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Abstract: We consider the problem of laminar mixed convection flow between paral-
lel, vertical and uniformly heated plates. Using the reduction method based on the center
manifold theorem which was derived from the general theory of dynamical systems, we
obtained a system of three-dimensional ordinary differential equations of amplitudes. The
governing dimensionless parameters are the Prandtl, Rayleigh and Reynolds numbers. We
have found that when the forcing parameter, the Rayleigh number, increases beyond the
critical value Rag, the stationary solution is a pitchfork bifurcation point of the system.

Introduction The laminar mixed convection, which is encountered in various appli-
cations in thermal engineering, received a special attention from researchers in the past
decades. A large amount of research works have been produced considering various ge-
ometries. A partial review of the relevant works was presented in [1], [2], [3] for the
problem of tube flow and two-dimensional channel flow. A following exhaustive review is
emphagised on the flow instability.

For the tube flow in particular, one must cite the pioneering works by Hanratty and
colleagues in the early sixties [4], [5] who have shown that the non-isothermal flow may
become highly unstable. The flow transition from a steady laminar state to an unstable
one has been observed at a relatively low value of the Reynolds number. The corresponding
unstable flow structure, which was not turbulent, has shown the 'new equilibrium’ state
consisting of large scale, regular and periodic fluid motions.

These authors have also found that for heated upward flow (assisted-buoyancy), insta-
bilities occur when the velocity profile develop points of inflexion. For the heated downward
flow (opposed buoyancy case), the instability seems to be caused by the boundary layer
detachment. Wang and colleagues [6] have investigated the problem of mixed convection
with flow reversal in the thermal entrance region of horizontal and vertical pipes at low
Péclet number. For a vertical tube flow, they have found that the flow reversal occurs
at the pipe center for the heating case and near the tube wall for the cooling case. Such
reversal occurs at relatively high —Gr/Re— ratio. Different regimes of reversed flow have



been identified in the Pe- —Gr/Re— coordinate map. The phenomenon of bifurcation
in a horizontal tube has also been investigated [7] the existence of two-cell and four-cell

solutions has been demonstrated. . . .
With regard to the two-dimensional laminar mixed convection flow between parallel

planes, Chang and Lin [3] and Lin et al. [8] have shown that the flow may become
unstable i.e. oscillatory, which possesses a single fundamental frequency when the ratio
Gr/Re? exceeds a critical value. With further increasing of the opposing buoyancy, a
second fundamental frequency is observed and the flow becomes quasi-periodic. Their
numerical results have also shown that increasing the Reynolds number tends to stabilize
the flow. The thermal instability has also been investigated for flow in a horizontal channel
([9))-

The first theoretical study of the flow stability in mixed laminar convection was due to
Nandakumar [10] who has established the existence of dual solutions, the two-vortex and
the four-vortex flow patterns . The bifurcation phenomenon is seen as a two-parameter
problem for a rectangular duct. For a circular cross-section duct, it consists of a one-
parameter problem that exhibits similar features to those observed for the classical Dean
problem.

On the other hand, Yao [11], [12] has performed a linear stability analysis for a flow of
water in a heated vertical tube. He has found that the fully developed non-isothermal flow
appears highly unstable, and the ’bifurcated equilibrium state’ is likely-to be a double-
helices structure. Such unstable structure seems to be susceptible to delay the flow tran-
sition to turbulence. In a recent linear stability analysis, Su and Chung [13] have shown
that the mixed laminar convection flow in a vertical tube may become unstable at rela-
tively low Reynolds number and Rayleigh numbers, and this independently of the Prandtl
number. For water in particular, the predicted values for the critical Rayleigh number
were comparable to the corresponding experimental data by Scheele and Hanratty [5] for
both assisted and opposed buoyancy cases. Su and Chung [13] have also found that the
Prandt]l number has important effect on the stability in the case of assisted buoyancy flow
as it can change the flow instability mechanism. For Prandtl number less than 0.3, the
thermal-shear instability is dominant while for-Pr > 0,3, the assisted-thermal-buoyant
instability becomes preponderant. Similar theoretical studies of the flow stability were
also performed for the case of two-dimensional channel. Paolucci et al. [14] , using an
integral Chebyshev pseudo-spectral method, have found that the two dimensional distur-
bances are the most unstable. Recently, Chen and Chung [15], [16] studied the stability
of a differentially heated vertical channel for various Prandtl numbers. Their results have
shown that both the Prandtl number and Reynolds number hold very important effects on
the critical Grashof number, the wave number, the wave speed as well and the instability
mechanism for high Prandtl number fluids. The existence of multiple local minimum wave
numbers has been determined, which are believed to be responsible of the sudden jumps
observed on the critical wave number and wave speed. It is important to mention that
most of the above theoretical studies were based on the classical linear stability analysis.

