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Nonlinear output frequency response functions of MDOF systems with multiple nonlinear components

In engineering practice, most mechanical and structural systems are modeled as Multi-Degree-of-Freedom (MDOF) systems such as, e.g., the periodic structures.

When some components within the systems have nonlinear characteristics, the whole system will behave nonlinearly. The concept of Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by the authors recently and provides a simple way to investigate nonlinear systems in the frequency domain. The present study is concerned with investigating the inherent relationships between the NOFRFs for any two masses of nonlinear MDOF systems with multiple nonlinear components. The results reveal very important properties of the nonlinear systems. These properties clearly indicate how the system linear characteristic parameters govern the propagation of the nonlinear effect induced by nonlinear components in the system. One potential application of the results is to detect and locate faults in engineering structures which make the structures behave nonlinearly.

Nomenclature

x(t), u(t) the output and input of the nonlinear system ( ) X jω , )

( ω j U the spectrum of the system output and input ) ,..., ( the n th order NOFRF M, C, K the system mass, damping and stiffness matrices m i , c i , k i the i th mass, damping and stiffness parameter

) (i L FS and ) (i L FD
the restoring forces of L(i) th nonlinear damper and stiffness ( ) 

l i L r , ) (

Γ

the term introduced by the nonlinear force

Introduction

In engineering practice, for many mechanical and structural systems, more than one set of coordinates are needed to describe the system behaviour. This implies a MDOF model is needed to represent the system. In addition, these systems may also behave nonlinearly due to nonlinear characteristics of some components within the systems. For example, a beam with breathing cracks behaves nonlinearly because of the cracked elements inside the beam [START_REF] Chondros | Vibration of a beam with breathing crack[END_REF]. For nonlinear systems, the classical Frequency Response Function (FRF) cannot achieve a comprehensive description for the system dynamical characteristics, which, however, can be fulfilled using the Generalised Frequency Response Functions (GFRFs) [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF]. The GFRFs, which are extension of the FRFs to the nonlinear case, are defined as the Fourier transforms of the kernels of the Volterra series [START_REF] Worden | A harmonic probing algorithm for the multi-input Volterra series[END_REF]. The Volterra series and its derivative GFRFs are powerful tools for the analysis of nonlinear systems and have been widely studied in the past two decades [START_REF] Schetzen | The Volterra and Wiener theories of nonlinear systems[END_REF][5] [START_REF] Bartos | Sun, Characterization of Abrupt Nonlinearity by the Volterra-Fourier Method[END_REF]. The applications of the Volterra series range from the electrical engineering [START_REF] Fard | Synchronous generator model identification for control application using volterra series[END_REF]~ [START_REF] Nam | Volterra series representation of time-frequency distributions[END_REF], communications [START_REF] Salgado | Experimental validation of Volterra series nonlinear modelling for microwave subcarrier optical systems[END_REF]~ [START_REF] Lang | Evaluation of output frequency responses of nonlinear systems under multiple inputs[END_REF], network theory [START_REF] Stegmayer | Volterra series and neural networks to model an electronic device nonlinear behavior[END_REF][14] to structure dynamics [START_REF] Zheng | Non-linear frequency-domain analysis of jack-up platforms[END_REF]~ [START_REF] Peng | Crack detection using nonlinear output frequency response functions[END_REF].

If a differential equation or discrete-time model is available for a nonlinear system, the GFRFs can be determined using the algorithm in [START_REF] Billings | Spectral analysis for nonlinear system, part I: parametric non-linear spectral analysis[END_REF]~ [START_REF] Peyton Jones | A recursive algorithm for the computing the frequency response of a class of nonlinear difference equation models[END_REF]. However, the GFRFs are much more complicated than the FRF. GFRFs are multidimensional functions [START_REF] Zhang | Analysing non-linear systems in the frequency domain, I: the transfer function[END_REF] [START_REF] Zhang | Analysing nonlinear systems in the frequency domain, II: the phase response[END_REF], which can be difficult to measure, display and interpret in practice. Recently, the novel concept known as Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by the authors [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF]. The concept can be considered to be an alternative

A c c e p t e d m a n u s c r i p t

3 extension of the FRF to the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow the analysis of nonlinear systems in the frequency domain to be implemented in a manner similar to the frequency domain analysis of linear systems and which provide great insight into the mechanisms which dominate important nonlinear behaviours. Using the NOFRF, the authors have investigated the resonance phenomena for a class of nonlinear systems [START_REF] Peng | Resonances and resonant frequencies for a class of nonlinear systems[END_REF]. Most recently, the concept of the NOFRF has been extended from the SISO case to the MIMO case by the authors [START_REF] Peng | Nonlinear Output Frequency Response Functions for Multi-Input Nonlinear Volterra Systems[END_REF].

The present study is concerned with the analysis of the inherent relationships between the NOFRFs for any two masses of MDOF systems with multiple nonlinear components. The results reveal, for the first time, very important properties of the nonlinear systems. These properties clearly indicate how the system linear characteristic parameters govern the propagation of the nonlinear effect induced by nonlinear components in the system. One potential application of the results is to detect and locate faults in engineering structures which make the structures behave nonlinearly. This study will focus on the derivation and verification of nine important properties of nonlinear MDOF systems using a NOFRF based analysis.

MDOF Systems with Multiple Nonlinear Components

Figure 1, a multi-degree freedom oscillator A typical multi-degree-of-freedom oscillator is shown as Figure 1, the input force is added on the Jth mass.

If all springs and damping have linear characteristics, then this oscillator is a MDOF linear system, and the governing motion equation can be written as

) (t F Kx x C x M = + +
(1) where

⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = n m m m M 0 0 0 0 0 0 2 1 m n k n m n-1 m 2 m 1 k 2 k 1 x 1 x 2 x n-1 x n u(t) c 1 c 2 c n
A c c e p t e d m a n u s c r i p t 4 is the system mass matrix, and
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are the system damping and stiffness matrix respectively. ' 1 ) , , (

n x x x =
is the displacement vector, and

' 1 ) 0 , , 0 ), ( , 0 , , 0 ( ) ( J n J t u t F - - =
is the external force vector acting on the oscillator. Equation ( 2) is the basis of the modal analysis method, which is a well-established approach for determining dynamic characteristics of engineering structures [START_REF] He | Modal Analysis[END_REF]. In the linear case, the displacements

) (t x i ( n i , , 1 
=
) can be expressed as

∫ +∞ ∞ - - = τ τ τ d u t h t x i i ) ( ) ( ) ( ) ( (2) 
where ) (

) ( t h i ( n i , , 1 =
) are the impulse response functions that are determined by equation [START_REF] Chondros | Vibration of a beam with breathing crack[END_REF], and the Fourier transform of ) (

) ( t h i
is the well-known FRF.

