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Dynamic operation modes of AFM: Non-linear behavior and theoretical analysis of the stability of the AFM oscillator

The first part of this paper gives a theoretical study of the mechanics of contact of an AFM tip on viscous materials. Analytical expressions are derived showing the non-linear behaviors specifically related to the use of dynamic operation modes of AFM on viscous materials. A detailed analysis of the dissipated energy as a function of the tip indentation is presented. The second part is dedicated to a theoretical analysis investigating the domain of stability of the oscillator and the influence of the machine. The theoretical approach includes the electronic feedback loop used with the Frequency Modulation mode. Because the interaction between the tip and the sample produces a dynamical non-linear behavior, an unstable branch occurs that can change the stability of the oscillator. In particular, a sudden jump of the oscillating tip can be produced. In spite of the complexity of the problem, the analytical approach ends with two simple equations. The two equations provide an unambiguous way of discriminating between the contributions from the machine and the tip sample interaction.

A c c e p t e d m a n u s c r i p t I General Introduction

The dynamical modes of Atomic Force Microscopes (AFM) are commonly used to investigate a large variety of molecular systems and samples. The concept of dynamical modes is based on the oscillation of a tip cantilever system at, or near, the resonance frequency and on changes in the oscillating behavior as the tip is moved towards the surface [START_REF] Gleyzes | Bistable behavior of a vibrating tip near a solid surface[END_REF][START_REF] Albrecht | Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity[END_REF][START_REF] Zhong | Elings Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[END_REF][START_REF] Garcia | Dynamic atomic force microscopy methods[END_REF][START_REF] Stocker | Surface Reconstruction of the Lamellar Morphology in a Symmetric Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymer: A Tapping Mode Scanning Force Microscope Study Macromolecules[END_REF].

Dynamical modes were first conceived in order to minimize the contact between the tip apex and the surface. This way, images can be recorded with only slight intermittent contact over a cycle of oscillation or even with no contact at all. As a result, shear forces are significantly reduced. The emergence of dynamical modes was a breakthrough because of their ability to probe minute forces. AFM dynamical modes have opened avenues for routine imaging of soft materials [START_REF] Stocker | Surface Reconstruction of the Lamellar Morphology in a Symmetric Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymer: A Tapping Mode Scanning Force Microscope Study Macromolecules[END_REF][START_REF] Leclère | Microdomain Morphology Analysis of Block Copolymers by Atomic Force Microscopy with Phase Detection Imaging[END_REF][START_REF] Magonov | Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film[END_REF][START_REF] Leclère | Direct Observation of Microdomain Morphology in "All-Acrylic" Thermoplastic Elastomers Synthesized via Living Radical Polymerization[END_REF][START_REF] Konrad | Volume Imaging of an Ultrathin SBS Triblock Copolymer Film[END_REF][START_REF] Kopp-Marsaudon | Quantitative measurement of the mechanical contribution to tapping mode atomic force microscopy images of soft materials[END_REF][START_REF] Knoll | Tapping Mode Atomic Force Microscopy on Polymers: Where Is the True Sample Surface?[END_REF][START_REF] Dubourg | Dynamic Force Microscopic Study of a triblock copolymer with AFM non contact resonant mode[END_REF][START_REF] Reiter | Direct Visualization of Random Crystallization and Melting in Arrays of Nanometer-Size Polymer Crystals[END_REF][START_REF] Nony | DNA properties investigated by dynamic force microscopy[END_REF][START_REF] Dubourg | Apparent hardening of soft samples through Q factor change in AFM[END_REF][START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF] and for achieving atomic resolution in ultra-high vacuum conditions [START_REF] Giessibl | Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy[END_REF][START_REF] Sugawara | Defect motion on an InP (110) surface observed with Non Contact atomic force microscopy[END_REF][START_REF] Kitamura | Observation of 7× 7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy[END_REF][20][START_REF] Lantz | Low Temperature Scanning Force Microscopy of the Si(111)-(7 x 7) Surface[END_REF][START_REF] Schwarz | Dynamic-mode scanning force microscopy study of n-InAs(110)-(1 x 1) at low temperatures[END_REF].

