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Functions of MDOF Systems with Multiple 
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Abstract: In engineering practice, most mechanical and structural systems are modeled 
as Multi-Degree-of-Freedom (MDOF) systems such as, e.g., the periodic structures. 
When some components within the systems have nonlinear characteristics, the whole 
system will behave nonlinearly. The concept of Nonlinear Output Frequency Response 
Functions (NOFRFs) was proposed by the authors recently and provides a simple way to 
investigate nonlinear systems in the frequency domain. The present study is concerned 
with investigating the inherent relationships between the NOFRFs for any two masses of 
nonlinear MDOF systems with multiple nonlinear components. The results reveal very 
important properties of the nonlinear systems. These properties clearly indicate how the 
system linear characteristic parameters govern the propagation of the nonlinear effect 
induced by nonlinear components in the system. One potential application of the results is 
to detect and locate faults in engineering structures which make the structures behave 
nonlinearly.  

Nomenclature 
x(t), u(t) the output and input of the nonlinear system 

( )X jω , )( ωjU  the spectrum of the system output and input 
),...,( n1nh ττ  the nth order Volterra kernel 
),...,( 1 nn jjH ωω  the nth order GFRF 
)( ωjGn  the nth order NOFRF 

M, C, K the system mass, damping and stiffness matrices 
mi, ci, ki the ith mass, damping and stiffness parameter  

)(iLFS   and )(iLFD  the restoring forces of  L(i)th nonlinear damper and stiffness  
( )liLr  ,)(  and ) ),(( liLw  

(i=1,…,P) 
the nonlinearity related parameters of the L(i)th nonlinear 
component 
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)(iLNonF  the nonlinear force of the L(i)th nonlinear component  
)(txi , )( ωjxi  the displacement and the output frequency response of the ith mass 

)( ωjΘ  the transform function of the linear MDOF oscillator 

)(),( ωjQ li  the element of the ith row and the lth column of the inverse 
matrix of )( ωjΘ  

),...,( 1),( jjih ττ  the jth order Volterra kernel associated to the ith mass 
)(),( ωjG li  the lth order NOFRF associated to the ith mass 
),,( 1

1,
n

ii
n jj ωωλ +  the ratio between the nth GFRFs of the ith and (i+1)th masses 

)(1, ωλ jii
n
+  the ratio between the nth NOFRFs of the ith and (i+1)th 

masses 
),,( 1

)(,1)(
N

iLiL
N jj ωω−Λ  the term introduced by the nonlinear force )(iLNonF  for the 

nth order GFRF. 
)()),(( ωjniLΓ  the term introduced by the nonlinear force )(iLNonF  for the 

nth order NOFRF. 

1 Introduction 
In engineering practice, for many mechanical and structural systems, more than one set of 
coordinates are needed to describe the system behaviour. This implies a MDOF model is 
needed to represent the system. In addition, these systems may also behave nonlinearly 
due to nonlinear characteristics of some components within the systems. For example, a 
beam with breathing cracks behaves nonlinearly because of the cracked elements inside 
the beam [1]. For nonlinear systems, the classical Frequency Response Function (FRF) 
cannot achieve a comprehensive description for the system dynamical characteristics, 
which, however, can be fulfilled using the Generalised Frequency Response Functions 
(GFRFs) [2]. The GFRFs, which are extension of the FRFs to the nonlinear case, are 
defined as the Fourier transforms of the kernels of the Volterra series [3]. The Volterra 
series and its derivative GFRFs are powerful tools for the analysis of nonlinear systems 
and have been widely studied in the past two decades [4][5][6]. The applications of the 
Volterra series range from the electrical engineering [7]~[9], communications[10]~[12],  
network theory [13][14] to structure dynamics [15]~[17].  

If a differential equation or discrete-time model is available for a nonlinear system, the 
GFRFs can be determined using the algorithm in [18]~[20]. However, the GFRFs are 
much more complicated than the FRF. GFRFs are multidimensional functions [21][22], 
which can be difficult to measure, display and interpret in practice. Recently, the novel 
concept known as Nonlinear Output Frequency Response Functions (NOFRFs) was 
proposed by the authors [23]. The concept can be considered to be an alternative 
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extension of the FRF to the nonlinear case. NOFRFs are one dimensional functions of 
frequency, which allow the analysis of nonlinear systems in the frequency domain to be 
implemented in a manner similar to the frequency domain analysis of linear systems and 
which provide great insight into the mechanisms which dominate important nonlinear 
behaviours. Using the NOFRF, the authors have investigated the resonance phenomena 
for a class of nonlinear systems [24]. Most recently, the concept of the NOFRF has been 
extended from the SISO case to the MIMO case by the authors [25].   

The present study is concerned with the analysis of the inherent relationships between the 
NOFRFs for any two masses of MDOF systems with multiple nonlinear components. The 
results reveal, for the first time, very important properties of the nonlinear systems. These 
properties clearly indicate how the system linear characteristic parameters govern the 
propagation of the nonlinear effect induced by nonlinear components in the system. One 
potential application of the results is to detect and locate faults in engineering structures 
which make the structures behave nonlinearly. This study will focus on the derivation and 
verification of nine important properties of nonlinear MDOF systems using a NOFRF 
based analysis. 

2. MDOF Systems with Multiple Nonlinear Components 

 
Figure 1, a multi-degree freedom oscillator 

A typical multi-degree-of-freedom oscillator is shown as Figure 1, the input force is 
added on the Jth mass. 

If all springs and damping have linear characteristics, then this oscillator is a MDOF 
linear system, and the governing motion equation can be written as 

)(tFKxxCxM =++                                                    (1) 
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is the system mass matrix, and  
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are the system damping and stiffness matrix respectively. '
1 ),,( nxxx =  is the 

displacement vector, and  

'
1

)0,,0),(,0,,0()(
JnJ

tutF
−−

=  
 is the external force vector acting on the oscillator.  

Equation (2) is the basis of the modal analysis method, which is a well-established 
approach for determining dynamic characteristics of engineering structures [26]. In the 
linear case, the displacements )(txi  ( ni ,,1= ) can be expressed as 

∫
+∞

∞−
−= τττ duthtx ii )()()( )(                                              (2) 

where )()( th i  ( ni ,,1= ) are the impulse response functions that are determined by 
equation  (1), and the Fourier transform of )()( th i  is the well-known FRF. 

Assume there are L  nonlinear components, which have nonlinear stiffness and damping, 
in the MDOF system, and they are the )(iL th ( Li ,,1= ) components respectively, and 
the corresponding restoring forces )()( ∆iLFS  and )()( ∆iLFD  are the polynomial functions 
of the deformation ∆ and ∆ , i.e.,  

( )∑
=

∆=∆
P

l

l
liLiL rFS

1
 ,)()( )( ,  ∑

=

∆=∆
P

l

l
liLiL wFD

1
) ),(()( )(  

where P is the degree of the polynomial. Without loss of generality, assume 1)( −iL and 
nJiL ,,1)( ≠  ( Li ≤≤1 ) and ( )1 ),()( iLiL rk =  and ( )1 ),()( iLiL wc = .  