Assume there are L nonlinear components, which have nonlinear stiffness and damping, in the MDOF system, and they are the

) (i L th ( L i , , 1 
=
) components respectively, and the corresponding restoring forces ) (

) ( ∆ i L FS and ) ( ) ( ∆ i L FD
are the polynomial functions of the deformation ∆ and ∆ , i.e.,

( ) ∑ = ∆ = ∆ P l l l i L i L r FS 1 , ) ( ) ( ) ( , ∑ = ∆ = ∆ P l l l i L i L w FD 1 ) ), ( ( ) ( ) (
where P is the degree of the polynomial. Without loss of generality, assume 1 ) (i L and

n J i L , , 1 ) ( ≠ ( L i ≤ ≤ 1
) and

( ) 1 ), ( ) ( i L i L r k = and ( ) 1 ), ( ) ( i L i L w c = . Denote ( ) ' ) ( ) 1 ( n nf nf NF = (3) where ( ) 1 ), ( if 1 , 1 ) ( if 1 ), ( , 1 ) ( if 0 ) ( ) ( L i i L l L i i L l L i i L i L l NonF NonF l nf i L i L ≤ ≤ = ≤ ≤ - = ≤ ≤ - ≠ ⎪ ⎩ ⎪ ⎨ ⎧ - = ( n l ≤ ≤ 1 ) (4) 
and
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Then the motion of the MDOF oscillator in Figure 1 can be determined by below equation 6) are the motion governing equations of nonlinear MDOF systems with multiple nonlinear components. The L nonlinear components can lead the whole system to behave nonlinearly. In this case, the Volterra series [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF] can be used to describe the relationships between the displacements

) (t F NF Kx x C x M + = + + (6) 
) (t x i ( n i , , 1 =
) and the input force ) (t u as below

i j i i N j j j i i d t u h t x τ τ τ τ ) ( ) ,..., ( ) ( 1 1 1 ) , ( ∏ ∑ ∫ ∫ = = ∞ ∞ - ∞ ∞ - - = (7) 
under quite general conditions [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF]. In equation ( 7), ) ,..., ( 1) , (

j j i h τ τ , ( n i , , 1 = , N j , , 1 =
), represents the jth order Volterra kernel for the relationship between u(t) and the displacement of m i .

When a system is linear, its dynamical properties can be easily analyzed using the FRFs defined as the Fourier transform of ) (

) ( t h i ( n i , , 1 =
) in equation ( 2). However, as equation [START_REF] Fard | Synchronous generator model identification for control application using volterra series[END_REF] shows, the dynamical properties of a nonlinear system are determined by a series of Volterra kernels, such as ) ,..., ( 1) , (

j j i h τ τ , ( n i , , 1 = , N j , , 1 
=
) for the MDOF nonlinear systems considered in the present study. The objective of this paper is to study the nonlinear MDOF systems using the concept of Nonlinear Output Frequency Response Functions (NOFRFs), which is an alternative extension of the FRF to the nonlinear case and is derived based on the Volterra series approach of nonlinear systems.

Nonlinear Output Frequency Response Functions

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. The Volterra series extends the well-known convolution integral description for linear systems to a series of multi-dimensional convolution integrals, which can be used to represent a wide class of nonlinear systems [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF].

Consider the class of nonlinear systems which are stable at zero equilibrium and which can be described in the neighbourhood of the equilibrium by the Volterra series

i n i i n N n n d t u h t x τ τ τ τ ) ( ) ,..., ( ) ( 1 1 1 ∏ ∑ ∫ ∫ = = ∞ ∞ - ∞ ∞ - - = (8) 
where x(t) and u(t) are the output and input of the system, ) ,..., (

n 1 n h τ τ
is the nth order Volterra kernel, and N denotes the maximum order of the system nonlinearity. Lang and Billings [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF] derived an expression for the output frequency response of this class of nonlinear systems to a general input. The result is This expression reveals how nonlinear mechanisms operate on the input spectra to produce the system output frequency response. In (9), )
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( ω j X is the spectrum of the system output, )

( ω j X n represents the nth order output frequency response of the system, 

1 1 + + - ∞ ∞ - ∞ ∞ - ∫ ∫ = ( 10 
)
is the nth order Generalised Frequency Response Function (GFRF) [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF], and . Equation ( 9) is a natural extension of the well-known linear relationship

∫ ∏ = + + = ω ω ω ω σ ω ω ω n n n i i n n d j U j j H ,..., 1 1 1 ) 
) ( ) ( ) ( ω ω ω j U j H j X = , where ) ( ω j H
is the frequency response function, to the nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the input. For nonlinear systems described by equation ( 9), however, the relationship between the input and output frequencies is more complicated. Given the frequency range of an input, the output frequencies of system (9) can be determined using the explicit expression derived by Lang and Billings in [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF].

Based on the above results for the output frequency response of nonlinear systems, a new concept known as the Nonlinear Output Frequency Response Function (NOFRF) was recently introduced by Lang and Billings [START_REF] Peng | Resonances and resonant frequencies for a class of nonlinear systems[END_REF]. The NOFRF is defined as

∫ ∏ ∫ ∏ = + + = = + + = = ω ω ω ω ω ω ω ω σ ω σ ω ω ω ω n n n n i i n n i i n n n d j U d j U j j H j G ,..., 1 ,..., 1 1 1 1 
) ( ) ( ) ,..., ( ) ( [START_REF] Peddanarappagari | Volterra series approach for optimizing fiber-optic communications system designs[END_REF] under the condition that 0

) ( ) ( ,..., 1 1 ≠ = ∫ ∏ = + + = ω ω ω ω σ ω ω n n n i i n d j U j U ( 12 
)
Notice that )

( ω j G n
is valid over the frequency range of )

( ω j U n
, which can be determined using the algorithm in [START_REF] Lang | Output frequency characteristics of nonlinear system[END_REF].

By introducing the NOFRFs )

( ω j G n , N n , 1 =
, equation ( 9) can be written as

∑ ∑ = = = = N n n n N n n j U j G j X j X 1 1 ) ( ) ( ) ( ) ( ω ω ω ω (13)
which is similar to the description of the output frequency response for linear systems. The NOFRFs reflect a combined contribution of the system and input to the system output frequency response behaviour. It can be seen from equation [START_REF] Peddanarappagari | Volterra series approach for optimizing fiber-optic communications system designs[END_REF] that ) . For a nonlinear system, the dynamical properties are determined by the GFRFs n H (n= 1,…,N). However, from equation [START_REF] Salgado | Experimental validation of Volterra series nonlinear modelling for microwave subcarrier optical systems[END_REF] it can be seen that the GFRF is multidimensional [21][22] which makes the GFRFs difficult to measure, display and interpret in practice. According to equation [START_REF] Peddanarappagari | Volterra series approach for optimizing fiber-optic communications system designs[END_REF] is that it is one dimensional, and thus allows the analysis of nonlinear systems to be implemented in a convenient manner similar to the analysis of linear systems. Moreover, there is an effective algorithm [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF] available which allows the estimation of the NOFRFs to be implemented directly using system input output data.

( ω j G n

Analysis of MDOF Systems with Multiple Nonlinear Components Using NOFRFS

GFRFs of MDOF Systems with Multiple Nonlinear Components

From equation ( 6), the GFRFs ) ,...,

( j j i j j H ω ω , ( n i , , 1 = , N j , , ( 1 ) , 
= 1 
) can be determined using the harmonic probing method [START_REF] Billings | Spectral analysis for nonlinear system, part I: parametric non-linear spectral analysis[END_REF] [START_REF] Billings | Mapping nonlinear integro-differential equations into the frequency domain[END_REF].

