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The paper deals with vibrational impact motion of a mobile-based body on an inclined plane, which is characteristic for vibrational alignment of components subjected to an automated assembly. The alignment model is presented by a twodegree-of-freedom vibro-impact system in which the moving body is impacting the plane obliquely. Properties of the vibrational impact motion under kinematical excitement of the moving body and under the excitement of the plane in two perpendicular directions were investigated by numerical methods. It was determined that impact displacement occurs under transient regimes of motion from system static until dynamic state of equilibrium. Dependencies of maximum displacement of the body and average displacement velocity on force of elastic resistance, amplitude of plane vibration in the direction of the displacement, and phase angle between the perpendicular members of vibration components were established. Zones of system and excitement parameters combination when the vibrational impact motion occurs were defined.

Introduction

Operational processes of many machines and technological equipments are based on systematic and repeating impact interaction of their components or parts. Sledgehammers, vibro-impact tools, impact dampers, riveting machines, screw driving devices, equipment for vibrational drilling and cutting, etc. operate under vibro-impact regimes. For the systems and equipment of this class, periodical regimes of motion that can be established according to forced or self-excited vibration schemes are characteristic. Components or end effectors of these systems move along the one line
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and straight focused impact on to a fixed point are characteristic for it. Systems where straight impact takes place and the velocities of moving bodies are directed to the impact point perpendicularly with respect to the contacting surfaces are called onedimensional impact systems.

Operation of some technological machines and equipment is based on impact motion of components or bodies for which non-unidimensional impact interaction occurs. Thus, non-unidimensional dynamic models are required to describe the main characteristics of these technological systems. Processes of vibrational transportation and vibrational alignment of components during automated assembly are possible to describe by a two-dimensional dynamic model. If the bodies under transportation do not lose contact with the surface of the transporter, or if the components undergoing alignment do not lose contact with each other, then the vibrational displacement occurs within the non-impact regime. However, under the certain conditions, the impact regime of motion occurs. In this case, such systems can be described by a two-dimensional impact dynamic model.

The dynamic system for the vibrational alignment of components during automated assembly has certain specific characteristics. The system consists of two interacting components; one of them is mobile-based. By exciting one of the components using vibration, the mobile-based component moves toward the mating of joining surfaces. Because of this motion, components undergoing assembly are aligned and conditions of automated assembly are established. Vibrational non-impact motion of mobile-based body was explored in the previous paper [START_REF] Bakšys | Modeling of vibrational non-impact motion of mobile-based body[END_REF]. Under the determined excitement parameters, the mobile-based body loses contact with the surface of the immobilized body at certain instant in time. Vibrational impact motion regime occurs then, and the mobile component repeatedly and systematically impacts the other component. Such an impact system has certain specific features. First, the impact point is not fixed because the moving body is impacting different points. Therefore, the impact interaction requires a two-dimensional impact model. Also, the fixing elastic elements always oppose body displacement. Because of this property, the body may move from the position of static to the position of dynamic equilibrium.

To investigate the motion of the impact system, not only the motion of the body after lift-off from the contacting plane needs to be mathematically expressed, but also the interaction of the impacting bodies. During the impact, the kinetic energy of the contacting bodies' normalized motion is transformed into deformation energy. Because of the deformation, stresses emerge at the contact zone and stress waves from this zone
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propagate through the interacting bodies. Investigating the impact by means of continuous media theory, which can account for the altering contact stresses and strains during impact, the duration of the impact, and the wave phenomenon caused by impact, is possible. However, it is a complicated task to investigate such processes analytically finding a closed form solution, and it is usually successful only for simple configurations of the impacting bodies. Therefore, the more complicated tasks can be solved only numerically employing finite element method with explicit integration technique. Among the most popular commercial computer codes of this type is LS-DYNA 3D.