Denote 
( )')()1( nnfnfNF =                                               (3) 

where  

( )
              1   ),(  if

         1   ,1)(  if
1   ),(,1)(  if

      
0

)(

)(

LiiLl
LiiLl

LiiLiLl

NonF
NonFlnf

iL

iL

≤≤=
≤≤−=

≤≤−≠

⎪
⎩

⎪
⎨

⎧

−=       ( nl ≤≤1 ) (4) 

and  

∑∑
=

−
=

− −+−=
P

l

l
iLiLliL

P

l

l
iLiLliLiL xxwxxrNonF

2
)(1)()),((

2
)(1)()),(()( )()(            (5) 

Then the motion of the MDOF oscillator in Figure 1 can be determined by below 
equation 

)(tFNFKxxCxM +=++                                        (6) 
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Equations (3)~(6) are the motion governing equations of nonlinear MDOF systems with 
multiple nonlinear components. The L nonlinear components can lead the whole system to 
behave nonlinearly. In this case, the Volterra series [2] can be used to describe the 
relationships between the displacements )(txi  ( ni ,,1= ) and the input force )(tu  as below 

 i

j

i
i

N

j
jjii dtuhtx ττττ )(),...,()(

11
1),( ∏∑∫ ∫

==

∞

∞−

∞

∞−
−=                           (7) 

under quite general conditions [2]. In equation (7), ),...,( 1),( jjih ττ , ( ni ,,1= , 
Nj ,,1= ), represents the jth order Volterra kernel for the relationship between u(t) and 

the displacement of mi.  

When a system is linear, its dynamical properties can be easily analyzed using the FRFs 
defined as the Fourier transform of )()( th i  ( ni ,,1= ) in equation (2). However, as 
equation (7) shows, the dynamical properties of a nonlinear system are determined by a 
series of Volterra kernels, such as ),...,( 1),( jjih ττ , ( ni ,,1= , Nj ,,1= ) for the MDOF 
nonlinear systems considered in the present study. The objective of this paper is to study 
the nonlinear MDOF systems using the concept of Nonlinear Output Frequency Response 
Functions (NOFRFs), which is an alternative extension of the FRF to the nonlinear case 
and is derived based on the Volterra series approach of nonlinear systems.  

3. Nonlinear Output Frequency Response Functions 

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. 
The Volterra series extends the well-known convolution integral description for linear 
systems to a series of multi-dimensional convolution integrals, which can be used to 
represent a wide class of nonlinear systems [2].  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 
can be described in the neighbourhood of the equilibrium by the Volterra series 

i

n

i
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N

n
n dtuhtx ττττ )(),...,()(

11
1 ∏∑∫ ∫

==

∞

∞−

∞

∞−
−=    (8) 

where  x(t) and u(t) are the output and input of the system, ),...,( n1nh ττ  is the nth order 
Volterra kernel, and N denotes the maximum order of  the system nonlinearity. Lang and 
Billings [2] derived an expression for the output frequency response of this class of 
nonlinear systems to a general input. The result is  

⎪
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⎩

⎪
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⎨
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                (9) 
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This expression reveals how nonlinear mechanisms operate on the input spectra to 
produce the system output frequency response. In (9), )( ωjX  is the spectrum of the 
system output, )( ωjX n  represents the nth order output frequency response of the system, 

n
j

nnnn ddehjjH nn ττττωω τωτω ...),...,(...),...,( 1
),...,(

11
11 ++−∞

∞−

∞

∞− ∫∫=          (10) 

is the nth order Generalised Frequency Response Function (GFRF) [2], and 

∫ ∏
=++ =ωωω

ωσωωω
n

n

n

i
inn djUjjH

,..., 1
1

1

)(),...,(  

denotes the integration of ∏
=

n

i
inn jUjjH

1
1 )(),...,( ωωω  over the n-dimensional hyper-plane 

ωωω =++ n1 . Equation (9) is a natural extension of the well-known linear relationship 
)()()( ωωω jUjHjX = , where )( ωjH  is the frequency response function, to the 

nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 
input. For nonlinear systems described by equation (9), however, the relationship between 
the input and output frequencies is more complicated. Given the frequency range of an 
input, the output frequencies of system (9) can be determined using the explicit expression 
derived by Lang and Billings in [2].  

Based on the above results for the output frequency response of nonlinear systems, a new 
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 
recently introduced by Lang and Billings [24]. The NOFRF is defined as 

∫ ∏

∫ ∏

=++ =
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=

ωωω
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ωωω
ω
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σωωω
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djUjjH
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,..., 1
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)(
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)(                             (11) 

under the condition that 

0)()(
,..., 11

≠= ∫ ∏
=++ =ωωω

ωσωω
n

n

n

i
in djUjU                                 (12) 

Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 
determined using the algorithm in [2]. 

By introducing the NOFRFs )( ωjGn , Nn ,1= , equation (9) can be written as  

∑∑
==

==
N

n
nn

N

n
n jUjGjXjX

11
)( )( )()( ωωωω                               (13) 

which is similar to the description of the output frequency response for linear systems. 
The NOFRFs reflect a combined contribution of the system and input to the system 
output frequency response behaviour. It can be seen from equation (11) that )( ωjGn  
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depends not only on nH  (n=1,…,N) but also on the input )( ωjU . For a nonlinear system, 
the dynamical properties are determined by the GFRFs nH  (n= 1,…,N). However, from 
equation (10) it can be seen that the GFRF is multidimensional [21][22] which makes the 
GFRFs difficult to measure, display and interpret in practice. According to equation (11), 
the NOFRF )( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over ωωω =++ n1  with 
the weights depending on the test input. Therefore )( ωjGn  can be used as an alternative 
representation of the dynamical properties described by nH . The most important property 
of the NOFRF )( ωjGn  is that it is one dimensional, and thus allows the analysis of 
nonlinear systems to be implemented in a convenient manner similar to the analysis of 
linear systems. Moreover, there is an effective algorithm [23] available which allows the 
estimation of the NOFRFs to be implemented directly using system input output data. 

4. Analysis of MDOF Systems with Multiple Nonlinear 
Components Using NOFRFS 

4.1 GFRFs of MDOF Systems with Multiple Nonlinear Components 

From equation (6), the GFRFs ),...,( 1),( jji jjH ωω , ( ni ,,1= , Nj ,,1= ) can be 
determined using the harmonic probing method [18][19].  

First consider the input )(tu  is of a single harmonic 
tjetu ω=)(                                                              (14) 

Substituting (14) and   
tj

ii ejHtx ωω)()( )1,(=                             ( ni ,,1= ) (15) 

into equation (6) and extracting the coefficients of tje ω  yields,  

( ) T
JnJ

jHKjCM )00100()(
1

1
2

−−

=++− ωωω                       (16) 
where 

( )Tn jHjHjH )()()( )1,()1,1(1 ωωω =                           (17) 
From equation (16), it is known that  

( ) T
JnJ

KjCMjH )00100()(
1

12
1

−−
−

++−= ωωω                  (18) 
Denote 

KjCMj ++−=Θ ωωω 2)(                                         (19) 
and 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=Θ−

)()(

)()(
)(

),()1,(

),1()1,1(
1

ωω

ωω
ω

jQjQ

jQjQ
j

nnn

n

                               (20) 
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where )(),( ωjQ li (i=1,…,n; l=1,…,n) is the element of the ith row and the lth column of 
the inverse matrix of )( ωjΘ . 