First consider the input ) (t u is of a single harmonic

t j e t u ω = ) ( (14) 
Substituting [START_REF] Hussain | A new neural network structure for temporal signal processing[END_REF] and

t j i i e j H t x ω ω) ( ) ( ) 1 , ( = ( n i , , 1 = ) (15) 
into equation [START_REF] Bartos | Sun, Characterization of Abrupt Nonlinearity by the Volterra-Fourier Method[END_REF] and extracting the coefficients of t j e ω yields, ( )

T J n J j H K jC M ) 0 0 1 0 0 ( ) ( 1 1 2 - - = + + - ω ω ω (16) where ( ) T n j H j H j H ) ( ) ( ) ( ) 1 , ( ) 1 , 1 ( 1 ω ω ω = (17)
From equation ( 16), it is known that ( ) It is obtained from equations ( 18)~(20

T J n J K jC M j H ) 0 0 1 0 0 ( ) ( 1 1 2 1 - - - + + - = ω ω ω (18) Denote K jC M j + + - = Θ ω ω ω 2 ) ( (19) and 
⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ = Θ - ) ( ) ( ) ( ) ( ) ( ) , ( ) 1 , ( ) , 1 ( ) 1 , 1 ( 1 ω ω ω ω ω j Q j Q j Q j Q j n n n n (20)
) that ) ( ) ( ) , ( ) 1 , ( ω ω j Q j H J i i = ) , , 1 ( n i = (21 
) Thus, for any two consecutive masses, the relationship between the first order GFRFs can be expressed as

) ( ) ( ) ( ) ( ) ( 1 , 1 ) , 1 ( ) , ( ) 1 , 1 ( ) 1 , ( ω λ ω ω ω ω + + + = = i i J i J i i i j Q j Q j H j H ) 1 , , 1 ( - = n i ( 22 
)
The above procedure used to analyze the relationships between the first order GFRFs can be extended to investigate the relationship between the N th order GFRFs with 2 ≥ N . To achieve this, consider the input

∑ = = N k t j k e t u 1 ) ( ω

Substituting this input and

+ + + + + = + + t j N N i t j N i t j i i N N e j j H N e j H e j H t x ) ( 1 ) , ( ) 1 , ( 1 ) 1 , ( 1 1 ) , , ( ! ) 
( ) ( ) ( ω ω ω ω ω ω ω ω ( n i , , 1 = ) (23) 
into equation ( 6), and, for the first row of equation ( 6), extracting the coefficients of

t j N e ) ( 1 ω ω + + yields ( ) ( ) 0 ) , , ( ) ( ) , , ( ) ( ) )( ( ) ( 1 ) , 2 ( 2 1 2 1 ) , 1 ( 2 1 1 2 1 2 1 1 = + + + - + + + + + + + + - N N N N N N N j j H k jc j j H k k c c j m ω ω ω ω ω ω ω ω ω ω (24)
Similarly, it can be easily deduced that, for the masses that are not connected to the th

) (i L ( L i , , 1 
=
) spring, the GFRFs satisfy the following relationships

( ) ( ) 0 ) , , ( ) ( ) , , ( ) ( ) ( 1 ) , 1 ( 1 1 ) , ( 1 2 1 
= + + + - + + + + + + - - N N n n N n N N n n N n N n j j H k jc j j H k jc m ω ω ω ω ω ω ω ω ω ω (25) ( ) ( 
)

) , , ( ) ( ) , , ( ) )( ( ) ( 1 ) , 1 ( 1 1 
) , ( 1 1 1 2 1 N N i i N i N N i i i N i i N i j j H k jc j j H k k c c j m ω ω ω ω ω ω ω ω ω ω - + + + + + - + + + + + + + + - ( ) 0 ) , , ( ) ( 1 ) , 1 ( 1 1 1 
= + + + - + + + N N i i N i j j H k jc ω ω ω ω ( n l L l L i ), ( , 1 ) ( , 1 - ≠ , L l ≤ ≤ 1
) (26) For the mass that is connected to the left of the ) (i L th spring, the GFRFs satisfy the following relationships ( )

) , , ( ) ( ) , , ( ) ( ) )( ( ) ( 1 ) , 2 ) ( ( 1 ) ( 1 1 ) ( 1 ) , 1 ) ( ( 1 ) ( 1 ) ( 1 ) ( 2 1 1 ) ( N N i L i L N i L N N i L L i L N i L i L N i L j j H k jc j j H i k k c c j m ω ω ω ω ω ω ω ω ω ω - - - - - - - + + + - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + + + + + + - ( ) 0 ) , , ( ) , , ( ) ( 1 ) ( , 1 ) ( 1 ) ), ( ( ) ( 1 ) 
( = Λ + + + + - - N i L i L N N N i L i L N i L j j j j H k jc ω ω ω ω ω ω
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( L i ≤ ≤ 1
) ( 27) For the mass that is connected to the right of the ) (i L th spring, the GFRFs satisfy the following relationships ( )

) , , ( ) ( ) , , ( ) )( ( ) ( 1 ) , 1 ) ( ( ) ( 1 ) ( 1 ) ), ( ( 1 ) 
( ) ( 1 1 ) ( ) ( 2 1 ) ( N N i L i L N i L N N i L i L i L N i L i L N i L j j H k jc j j H k k c c j m ω ω ω ω ω ω ω ω ω ω - + + + + + - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + + + + + + - ( ) 0 ) , , ( ) , , ( ) ( 1 
) ( , 1 ) ( 1 ) , 1 ) ( ( 1 ) ( 1 1 ) ( = Λ - + + + - - + + + N i L i L N N N i L i L N i L j j j j H k jc ω ω ω ω ω ω ( L i ≤ ≤ 1 ) (28) 
In equations ( 27) and ( 28

), ) , , ( 1 ) 
( , 1 ) ( N i L i L N j j ω ω - Λ
represents the extra terms introduced by

) (i L
NonF for the N th order GFRFs, for example, for the second order GFRFs, ( ) ( )

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( 1 ) 1 ), ( ( 2 ) 1 , 1 ) ( ( 2 ) 1 ), ( ( 1 ) 1 , 1 ) ( ( 2 ) 1 ), ( ( 1 ) 1 ), ( ( 
2 ) 1 , 1 ) ( ( 1 ) 1 , 1 ) ( ( ) 2 ), ( ( 2 1 ) 2 ), ( ( 2 1 ) ( , 1 ) ( 2 ω ω ω ω ω ω ω ω ω ω ω ω j H j H j H j H j H j H j H j H r w j j i L i L i L i L i L i L i L i L i L i L i L i L - - - - - - - + + - = Λ ( L i ≤ ≤ 1 ) (29) 
Denote

( ) T N N n N N N N j j H j j H j j H ) , , ( ) , , ( ) , , ( 1 ) , ( 1 ) , 1 ( 1 ω 
ω ω ω ω ω = (30) 
and