In the present work, we have revisited the two-dimensional problem of the flow stabil-
ity and bifurcation for a fully developed laminar mixed convection flow. For doing this, we
have employed the non-linear analysis method that was derived from the general theory
of dynamical systems .

We have considered the ascendant flow of a viscous fluid between parallel, vertical and
uniformly heated planes. At the laminar state, a constant heat flux condition is imposed
at both planes. The problem is described by three dimensionless parameters: the Prandtl



(Pr) number characterizing the fluid, the Reynolds (Re) number representing forced con-
vection and the Rayleigh (Ra) number characterizing the buoyancy forces due to the
heating effect. The Rayleigh number is the only parameter that is varying in this study.
The objective of our study is to show, using such a simple fluid flow problem, that we can
introduce some tools obtained from the dynamical system theory - the center manifold
theorem - to qualitatively describe the system in the vicinity of a bifurcation. In fact, as
shown in the presented results, we have proved that there is a pitchfork bifurcation in the
system for a critical value of Ra, which is independent of Pr and Re and some infinitesimal
perturbation of the stationary state.

1 The center manifold theorem

The center manifold theorem is a tool of the dynamical systems theory used in the non lin-
ear evolution problems where partial differential equations and infinite degrees of freeedom
are involved, such as in the domain of fluid mechanics. Thus, by choosing a appropriate
functional scheme that transforms a system of Navier-Stokes equations into a set of ordi-
nary differential equations such as

dX
=~ P X) 1)

where X is a vector describing the state variables and p is a bifurcation parameter, the
center manifold theorem allows us not only to reduce the dimension of such a system in
the vicinity of a bifurcation, but also to be able to analyse the type and the local dynamics
of such bifurcation. It is important to note that although the solutions of a non linear
ODE system in the neighbourhood of a bifurcation point can be expressed in a basis of
eigenvectors for the linearized system, their asymptotic behaviour is only given by a finite
number of these vectors. The center manifold theorem stipulates that if a linearized system
in the neighbourhood of a bifurcation point has a discrete spectrum with n eigenvalues on
the imaginary axis and all the remaining part lies within the left-hand side of the complex
plane, then the asymptotic behaviour of the solutions close to this critical point is given
by n ordinary differential equations. Moreover, the form of these equations depends only
on the type of the singularity.

2 Mathematical modelling

In this study, we assume that the fluid is incompressible with constant physical properties
i.e. fluid density, thermal conductivity, thermal diffusivity and viscosity are temperature
and pressue dependent, with an exception of the fluid density that appears in the buoy-
ancy forces. This density is assumed to vary linearly with temperature according to the
Oberbeck-Boussinesq approximation, which is often referred by many authors dealing with
the buoyancy-driven flows as the Boussinesq approximation. In fact, before Boussinesq’s
work in 1903, Oberbeck had come up with the same approximation (see [17]). It is inter-
esting to mention that, by using a perturbation technique to studying the thermal response
of a linearly viscous, mechanically incompressible but thermally compressible fluid, Ra-
jagopal et al. [17] have eloquently derived the Oberbeck-Boussinesq approximation as a
third-order perturbation. It is worth to mention from their works that one can also obtain



"higher order’ approximations to the equations. Under these assumptions, the equations
of continuity, momentum and energy of the physical system are given as follows:

V.V =0 (2)

po(aa—f2 +(V.V)V) = —Vp+uV?V +p7 (3)

— + (V.I)T = xVT (4)

where the gravitational acceleration g and the velocity field V are opposed, p is the fluid
pressure, u the fluid dynamic viscosisty, x the thermal diffusivity and p the fluid density

which is given by
p=po[l =BT —To)] (5)

where T is the local fluid temperature.