It is obtained from equations (18)~(20) that 
)()( ),()1,( ωω jQjH Jii =                               ),,1( ni =  (21) 

Thus, for any two consecutive masses, the relationship between the first order GFRFs can 
be expressed as 

 )(
)(

)(
)(

)( 1,
1

),1(

),(

)1,1(

)1,( ωλ
ω
ω

ω
ω +

++

== ii

Ji

Ji

i

i

jQ
jQ

jH
jH

            )1,,1( −= ni  (22) 

The above procedure used to analyze the relationships between the first order GFRFs can 
be extended to investigate the relationship between the N th order GFRFs with 2≥N . 
To achieve this, consider the input  

∑
=

=
N

k

tj ketu
1

)( ω  

Substituting this input and 

++

+++=
++ tj

NNi

tj
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tj
ii

N

N

ejjHN

ejHejHtx
)(

1),(

)1,(1)1,(

1

1

),,(!           

)()()(
ωω

ωω

ωω

ωω
       ( ni ,,1= ) (23) 

into equation (6), and, for the first row of equation (6), extracting the coefficients of 
tj Ne )( 1 ωω ++  yields 

( )
( ) 0),,()(

),,()())(()(

1),2(212

1),1(21121
2

11

=+++−

++++++++−

NNN

NNNN

jjHkjc

jjHkkccjm

ωωωω

ωωωωωω
  (24) 

Similarly, it can be easily deduced that, for the masses that are not connected to the 
th)(iL  ( Li ,,1= ) spring, the GFRFs satisfy the following relationships 
( )
( ) 0),,()(

),,()()(

1),1(1

1),(1
2

1

=+++−

++++++−

− NNnnNn

NNnnNnNn
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ωωωω

ωωωωωω
                        (25) 

( )
( ) ),,()(

),,())(()(

1),1(1

1),(111
2

1

NNiiNi

NNiiiNiiNi
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jjHkkccjm

ωωωω

ωωωωωω

−
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++++++++−
 

         ( ) 0),,()( 1),1(111 =+++−
+++ NNiiNi jjHkjc ωωωω   

   ( nlLlLi ),(,1)(,1 −≠ , Ll ≤≤1 )  (26) 
For the mass that is connected to the left of the )(iL th spring, the GFRFs satisfy the 
following relationships 

( ) ),,()(

),,(
)(

))(()(

1),2)((1)(11)(

1),1)((
1)(

1)(1)(
2

11)(

NNiLiLNiL

NNiL
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ωωωω

ωω
ωωωω
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−
−

−−

+++−

⎟
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⎠

⎞
⎜
⎜
⎝

⎛
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++++++−

( ) 0),,(),,()( 1
)(,1)(

1)),(()(1)( =Λ++++− −
N

iLiL
NNNiLiLNiL jjjjHkjc ωωωωωω           
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   ( Li ≤≤1 ) (27) 
For the mass that is connected to the right of the )(iL th spring, the GFRFs satisfy the 
following relationships 

( ) ),,()(

),,(
))(()(

1),1)(()(1)(

1)),((
1)()(

11)()(
2

1)(

NNiLiLNiL

NNiL
iLiL

NiLiLNiL

jjHkjc

jjH
kk

ccjm

ωωωω

ωω
ωωωω

−

+

+

+++−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++++++−

 

( ) 0),,(),,()( 1
)(,1)(

1),1)((1)(11)( =Λ−+++− −
+++ N

iLiL
NNNiLiLNiL jjjjHkjc ωωωωωω     

   ( Li ≤≤1 ) (28) 
In equations (27) and (28), ),,( 1

)(,1)(
N

iLiL
N jj ωω−Λ  represents the extra terms introduced 

by )(iLNonF for the N th order GFRFs, for example, for the second order GFRFs,   

( )(
))()()()()()(

)()(),(

1)1),((2)1,1)((2)1),((1)1,1)((2)1),((1)1),((

2)1,1)((1)1,1)(()2),((21)2),((21
)(,1)(

2

ωωωωωω

ωωωωωω

jHjHjHjHjHjH

jHjHrwjj

iLiLiLiLiLiL

iLiLiLiL
iLiL

−−

−−
−

−−+

+−=Λ
   

( Li ≤≤1 ) (29) 

Denote 
( )T

NNnNNNN jjHjjHjjH ),,(),,(),,( 1),(1),1(1 ωωωωωω =          (30) 

and 
[ ]TNNNN nAAjjA )()1(),,( 1 =ωω                                         (31) 

where  

( )
              1   ),(  if

         1   ,1)(  if
1   ),(,1)(  if

      
),,(
),,(

0

1
)(,1)(

1
)(,1)(

LiiLl
LiiLl

LiiLiLl
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jjlA

N
iLiL

N

N
iLiL

NN

≤≤=
≤≤−=

≤≤−≠

⎪
⎩

⎪
⎨

⎧

Λ
Λ−=

−

−

ωω
ωω  ( nl ≤≤1 ) (32) 

then equations (25)~(28) can be written in a matrix form as  
),,(),,())(( 111 NNNNN jjAjjHj ωωωωωω =++Θ                  (33) 

so that  
),,())((),,( 11

1
1 NNNNN jjAjjjH ωωωωωω ++Θ= −                (34) 

Therefore, for each mass, the N th order GFRF can be calculated as  

∑
=

−

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
Λ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++
=

L

l N
lLlL

N

N
lLlL

N

T

NlLi

NlLi

NNi jj
jj

jQ

jQ
jjH

1 1
)(,1)(

1
)(,1)(

1)(,

11)(,
1),( ),,(

),,(
)((

))((
),,(

ωω
ωω

ωω

ωω
ωω  

),,1( ni =   (35) 
Define  

),,(

),,(
),,(

1),1(

1),(
1

1,

NNi

NNi
N

ii
N jjH

jjH

ωω

ωω
ωωλ

+

+ =             )1,,1( −= ni (36) 

then from equation (36), it can be known that, for two consecutive masses, the N th order 
GFRFs have the following relationships  
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∑

∑

=
−

−

+

−+

=
−

−
−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
Λ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
Λ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++

=
L

l N
lLlL

N

N
lLlL

N

T

NlLi

NlLi

L

l N
lLlL

N

N
lLlL

N

T

NlLi

NlLi

N
ii

N

jj
jj

jQ

jQ

jj
jj

jQ

jQ

1 1
)(,1)(

1
)(,1)(

1)(,1

11)(,1

1 1
)(,1)(

1
)(,1)(

1)(,

11)(,

1
1,

),,(
),,(

)((

))((

),,(
),,(

)((

))((

),,(

ωω
ωω

ωω

ωω

ωω
ωω

ωω

ωω

ωωλ  

                                     )1,,1( −= ni   (37) 
Equations (22) and (37) give a comprehensive description for the relationships between 
the GFRFs of any two consecutive masses for the nonlinear MDOF system (6).  