[ ] T N N N N n A A j j A ) ( ) 1 ( ) , , ( 1 = ω ω (31) 
where

( ) 1 ), ( if 1 , 1 ) ( if 1 ), ( , 1 ) ( if ) , , ( ) , , ( 0 1 ) ( , 1 ) ( 1 
) ( , 1 ) ( L i i L l L i i L l L i i L i L l j j j j l A N i L i L N N i L i L N N ≤ ≤ = ≤ ≤ - = ≤ ≤ - ≠ ⎪ ⎩ ⎪ ⎨ ⎧ Λ Λ - = - - ω ω ω ω ( n l ≤ ≤ 1 ) (32) 
then equations ( 25)~( 28) can be written in a matrix form as ) , , ( ) , , ( )) ( (

1 1 1 N N N N N j j A j j H j ω ω ω ω ω ω = + + Θ (33) so that ) , , ( )) ( ( ) , , ( 1 1 1 1 N N N N N j j A j j j H ω ω ω ω ω ω + + Θ = - (34) 
Therefore, for each mass, the N th order GFRF can be calculated as

∑ = - - - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Λ Λ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + + = L l N l L l L N N l L l L N T N l L i N l L i N N i j j j j j Q j Q j j H 1 1 ) ( , 1 ) ( 1 ) ( , 1 ) ( 1 ) ( , 1 1 ) ( , 1 ) , ( ) , , ( ) , , ( ) ( ( ) 
) ( ( ) , , ( ω ω ω ω ω ω ω ω ω ω ) , , 1 ( n i = (35) Define ) , , ( ) , , ( ) , , ( 1 ) , 1 ( 1 ) , ( 1 1 , 
N N i N N i N i i N j j H j j H ω ω ω ω ω ω λ + + = ) 1 , , 1 ( - = n i ( 36 
)
then from equation [START_REF] Royston | Periodic response of mechanical systems with local nonlinearities using an enhanced Galerkin technique[END_REF], it can be known that, for two consecutive masses, the N th order 

GFRFs have the following relationships

= - - - + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Λ Λ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Λ Λ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + + = L l N l L l L N N l L l L N T N l L i N l L i L l N l L l L N N l L l L N T N l L i N l L i N i i N j j j j j Q j Q j j j j j Q j Q 1 1 ) ( , 1 ) ( 1 ) ( , 1 ) ( 1 ) ( , 1 1 1 ) ( , 1 1 1 ) ( , 1 ) ( 1 ) ( , 1 ) ( 1 ) ( , 1 1 ) ( , 1 1 , ) , , ( ) , , ( ) ( ( )) ( ( ) , , ( ) , , ( ) ( ( )) ( ( ) , , ( ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω λ ) 1 , , 1 ( - = n i (37)
Equations ( 22) and [START_REF] Chakraborty | Dynamics of a weakly non-linear periodic chain[END_REF] give a comprehensive description for the relationships between the GFRFs of any two consecutive masses for the nonlinear MDOF system (6).

In addition, denote 0 ) , , ( 1

1 , 0 = N N j j ω ω λ ( N N , , 1 = ) (38) 0 ) , , ( 1 ) 
, 1 ( = Λ - N N J j j ω ω ( N N , , 1 = ) (39) N N N j j N N J , , 2 if 1 if 0 1 ) , , ( 1 ) , 
( = = ⎩ ⎨ ⎧ = Λ ω ω (40) ) , , ( ) , , ( 1 ) 
( , 1 ) ( 1 ) , 1 ) ( ( N i L i L N N N i L j j j j ω ω ω ω - - Λ - = Λ ( N N , , 1 = , L i ≤ ≤ 1 ) (41) ) , , ( ) , , ( 1 ) ( , 1 ) ( 1 ) ), ( ( N i 
L i L N N N i L j j j j ω ω ω ω - Λ = Λ ( N N , , 1 = , L i ≤ ≤ 1 ) (42) 
and

J L = ) 0 (
, then, for the first two masses, from equations ( 16) and ( 33), it can be known that

( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + - + + + + + + + - + + + = = 1 1 1 1 1 , 0 1 2 2 2 1 1 2 1 2 1 ) , 2 ( 1 ) , 1 ( 1 2 , 1 ) ( ) , , ( 1 ) 
( ) ( ) ( ) , , ( ) , , ( ) , , ( 
k jc jc k m k jc j j H j j H N N N N N N N N N N N N ω ω ω ω λ ω ω ω ω ω ω ω ω ω ω ω ω λ ( N N , , 1 = ) (43) 
Starting with equation ( 43), and iteratively using equations ( 16) and ( 33) from the first mass, it can be deduce that, for the masses that aren't connected to nonlinear components and the Jth spring, the following relationships hold for the GFRFs.

( ) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + - + - + + + + - + + + = = + - + - + + + + 2 1 1 1 , 1 1 1 1 , 1 1 1 1 1 ) , 1 ( 1 ) , ( 1 1 , ) ( ) , , ( 1 ) 
( ) , , ( 1 ) ( ) , , ( ) , , ( ) , , 
(

N i i i N i i N N i i N i i N i N i N N i N N i N i i N m k k c c j k jc j j H j j H ω ω ω ω λ ω ω ω ω λ ω ω ω ω ω ω ω ω λ ( n i < ≤ 1 , ) ( , 1 ) ( , l L l L J i - ≠ , L l , , 0 = , N N , , 1 = ) (44)
For the masses that are connected to nonlinear components and the Jth spring, from equations ( 16), ( 27) and ( 28), it can be known that the following relationships hold for the GFRFs. 

, 1 ) , 1 ( 1 ) , ( ( 1 ) , 1 ( 1 ) , ( 1 1 1 
1 , N N i N N i N i i N i i N N N i N N i N i i N j j H j j jc k j j H j j H ω ω ω ω ω ω ω ω λ ω ω ω ω ω ω λ ( ) ( , 1 ) ( l L l L i - = , L l , , 0 = , N N , , 1 = ) (45) where ( ) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + - + - + + + + - + + + = + - + - + + + 2 1 1 1 , 1 1 1 1 , 1 1 1 1 1 1 , ) ( ) , , 1 
( ) , , ( 1 ) 
( ) , , ( 1 ) 
N i i i N i i N N i i N i i N i N i N i i N m k k c c j k jc ω ω ω ω λ ω ω ω ω λ ω ω ω ω λ ( ) ( , 1 ) ( l L l L i - = , L l , , 0 = , N N , , 1 = ) (46) Moreover, denote 1 ) , , ( 
+ N n n N ω ω λ , ( N N , , 1 = ), 0 1 = + n c and 0 1 = + n k ( 1 , 1 = 
. Then, for the last two masses, from equations ( 16) and ( 33) it is can be deduced that

) , , ( ) , , ( ) , , ( 1 ) , , ( 1 ) , 1 ( 1 ) , ( 1 , 1 1 1 
, N N n N N n N n n N N n n N j j H j j H ω ω ω ω ω ω λ ω ω λ - - - = = ( ) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + - + + - + + + - + + + = + + + + ) ( ) , , ( 1 ) , , ( 1 ) ( ) ( 1 1 1 , 1 1 1 
, 1 2 1 1 N n n N n n N n n N n n N N n n N n c c j k k m k jc ω ω ω ω λ ω ω λ ω ω ω ω ( N N , , 1 = ) (47) 
Starting with equation (47), and iteratively using equations ( 16) and [START_REF] Yuan | On the determination of phase constants for the study of the free vibration of periodic structures[END_REF], it can be deduce that, for the masses that aren't connected to nonlinear components and the Jth spring, the following relationships hold for the GFRFs.