We assume that the fluid flow between two parallel vertical plates separated by a distance
D is described by a two-dimensional velocity field V= (Ve, V) , see Figure 1. Moreover,
the wall temperature is given by Tw (z) = Tw, + C1Dz where Ty, is the reference wall
temperature assumed to be equal to Ty and C7 is a constant which is the axial gradient

of wall temperature; we have considered that C4 is positive i.e. the flow is buoyancy-

assisted.
The number of parameters can be reduced by introducing the following dimensionless

variables as follows:

* z * 4
* VI * _ Ve
Ve = V% Vi=1+F (7)
¥ p «  (T—Twy)+CiDz*
pt= S THF=e 8
,00‘/()2 RePrC1D ( )
«_ Vot
where Vj) is the mean velocity, the Prandtl and Reynold numbers Pr and Re are given by
pr=t (10)
PoX
D
Re — POVOD (11)

o

The following dimensionless governing equations are then obtained:

vV =0 (12)

- * * 1 *
ov +(V'WV = —Vp*+ —V2V 4+ (T*, )7 (13)
ot* Re
oT* . .1 o 1,
o (V5T = RePrv T+ RePrVZ (14)
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where

V(T*, %) = % (1- BCyD(s* — RePrT™)) (15)

and V? = a‘Z—iQ + a‘z% is is the Laplacian operator in the Cartesian coordinate system.
The boundary conditions are identical to those considered by Chen et Chung [16]:

T =V =0 (2*==+}) (16)

3 Study of a simplified model

3.1 Reduction of the system of Navier-Stokes equations

From the mathematical point of view, the difficulty resides in finding a suitable functional
framework that takes into consideration of the continuity equation and the pressure term
in the equations of momentum in order to reduce the Navier-Stokes system. For the
present case, we assumed that there is a dimensionless stream function ¥* given by:

* ow* _ 9u*
V= (Vir, Vi) = (55, - 55) (17)
such that the continuity equation is satisfied.

By eliminating the pressure term by cross differentiating the equation of conservation
of momentum (13), and by using (15)-(17), the dimensionless equations of motion then
become

J 20y * _ 1 41y * Ra 0T * 2Ty *
e (VAUT) = VI - e I V) a8)
ot* = RePrV " — RePr Jx* _J(\Il ’T )

where the operator J is defined as J(f,g) = %% — %%.

The new dimensionless parameter appearing in these equations is the Rayleigh number
given by
_ gpCD*

XV

Ra (19)

where v = £ .

In order to apply our method of reduction, we have considered the following boundary
conditions

. 2

Under the above conditions, it can be possible to find a stationary state Sp = (¢¥p,Tp)
that is independent of z and satisfies the following ordinary differential equations

d®1 dTg
@ = haog (21)
_ dT'p
d)B - dz

The trivial function is of course the solution of (21) for all Ra, which is also the solution
chosen to describe our method. The aim of the study consists of describing qualitatively



the temporal evolution of an infinitesimal perturbation S’ = (¢', T") for the zero stationary
solution Sp = (0,0) under the hypothesis that the Rayleigh number is the only forcing
parameter.

3.2 Amplitude equations

We choose the following minimal representation for which the temporal and spatial parts
are uncoupled so that the spectral conditions for the center manifold theorem are satisfied

U'(x,2,t) = A(t) sin(rax) sin(rz) (22)
T'(z,2,t) = B(t) cos(maz)sin(rz) + CO(t) sin(27z) (23)

Such equations satisfy the imposed boundary conditions (20) for a = 2. Thus, by substi-
tuting the expressions (22)-(23) into the system (18), we obtain the following non linear

system of amplitude equations:

dX

— =Fu,X 24

= P X) (24)
where X = (A, B,C) and pp = Ra with F(pu, X) = L, X 4+ N(X) where the linear operator
L, is defined by

K2 _ maRa 0
Re K;é%e
_ T
L‘u - " RePr  RePr 0 2 (25)
0 0 4
RePr

and IV is the quadratic operator defined by

0
N(X) = ( —227r2AC’ ) (26)
T8 AB

3.3 Linearization of the system

At first, the linear analysis allows us to prove the existence of fixed points that will be
considered for bifurcation points. Such linear analysis cannot, unfortunately, provides
local information about the solutions that appear near the critical point. Therefore, the
non linear analysis will be necessary as it is capable to overcome such problem.

Thus, the fixed points or the steady states X = (A4, B, C) of the system (24) are given by

A (a3 A? - Eagey(r,) = 0
B = KA (27)
C — aRngAB
where L K6
m
detly = foagepe o~ 557) (28)



is the determinant of the matrix L.
We can deduce that X = (0,0,0) is a fixed point - or a steady state - of the system (24)
for all choice of u. By solving (27), one can see that the systems possesses two other
symmetric fixed points if and only if

K6

In a first step, we are going to investigate the linearized problem around X = (0,0, 0)
for which we have:

dX
—=L,X 30
dt* M ( )
The spectrum of the linear operator L, is the roots of the polynomial P, defined by
K? maRa
T Re A= K2Re 0
PrA) = | —F% —fm A 0 (31)
472
0 0 " RePr A

which can be written under a factorized form as follows:

K2 K4 2 2
M4 (1+ Pr) A Yo Ra

472
— 32
RePr + (PrRe2 K?2PrRe? )] (32)

PL(A) = (_RePr

Y

Such result proves that X = (0,0,0) is a candidate to a primary steady state bifurcation
if and only if 0 is a simple eigenvalue of L,. This is possible when the condition

K* m2a2Ra
PrRe?2 K2PrRe?