However, for the investigation of impact systems, more often the simpler stereomechanical impact theory is used [START_REF] Goldsmith | Impact: the theory and physical behaviour of colliding solids[END_REF]. It is based on the assumption that the duration of the impact is very short. The impact effect is described by the coefficient of velocity restitution. In this case, a detailed investigation of the impact process to determine kinematical characteristics of the impacting bodies is not needed, and the required dependencies are derived according to general propositions of rigid body mechanics. Impact is described by the impulse integral

( )dt t F I ∫ = τ 0
where F(t) is the impact interaction force. All other forces affecting the system have insignificant influence because of short impact duration. Therefore, the influence of sustained low-strength forces on the impact process can be neglected. Integral evaluation of the impact forces characteristic for the stereomechanical theory does not allow a detailed investigation of the stresses and strains emerging during the impact.

However, on the basis of this theory, it is possible to investigate the motion of the bodies subjected to the impact impulse if the external forces change slowly compared to the impact duration. The before-impact and after-impact body motions can be distinguished and related to each other by kinematical equations of impact. The essence of it is that centers of mass during impact do not change but the velocities do change stepwise. The change in velocity is determined by impulse and kinetic energy conservation laws.

To determine velocities after impact, the coefficient of velocity restitution must be known. Its value can be obtained by employing energy conservation and determining the ratio of the body kinetic energy after impact to kinetic energy dissipated during the
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impact. It is assumed that Newton's hypothesis is valid. According to it, the ratio of body velocity after impact (v + ) to velocity before impact (v -) is constant and does not depend on impact velocity or geometry of bodies but only on material properties of the interacting bodies, i.e.

- + = v v R ,
here R is the coefficient of velocity restitution. The velocity entirely recovers after the impact if R=1, when the impacting bodies are perfectly elastic. If the impact is perfectly plastic, then the velocity after impact is equal to zero and R=0. For real bodies,

1 0 < < R always.
Until now, vibro-impact systems with straight central impacts have been mostly investigated. For example, Babitsky [START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF] and Kobrinskii [START_REF] Kobrinskii | Dynamics of mechanisms with elastic connections and impact systems[END_REF] provided detailed analyses assuming that the dynamics of vibro-impact systems can be reduced to only oscillatory motion. A mathematical model of a vibro-impact system accounting for both oscillatory and progressive motion and capable of transferring high-frequency low-amplitude excitation into low-frequency high-amplitude response is developed in work [START_REF] Pavlovskaia | Modeling of vibro-impact system driven by beat frequency[END_REF].

Nonlinear dynamics of impacting oscillators has received considerable theoretical and experimental attention in the past [START_REF] Peterka | Dynamics of double impact oscillators[END_REF][START_REF] Oestreich | Analytical and experimental investigation of impact oscillator[END_REF][START_REF] Imamura | Dynamic behaviour in a vibro-impact mechanical system[END_REF].

A body moving under impact regime has two degrees of freedom, so its impacts to the surface of contact will be not perpendicular but oblique. In order to describe the oblique impact, it is assumed that normal components of impact velocity do not depend on tangential components, and velocities after impact v y + are related to velocities before impact v y -by the equation

- + - = y y Rv v .
Tangential components of the velocity can be calculated by two hypotheses [START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF].

According to the first hypothesis, tangential component of the velocity after impact v x + is related to the one before impact v x -by the equation

( ) - + - - = x x v f v 1 ,
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here f is coefficient of instant friction ( 1 0 ≤ ≤ f

).

According to the second hypothesis, tangential component of the impact momentum is proportional to the normal component. The coefficient of proportionality is the coefficient of dynamic friction. Then the tangential component of the velocity after impact is expressed by the equation

( ) - - + + - = y x x v R f v v 1 .
The second hypothesis relates normal and tangential components of impact impulse similarly as the dry friction (Coulomb) law relate normal pressure and friction force. In other words, the essence of the hypothesis is an assumption that impacting surfaces are interacting according to the dry friction law, and that this interaction under non-instantaneous and instantaneous forces is described by the same relationship. Both hypotheses are used in the paper to describe impact interaction.