AFM dynamic modes are also able to produce dissipation maps with contrast at the atomic scale. However, measurements are usually recorded with cantilevers of resonance frequency between 150-300 kHz. Therefore, the time during which the oscillating tip interacts with the surface-about a microsecond-is much larger than any characteristic relaxation times at the atomic scale. In order to explain a drastic slowing down of the dynamics at such small scales, numerous approaches have been considered; for instance influence of a stochastic resonance process, influence of a displacive soft mode of a second order phase transition, or mechanical hysteresis. None of these analyses are able to explain the atomic contrast of a dissipation image. Therefore, it has been recognized as being of major interest to study the stability of the dynamic modes when the tip interacts with a surface.

After a brief description of the two dynamic operation modes of the AFM, we present an analysis of the non-linear behavior of the damping signal when the tip oscillates during a fraction of the period inside a viscous material. Then, a theoretical analysis, including the electronic feedback loop that maintains the oscillation amplitude constant, is presented. In this section, the main purpose is to investigate the domain of stability of the oscillator and the influence of the parameters of the machine.

A c c e p t e d m a n u s c r i p t II-AM and FM modes: simple theoretical modelling.

The two dynamic operating modes of AFM are briefly described below:

-The amplitude modulation (AM) mode [START_REF] Gleyzes | Bistable behavior of a vibrating tip near a solid surface[END_REF][START_REF] Zhong | Elings Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[END_REF][START_REF] Garcia | Dynamic atomic force microscopy methods[END_REF], also called "Tapping" mode, is a dynamical mode in which the tip-cantilever system oscillates at a fixed excitation frequency and with a fixed amplitude excitation. The AM mode is able to produce different types of images and is the most commonly used. The first success was its ability to record images on polymers without inducing the severe damage associated with the contact mode [START_REF] Zhong | Elings Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[END_REF]. As a result, a significant literature is dedicated to studies on very soft samples like biological samples and polymers [START_REF] Stocker | Surface Reconstruction of the Lamellar Morphology in a Symmetric Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymer: A Tapping Mode Scanning Force Microscope Study Macromolecules[END_REF][START_REF] Leclère | Microdomain Morphology Analysis of Block Copolymers by Atomic Force Microscopy with Phase Detection Imaging[END_REF][START_REF] Magonov | Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film[END_REF][START_REF] Leclère | Direct Observation of Microdomain Morphology in "All-Acrylic" Thermoplastic Elastomers Synthesized via Living Radical Polymerization[END_REF][START_REF] Konrad | Volume Imaging of an Ultrathin SBS Triblock Copolymer Film[END_REF][START_REF] Kopp-Marsaudon | Quantitative measurement of the mechanical contribution to tapping mode atomic force microscopy images of soft materials[END_REF][START_REF] Knoll | Tapping Mode Atomic Force Microscopy on Polymers: Where Is the True Sample Surface?[END_REF][START_REF] Dubourg | Dynamic Force Microscopic Study of a triblock copolymer with AFM non contact resonant mode[END_REF][START_REF] Reiter | Direct Visualization of Random Crystallization and Melting in Arrays of Nanometer-Size Polymer Crystals[END_REF][START_REF] Nony | DNA properties investigated by dynamic force microscopy[END_REF][START_REF] Dubourg | Apparent hardening of soft samples through Q factor change in AFM[END_REF][START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF]. However, while the AM mode provides a convenient and easy way to image soft materials, quantitative analysis of the experimental data remains difficult. The non-linear behavior of the AFM oscillator in proximity of the surface makes the analysis of the variations of the oscillation amplitude and of the phase at a fixed driven frequency and fixed driven excitation truly difficult [START_REF] Giessibl | Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy[END_REF][START_REF] Sugawara | Defect motion on an InP (110) surface observed with Non Contact atomic force microscopy[END_REF][START_REF] Kitamura | Observation of 7× 7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy[END_REF][20][START_REF] Lantz | Low Temperature Scanning Force Microscopy of the Si(111)-(7 x 7) Surface[END_REF][START_REF] Schwarz | Dynamic-mode scanning force microscopy study of n-InAs(110)-(1 x 1) at low temperatures[END_REF][START_REF] Anczykowski | Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects[END_REF][START_REF] Boisgard | Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever[END_REF][START_REF] Cleveland | Energy dissipation in tapping-mode atomic force microscopy[END_REF][START_REF] Wang | Analytical descriptions of the tapping-mode atomic force microscopy response[END_REF][START_REF] Nony | Non-linear dynamical properties of an oscillating tipcantilever system in the tapping mode[END_REF][START_REF] Dürig | Conservative and dissipative interactions in dynamic force microscopy[END_REF][START_REF] Garcia | Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy[END_REF][START_REF] Wang | The role of damping in phase imaging in tapping mode atomic force microscopy[END_REF][START_REF] Aimé | Non-linear dynamic behavior of an oscillating tip-microlever system and the contrast at the atomic scale[END_REF][START_REF] San Paulo | Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopyPhys[END_REF][START_REF] Dürig | of Physics Interaction sensing in dynamic force microscopy[END_REF][START_REF] Stark | From Images to Interactions: High-Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopy[END_REF][START_REF] Hölscher | Quantitative analysis of dynamic-forcespectroscopy data on graphite (0001) in the contact and noncontact regimes[END_REF][START_REF] Giessibl | Forces and frequency shifts in atomic-resolution dynamic-force microscopy[END_REF]. In particular, changes in the oscillation amplitude can be the result of both conservative and dissipative interactions. A non-intuitive result is that a decrease in the oscillation amplitude can either be due to an attractive or a repulsive interaction [START_REF] Boisgard | Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever[END_REF].