) , , (

N N i N N i N i i N N i i N j j H j j H ω ω ω ω ω ω λ ω ω λ - - - = = ( ) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + - + + - + + + - + + + = + + + + ) ( ) , , ) , , ( ) , , ( 1 ) , , ( 1 ) , 1 ( 1 ) , ( 1 , 1 1 1 , 
( 1 1 1 , 1 1 1 , 1 2 1 1 N i i N i i N i i N i i N N i i N i c c j k k m k jc ω ω ω ω λ ω ω λ ω ω ω ω ( n i ≤ ≤ 2 , ) ( , 1 ) ( l L l L i - ≠ , L l , , 0 = , N N , , 1 = ) (48) ( 1 ) , , ( 1 ) ( ) 
For the masses that are connected to nonlinear components and the Jth spring, from equations ( 16), ( 27) and ( 28), it can be known that the following relationships hold for the GFRFs.

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Λ + + + + = = - - - - ) , , ( ) , , ( ) ( 1 1 ) , , ( ) , , ( ) , , ( ) , , ( 1 ) , 1 ( 1 ) , ( 1 1 1 , 1 ) , 1 ( 1 ) , ( 1 1 , 
N N i N N i N i i N i i N N N i N N i N i i N j j H j j jc k j j H j j H ω ω ω ω ω ω ω ω λ ω ω ω ω ω ω λ A c c e p t e d m a n u s c r i p t 12 ( ) ( , 1 ) ( l L l L i - = , L l , , 0 = , N N , , 1 = ) (49) where ( ) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + - + + - + + + - + + + = + + + + - ) ( ) , , ( 1 ) , , ( 1 ) ( 
) ( ) , , ( 1 1 1 , 1 1 1 , 1 2 1 1 1 1 , N i i N i i N i i N i i N N i i N i N i i N c c j k k m k jc ω ω ω ω λ ω ω λ ω ω ω ω ω ω λ (50)
From different perspectives, equations ( 43)~(46) and equations (47)~(50) give two alternative descriptions for the relationships between the GFRFs of any two consecutive masses for the nonlinear MDOF system (6).

NOFRFs of MDOF Systems with Multiple Nonlinear Components

According to the definition of NOFRF in equation ( 11), the N th order NOFRF of the ith mass can be expressed as

∫ ∏ ∫ ∏ = + + = = + + = = ω ω ω ω ω ω ω ω σ ω σ ω ω ω ω N N N N q q N N q q N N i N i d j U d j U j j H j G ,..., 1 ,..., 1 1 ) , ( ) , ( 1 1 ) ( ) 
( ) ,..., ( ) ( ) 1 , 1 ( n i N N ≤ ≤ ≤ ≤ (51) where ) 
(

ω j U is the Fourier transform of ) (t u .
According to equation (44), for the masses that aren't connected to nonlinear components and the Jth spring, equation (51) can be rewritten as

∫ ∏ ∫ ∏ = + + = = + + = + + = ω ω ω ω ω ω ω ω σ ω σ ω ω ω ω ω λ ω N N N N q q N N q q N N i N i i N N i d j U d j U j j H j G ,..., 1 ,..., 1 1 ) , 1 ( 1 1 , ) , ( 1 1 ) 
( ) ( ) ,..., ( ) , , ( ) ( ( )( ) [ ] ) ( ) ( 1 ) , 1 ( 1 1 
, 1 2 1 1 ω ω ω ω λ ω ω j G k jc k jc m k jc N i i i i i i i N i i i + + + - + + + + + - + - + = ( n i < ≤ 1 , ) ( , 1 ) ( l L l L i - ≠ , L l , , 0 = , N N , , 1 = ) (52) Denote ω ω ω ω ω λ ω ω ω λ = + + + + + = = ) ( 1 1 , ) , 1 ( ) , ( 1 , 1 ) , , ( ) ( ) 
( ) ( N N i i N N i N i i i N j G j G (53)
Therefore, for two consecutive masses that aren't connected to these nonlinear components and the Jth spring, the NOFRFs have the following relationship

( )( ) [ ] 1 1 , 1 2 1 1 1 , ) ( 1 ) 
(

+ + - + + + + + + - + - + = i i i i i i N i i i i i N k jc k jc m k jc ω ω ω λ ω ω ω λ ( n i < ≤ 1 , ) ( , 1 ) ( l L l L i - ≠ , L l , , 0 = , N N , , 1 = ) (54) where 0 ) ( 1 , 0 = ω λ N .
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Similarly, for the masses that are connected to nonlinear components and the Jth spring, from equations ( 44) and ( 45), it can be deduced that

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Γ + + = + + + ) ( ) ( 1 1 ) ( ) ( ) , 1 ( ) , ( 1 , 1 , ω ω ω ω λ ω λ j G j jc k N i N i i i i i N i i N ( ) ( , 1 ) ( l L l L i - = , L l , , 0 = , N N , , 1 = ) (55) where ( ) ( ) [ ] 1 1 , 1 2 1 1 1 , ) ( 1 ) 
(

+ + - + + + + + + - + - + = i i i i i i N i i i i i N k jc k jc m k jc ω ω ω λ ω ω ω λ (56) 
and

∫ ∏ ∫ ∏ = + + = = + + = Λ = Γ ω ω ω ω ω ω ω ω σ ω σ ω ω ω ω N N N N q q N N q q N N i N i d j U d j U j j j ,..., 1 ,..., 1 1 ) , ( ) , ( 1 1 ) ( ) ( ) , , ( ) ( (57) 
Equations ( 54)~(57) give a comprehensive description for the relationships between the NOFRFs of two consecutive masses of the nonlinear MDOF system [START_REF] Bartos | Sun, Characterization of Abrupt Nonlinearity by the Volterra-Fourier Method[END_REF].

Using the same procedure, from equations (47)~(50), an alternative description can be established for the following relationships between the NOFRFs of two consecutive masses. For the masses that aren't connected to nonlinear components and the Jth spring

( )( ) [ ] i i i i i i N i i i N i N i i i N i i N k jc k jc m k jc j G j G + + + - + - + = = = + + + - - - ω ω ω λ ω ω ω ω ω λ ω λ 1 1 , 1 2 ) , 1 ( ) , ( , 1 1 , ) ( 1 ) ( ) ( ) ( 1 ) 
(

( n i ≤ ≤ 2 , ) ( , 1 ) ( l L l L i - ≠ , L l , , 0 = , N N , , 1 =
) (58) For the masses that are connected to nonlinear components and the Jth spring

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Γ + + = = = - - - - - ) ( ) ( 1 1 ) ( ) ( ) ( ) ( 1 ) ( ) , 1 ( ) , ( 1 , ) , 1 ( ) , ( , 1 1 
, ω ω ω ω λ ω ω ω λ ω λ j G j jc k j G j G N i N i i i i i N N i N i i i N i i N ( ) ( , 1 ) ( l L l L i - = , L l , , 0 = , N N , , 1 = ) (59) where 1 ) ( , 1 = + ω λ n n N ( N N , , 1 
=
) and

( )( ) [ ] i i i i i i N i i i i i N c k jc k m k jc ω ω ω λ ω ω ω λ + + + - + - + = + + + - 1 1 , 1 2 1 , ) ( 1 ) ( (60) 
From different perspectives, both equations (54)~(57) and equations (58)~(60) give a comprehensive description for the relationships between the NOFRFs of any two consecutive masses of the nonlinear MDOF system [START_REF] Bartos | Sun, Characterization of Abrupt Nonlinearity by the Volterra-Fourier Method[END_REF]. . Then, from equations (54)~(60), the following important properties of the NOFRFs of MDOF systems with multiple nonlinear components can be obtained.

i) If ) 1 ( L J ≤
, then for the masses (

1 1 - ≤ ≤ J i and n i L L < ≤ ) (
), the following relationships hold.

) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω j G j G j G j G N i N i i i + + = = ( 1 1 - ≤ ≤ J i and n i L L < ≤ ) ( ) (61) 
for the masses (

1 ) 1 ( - < ≤ L i J
), the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 2 , 1 ( ) 2 , ( ) 1 , 1 ( ) 1 , 
( ω ω ω ω ω ω j G j G j G j G j G j G N i N i i i i i + + + = = ≠ ( 1 ) 1 ( - < ≤ L i J ) (62) for the masses ( ) ( ) 1 ( L L i L < ≤
), the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 2 , 1 ( ) 2 , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω ω ω j G j G j G j G j G j G N i N i i i i i + + + ≠ ≠ ≠ ( ) ( 1 ) 1 ( L L i L < ≤ - ) (63) ii) If ) ( ) 1 ( L L J L ≤ ≤
, then for the masses ( 1

) 1 ( 1 - < ≤ L i and n i L L < ≤ ) (
) , t h e following relationships hold.

) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω j G j G j G j G N i N i i i + + = = ( 1 ) 1 ( 1 - < ≤ L i and n i L L < ≤ ) ( ) (64) 
for the masses ( )

( ) 1 ( L L i L < ≤
), the following relationships hold

) ( ) ( ) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 2 , 1 ( ) 2 , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω ω ω j G j G j G j G j G j G N i N i i i i i + + + ≠ ≠ ≠ ( ) ( 1 ) 1 ( L L i L < ≤ - ) (65) iii) If ) (L L J ≥ , then for the masses ( 1 ) 1 ( 1 - < ≤ L i and n i J < ≤
), the following relationships hold.

) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω j G j G j G j G N i N i i i + + = = ( 1 ) 1 ( 1 - < ≤ L i and n i J < ≤ ) (66)
for the masses (

J i L L < ≤ ) (
), the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 2 , 1 ( ) 2 , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω ω ω j G j G j G j G j G j G N i N i i i i i + + + = = ≠ ( J i L L < ≤ ) ( ) (67) 
for the masses (

) ( 1 ) 1 ( L L i L < ≤ -
), the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , 1 ( ) , ( ) 2 , 1 ( ) 2 , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω ω ω j G j G j G j G j G j G N i N i i i i i + + + ≠ ≠ ≠ ( ) ( 1 ) 1 ( L L i L < ≤ - ) (68) iv) For the masses ( 1 ) 1 ) 1 ( , min( 1 - - ≤ ≤ L J i and n i J L L < ≤ ) ), ( max(
), the following relationships of the output frequency responses hold A c c e p t e d m a n u s c r i p t

) ( ) ( ) ( 1 1 , ω ω λ ω j x j x i i i i + + =
15 ( 1 )) 1 ( , min( 1 - ≤ ≤ L J i and n i J L L < ≤ ) ), ( max( ) (69)
where

( ) ( ) [ ] 1 1 , 1 2 1 1 1 , ) ( 1 ) ( + + - + + + + + + - + - + = i i i i i i i i i i i k jc k jc m k jc ω ω ω λ ω ω ω λ (70)
Above fourth properties can be easily extended to a more general case, as the following. v) For any two masses whose positions are

[ ] 1 )) 1 ( , min( , 1 , - ⊆ L J k i , or [ ] 1 )), ( , max( , - ⊆ n L L J k i
, the following relationships hold.

) ( ) ( ) ( ) ( ) ( , ) , ( ) , ( ) 1 , ( ) 1 , ( ω λ ω ω ω ω k i N k N i k i j G j G j G j G = = = ( [ ] 1 )) 1 ( , min( , 1 , - ⊆ L J k i , or [ ] 1 )), ( , max( , - ⊆ n L L J k i ) (71) and ∏ - - = + + + = 1 0 1 , , ) ( ) ( i k d d i d i k i ω λ ω λ (72)
Moreover, the following relationships of their output frequency responses hold

) ( ) ( ) ( , ω ω λ ω j x j x k k i i = (73) vi) If ) 1 ( L J ≤
, for any two masses whose positions are

[ ] 1 ) 1 ( , , - ⊆ L J k i
, the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) , ( ) , ( ) 2 , ( ) 2 , ( ) 1 , ( ) 1 , ( ω λ ω ω ω ω ω ω k i N k N i k i k i j G j G j G j G j G j G = = = ≠ ( [ ] 1 ) 1 ( , , - ⊆ L J k i ) (74) vii) If ) (L L J ≥
, then for any masses whose positions are [ ]

J L L k i ), ( , ⊆
, the following relationships hold. ( ,⊆ ) (75) viii) For any two masses whose positions are [ ]

) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) , ( ) , ( ) 2 , ( ) 2 , ( ) 1 , ( ) 1 , ( ω λ ω ω ω ω ω ω k i N k N i k i k i j G j G j G j G j G j G = = = ≠ ( [ ] J L L k i ),
) ( , 1 ) 1 ( , L L L k i - ⊆
, the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) , ( ) 2 , ( ) 2 , ( ) 1 , ( ) 1 , ( ω ω ω ω ω ω j G j G j G j G j G j G N k N i k i k i ≠ ≠ ≠ (76)
ix) For any two masses whose positions are

[ ] 1 ) 1 ( , 1 - ⊆ L i and [ ] n L k ), 1 ( ⊆ or [ ] 1 ) ( , 1 - ⊆ L L i and [ ] n L L k
), ( ⊆ , the following relationships hold.

) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) , ( ) 2 , ( ) 2 , ( ) 1 , ( ) 1 , ( ω ω 
ω ω ω ω j G j G j G j G j G j G N k N i k i k i ≠ ≠ ≠ (77) 
The nine relationships between NOFRFs of nonlinear MDOF systems reveal, for the first time, very important properties of the nonlinear systems. They reveal how the linear
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16 system parameters govern the propagation of the nonlinear effect induced by the nonlinear components in the whole system. These properties can be applied to detect and locate the nonlinear components in engineering structures which often is related to faults.