Dynamic model, equations of body motion and impact

Vibrational motion under impact mode is characterized by a two-dimensional model that is similar to the non-impact motion model utilized in [START_REF] Bakšys | Modeling of vibrational non-impact motion of mobile-based body[END_REF] (Fig. 1). The only difference is that the body of mass m in certain time instances lifts-off the plane and moves along a certain trajectory above it and then impacts the plane. Impact motion can occur under kinematical t sin y y ω 0 = excitement of the body or plane in two perpendicular directions

( ) ε ω + = t sin A x 1 1 , t sin B y ω 1 1 = .
Impact motion is investigated under one or another case of excitement; therefore, both cases of excitement are depicted in the model scheme. The body will liftoff the inclined plane and the reaction force disappears when the amplitude of the kinematical or plane excitement in normal direction reaches a certain value. The impact motion mode then begins. The body motion above the plane is two-dimensional and directed along the x and y axes. Elastic (c x , c y ) and damping (h x , h y ) constraints are acting in these directions. Such expression of these constraints is conditional. The twodimensionality of automated assembly device constraints is determined by one or
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several elastic elements located along one axis (for example, the axis of the assembly device). For investigating two-dimensional motion of the body, assume that motion along the x axis has no influence on body interaction with elastic constraint c y , and similarly for motion along the y axis with elastic constraint c x . Only under these conditions will the elastic constraints function linearly.

The body motion above the plane under kinematical excitement during the interval between two impacts is described by equations:

( ) α β sin mg sin t F x c x h x m x x + = + + & & & , (1) 
( )

y st y y y y c cos mg cos t t F y c h y m - - = + + α β & & & ; (2) 
where ( )

t sin y c t F y ω 0 =
is the force of kinematical excitement inclined by angle β with respect to axis y; y st is a coordinate of static equilibrium.

Under excitement of the plane in two perpendicular directions by harmonic vibration with frequency ω, the equations of body motion on the plane have the following expression:

( ) α ε ω ω sin mg t sin mA x c x h x m x x + + = + + 2 1 & & & , (3) 
( )

st y y y y c cos mg t sin mB y c y h y m - - = + + α ω ω 2 1 & & & . ( 4 
)
Impact interaction of the body and the plane is expressed by impact equations.

Impact to the plane will be oblique because two-degree-of-freedom body motion is being investigated. For analyzing dynamic oblique impact systems, two hypotheses are used to evaluate impact. According to both hypotheses, before-impact ( ) For this impulse equation, an equivalent kinematical equation exists

- + - = y R y & & ;
where R is a coefficient of velocity restitution; + y & and - y & are velocity magnitudes.
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According to the first hypothesis, the tangential component of the impact impulse does not depend on the normal component and is characterized by a physical constant dependent on properties and condition of the impacting surfaces. Using this hypothesis, ( )

f x x - = - + 1 & & ; ( 5 
)
where f is a coefficient of Coulomb friction ( )

1 0 ≤ ≤ f .
The second hypothesis is based on assumption that the tangential component of impact impulse is proportional to the normal component, i.e.

n t fI I =
. Then the equation for the tangential impact velocities is ( )

R y f x x + - = - - + 1 & & & . ( 6 
)
The physical meaning of the second hypothesis is easier to understand, but for the approximate calculations the first hypothesis can also be used.

Using dimensionless variables and parameters, the equations for the body motion under kinematical excitement and impact equations as follows:

α µ β τ ξ γ ξ ξ sin sin sin h + = + + 2 1 & & & ; (7) 
ν α µ β τ η λ η η - - = + + cos sin sin h 2 2 & & & ; ( 8 
) ; R - + - = η η & & (9) ( ) - + - = ξ ξ & & f 1
(according to the first hypothesis); (10)

( ) R f + - = - - + 1 η ξ ξ & & &
(according to the second hypothesis). ( 11)

When the plane is excited in two perpendicular directions, the body motion on the plane is described by following the dimensionless equations: ( )

2 1 ω µ A g = .
Impact interaction of the body and the plane is described by the same equations ( 9),( 10),(11), as in the case of the kinematical excitement.

Impact motion of the kinematically excited body

First of all, the solution for the body impact motion under periodic regime is determined by investigating a simplified system. It is assumed that this system has no damping, and that there is no elastic element in the direction of the ξ coordinate. The motion of such a system between the impacts is described by the equations:

( ) α µ β ϕ τ ξ sin sin sin + + = & & ; (14) ( ) , cos cos sin ν α µ β ϕ τ η λ η - - + = + 2 & & ( 15 
)
and interaction of the body and the plane is described by equations ( 9) and (10). The angle of impact phase ϕ is also incorporated in the equations of motion.