In addition, denote  
0),,( 1

1,0 =NN jj ωωλ                       ( NN ,,1= ) (38) 

0),,( 1),1( =Λ
− NNJ jj ωω                     ( NN ,,1= ) (39) 

NN
Njj NNJ ,,2  if

           1  if
0
1

),,( 1),( =
=

⎩
⎨
⎧

=Λ ωω                        (40) 

  ),,(),,( 1
)(,1)(

1),1)(( N
iLiL

NNNiL jjjj ωωωω −
−

Λ−=Λ   ( NN ,,1= , Li ≤≤1 ) (41) 

),,(),,( 1
)(,1)(

1)),(( N
iLiL

NNNiL jjjj ωωωω −Λ=Λ  ( NN ,,1= , Li ≤≤1 ) (42) 

and JL =)0( , then, for the first two masses, from equations (16) and (33), it can be 
known that 

( )( )⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

+++−+

++++++−

+++
==

1111
1,0

122
2

11

212

1),2(

1),1(
1

2,1

)(),,(1

)()(

)(
),,(

),,(
),,(

kjc

jckm

kjc
jjH

jjH

NNN

NN

N

NN

NN
NN

ωωωωλ

ωωωω

ωω
ωω

ωω
ωωλ  

( NN ,,1= ) (43) 
Starting with equation (43), and iteratively using equations (16) and (33) from the first 
mass, it can be deduce that, for the masses that aren’t connected to nonlinear components 
and the Jth spring, the following relationships hold for the GFRFs.  

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+−+

+++−

+++
==

+
−

+
−

++

+

+

2
111

,1

111
,1

111

1),1(

1),(

1
1,

)(),,(1

)(),,(1

)(
),,(

),,(

),,(

NiiiN
ii

N

NiiN
ii

N

iNi

NNi

NNi

N
ii

N

mkk

ccj

kjc
jjH

jjH

ωωωωλ

ωωωωλ

ωω
ωω

ωω

ωωλ

 

 ( ni <≤1 , )(,1)(, lLlLJi −≠ , Ll ,,0= , NN ,,1= ) (44) 
For the masses that are connected to nonlinear components and the Jth spring, from 
equations (16), (27) and (28), it can be known that the following relationships hold for 
the GFRFs. 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ

+++
+=

=

+

+

+

+

),,(

),,(

)(
11),,(

),,(

),,(
),,(

1),1(

1),(

1
1

1,

1),1(

1),(
1

1,

NNi

NNi

Nii
N

ii

N

NNi

NNi
N

ii
N

jjH

jj

jck

jjH

jjH

ωω

ωω

ωω
ωωλ

ωω

ωω
ωωλ

 

 ( )(,1)( lLlLi −= , Ll ,,0= , NN ,,1= ) (45) 
where 

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+−+

+++−

+++
=

+
−

+
−

+++

2
111

,1

111
,1

111
1

1,

)(),,(1

)(),,(1

)(
),,(

NiiiN
ii

N

NiiN
ii

N

iNi
N

ii

N

mkk

ccj

kjc

ωωωωλ

ωωωωλ

ωω
ωωλ  

( )(,1)( lLlLi −= , Ll ,,0= , NN ,,1= ) (46) 
Moreover, denote 1),,( 1

,1 =+
N

nn
N ωωλ , ( NN ,,1= ),  01 =+nc  and 01 =+nk . Then, for 

the last two masses, from equations (16) and (33) it is can be deduced that 

),,(

),,(

),,(
1),,(

1),1(

1),(

1
,11

1,

NNn

NNn

N
nn

N
N

nn
N jjH

jjH

ωω

ωω

ωωλ
ωωλ

−
−

− ==  

( )
( )( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++−+

+−+++−

+++
=

+
+

+
+

)(),,(1

),,(1)(

)(

111
,1

11
,12

1

1

NnnN
nn

N

nnN
nn

NNn

nNn

ccj

kkm

kjc

ωωωωλ

ωωλωω

ωω
     ( NN ,,1= )  (47) 

Starting with equation (47), and iteratively using equations (16) and (33), it can be 
deduce that, for the masses that aren’t connected to nonlinear components and the Jth 
spring, the following relationships hold for the GFRFs. 

           
),,(

),,(

),,(
1),,(

1),1(

1),(

1
,11

1,

NNi

NNi

N
ii

N
N

ii
N jjH

jjH

ωω

ωω

ωωλ
ωωλ

−
−

− ==  

( )
( )( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++−+

+−+++−

+++
=

+
+

+
+

)(),,(1

),,(1)(

)(

111
,1

11
,12

1

1

NiiN
ii

N

iiN
ii

NNi

iNi

ccj

kkm

kjc

ωωωωλ

ωωλωω

ωω
 

( ni ≤≤2 , )(,1)( lLlLi −≠ , Ll ,,0= , NN ,,1= ) (48) 
For the masses that are connected to nonlinear components and the Jth spring, from 
equations (16), (27) and (28), it can be known that the following relationships hold for 
the GFRFs. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ

+++
+=

=

−

−

−

−

),,(

),,(

)(
11),,(

),,(

),,(
),,(

1),1(

1),(

1
1

1,

1),1(

1),(
1

1,

NNi

NNi

Nii
N

ii

N

NNi

NNi
N

ii
N

jjH

jj

jck

jjH

jjH

ωω

ωω

ωω
ωωλ

ωω

ωω
ωωλ
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 ( )(,1)( lLlLi −= , Ll ,,0= , NN ,,1= ) (49) 
where 

( )
( )( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++−+

+−+++−

+++
=

+
+

+
+

−

)(),,(1

),,(1)(

)(
),,(

111
,1

11
,12

1

1
1

1,

NiiN
ii

N

iiN
ii

NNi

iNi
N

ii

N

ccj

kkm

kjc

ωωωωλ

ωωλωω

ωω
ωωλ     (50) 

From different perspectives, equations (43)~(46) and equations (47)~(50) give two 
alternative descriptions for the relationships between the GFRFs of any two consecutive 
masses for the nonlinear MDOF system (6). 

4.2 NOFRFs of MDOF Systems with Multiple Nonlinear Components 

According to the definition of NOFRF in equation (11), the N th order NOFRF of the ith 
mass can be expressed as 

∫ ∏

∫ ∏

=++ =

=++ =
=

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q
q

N

N

q
qNNi

Ni

djU

djUjjH

jG

,..., 1

,..., 1
1),(

),(

1

1

)(

)(),...,(

)(    )1  ,1( niNN ≤≤≤≤  (51) 

where )( ωjU  is the Fourier transform of )(tu . 