Numerical Study and Discussions

Case Studies

To verify above analysis results, a damped 10-DOF oscillator was adopted, in which the fourth and sixth springs were nonlinear. The damping was assumed to be proportional damping, e.g.,

K C µ = .
The values of the system parameters are 1 

10 1 = = = m m , , 10 6 . 3 
× = = = = k k k , 8 . 0 1 8 7 6 k k k k × = = = , 9 . 0 1 9 k k × = µ =0.01, 0 ) 3 , 6 ( ) 2 , 6 ( ) 3 , 4 ( ) 2 , 4 ( = 
= = = w w w w 2 1 ) 2 , 4 ( 8 . 0 k r × = , 3 1 ) 3 , 4 ( 4 
. 0 k r × = , ) 2 , 4 ( ) 2 , 6 ( 5 
. 0 r r × = , ) 3 , 4 ( ) 3 , 6 ( 1 
. 0 r r × = and the input is a harmonic force, ) 20 2 sin( ) ( t A t u × = π .
When a nonlinear system is subject to a harmonic input, )

= t A t u F (78) it can be derived that the output spectrum ) ( ω j Y cos( ) ( β ω + 
of nonlinear systems can be simply expressed as [START_REF] Lang | Evaluation of output frequency responses of nonlinear systems under multiple inputs[END_REF] [ ]

∑ + - = - + - + = 2 / ) 1 ( 1 ) 1 ( 2 ) 1 ( 2 ) ( ) ( ) ( k N n F n k F n k F jk A jk G jk Y ω ω ω ( N k , , 1 , 0 = ) (79) 
where [] . means to take the integer part, and

β ω ) 2 ( | | )! ( ! ! 2 1 ) ) 2 ( ( k n j n n F n e A k n k n k n j A + - - = + - (80) ) , , , , , ( ) ) 2 ( ( k 
n F F k F F n F n j j j j H k n j G - - - = + - ω ω ω ω ω (81) 
According to equations (79)~(81), if only the NOFRFs up to the 4 th order is considered, the frequency components of the outputs of the 10 masses 82), it can be seen that, using the method in [START_REF] Lang | Energy transfer properties of nonlinear systems in the frequency domain[END_REF], two different inputs with the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4 th order. Therefore, in the numerical studies, two different inputs were A=0.8 and A=1.0 respectively. The simulation studies were conducted using a fourth-order Runge-Kutta method to obtain the forced response of the system. In this case, the position of the input force is on the right of the two nonlinear components. The evaluated results of

) ( ) ( ) ( ) ( ) ( 3 ) 3 , ( 1 ) 1 , ( F F i F F i F i j A j G j A j G j x ω ω ω ω ω + = ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 4 ) 4 , ( 2 ) 2 , 
( F F i F F i F i j A j G j A j G j x ω ω ω ω ω + = ) 3 ( ) 3 ( ) 3 ( 3 ) 3 , ( F F i F i j A j G j x ω ω ω = ) 4 ( ) 4 ( ) 4 ( 4 ) 4 , ( F F i F i j A j G j x ω ω ω = ) 10 , , 1 ( = i (82) From equation (
) ( 1 F j G ω , ) ( 3 F j G ω , ) 2 ( 2 F j G ω and ) 2 ( 4 F j G
ω for all masses are given in Table 1. According to Property iii) in the previous section, it can be known that the following relationships should be tenable. ) In this case, the input force is located between the two nonlinear components. The evaluated results of

i i F H i F i F H i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = = = for 9 , 8 ( ) ( ) ( ) ( ) ( ) ( 1 , 3 ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( 1 , 1 F 
i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = ≠ = for 7 , 6 , 2 , 1 = i ) ( ) ( ) ( ) ( ) ( ) ( 1 , 3 ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( 1 , 1 F 
i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = = = for 9 , 8 , 5 , 4 , 3 = i ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 , 4 ) 4 , 1 ( ) 4 , ( ) 2 , 1 ( ) 2 , ( 1 , 2 F 
i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = ≠ = for 5 , 4 , 3 = i (83) Table 1, the evaluated results of ) ( 1 F j G ω , ) , 7 , 6 , 2 , 1 = i ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 , 4 ) 4 , 1 ( ) 4 , ( ) 2 , 1 ( ) 2 , ( 1 , 2 F 
G ω (×10 -9 ) ) 2 ( 2 F j G ω (×10 -8 ) ) 2 ( 4 F j G ω (×10 - ( 3 F j G ω , ) 2 ( 2 F j G ω and ) 2 ( 4 F j G ω ) ( 1 F j G ω (×10 -6 ) ) ( 3 F j 
) ( 1 F j G ω , ) ( 3 F j G ω , ) 2 ( 2 F j G ω and ) 2 ( 4 F j G
ω for all masses are given in Table 3. According to Property ii) in the previous section, it can be shown that the following relationships should be tenable. From the NOFRFs in Table 3,

) ( ) ( ) ( ) ( ) ( ) ( 1 , 3 ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( 1 , 1 F i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = = = for 9 , 8 , 7 , 6 , 2 , 1 
= i ) ( ) ( ) ( ) ( ) ( ) ( 1 , 3 ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( 1 , 1 F i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = ≠ = for 5 , 4 , 3 = i ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 , 4 ) 4 , 1 ( ) 4 , ( ) 2 , 1 ( ) 2 , ( 1 , 2 F 
i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = = = for 9 , 8 , 7 , 6 , 2 , 1 
= i ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 , 4 ) 4 , 1 ( ) 4 , ( ) 2 , 1 ( ) 2 , ( 1 , 2 F i i F i F i F i F i F i i j j G j G j G j G j ω λ ω ω ω ω ω λ + + + + = ≠ = for 5 , 4 , 3 = i (84) Table 3, the evaluated results of ) ( 1 F j G ω , ) ( 3 F j G ω , ) 2 ( 2 F j G ω and ) 2 ( 4 F j G ω ) ( 1 F j G ω (×10 -6 ) ) ( 3 F j G ω (×10 -8 ) ) 2 ( 2 F j G ω (×10 -8 ) ) 2 ( 4 F j G ω (×10 -
) ( 1 , 1 F i i jω λ + , ) ( 1 , 3 F i i jω λ + , ) 2 ( 1 , 2 F i i j ω λ + and ) 2 ( 1 , 4 F i i j ω λ + ( 9 , , 1 = i
) can be calculated. The results are given in Table 4. It can be seen that the results shown in Tables 4 have a strict accordance with the relationships in (84). The two numerical case studies verify the properties of the NOFRFs of MDOF systems with multiple nonlinear components derived in the present study. These properties can provide a convenient method to detect the positions of the nonlinear components in a MDOF system by analyzing the relationships between the NOFRFs.

F i i jω λ + , ) ( 1 , 3 F i i jω λ + , ) 2 ( 1 , 2 F i i j ω λ + and ) 2 ( 1 , 4 F i i j ω λ + ) ( 1 , 1 F i i jω λ + ) ( 1 , 3 F i i jω λ + ) 2 ( 1 , 2 F i i j ω λ + ) 2 ( 1 , 4 F i i j ω λ + i=1 0.