Parameters of periodic motion are calculated when impact velocities are the same during each impact and only one impact occurs in one period. The instant of impact is selected as the initial time point. Then the initial and boundary conditions are: Using initial conditions of motion from ( 16), the integration constants can be calculated. Expressions for ξ and η then have the following form:

, , 0, , , c + + = = = = = η η ξ ξ η ξ ξ τ 0 ( 16 
( ) 

β
λ ν α µ ϕ τ λ β λτ ϕ λ β η λ λτ ϕ λ β λ ν α µ η + - + - + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - + = - 1 1 1 1 2 2 2 & (19)
Differentiating equations ( 18) and (19), and using boundary conditions from (17), the relation between velocities before impact

- -η ξ & & ,
and velocities after impact

+ + η ξ & & , is determined as . cos cos cos cos cos sin sin cos cos ; sin 2 ϕ λ β λ π ϕ λ β η λ π λ ϕ λ β λ ν α µ η ξ α πµ ξ 1 2 1 2 1 2 2 2 2 - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - + - = + = + - + - & & & &
Employment of impact equations ( 9) and (10) leads to: (20)

in s f α µ π ξ 2 = - & ; ( )( ) [ ] ( )( ) πλ λ λ πλ λ ϕ β λ ν α µ λ ϕ β πλ λ η 2 1 1 2 1 2 2 2
In this expression, the impact phase ϕ is unknown. It can be determined from equation ( 19) and the boundary condition ( )

0 2 = π η
. Then, from this condition and impact equation (9), the trigonometric equation for impact phase calculation is obtained.

C cos B sin A = + ϕ ϕ ; here ( ) ( ); R 1 cos cos B ; sin cos R A + = - = πλ β λ λ π β λ 1 2 ( ) ( )( ) R sin cos C 1 1 2 - + + = λ λ π ν α µ . From the above equation C B B C A A arctg + + - ± = 2 2 2 2 ϕ .
To have periodical motion of the body, the condition 0

2 2 2 ≥ + - B C A must be
satisfied.

An impact phase depends on certain stages of body motion in respect of the plane, on the sequence, and duration of these stages. During the excitation period, body can remain in the state of rest for a while; it can also slide forward and backward, and move above the plane. Under the steady state regime these stages have cyclic sequence.

Stages consisting the motion cycle and the character of body motion depend on system and excitation parameters. Besides, the period of body motion can be equal or multiple to excitation force period. These possibilities create multiple variations of body motion in vibro-impact systems. Therefore, the body motion after impact is ambiguous and the impact phase equation yields several solutions, each of which corresponds to a different regime of motion.

Let the average velocity of body motion be defined as

( ) β ϕ α πµ τ ξ sin cos sin 2 1 / + - = = f f L T ave & ;
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here T τ is period of the system motion.

In order to determine the characteristics of the impact motion of a body restrained by elastic and damping restraints in x and y directions, the motion equations ( 7) and ( 8) together with impact equations ( 9) and (11), obtained using the second hypothesis, are solved by numerical methods. The peculiarity of the investigated impact system is that because of a body motion the location of the impact point is changing.

Furthermore, the elastic resistant force is acting along the body motion direction.

Because of this situation for the body transition from static to dynamic equilibrium position, the transient regimes of motion are critically important. To investigate such regimes of motion analytically is quite a complicated task. The numerical solution was performed for the motion regime where one excitation period corresponds to one period of body motion.

Examples of how the body coordinates ξ and η change during the motion are presented in Figures 2(a) and 2(b). Elastic force resisting to body motion on the inclined plate is directly proportional to parameter γ. When the stiffness coefficient of the elastic constraint in the direction of motion is increasing, the coordinate of the system dynamic equilibrium location is decreasing. Therefore, the maximum displacement of the body max ξ is also decreasing (Fig 3). Initial force pressing body to the plane is described by the parameter ν and has the greatest influence on the max ξ when the values of the γ are less then 0. The body displacement is also increasing when the angle between the direction of excitement and the normal of plane β is increasing.