According to equation (44), for the masses that aren’t connected to nonlinear components 
and the Jth spring, equation (51) can be rewritten as 

∫ ∏

∫ ∏

=++ =

=++ =
+

+

=

ωωω
ω

ωωω
ω

σω

σωωωωωλ

ω

N

N

N

N

q
q

N

N

q
qNNiN

ii
N

Ni

djU

djUjjH

jG

,..., 1

,..., 1
1),1(1

1,

),(

1

1

)(

)(),...,(),,(

)(  

    ( )( )[ ] )(
)(1 ),1(

11
,12

11 ω
ωωωλω

ω jG
kjckjcm

kjc
Ni

iiii
ii

Ni

ii
+

++
−

++

+++−+−
+

=  

 ( ni <≤1 , )(,1)( lLlLi −≠ , Ll ,,0= , NN ,,1= ) (52) 
Denote  

ωωωωωλ
ω

ω
ωλ =++

+

+

+ == )(1
1,

),1(

),(1,
1

),,(
)(

)(
)(

NN
ii

N
Ni

Niii
N jG

jG
               (53) 

Therefore, for two consecutive masses that aren’t connected to these nonlinear 
components and the Jth spring, the NOFRFs have the following relationship 

( )( )[ ]11
,12

111,

)(1
)(

++
−

+++

+++−+−
+

=
iiii

ii
Ni

iiii
N kjckjcm

kjc
ωωωλω

ω
ωλ  

( ni <≤1 , )(,1)( lLlLi −≠ , Ll ,,0= , NN ,,1= ) (54) 
where 0)(1,0 =ωλN . 
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Similarly, for the masses that are connected to nonlinear components and the Jth spring, 
from equations (44) and (45), it can be deduced that 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Γ

+
+=

+

++

)(

)(11)()(
),1(

),(1,1,

ω

ω

ω
ωλωλ

jG

j

jck Ni

Ni

ii

ii

N
ii

N
 

 ( )(,1)( lLlLi −= , Ll ,,0= , NN ,,1= ) (55) 
where 

( )( )[ ]11
,12

111,

)(1
)(

++
−

+++

+++−+−
+

=
iiii

ii
Ni

iiii

N kjckjcm
kjc

ωωωλω
ω

ωλ                   (56) 

and  

∫ ∏

∫ ∏

=++ =

=++ =

Λ

=Γ

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q
q

N

N

q
qNNi

Ni

djU

djUjj

j

,..., 1

,..., 1
1),(

),(

1

1

)(

)(),,(

)(                        (57) 

Equations (54)~(57) give a comprehensive description for the relationships between the 
NOFRFs of two consecutive masses of the nonlinear MDOF system (6).  

Using the same procedure, from equations (47)~(50), an alternative description can be 
established for the following relationships between the NOFRFs of two consecutive 
masses. For the masses that aren’t connected to nonlinear components and the Jth spring  

( )( )[ ]iiii
ii

Ni

ii

Ni

Ni
ii

N

ii
N kjckjcm

kjc
jG

jG

+++−+−
+

===
++

+
−

−
−

ωωωλω
ω

ω

ω

ωλ
ωλ

11
,12

),1(

),(
,1

1,

)(1)(

)(

)(
1)(  

( ni ≤≤2 , )(,1)( lLlLi −≠ , Ll ,,0= , NN ,,1= ) (58) 
For the masses that are connected to nonlinear components and the Jth spring 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Γ

+
+===

−

−

−
−

−

)(

)(11)(
)(

)(

)(
1)(

),1(

),(1,

),1(

),(
,1

1,

ω

ω

ω
ωλ

ω

ω

ωλ
ωλ

jG

j

jckjG

jG

Ni

Ni

ii

ii

N
Ni

Ni
ii

N

ii
N

 

 ( )(,1)( lLlLi −= , Ll ,,0= , NN ,,1= ) (59) 
where 1)(,1 =+ ωλ nn

N ( NN ,,1= ) and  

( )( )[ ]iiii
ii

Ni

iiii

N ckjckm
kjc

ωωωλω
ω

ωλ
+++−+−

+
=

++
+

−

11
,12

1,

)(1
)(                        (60) 

From different perspectives, both equations (54)~(57) and equations (58)~(60) give a 
comprehensive description for the relationships between the NOFRFs of any two 
consecutive masses of the nonlinear MDOF system (6). 
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4.3 The Properties of NOFRFs of Locally Nonlinear Systems 

Without loss of generality, assume )()1( LLL << . Then, from equations (54)~(60),  the 
following important properties of the NOFRFs of MDOF systems with multiple nonlinear 
components can be obtained.  

i) If )1(LJ ≤ , then for the masses ( 11 −≤≤ Ji  and niLL <≤)( ), the following 
relationships hold.  

 
)(

)(
)(

)(

),1(

),(

)1,1(

)1,(

ω
ω

ω
ω

jG
jG

jG
jG

Ni

Ni

i

i

++

==    ( 11 −≤≤ Ji  and niLL <≤)( ) (61) 

for the masses ( 1)1( −<≤ LiJ ), the following relationships hold. 

)(
)(

)(
)(

)(
)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Ni

Ni

i

i

i

i

+++

==≠              ( 1)1( −<≤ LiJ ) (62) 

for the masses ( )()1( LLiL <≤ ), the following relationships hold. 

)(
)(

)(
)(

)(
)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Ni

Ni

i

i

i

i

+++

≠≠≠        ( )(1)1( LLiL <≤− ) (63) 

ii) If )()1( LLJL ≤≤ , then for the masses ( 1)1(1 −<≤ Li  and niLL <≤)( ), the 
following relationships hold. 

)(
)(

)(
)(

),1(

),(

)1,1(

)1,(

ω
ω

ω
ω

jG
jG

jG
jG

Ni

Ni

i

i

++

==    ( 1)1(1 −<≤ Li and niLL <≤)( ) (64) 

for the masses ( )()1( LLiL <≤ ), the following relationships hold 

)(
)(

)(
)(

)(
)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Ni

Ni

i

i

i

i

+++

≠≠≠        ( )(1)1( LLiL <≤− ) (65) 

iii) If )(LLJ ≥ , then for the masses ( 1)1(1 −<≤ Li  and niJ <≤ ), the following 
relationships hold.  

 
)(

)(
)(

)(

),1(

),(

)1,1(

)1,(

ω
ω

ω
ω

jG
jG

jG
jG

Ni

Ni

i

i

++

==    ( 1)1(1 −<≤ Li  and niJ <≤ ) (66) 

for the masses ( JiLL <≤)( ), the following relationships hold. 

)(
)(

)(
)(

)(
)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Ni

Ni

i

i

i

i

+++

==≠                  ( JiLL <≤)( ) (67) 

for the masses ( )(1)1( LLiL <≤− ), the following relationships hold. 

)(
)(

)(
)(

)(
)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Ni

Ni

i

i

i

i

+++

≠≠≠        ( )(1)1( LLiL <≤− ) (68) 

iv) For the masses ( 1)1)1(,min(1 −−≤≤ LJi  and niJLL <≤)),(max( ), the following 
relationships of the output frequency responses hold 

)()()( 1
1, ωωλω jxjx i

ii
i +

+=  
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( 1))1(,min(1 −≤≤ LJi  and niJLL <≤)),(max( ) (69) 
where 

( )( )[ ]11
,12

111,

)(1
)(

++
−

+++

+++−+−
+

=
iiii

ii
i

iiii

kjckjcm
kjc

ωωωλω
ω

ωλ               (70) 

Above fourth properties can be easily extended to a more general case, as the following. 
v) For any two masses whose positions are [ ]1))1(,min(,1, −⊆ LJki , or 

[ ]1)),(,max(, −⊆ nLLJki , the following relationships hold.  