-The second mode uses the frequency modulation (FM) technique, also called non-contact resonant mode [START_REF] Albrecht | Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity[END_REF]. The FM mode was first used under ultra-high-vacuum experimental conditions to image semiconductor surfaces. With the FM mode, a negative resonant frequency shift, at constant oscillation amplitude, is used as the error signal to control the distance between the tip and the surface. In doing so, the interaction between the tip and the surface remains attractive and the tip either does not touch the surface at all or touches it only slightly. The key experimental achievement was to show the capability to record images with a contrast at the atomic scale [START_REF] Giessibl | Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy[END_REF][START_REF] Sugawara | Defect motion on an InP (110) surface observed with Non Contact atomic force microscopy[END_REF]. The experimental data are the resonance frequency variation and the damping signal extracted from the energy per cycle needed to keep the oscillation amplitude constant. Contrary to AM, when the oscillation amplitude is kept constant, the physical origin of the change of the oscillating properties at the resonance frequency is straightforwardly attributed. The frequency shift is only related to conservative interaction, and the additional damping signal gives the dissipative interaction [START_REF] Lantz | Low Temperature Scanning Force Microscopy of the Si(111)-(7 x 7) Surface[END_REF][START_REF] Hölscher | Quantitative analysis of dynamic-forcespectroscopy data on graphite (0001) in the contact and noncontact regimes[END_REF].

However, the high sensitivity of the FM mode requires samples of great quality with a nearly atomic flat surface and without significant pollution.

A c c e p t e d m a n u s c r i p t 1-Conservative interaction.

A shift of the resonant frequency of a harmonic oscillator corresponds either to a change in the mass of the oscillator or to a change in an effective force gradient. For experiments with an AFM, where a mass transfer is not expected, an effective spring constant must be considered. A general expression describing the resonant frequency shift is [START_REF] Dürig | Conservative and dissipative interactions in dynamic force microscopy[END_REF][START_REF] Dürig | of Physics Interaction sensing in dynamic force microscopy[END_REF][START_REF] Giessibl | Forces and frequency shifts in atomic-resolution dynamic-force microscopy[END_REF]:

int 0 1 eff c k k ν ν     ∆ = + -     1 (1)
Here, 0 ν is the resonant frequency when the tip does not interact with the surface, k is the effective spring constant describing changes of the interaction between the tip and the surface over an oscillation period, and k is the cantilever spring constant. The high sensitivity of commercially available electronics allows one to record low values of effective spring constant. For example, with a cantilever spring constant k int eff c 10 c = Nm -1 , an effective spring constant less than can be measured with frequency demodulators [START_REF] Dietzel | Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by AFM[END_REF].

1 - 3 int 10 - = Nm k eff
The first goal is to deduce the laws of interaction between the tip and the surface.