Characteristics of body impact motion have a very strong dependency on initial force pressing body to the plane. The ratio of this force to amplitude of excitement determines if body motion will be with or without lift-offs. When the initial pressing force is increasing, the amplitude of body lift-off and the velocity perpendicular to the sliding plane before the lift-off is decreasing (Fig. 5). If there is no pressing force, the body will not slide on the inclined plane though the velocities before the impact will not be equal to zero. Optimal conditions of body sliding occur for 0.1 ≤ ν ≤ 0.2, where ν is the ratio of initial pressing force to the exciting force.
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Transient regimes of impact motion are well described by impact phase characteristics relating velocities before impact with impact phase. Examples of such characteristics are presented in Figure 6, where dependencies of impact phase on body velocities before impact in ξ direction are depicted.

When the body reaches the position of dynamic equilibrium, the regime of periodical motion about this position begins, i.e. the velocities before impact and the impact phase become constant. For the investigated system, it is characteristic that velocities before impact - ξ & in many cases are negative, i.e. velocity vectors are directed in the opposite direction to the body motion. Explanation of such phenomenon is based on the action of the elastic resisting force. This force is increasing while the body moves forward.

Regimes of body impact motion also are characterized by phase trajectory plots that relate velocity before impact with coordinate of body location on the plane (Fig. 7).

Velocities before impact are decreasing when the body moves away from the position of static equilibrium. Direction of the body velocity vector before impact changes near the position of dynamic equilibrium. Motion parameters of the impact system near the position of dynamic equilibrium have a strong dependency on the parameter γ , which expresses ratio of the body frequency of natural vibration in direction of the motion to the frequency of excitement.

Impact motion of the body on the plane excited in two perpendicular directions

The motion equations ( 12) and (13) describing body displacement above the plane and impact equations ( 9) and ( 11) are also solved by numerical methods. Using plots that show how generalized coordinates ξ and η are changing (Fig. 8), the character of the impact motion is determined. Using dependency ( ) τ η , it was determined that in the period of excitement the body impacts the plane one time.

Analyzing ( ) τ ξ plots, the character of the body motion on the plane is determined.

Usually, the body moves until the generalized coordinate ξ reaches a maximum value, then the body slides slightly backward and forward until the periodic vibrations settle about the position of dynamic equilibrium. Motion from the static equilibrium to the dynamic equilibrium is not a periodic process. During this motion, the coordinate of the impact point is changing.
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The parameter γ , which defines the frequency of the body free vibrations in the x axis direction, has a strong influence on the impact motion regimes. Because this frequency depends on the stiffness coefficient of the elastic constraint, it is possible to maintain that the parameter γ describes the elastic force resisting to body displacement.

Roughly, this force varies inversely with the maximum body displacement max ξ (Fig. 9).

For the impact motion regime and γ < 0.25, the values of max ξ are almost twice as large as for the non-impact regime. The influence of the parameter µ , which is inversely proportional to the amplitude of the plane vibrations along the direction of displacement, on displacement distance is significant in the mentioned γ range. Thus, when this amplitude is decreasing, the body displacement on the vibrating plane is increasing.

It is determined that, when the parameter 6 0. > γ , the body is not moving in one direction but vibrates on the plane about the position of the static equilibrium (Fig. 10).

Then, as in the case of non-impact motion, it is possible to perform automatic searching for the mating surfaces of the assembling components in the local zone. show, that when > λ 0.9, the body is not moving. Upon increasing the coefficient of velocity restitution R, the range of λ values, when the body still can move on the plane in one direction, is increasing.

Parameter σ is inversely proportional to the amplitude of the plane vibrations in the direction of the y axis. Upon increasing the amplitude, the maximum displacement of the body almost remains constant (Fig. 12). When σ >0.5, the body is not moving.

When the phase angle between perpendicular components of the plane vibrations is zero ( 0 = ε ), the body displacement is maximal (Fig. 13). Upon increasing the phase angle ε , the conditions for body displacement worsen. When

2 π ε = or 2 π ε - = and
the axes of the elliptical trajectory of excitement coincide with the axes of the coordinates, the body displacement on the plane begins to increase again.