Discussion

In engineering practice, a wide class of real life structures can be modeled as periodicstructures-like MDOF systems, which are defined as structures consisting of identical substructures connected to each other in identical manner, such as periodically supported beams [START_REF] Duhame | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF]~ [START_REF] Yuan | On the determination of phase constants for the study of the free vibration of periodic structures[END_REF] and plates [32][33]. If one or more components are of nonlinear properties, then the systems can behave nonlinearly. Efforts have been made to study the [START_REF] Marathe | Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[END_REF] using one-dimensional and multidimensional MDOF models. In addition, the detection and location of faults and defects in periodic structures and machines are also interesting to many researchers. Zhu and Wu [START_REF] Zhu | The Characteristic receptance method for damage detection in large Mono-coupled Periodic structures[END_REF] have studied the detection of damages in large periodic structures. In their studies, the periodic structure with damage is still considered to be a linear system, and the location and magnitude of damage in large mono-coupled periodic systems were estimated using measured changes in the natural frequencies. However, in engineering practices, the local faults and defects can often make the structures and machines behave nonlinearly. In the latter cases, obviously the properties discovered in this study can provide a convenient way to detect the positions of the faults. For example, consider the 10-element periodic mass-spring system shown in Figure 2, which is a specific form of the mass-spring system investigated in [START_REF] Zhu | The Characteristic receptance method for damage detection in large Mono-coupled Periodic structures[END_REF], and assume the sixth spring is damaged and of nonlinear property. To detect the position of the damaged spring, two excitations can be used to excite the system, and then the NOFRFs up to the fourth order of all masses can be estimated from the responses. Obviously, if the excitation force is acting on the 10 th mass, then according to the property iii), there exist the following relationships:

) (

ω j G j G j G j G i i i i + + = (i =1, 2, 3, 4,) ) ( ) ( ) ( ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( ω ω ω 
( ) ( ) ( ) ( ) 3 , 1 ( ) 3 , ( ) 1 , 1 ( ) 1 , ( ω ω ω ω j G j G j G j G i i i i + + ≠ (i =5, 6, 7, 8, 9) (86) (85) ) 
Clearly, the relationship (86) provides a direct way to detect the position of the damaged spring.

Figure 2, The 10-element periodic mass-spring system whose 6 th spring is fault

The locally nonlinear MDOF (6) can also be used to describe the transversal motion of the tall apartment block with damages shown in Figure 3. Based the same model, Sakellariou and Fassois [START_REF] Fassois | Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation[END_REF][41] have used a stochastic output error vibration-based methodology to detect the damage in structures where the damage elements were modeled as components of cubic stiffness. No doubt the properties obtained in this study can also provide a convenient way to detect the position of the damage in this kind of structures. In addition, for simplicity, in this study the one-dimensional nonlinear MDOF system, each mass of which has only one freedom degree, is adopted. Nevertheless, following the same procedure used in this study, the nine properties can be extended to the multidimensional nonlinear MDOF systems by simply replacing the scalar forms of m i , c i and k i as matrix forms, consequently, the

i i N + ( 1 , , 0 - = n i ; N N , , ) ( 1 , ω λ j 
) also have a matrix form. The multi-dimensional cases could be more complicated than the onedimensional cases, but the NOFRF properties of multi-dimensional nonlinear MDOF systems can be used to analyze a more wide class of structures. For example, the beam shown in Figure 4(a) can be represented as a series of rigid blocks connected by rotational and transverse springs shown in Figure 4(b). The rotational spring approximates the bending of the beam and the transverse spring approximates the shear. Neild, Mcfadden and Williams [START_REF] Neild | A discrete model of vibrating beam using time-stepping approach[END_REF] have used this model to analyze the beam with one breathing crack. When cracks present in this beam, the whole beam can behave nonlinearly. Clearly, this beam is a two-dimensional nonlinear MDOF system, and the detection of the crack position in this beam could be easily achieved using the properties of the NOFRFs for multi-dimensional MDOF systems.

m n J n m 1 J 1 m i J i (b) y 1 θ 1 y i θ i y n θ n (a)
x 1

x n-1 Moreover, as the response spectrum of each mass of nonlinear MDOF systems is totally determined by the associated NOFRFs and the input, based on the relationships between the NOFRFs, new spectra analysis methods can be developed to detect the position of nonlinear elements in the systems, which may only involve a very simple procedure. We are currently working on this and the results will be presented in a future publication.

From equation (70) it can be seen that the ratios between the NOFRFs of two consecutive masses are mainly determined by the linear parameters. Therefore equation (70) reveals how the linear system parameters govern the relationships between the NOFRFs of two consecutive masses. This fact provides a convenient way to estimate these linear parameters, which has been elaborated in [START_REF] Peng | Linear Parameter Estimation for Multi-Degree-of-Freedom Nonlinear Systems Using Nonlinear Output Frequency Response Functions[END_REF].

Conclusions

In this paper, significant relationships between the NOFRFs of MDOF systems with multiple nonlinear components have been derived and verified by numerical studies. The results reveal, for the first time, important properties of this general class of MDOF nonlinear systems. The potential of using these properties to detect and locate faults in engineering structures is also discussed.

It is worth noting here that, theoretically, the obtained relationships about NOFRFs are valid for nonlinear systems whose responses can be described using the Volterra series, which covers a considerably wide range of operating conditions of nonlinear systems [START_REF] Schetzen | The Volterra and Wiener theories of nonlinear systems[END_REF]~ [START_REF] Bartos | Sun, Characterization of Abrupt Nonlinearity by the Volterra-Fourier Method[END_REF][44] [START_REF] Chatterjee | Convergence analysis of Volterra series response of nonlinear systems subjected to harmonic excitation[END_REF]. In practice, because the validity of the Volterra series is dependent on the amplitude of the external force input which is normally controllable during fault detection oriented structural tests, provided that the amplitude of testing input is properly selected, the important relationships between the NOFRFs will hold and can therefore be used for structural fault diagnosis. Moreover, for convenience, in this study the onedimensional MDOF system is adopted, that is each mass has only one degree of freedom, but the obtained results can be easily extended to the multi-dimensional MDOF cases where each mass in the MDOF system has more than one degree of freedom. In the analysis, if m i , c i and k i are taken as matrix forms and ) , , 1 ( , n i x i = are taken as vectors, the same results can be achieved. ), property (63) can be proved.

Proof of Property (ii) and (iii)

Following the same procedure used for proof of Property (i), the second and third properties can be proved. The details are omitted here.

Proof of Property (iv)

The fourth property is also straightforward since, according to equation [START_REF] Stegmayer | Volterra series and neural networks to model an electronic device nonlinear behavior[END_REF], the output frequency response of the ith mass can be expressed as , then the fourth property is proved.

∑ = + + = N k k k i i j U j G j x 1 ) , 1 ( 1 ) 

Proof of Properties (v)~(ix)

The proof of the properties (v)~(ix) only needs some simple calculations. The details are therefore omitted here. 
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 2 It can be seen that the results shown in Table2have a strict accordance with the relationships in (83).
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Appendix 1: Proof of Property (i)

The first property is straightforward. For the masses on the left of the Jth mass, substituting 0 ) (

) into equation (54), it is obtained that ( ) ( )

Subsequently, substituting (A-1) into equation (55) yields

Iteratively using above procedure until i=(J-1), for the masses (

), property (61) can be proved.

Similarly, substituting 1 ) (

Subsequently, substituting (A-3) into equation ( 58), it can be deduced that

Iteratively using above procedure until ) (L L i = , for the masses (

), property (61) can be proved.

Obviously, from equations ( 40) and (57), it is known that

and equation (A-5) into (54), it can be deduced that

)
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Iteratively using this procedure until

), property (62) can be proved.