=0 (33)
is satisfied, which results to Ra = Ras where the critical Rayleigh number Ray is given as:

K6
Ras = —— (34)

m2a2

so approximately Ra; ~ 3043,68. We will study the system in the neighbourhood of
this fixed point. It is interesting to note that the existence of the other type of primary
bifurcation - the Hopf bifurcation- can be proven to be impossible as the condition

2

1+ P =
(1+ T)RePr

0 (35)

will never be satisfied.



3.4 Reduction of the system on a center manifold

In the following, we consider the part of the matrix L, which is dependent on the parameter
L as a non linear term.
By introducing e = Ra — Ras, we can write

L, = L(Ray) + L(e) (36)
where 0 rae |
~ - 2Re
L(e)—(O o 0) (37)
00 0
The system (24) can then be rewritten as:
dX
e L(Ras)X + g(X,¢€) (38)
where
. 0
§(X.e) = L(eX + | —2m°aAC (39)
e AB
Once the condition (33) is satisfied, the eigenvalues of L(Ras) are
M =0, do=—(1+Pr)ds, Xs=5r (40)

Then we associate an eigenvector V; to the eigenvalue ); for ¢ = 1,2, 3 such that the system
(38) can be written as

dy =
= M(Ras)Y + h(Y,€) (41)
where M(Ras) = P~'L(Ras)P is the diagonal matrix defined by
00 , 0
M(Ra,) = | 0 —(1+Pr)z5 0 (42)
0 0 _ 4q?
RePr
with ,
K pri2 g
P=11 1 0 (43)
0 0 1
which is an-invertible matrix defining the linear variation of coordinates
Y =P'X (44)
and -
h(Y,e) = P~1§(PY,¢) (45)
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is defined by

2ELLS(UW — Prviv)

WY,e) = M(e)Y + | 2H55(UW — Prvw) (46)
—B2 (2 4 (1 — Pr)UV — Prv?)
where ) o L1 o
~ T ate
Me)=———— -1 -1 0 47
() (1+Pr)Re<0 0 0) (47)
If we consider Y = (U, Z) with Z = (V, W), then the system (41) becomes
U = FUZe)
* s £y
9 _ Bz sU.Z¢) (48)
with 2
—(14+Pr)s5: O
B = ( 0( )RePr 4 ) (49)
RePr
and
FU, Ze) = sty (U +V) +2(q§rpf§f (UW — PrvWw)
2K _p
070 =~ (V) - Ee e P
B (U*+ (1 — Pr)UV — Prv?)
(50)

In the new coordinate system (U, V, W), the directions given by the eigenvectors V5 and
V3 are respectively defined by V=0 and W = 0. For any fixed ¢ close to 0, the central
direction is given by V; and defined by U = 0. By [18], we can find a one-dimensional
invariant manifold for the system (41) passing by Y = (0,0,0), which is tangent to the
center eigenspace generated by V1. We denote by WE(0) the curve called center manifold.
As the center eigenspace defined by the equation Z = 0, W£(0) is locally represented by
a graph:

We©) = {(U,2) € R¥Z = he(U),|U| < 61, he(0) = 0, Dh(0) = 0} (51)

such that the asymptotic dynamical behavior of the system (41) on W£(0) is given by the

ordinary differential equation
dUu

dt*

for U close to0 . To find the center manifold, we need to solve the following quasilinear
partial differential equation

=7(U,he(U),€) (52)

N(he(U>) = DhU(f(Ua he(U>7 6) - Bhe(U) - §(U7 he(U)7 6) =0 (53)



As it is difficult to solve (53), we compute an approximate solution in assuming that
V =he1(U) and W = h.3(U) are defined by

(54)

hea(U) = aiU? +agUe+ aze® + O(||(U, o))
hea(U) biU?  +boUe + bse® + O([|(U, €)[1°)

Then, by substituting (54) into (53), and equating terms of identical powers to zero, we
obtain:

U2 (l—l—Pr)%al:O = a5 = 0
dr® nK? _ K2RePr
- feepr 01+ K =0 2202 > b= - 280, (55)
UGr (1‘;PT)RePra2 t @y =0 = @ = —guieye
b =0 -k
Using (55), we deduce that:
7r2a2 T
he’]_(U) = 7W£71)2U6+0(62,|U|62,‘U‘3) (56)
heo(U) = —85EEU2 + O, Ul |UP)
Substituting (56) in (52), we obtain the vector field reduced on WE(0):
dU o U 2 9 K4R€P'f'2 2 2 2 3
%—m(ﬂaﬁ—flfwr@(é,wka\m) (57)

3.5 Dynamics of the solutions on the center manifold

By neglecting higher order terms such as O(e?), O(|U|e?), O(|U]?), etc..., we can show
that the system (57) has two curves of fixed points passing through (Ras,0) for which the
equations are respectively, U = 0 and U = +g(u) where g is defined by

2o

90) = ToRepr

Ve (58)
For e < 0i.e. Ra < Rag, there is only one fixed point on the curve U = 0 that is stable. The
instability occurs when ¢ > 0 or-Ra > Rags. At the particular point of exchange of stability
(Ras,0), two new stable fixed points are created and are given by U = +¢g(Ra). Thus, we
deduce that the fixed point (Ras,0) is clearly a point of pitchfork bifurcation. So we easily
obtain the bifurcation diagram on the center manifold in the Ra — U plane as shown in
Figure 2. Thus, for Ra < Rag, the steady state (U*,7%) = (0,0) is asymptotically stable,
and when Ra exceeds Rag, this steady state becomes unstable. Moreover, the existence
of a pitchfork bifurcation point implies that, for Ra close to Ras such as Ra > Ras, all
the solutions asymptotically end up to one of the symmetric stable steady states (¥*,T™*)
which are close to (0,0).
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4 Discussion and conclusion

This result valid for Re # 0 has been found to be in good agreement with the numerical
results by Chen and Chung [15], [16] who, by performing the linear stability analysis for
similar problem, have observed the existence of such bifurcations for certain values of the
parameters Re and Ra. In particular, they proved, by plotting the neutral stability curves
on the (Re, Ra) plane, that the critical Rayleigh number Ra; is nearly constant - which is
approximately 15 - for Re > 200 and Pr ranging from 0.7 to 100. On the other hand, for
small values of Re, they found that this critical value can increase to about 200. From our
non linear approach presented in this paper, we have also found that the critical Rayleygh
number Rag is independent of Pr and Re. Furthermore, from the neutral stability curve
given by Ra = Ras in Figure 3, we have estimated Ras ~ 3043,68 that represents the
instability boundary on the (Re, Ra) plane for this range of Prandtl numbers. This critical
value Ras ~ 3043, 68 corresponds in fact to the value of 190,7 according to the notations of
Chen and Chung. It is worth to mention that, because of simplifications of the boundary
conditions used, a more complete comparison with other results was not possible at this
stage.

We though that the above reduction method based on the center manifold, which has
successly been applied to a simplified case, can be extended to a more comlex problem
governed by three-dimensional Navier-Stokes equations (3) . In order to do this, some dif-
ficulties must be solved. Thus, we must first find a suitable functional framework in order
to reduce the the system of Navier-Stokes equations to a system of ordinary differential
equations (see [19]). Once this first step is done, it is necessary to identify the spectrum of
the associated linear operator L, in such a way that the hypotheses of the center manifold
theorem are satisfied. Such a challenging and interesting task may be accomplished by
using an appropriate numerical method, which are under consideration by our research
group and will constitute the subject of a future paper.

Finally, it is worth to mention that our non linear approach for treating the problem of in-
stability in mixed convection laminar flows can be, of course, extended to other geometrical
configurations. Thus, in [20], an interesting result obtained for a two-dimensional axisym-
metric tube flow seems to corroborate very well with the numerical results by Nguyen et
al. [21] who have studied a similar mixed convection problem inside a cylindrical liquid-
bridge. Their 2D-axis-symmetrical model did not show any sign of the bifurcation and
instabilities even at every high value of the forcing parameter that is the thermocapillary
Reynolds number. On the other hand,for a full three-dimensional laminar mixed flow
problem inside a vertical liquid-bridge for which many numerical results, see for example
Bazzi et al. [22], have clearly shown the existence of the bifurcation phenomenon. Such a
full three-dimensional model will be considered in the next steps of our research program.
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