The average velocity of the body impact motion determines the mating time of the connective surfaces of the components under automated assembly. Therefore, the influence of the system parameters to this velocity should be examined. Influence of the elastic constraint stiffness coefficient λ along the y direction upon the body displacement average velocity ave ξ & in the x direction is not significant (Fig. 15). With a positive phase angle between perpendicular components of vibrations, the average body displacement velocity is higher.

Upon increasing the σ parameter, the amplitude of excitement vibrations along the y axis is decreased and the average velocity of the body displacement ave ξ & remains almost constant (Fig. 16). Upon increasing the plane inclination angle α , the average velocity of the body displacement is also increased.

The dependence of ave ξ & upon ε is complicated but appears to have a maximum.

This maximum is achieved when the phase angle ε between perpendicular components of vibrations is close to zero (Fig. 17). Upon increasing the angle ε , independently of the plane vibrations trajectory direction orientation, ave ξ & is decreased.

Investigations show that body displacement under impact regime is possible only with certain combinations of system parameters. When designing equipment for vibrational automatic assembly, the constructional and excitement parameters should be chosen in a way to ensure proper mating of the surfaces of the assembling components.

Therefore, the zones of the system main parameters are composed where the vibrational impact motion of the body takes place (Figs. 1819).

According to the dimensionless coefficients of the body motion equations, an increase of σ means that the excitement amplitude decreases. Upon increasing the stiffness coefficient of the elastic constraint that is described by parameter λ in the η direction, the body can move for smaller values of σ , i.e. under higher amplitudes in excitement direction η (Fig. 18). The parameters γ and σ are similarly related.

The coefficient of velocity restitution R , which models material properties of the contacting bodies, has a significant influence on the body impact motion zone area (Fig. 19).

For assembling components made from stiffer materials, the value of coefficient R will be higher. As a result, the vibrational motion of the body occurs in a wider range of parameters. If the values of parameters are not directly indicated in the presented plots, they are as follows: = α 0.2; f=0.1; h 1 =h 2 =0.1; R=0.5; = µ 0.5; = ν 0.5; = λ 0.1 .
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Conclusions

The impact motion of a mobile-based body on an inclined plane characteristic for a vibrational assembly is investigated under kinematical excitement of a body or excitement of a plane in two perpendicular directions. Vibro-impact system is specific because the body impact to the plane is oblique, the coordinate of the point of impact is changing and the elastic and damping forces are resisting to the body displacement.

However, such a system is a typical system applied for the vibrational assembly of components with impact motion of a mobile-based component seeking to align the mating surfaces and automatically compensate the interposition error.

Vibro-impact motion of the body proceeds from the state of static equilibrium to the state of dynamic equilibrium of the system under transient regimes in both cases of excitement. Distance between these equilibrium positions determines maximum error of the mutual interposition of assembling components under which the mating surfaces still can be matched and components can be assembled. Maximum displacement of the body which determines the coordinate of the dynamic equilibrium position mostly depends on force of elastic resistance, phase angle between perpendicular components of vibrations, and amplitude of the plane vibrations in the direction of displacement. If stiffness of the elastic element along the displacement direction is small, then maximum body displacement under vibro-impact body motion regime is almost twice as large as in case of non-impact motion regime.

Average velocity of impact displacement from static until dynamic equilibrium position determines alignment duration of assembling components. This velocity is related to elastic resistance force by a complicated dependency. Average displacement velocity not always is highest under small resistance force. Additionally, it magnitude is determined by amplitude of the vibrational excitement along the displacement direction and phase angle between components of the excitement vibration.

Impact body motion occurs only for certain combinations of system and excitement parameters. Parameter combination regions are constructed where the body can move under the impact regime. The main influences within these combination regions are stiffness of the elastic constraints, excitement amplitude in direction normal to the displacement, and coefficient of velocity restitution. 
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  normal components of impulse are related to each other by the equation -

,

  the jump length of the body moving on the plane is calculated as

3 .

 3 Increasing the angle of the plane inclination α, which is simulating the inclination of the mobile based component under automated assembly with respect to the other component, causes max ξ to increase almost according to a linear law (Fig 4).

  Upon increasing the stiffness coefficient λ of the elastic constraint in the direction of the y axis, values of max ξ have almost no change Fig. (11). Modeling results
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