There are numerous works attempting to relate the frequency shifts to the attractive tipsample interaction. The analysis of the resonance frequency shift was first derived using the Hamilton-Jacobi formalism. Assume a power law dependence for the attractive interaction:

( ) ( ) ( ) ( ) int n C F D x t D x t - =- - ( 2 
)
where D is the distance between the vertical location of the tip at rest and the surface and

) cos( ) ( 0 t A t x ω =
. The frequency shift is given by [START_REF] Giessibl | Forces and frequency shifts in atomic-resolution dynamic-force microscopy[END_REF]:

( ) ( ) 0 0 1 3/ 2 1/ 2 0 1 , , , , 2 n C k A C n I n kA ν ν π - ∆ ∆ - ∆ ; (3) 
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where n is the power law dependence of the tip surface interaction (see equation 2, [START_REF] Giessibl | Forces and frequency shifts in atomic-resolution dynamic-force microscopy[END_REF]), and where ( )

∫ ∞ ∞ - + = dy y n I n 2 1 1 1 ) (
has tabulated values (see for example reference [START_REF] Garcia | Dynamic atomic force microscopy methods[END_REF]). Here, ∆ is the closest distance between the tip and the surface, A 0 is the resonance amplitude, and C is a constant giving the strength of the attractive interaction. A separate development based on the principle of least action gives similar results. This latter method includes the influence of the quality factor, and is thus not restricted to interpretation of the resonant frequency shifts [START_REF] Boisgard | Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever[END_REF][START_REF] Aimé | Non-linear dynamic behavior of an oscillating tip-microlever system and the contrast at the atomic scale[END_REF].

2-Dissipative interaction:

In addition to conservative forces of the tip sample interaction, one must also consider dissipative forces that lead to additional energy losses during each oscillation period.

Dissipation manifests itself as a hysteresis of the force versus displacement curve. Dissipation mechanisms may involve electrical losses, time delays, viscoelastic material effects [START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF][START_REF] Dürig | Conservative and dissipative interactions in dynamic force microscopy[END_REF][START_REF] Dürig | of Physics Interaction sensing in dynamic force microscopy[END_REF][START_REF] Boisgard | Surface mechanical instabilities and dissipation under the action of the oscillating tip[END_REF], or mechanical instabilities due to adhesion [START_REF] Dürig | of Physics Interaction sensing in dynamic force microscopy[END_REF].

Energy loss due to viscous effect exhibits an oscillation amplitude dependence and, when soft materials are involved, an indentation depth dependence [START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF]. For mechanical instability with adhesion hysteresis, the dissipated energy is a constant [START_REF] Dürig | of Physics Interaction sensing in dynamic force microscopy[END_REF][START_REF] Dietzel | Mechanical properties of a carbon nanotube fixed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF]. The total damping coefficient is [START_REF] Cleveland | Energy dissipation in tapping-mode atomic force microscopy[END_REF]:

0 i tot n t γ γ γ = + (4) 
where

Q m 0 0 ω γ =
is the damping coefficient in the absence of interactions between the tip and the surface. Typically in vacuum, 

c diss k A E Q π 0 1 9 - = ; J. In air, Q 500 = and the dissipated energy is 2 0 c diss k A Q π = 1 7 10 E - ≈
J. The measured damping signal, in Volts, is given by , the additional damping coefficient int γ can be converted into the dissipated energy. Thus in ambient conditions, a damping increase of about 10 J can be measured, while in vacuum at room temperature it can be as low as .

0 int 0 1 a a D D γ γ   = +     (5) 
19 -

B k T

III Non-linear contact mechanics: an example with a viscoelastic material.

Only a few analyses have been dedicated to the study of the interaction when the tip makes significant indentation in the surface. This case is by far the most difficult to solve, and only phenomenological approaches, including contact mechanics, are used [START_REF] Garcia | Dynamic atomic force microscopy methods[END_REF][START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF][START_REF] Wang | The role of damping in phase imaging in tapping mode atomic force microscopy[END_REF][START_REF] San Paulo | Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopyPhys[END_REF][START_REF] Boisgard | Surface mechanical instabilities and dissipation under the action of the oscillating tip[END_REF].

In addition, at the nanometer scale, surface forces become dominant and contact mechanics must be described as the result of an interplay between the attractive and the repulsive interaction. The problem can be partly solved with the introduction of a length as a contact distance between the tip and the sample. However, because there is a non-linear relationship between the elastic repulsive force and the indentation depth, a simple analytical expression cannot be obtained [START_REF] Wang | Analytical descriptions of the tapping-mode atomic force microscopy response[END_REF][START_REF] Nony | Non-linear dynamical properties of an oscillating tipcantilever system in the tapping mode[END_REF].

When viscoelastic materials are investigated, we face the difficult task to describe the contact between the tip and the viscous sample. For AFM dynamic modes, the difficulty is increased as the nanotip oscillates and has an intermittent contact with the sample. However, using crude assumptions, we can borrow approaches from common rheological experiments.