)(
)(
)(

)(
)( ,

),(

),(

)1,(

)1,( ωλ
ω
ω

ω
ω ki

Nk

Ni

k

i

jG
jG

jG
jG

===  

( [ ]1))1(,min(,1, −⊆ LJki , or [ ]1)),(,max(, −⊆ nLLJki ) (71) 
and 

∏
−−

=

+++=
1

0

1,, )()(
ik

d

didiki ωλωλ                                           (72) 

Moreover, the following relationships of their output frequency responses hold 
)()()( , ωωλω jxjx k

ki
i =                                            (73) 

vi) If )1(LJ ≤ , for any two masses whose positions are [ ]1)1(,, −⊆ LJki , the following 
relationships hold.  

)(
)(
)(

)(
)(

)(
)( ,

),(

),(

)2,(

)2,(

)1,(

)1,( ωλ
ω
ω

ω
ω

ω
ω ki

Nk

Ni

k

i

k

i

jG
jG

jG
jG

jG
jG

===≠  

( [ ]1)1(,, −⊆ LJki ) (74) 
vii) If )(LLJ ≥ , then for any masses whose positions are [ ]JLLki ),(, ⊆ , the following 

relationships hold. 

)(
)(
)(

)(
)(

)(
)( ,

),(

),(

)2,(

)2,(

)1,(

)1,( ωλ
ω
ω

ω
ω

ω
ω ki

Nk

Ni

k

i

k

i

jG
jG

jG
jG

jG
jG

===≠  

( [ ]JLLki ),(, ⊆ ) (75) 
viii) For any two masses whose positions are [ ])(,1)1(, LLLki −⊆ , the following 

relationships hold.  

)(
)(

)(
)(

)(
)(

),(

),(

)2,(

)2,(

)1,(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Nk

Ni

k

i

k

i ≠≠≠                              (76) 

ix) For any two masses whose positions are [ ]1)1(,1 −⊆ Li  and [ ]nLk ),1(⊆ or 
[ ]1)(,1 −⊆ LLi  and [ ]nLLk ),(⊆ , the following relationships hold. 

)(
)(

)(
)(

)(
)(

),(

),(

)2,(

)2,(

)1,(

)1,(

ω
ω

ω
ω

ω
ω

jG
jG

jG
jG

jG
jG

Nk

Ni

k

i

k

i ≠≠≠                             (77) 

The nine relationships between NOFRFs of nonlinear MDOF systems reveal, for the first 
time, very important properties of the nonlinear systems. They reveal how the linear 
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system parameters govern the propagation of the nonlinear effect induced by the 
nonlinear components in the whole system. These properties can be applied to detect and 
locate the nonlinear components in engineering structures which often is related to faults.  

5 Numerical Study and Discussions 

5.1 Case Studies 

To verify above analysis results, a damped 10-DOF oscillator was adopted, in which the 
fourth and sixth springs were nonlinear. The damping was assumed to be proportional 
damping, e.g., KC µ= . The values of the system parameters are 

1101 === mm ,  ,106.3 4
1051 ×==== kkk  ,8.0 1876 kkkk ×===  

,9.0 19 kk ×=  µ =0.01,  0)3,6()2,6()3,4()2,4( ==== wwww  
2

1)2,4( 8.0 kr ×= ,  3
1)3,4( 4.0 kr ×= , )2,4()2,6( 5.0 rr ×= , )3,4()3,6( 1.0 rr ×=  

and the input is a harmonic force, )202sin()( tAtu ×= π . 

When a nonlinear system is subject to a harmonic input, 
)cos()( βω += tAtu F                                                      (78) 

it can be derived that the output spectrum )( ωjY  of nonlinear systems can be simply 
expressed as [12] 

[ ]

∑
+−

=
−+−+=

2/)1(

1
)1(2)1(2 )( )()(

kN

n
FnkFnkF jkAjkGjkY ωωω       ( Nk ,,1,0= ) (79) 

where [ ].  means to take the integer part, and  
βω )2(||

)!(!
!

2
1))2(( knjn

nFn eA
knk

nknjA +−

−
=+−                          (80) 

),,,,,())2((
kn

FF

k

FFnFn jjjjHknjG
−

−−=+− ωωωωω                     (81) 

According to equations (79)~(81), if only the NOFRFs up to the 4th order is considered, 
the frequency components of the outputs of the 10 masses 

)()()()()( 3)3,(1)1,( FFiFFiFi jAjGjAjGjx ωωωωω +=

)2()2()2()2()2( 4)4,(2)2,( FFiFFiFi jAjGjAjGjx ωωωωω +=  

                        )3()3()3( 3)3,( FFiFi jAjGjx ωωω =  

)4()4()4( 4)4,( FFiFi jAjGjx ωωω =                                    )10,,1( =i  (82) 
From equation (82), it can be seen that, using the method in [23], two different inputs with 
the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4th 
order. Therefore, in the numerical studies, two different inputs were A=0.8 and A=1.0 
respectively. The simulation studies were conducted using a fourth-order Runge–Kutta 
method to obtain the forced response of the system.  



Acc
ep

te
d m

an
usc

rip
t 

 17

Case 1.  Input Force Acting on the Eighth Mass (J = 8)  

In this case, the position of the input force is on the right of the two nonlinear 
components. The evaluated results of )(1 FjG ω , )(3 FjG ω , )2(2 FjG ω  and )2(4 FjG ω for 
all masses are given in Table 1. According to Property iii) in the previous section, it can 
be known that the following relationships should be tenable. 
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ω
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 (83) 

Table 1, the evaluated results of )(1 FjG ω , )(3 FjG ω , )2(2 FjG ω  and )2(4 FjG ω   
 )(1 FjG ω  

(×10-6) 
)(3 FjG ω  

(×10-9) 
)2(2 FjG ω  

(×10-8) 
)2(4 FjG ω  

(×10-10) 

Mass 1 0.7415+1.81675i -1.4839 -3.1863i 1.2028+0.4681i 0.0118-0.6146i 

Mass 2 0.9687+3.4830i -2.0346-6.1478i 1.8350+1.5489i 0.3497-1.0888i 

Mass 3 0.2866+4.76390i -0.9248-8.4985i 1.0931+3.3649i 1.2839-1.0913i 

Mass 4 -1.4623+ 5.2958i 2.2399-7.6670i -2.6863+1.5531i 2.6082+1.7940i 

Mass 5 -4.0944+4.6145i 6.5809-6.9866i -6.0115+1.2279i 2.1843+3.9698i 

Mass 6 -7.7469+1.6880i -9.3252+ 6.1777i 5.1062-1.7667i -1.8932-4.1325i 

Mass 7 -10.2035-3.6670i -3.0998+6.4668i 1.6279-2.6939i -2.3878-1.1449i 

Mass 8 -9.5104-10.9684i 2.0570+4.5521i -0.3077-1.5854i -1.3026+0.3861i 

Mass 9 -16.4606-2.6060i 5.1710+2.4786i -0.8845-0.3838i -0.2497+0.7718i 

Mass 10 -19.3586+1.8453i 6.5645+1.2960i -0.9602+0.2564i 0.2926+0.7833i 

From the NOFRFs in Table 1, )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + , )2(1,
2 F

