + ≠ ( 1 1 - ≤ ≤ - J i L ) (48) and ) ( ) ( ) ( ) ( 2 ) 1 , 2 ( 2 ) , 2 ( 1 ) 1 , 1 ( 1 ) , 1 ( 
The relationships given in (48) and (49) provide a simple way to detect the position of nonlinear components in the MDOF nonlinear systems using dual sinusoidal excitations. Usually, for simplicity and convenience, 1 F ω can be chosen as 

F F ω ω = .
2) Calculate the FFT spectra of the two sets of system responses, denote them as

) , 1 ( i F X and ) , 2 ( i F X , ) , , 1 ( n i = . 3) Extract the first harmonics ) ( 2 ) , 2 ( F i F j X ω from ) , 2 ( i F X
, and the second harmonics

) 2 ( 1 ) , 1 ( F i F j X ω from ) , 1 ( i F X , ) , , 1 ( n i = . 4) Calculate ) ( / ) ( 2 ) 1 , 2 ( 2 ) , 2 ( F i F F i F j X j X ω ω + and ) 2 ( / ) 2 ( 1 ) 1 , 1 ( 1 ) , 1 ( F i F F i F j X j X ω ω + , denote them as ) ( 2 1 , 2 F i i F j R ω + and ) 2 ( 1 1 , 1 F i i F j R ω + , ) 1 , , 1 ( - = n i . 5) Find out the masses where ≠ + ) ( 2 1 , 2 F i i F j R ω ) 2 ( 1 1 , 1 F i i F j R ω +
, then the component on the right side of the furthest left mass is the nonlinear one.

It is worth noting here that, if the force position is located on the left side of the nonlinear component, that is, L J ≤ , then, at the 5 th step of the above detection procedure, the nonlinear component is the one on the right side of the furthest right mass which satisfies 

+ ) ( 2 1 , 2 F i i F j R ω ) 2 ( 1 1 , 1 F i i F j R ω +
. In addition, if there are no nonlinear components in the system, then there is no superharmonic component in the system response spectrum. Therefore there is no need to use the above detection procedure.

The novel nonlinear component position detection method requires only two tests where the MDOF system excited by two different sinusoidal forces. This is obviously very easy to carry out in practices. In the following section, the effectiveness of this method will be demonstrated using numerical studies.

Numerical Studies

In order to verify the nonlinear component position detection method, the same oscillator used in Section 3 was adopted.

Case Study 1 (L < J): π respectively, and were imposed on the 6 th mass of this system, that is J = 6. The responses of the system were obtained using a fourth-order Runge-Kutta method to integrate equation (31). The second super-harmonics were used to calculate ) 2 ( The results given in Table 6 clearly show that

Table 3, ) 2 ( 1 ) , 1 ( F i F j X ω and ) 2 ( 1 1 , 1 F i i F j R ω + (i=1,…,8) ) 2 ( 1 ) , 1 ( F i F j X ω ( 8 10 - × ) ) 2 ( 1 1 , 1 F i i F j R ω + i=1 -0.
, 1 F i i F j R ω + and ) ( 2 1 , 2 F i i F j R ω + (i=1,…,7) ) 2 ( 1 1 , 1 F i i F j R ω + ) ( 2 1 , 2 F i i F j R ω + i=1 0. 2 ( 1 1 
) 2 ( 1 1 , 1 F i i F j R ω + ≠ ) ( 2 1 , 2 F i i F j R ω + at i = 3,4,5.
According to the detection method in Section 4, it can be known that the component on the right side of the 3 rd mass is the nonlinear one, that is, the 4 th spring component.

Case Study 2 (L = J):

In this case study, the 4 th spring are nonlinear, that is L=4. The sinusoidal forces used in this case are the same as the ones used in Case 1, but were imposed on the 4 th mass of this system, that is J=4, so L=J. The results of 

) 2 ( 1 ) , 1 ( F i F j X ω and ) 2 ( 1 1 , 1 F i i F j R ω + (i=1,…,8) are given in
, ) 2 ( 1 ) , 1 ( F i F j X ω and ) 2 ( 1 1 , 1 F i i F j R ω + (i=1,…,8) ) 2 ( 1 ) , 1 ( F i F j X ω ( 8 10 - × ) ) 2 ( 1 1 , 1 F i i F j R ω + i=1
) , 2 ( F i F j X ω and ) ( 2 1 , 2 F i i F j R ω + (i=1,…,8) ) ( 2 ) , 2 ( F i F j X ω ( 5 10 - × ) ) ( 2 1 , 2 F i i F j R ω + i=1 0. ( 2 
F i i F j R ω + and ) ( 2 1 , 2 F i i F j R ω + (i=1,…,7) ) 2 ( 1 1 , 1 F i i F j R ω + ) ( 2 1 , 2 F i i F j R ω + i=1 
i i F j R ω + ≠ ) ( 2 1 , 2 F i i F j R ω + only at i = 3.
According to the detection method in Section 4, it can be known that the component on the right side of the 3 rd mass is the nonlinear one, that is, the 4 th spring component.

Case Study 3 (L>J):

In this case study, the 7 th spring are nonlinear, that is L=7. The sinusoidal forces used in this case are the same as the ones used above cases, but were imposed at the 4 th mass of this system, that is J=4, so L>J. The results of According to the detection method in Section 4, it can be known that the component on the right side of the 6 th mass is the nonlinear one, that is, the 7 th spring component.