In this section we give a detailed description of a theoretical analysis that should help to interpret indentation experiments with an AFM tip oscillating in a viscoelastic material. In order to simplify the theoretical analysis, we consider a shear experiment, in which the viscoleastic material is sheared with a flat oscillating plate.

For the AFM experiment the plate is the tip inside the polymer. To write the constitutive equation, we describe the viscoelastic material with a simple Maxwell mechanical element [START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF][START_REF] Ferry | Viscoelastic Properties of Polymers 3rd[END_REF]. The mechanical element is made of a spring and a dashpot in series. The constitutive equation is 

( ) ( ) ( ) s t t t σ τ σ ηγ + =- & & ( 6 
)
where σ is the stress in the mechanical element, γ& the shear rate, s τ is a relaxation time, and η is the zero frequency viscosity.

When intermittent contacts occur between the tip and the sample, the tip induces a sample displacement assuming that the material is incompressible. However, contrary to usual shear experiments, the imposed displacement is not a simple sinusoidal perturbation. Because the tip moves inside the sample only for a fraction of time of the oscillation period, the time dependence of the indentation depth ( ) 

t δ is: ( ) ( ) cos for 2 res t A t D t τ δ ω = - ≤ (7) 
( )> cos ω D cos 2 res A D ωτ   =     or 1 1 2 cos res D T A A τ ω π - 2∆   =     ; f n t o r the maximum indentation. D A -= A ∆ =
The indentation depth writes ( ) ( )

0 cos n n t δ δ ∞ = = ∑
ω with the Fourier coefficient δ n given in the appendix A.

The expression of the Fourier coefficients δ n is cumbersome to use, and a few simplifications can be made. Noting that the coefficients vanish rapidly with increasing n, we follow a method identical to the one given in reference [START_REF] Boisgard | Surface mechanical instabilities and dissipation under the action of the oscillating tip[END_REF].

A maximum harmonic number 0 ( ) ( ) ( )

' ' t t G t t t σ -∞ = - - ∫ & ' dt γ (8)
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where ( )

exp s s t η G t τ τ   = -   
 is the material relaxation modulus.

For sake of simplicity, we consider a simple shear strain. An estimation of the shear rate γ& is obtained assuming a no slip condition at the surface of the tip and a polymer at rest at a distance of the tip of the order of the diameter of contact ρ between the tip and the material.

Hence, we set γ ρ ∆ :

and γ ρ ∆ & &:
. The residence time is of the order of 1 µs, giving a shear rate s 6 10 γ&:

-1 . Note that in spite of a large shear rate, the volume of material involved is only a few nm 3 , and the dissipated energy is always very low.

Asymptotic behaviors correspond to long and fast relaxation processes with respect to the oscillation period. Starting from equation A10 (appendix A), the two asymptotic forms of int 

where the power law dependence corresponds to relaxation processes with a time constant much smaller than the residence time

3/ 2 A - res τ .
Similarly, for 1 , give a simple way to interpret the viscoelastic properties of the sample and possibly the type of molecular motion induced by the tip [START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF][START_REF] Boisgard | Surface mechanical instabilities and dissipation under the action of the oscillating tip[END_REF]. In particular the formulas were successfully used to analyze the experimental data obtained on a polymer melt [START_REF] Dubourg | Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip[END_REF].

s τ ω ? , ( ) ( ) 2 ' 

IV-Modeling the Oscillating behavior and the machine for the FM mode: Bandwidth and Coarse Graining approach

As discussed in the previous sections, FM mode provides unambiguous information on the conservative and dissipative interaction. However, the non-linear behavior of the oscillator in proximity to the surface and its intricate play with the electronic feedback loop must be investigated to ensure an accurate analysis of the physical origin of changes in the AFM oscillator properties. In the presence of non-linearity, an unstable behavior of the AFM oscillator may occur that can induce frequency shifts and damping variations. For the specific case of the FM-mode, we must consider the feedback loop, with its own characteristic time, required to keep constant the oscillation amplitude. To do so, an additional differential equation is considered. The later equation takes into account the effective time dependence of the forcing. Until now, this type of study has been mostly achieved through numerical computations [START_REF] Couturier | Aimé Damping and instability in non-contact AFM: contribution of the Instrument[END_REF]42].