ii j ωλ + and )2(1,
4 F

ii j ωλ +  
( 9,,1=i ) can be calculated. The results are given in Table 2. It can be seen that the 
results shown in Table 2 have a strict accordance with the relationships in (83).  
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Table 2, the evaluated values of )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + , )2(1,
2 F

ii j ωλ + and )2(1,
4 F

ii j ωλ +  

 )(1,
1 F

ii jωλ +  )(1,
3 F

ii jωλ +  )2(1,
2 F

ii j ωλ +  )2(1,
4 F

ii j ωλ +  

i=1 0.5391 -0.0630i 0.5391-0.0630i 0.5085 -0.1741i 0.5085-0.1741i 

i=2 0.7407-0.1588i 0.7407-0.1588i 0.5766-0.3580i 0.5766-0.3580i 

i=3 0.8219-0.2811i 0.9888-0.4095i 0.2378-1.1151i 0.1388-0.5139i 

i=4 0.7994-0.3924i 0.7415-0.3778i 0.4796-0.1604i 0.6244-0.3135i 

i=5 0.6285-0.4587i -0.8354+0.1958i -1.1257-0.1490i -0.9941+0.0731i 

i=6 0.6197-0.3882i 1.3389+0.8002i 1.3194+1.0981i 1.3194+1.0981i 

i=7 0.6513-0.3656i 0.9242+1.0986i 1.4455+1.3074i 1.4455+1.3074i 

i=8 0.6666+0.5608i 0.6666+0.5608i 0.9473+1.3813i 0.9473+1.3813i 

i=9 0.8299+0.2137i 0.8299+0.2137i 0.7602+0.6028i 0.7602+0.6028i

Case 2.  Input Force Acting on the Fifth Mass (J = 5) 

In this case, the input force is located between the two nonlinear components. The 
evaluated results of )(1 FjG ω , )(3 FjG ω , )2(2 FjG ω  and )2(4 FjG ω  for all masses are 
given in Table 3. According to Property ii) in the previous section, it can be shown that 
the following relationships should be tenable. 
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(84) 
Table 3, the evaluated results of )(1 FjG ω , )(3 FjG ω , )2(2 FjG ω  and )2(4 FjG ω  

 )(1 FjG ω  
(×10-6) 

)(3 FjG ω  
(×10-8) 

)2(2 FjG ω  
(×10-8) 

)2(4 FjG ω  
(×10-10) 

Node1 -6.0043+0.5981i 0.1295+1.5561i -6.9092-1.9495i 6.1399+20.0025i 

Node2 -11.1153-0.1888i -0.0956+2.8751i -10.9876-7.5957i -1.2465+38.9120i 

Node3 -14.2954-3.3193i -0.9191+3.6854i -7.8461-18.0461i -31.8055+47.7222i 

Node4 -14.3350-8.9404i -8.1475+0.9043i -3.9589+2.5420i -6.8951-9.7451i 
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Node5 -10.0249-16.1049i -8.4096-1.0040i 11.3654-11.3058i -51.0635-33.3886i 

Node6 -11.6678-7.3967i 5.4052+5.0502i -0.0705+21.5252i 51.8267-1.4614i 

Node7 -8.8533-0.2333i 4.6355+1.0013i 7.9904+9.6650i 22.6618-19.9710i 

Node8 -4.0944+4.6145i 2.6124-2.0219i 6.3668+0. 9278i 1.7503-15.3984i 

Node9 -0.1864+7.0794i 0.8006-3.7067i 2.6067-2.8217i -6.9911-6.0614i 

Node10 1.8495+8.0539i -0.1740-4.4215i 0.2983-3.9483i -9.5281-0.4184i 

From the NOFRFs in Table 3, )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + , )2(1,
2 F

ii j ωλ + and )2(1,
4 F

ii j ωλ +  
( 9,,1=i ) can be calculated. The results are given in Table 4. It can be seen that the 
results shown in Tables 4 have a strict accordance with the relationships in (84). 

Table 4, the evaluated values of )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + , )2(1,
2 F

ii j ωλ + and )2(1,
4 F

ii j ωλ +  

 )(1,
1 F

ii jωλ +  )(1,
3 F

ii jωλ +  )2(1,
2 F

ii j ωλ +  )2(1,
4 F

ii j ωλ +  
i=1 0.5391-0.0630i 0.5391-0.0630i 0.5085-0.1741i 0.5085-0.1741i 

i=2 0.7405-0.1588i 0.7405-0.1588i 0.5766-0.3582i 0.5767-0.3582i 

i=3 0.8219-0.2811i 0.1610-0.4345i -0.6692+4.1287i -1.7245-4.4839i 

i=4 0.7994-0.3925i 0.9426-0.2201i -0.2869-0.0617i 0.1820+0.0718i 

i=5 1.2371+0.5961i -0.9233+0.6770i -0.5270-0.5263i -0.9663-0.6715i 

i=6 1.3390+0.8002i 1.3389+0.8003i 1.3194+1.0980i 1.3192+1.0981i 

i=7 0.9242+1.0986i 0.9242+1.0986i 1.4455+1.3074i 1.4456+1.3074i 

i=8 0.6666+0.5608i 0.6666+0.5608i 0.9473+1.3813i 0.9473+1.3813i 

i=9 0.8299+0.2137i 0.8299+0.2137i 0.7602+0.6028i 0.7602+0.6028i 

The two numerical case studies verify the properties of the NOFRFs of MDOF systems 
with multiple nonlinear components derived in the present study. These properties can 
provide a convenient method to detect the positions of the nonlinear components in a 
MDOF system by analyzing the relationships between the NOFRFs.  

5.2 Discussion 

In engineering practice, a wide class of real life structures can be modeled as periodic-
structures-like MDOF systems, which are defined as structures consisting of identical 
substructures connected to each other in identical manner, such as periodically supported 
beams [28]~[33] and plates[32][33]. If one or more components are of nonlinear 
properties, then the systems can behave nonlinearly. Efforts have been made to study the 
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dynamics of the nonlinear structures [34]-[38] using one-dimensional and multi-
dimensional MDOF models. In addition, the detection and location of faults and defects 
in periodic structures and machines are also interesting to many researchers. Zhu and Wu 
[39] have studied the detection of damages in large periodic structures. In their studies, 
the periodic structure with damage is still considered to be a linear system, and the 
location and magnitude of damage in large mono-coupled periodic systems were 
estimated using measured changes in the natural frequencies. However, in engineering 
practices, the local faults and defects can often make the structures and machines behave 
nonlinearly. In the latter cases, obviously the properties discovered in this study can 
provide a convenient way to detect the positions of the faults. For example, consider the 
10-element periodic mass-spring system shown in Figure 2, which is a specific form of 
the mass-spring system investigated in [39], and assume the sixth spring is damaged and 
of nonlinear property. To detect the position of the damaged spring, two excitations can 
be used to excite the system, and then the NOFRFs up to the fourth order of all masses 
can be estimated from the responses. Obviously, if the excitation force is acting on the 
10th mass, then according to the property iii), there exist the following relationships:  
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Clearly, the relationship (86) provides a direct way to detect the position of the damaged 
spring.  