) 2 ( 1 ) , 1 ( F i F j X ω , ) 2 ( 1 1 , 1 F i i F j R ω + , ) ( 2 ) 

Conclusions and Remarks

Based on the properties of NOFRFs, a novel method is developed to detect the position of the nonlinear component in a periodic structure. The detection procedure requires exciting the nonlinear system under study twice using two sinusoidal inputs separately. The frequencies of the two inputs are different; one frequency is twice as high as the other one. Three numerical studies have been used to demonstrate the effectiveness of this method. The distinct advantage of this method is that it only needs the test data under two sinusoidal input forces, which can be readily carried out in practices. Since the positions of the nonlinear components in periodic structures often correspond to the locations of faults, the nonlinear component position detection method is of practical significance in the fault diagnosis for mechanical and structural systems. It is worthy to note here that in real periodic structures there are always minor non-linearities between each component and, such structures therefore should be better to model as weakly nonlinear chains which have been by Chakraborty and Mallik [START_REF] Chakraborty | Dynamics of a weakly non-linear periodic chain[END_REF]. For such structures, the problem is then changed to detect the components with strong nonlinear property in the weakly nonlinear chains. It is a more complicated problem we are planning to investigate in future studies.
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 1 taken as F ω and the remainders are as F ω -, substituting equation (9) into equation (15) yields,
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Figure 1 ,

 1 Figure 1, a locally nonlinear multi-degree freedom oscillator Assume the restoring forces ) (Δ LS S and ) (Δ LD S of the Lth spring and damper are the polynomial functions of the deformation Δ and Δ respectively, e.g., ∑ = Δ = Δ P

  NOFRFs up to the 4P th P order is considered, according to equations (

  type force of frequency F ω , according to the definition of NOFRFs under a harmonic input in Section 2.2, it is known from equations (27)~(29), that
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 112 Excite the nonlinear system by two sinusoidal inputs separately whose frequencies are
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	R	1 + 1 , i F i	j	ω	F	1	, which were extracted from the FFT spectra of the
	responses of the system subjected to	) u . The results of the second super-harmonics are ( 1 t
	given in Table 3 together with the calculated values of	R	1 + 1 , i F i	(	j	2 ω	F	1	)	(i=1,…,7). Table 4
	gives the first harmonics of the FFT spectra of the responses of the system subjected to
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	, and the results of	X	(	F	2	,	i	)	(	j	ω	F	2	)		and	R	, F i	1 + 2 i	(	j	ω	F	2	)	(i=1,…,8) are given
	in Table 7. Table 8 gives the moduli of	R	1 + 1 , i F i	(	j	2 ω	F	1	)	and	R	, F i	1 + 2 i	(	j	ω	F	2	)	(i=1,…,7).
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	, Moduli	, 1	1	(	2	1	)

  (i=1,…,8) are given in Table9and Table10respectively. Table11gives the moduli of

																						X	(	F	2	,	i	j	ω	F
	and	R	, F i	1 + 2 i	(	j	ω	F	2	)											
										R	1 + 1 , i F i	(	j	2 ω	F	1	)	and	R	, F i	1 + 2 i	(	j	ω	F	2	)	(i=1,…,7).
										Table 9,	X	(	F	, 1	i	)	(	j	) ω and 2 1 F	R	1 + 1 , i F i	(	j	2 ω	F	1	)	(i=1,…,8)
											X	(	F	, 1	i	)	(	j	) ω ( 2 1 F	×	10 -	7	)	R	1 + 1 , i F i	(	j	2 ω	F	1	)
								i=1				-0.0691 + 0.0115i	0.5078 -0.1765i
								i=2					-0.1284 -0.0220i
																						0.5730 -0.3611i
								i=3					-0.1430 -0.1286i
																						0.5046 -0.4142i
								i=4					-0.0444 -0.2913i
																						0.4783 -0.3913i
								i=5					0.2429 -0.4103i
																						0.4842 -0.3798i
								i=6					0.7221 -0.2811i
																						-1.1682 -0.3649i
								i=7				-0.4947 + 0.3951i
																						0.7568 + 0.6112i
								i=8				-0.1405 + 0.6356i
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			,			X	(	F	2	,	i	)	(	j	ω	F	2	)	and	R	, F i	1 + 2 i	(	j	ω	F	2	)	(i=1,…,8)
	X	(	F	2	,	i	)	(	j	ω	F	2	)	(	×	10 -	5	)	R	, F i	1 + 2 i	(	j	ω	F	2	)
	i=1			0.1013 + 0.1193i			0.5078 -0.1765i
	i=2			0.1052 + 0.2714i			0.5730 -0.3611i
	i=3		-0.0822 + 0.4218i			0.5047 -0.4142i
	i=4		-0.5073 + 0.41953i			1.3192 + 0.9672i
	i=5		-0.0985 + 0.3902i			1.3736 + 1.1183i
	i=6			0.0960 + 0.2059i			0.9580 + 1.2488i
	i=7			0.1409 + 0.0313i			0.7570 + 0.6107i
	i=8			0.1330 -0.0660i			
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