 
Figure 2, The 10-element periodic mass-spring system whose 6th spring is fault 

The locally nonlinear MDOF (6) can also be used to describe the transversal motion of the 
tall apartment block with damages shown in Figure 3. Based the same model, Sakellariou 
and Fassois [40][41] have used a stochastic output error vibration-based methodology to 
detect the damage in structures where the damage elements were modeled as components 
of cubic stiffness. No doubt the properties obtained in this study can also provide a 
convenient way to detect the position of the damage in this kind of structures. 
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Figure 3, Schematic diagram of the n-storey building block 

In addition, for simplicity, in this study the one-dimensional nonlinear MDOF system, 
each mass of which has only one freedom degree, is adopted. Nevertheless, following the 
same procedure used in this study, the nine properties can be extended to the multi-
dimensional nonlinear MDOF systems by simply replacing the scalar forms of mi, ci and 
ki as matrix forms, consequently, the )(1, ωλ jii

N
+  ( 1,,0 −= ni ; NN ,,1= ) also have a 

matrix form. The multi-dimensional cases could be more complicated than the one-
dimensional cases, but the NOFRF properties of multi-dimensional nonlinear MDOF 
systems can be used to analyze a more wide class of structures. For example, the beam 
shown in Figure 4(a) can be represented as a series of rigid blocks connected by 
rotational and transverse springs shown in Figure 4(b). The rotational spring 
approximates the bending of the beam and the transverse spring approximates the shear. 
Neild, Mcfadden and Williams [42] have used this model to analyze the beam with one 
breathing crack. When cracks present in this beam, the whole beam can behave 
nonlinearly. Clearly, this beam is a two-dimensional nonlinear MDOF system, and the 
detection of the crack position in this beam could be easily achieved using the properties 
of the NOFRFs for multi-dimensional MDOF systems.  
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Figure 4, Modelling of a beam as discrete blocks 

Moreover, as the response spectrum of each mass of nonlinear MDOF systems is totally 
determined by the associated NOFRFs and the input, based on the relationships between 
the NOFRFs, new spectra analysis methods can be developed to detect the position of 
nonlinear elements in the systems, which may only involve a very simple procedure. We 
are currently working on this and the results will be presented in a future publication.  

From equation (70) it can be seen that the ratios between the NOFRFs of two consecutive 
masses are mainly determined by the linear parameters. Therefore equation (70) reveals 
how the linear system parameters govern the relationships between the NOFRFs of two 
consecutive masses. This fact provides a convenient way to estimate these linear 
parameters, which has been elaborated in [43].  

6 Conclusions 

In this paper, significant relationships between the NOFRFs of MDOF systems with 
multiple nonlinear components have been derived and verified by numerical studies. The 
results reveal, for the first time, important properties of this general class of MDOF 
nonlinear systems. The potential of using these properties to detect and locate faults in 
engineering structures is also discussed. 

It is worth noting here that, theoretically, the obtained relationships about NOFRFs are 
valid for nonlinear systems whose responses can be described using the Volterra series, 
which covers a considerably wide range of operating conditions of nonlinear systems 
[4]~[6][44][45]. In practice, because the validity of the Volterra series is dependent on 
the amplitude of the external force input which is normally controllable during fault 
detection oriented structural tests, provided that the amplitude of testing input is properly 
selected, the important relationships between the NOFRFs will hold and can therefore be 
used for structural fault diagnosis. Moreover, for convenience, in this study the one-
dimensional MDOF system is adopted, that is each mass has only one degree of freedom, 
but the obtained results can be easily extended to the multi-dimensional MDOF cases 
where each mass in the MDOF system has more than one degree of freedom. In the 
analysis, if mi, ci and ki are taken as matrix forms and ),,1(, nixi =  are taken as vectors, 
the same results can be achieved.  
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Appendix 1: 
Proof of Property (i)  

The first property is straightforward. For the masses on the left of the Jth mass, 
substituting 0)(1,0 =ωλN  ( NN ,,1= ) into equation (54), it is obtained that 

( )( ) )()()( 2,1

2121
2

1

222,12,1
1 ωλ

ωω
ωωλωλ =

++++−
+

===
kkccjm

jck
N         (A-1) 

Subsequently, substituting (A-1) into equation (55) yields 
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Iteratively using above procedure until i=(J-1), for the masses ( 11 −≤≤ Ji ), property (61) 
can be proved.  

Similarly, substituting 1)(,1 =+ ωλ nn
N ( NN ,,1= ) into equation (58), it is known that  
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Subsequently, substituting (A-3) into equation (58), it can be deduced that 
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Iteratively using above procedure until )(LLi = , for the masses ( niLL <≤)( ), property 
(61) can be proved.  

Obviously, from equations (40) and (57), it is known that  

NN
NjNJ ,,2  if
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=Γ ω                                      (A-5) 

Substituting )()( ,1,1
1 ωλωλ JJ

N
JJ −− ==  and equation (A-5) into (54), it can be deduced 

that   
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Obviously,  
)()()( 1,1,

2
1,

1 ωλωλωλ +++ ==≠ JJ
N

JJJJ                                   (A-7) 
Substituting )()()( 1,1,

2
1,

1 ωλωλωλ +++ ==≠ JJ
N

JJJJ  into equation (54), it can be proved that  
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2
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Iteratively using this procedure until 2)1( −= Li , for the masses ( 1)1( −<≤ LiJ ), 
property (62) can be proved. 

Then, substituting )()()( 1)1(,2)1(1)1(,2)1(
2

1)1(,2)1(
1 ωλωλωλ −−−−−− ==≠ LL

N
LLLL  into equation (56), 

it can be known that 
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Moreover, generally,    
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                                (A-10) 

Substituting (A-9) and (A-10) into equation (56), it can be deduced that 

)()()( )1(,1)1()1(,1)1(
2

)1(,1)1(
1 ωλωλωλ LL

N
LLLL −−− ≠≠≠                   (A-11) 

Iteratively using the procedure until 1)( −= LLi , for the masses ( )(1)1( LLiL <≤− ), 
property (63) can be proved. 

Proof of Property (ii) and (iii)  

Following the same procedure used for proof of Property (i), the second and third 
properties can be proved. The details are omitted here. 

Proof of Property (iv) 

The fourth property is also straightforward since, according to equation (13), the output 
frequency response of the ith mass can be expressed as 

∑
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),1(1 )( )()( ωωω                                        (A-12) 

Equation (A-12) can be rewritten as 

∑
=

+
+ =

N

k
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1
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1,
1 )( )()()( ωωωλω                                  (A-13) 

Using the first three properties, it can be known that,  
)()()( 1,1,1,

1 ωλωλωλ +++ === iiii
N

ii  

( 1))1(,min(1 −≤≤ LJi  and niJLL <≤)),(max( ) (A-14) 
Substituting (A-13) into (A-14) yields 

∑
=

+
+ =

N

k
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ii
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1
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1,
1 )( )()()( ωωωλω                               (A-15) 

Obviously, )()()( 1,
1 ωωλω jxjx i

ii
i

+
+ = , then the fourth property is proved. 

Proof of Properties (v)~(ix) 
The proof of the properties (v)~(ix) only needs some simple calculations. The details are 
therefore omitted here. 
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