In this part, we outline an analytical approach aiming to extract the influence of the electronic feedback loop that compensates change of the oscillating properties and improves the oscillator stability. The aim is to compute the evolution of the damping signal, in order to discriminate between contributions coming from the tip sample interaction and those from the machine.

Because each experimental data point represents a time average over several hundreds oscillation periods, the variation of any parameters occur on a time scale much larger than the

A c c e p t e d m a n u s c r i p t

time period of the oscillation. Therefore, it is worth to extract information upon the time evolution at a time scale larger than that of the oscillation period. To do so, we use a method of coarse graining that has been shown to be efficient to investigate the stability of the AFM oscillator when the tip interacts with a surface [43].

A Lagrangian able to describe the FM-mode including the electronic loop keeping the oscillation amplitude constant is (a more precise description of the calculus is given in Appendix B):

µ [ ] 2 2 0 1 1 2 2 a c d m k x D x C L x x x D x ξ γ ω       = - - + - - x (12)
where µ

d a D x x ξ   
 is a forcing term, which is given by the electronic loop that keeps the oscillation amplitude constant [START_REF] Couturier | Aimé Damping and instability in non-contact AFM: contribution of the Instrument[END_REF]. The terms with underscore will not be varied when the variationnal procedure will be applied. Here, µ d ξ is a phase shifter operator and D is the damping signal. A direct consequence of the time dependence of the forcing term is that the oscillation amplitude A becomes a time dependent parameter. Therefore, we look for a general solution of the form: 

a ( ) ( ) ( )cos ) ( x t A t t =
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A consequence of the fact that the average process on time scaleτ obeys inequality 14 is that the variation of any quantity characterizing the oscillator over a time interval that is small compared to the characteristic time t ∆ τ , must also be small.

The principle of least action states that the integral of the Lagrangian between the two instants and must be optimal along the physical path. 

S L

= ∫ dt (16) where is now a continuous function of the slowly varying variables , Once the effective Lagrangian is expressed in terms of the corresponding variables, we obtain the long time behavior by applying the Euler-Lagrange equations.

Let us begin with the kinetic term:

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 cos sin 2 sin cos 2 1 1 2 2 1 2 x A t A t A A t A A A α α α α α α α α = + - A c c e p t e d m a n u s c r i p t 2 2 2 1 cos ( ) 2 2 x A t α = = A (18)
The average interaction potential is ( )

int 1/ 2 2 2 1 1 cos( ( )) CG CG t t t t CG CG C C C V d t d t D x D A t D A τ τ τ τ α + + = = - - - ∫ ∫ ; (19) 
Using equation 13, the damping term is:

( ) ( 1 cos cos cos sin cos sin 2 xx A A A AA AA ) α α α α α α α α α α   = - = -+ - 
only the average difference is not negligible.

The main difference with the previous approaches [START_REF] Boisgard | Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever[END_REF][START_REF] Nony | Non-linear dynamical properties of an oscillating tipcantilever system in the tapping mode[END_REF], is that in addition to the dependence on phase φ and oscillation amplitude A, L now explicitly depends on the time derivatives of e α and .

A

Since the damping is also a function varying slowly with time compared to the frequency domain where the phase shifter is effective, we assume:

a D µ [ ] µ [ ] a a d d D x D x ξ ξ ;
On the other hand the phase shifter µ d ξ acts on the tip motion ( )

x t following the criterion [START_REF] Couturier | Aimé Damping and instability in non-contact AFM: contribution of the Instrument[END_REF]:

µ [ ] [ ] 3 cos cos sin 2 d d x A A A π ξ ξ α α   = = - =-     α (21) 
The average value becomes:

µ [ ] µ [ ] ( 1 sin cos sin 2 a a a a d d D x x D x x D AA D AA ) ξ ξ α α α α - - ; ; ; (22) 
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The complete effective Lagrangian is given by: ( )

( ) [ ] ( ) 2 2 2 0 1/ 2 2 2 1 1 1 1 cos sin 4 4 2 2 a e c C L mA k A AA AA D D A α γ α α γα ω α = - + - -- -α - (23) 
The first Euler-Lagrange equation

e L d dt A A e L ∂ ∂   =   ∂ ∂   & becomes: ( ) ( ) [ ] ( 2 0 3 / 2 2 2 2 0 c o s a c AC mA k A A A D D A ) s i n α γ α α γα ω α = - + - -- - -α (24) 
As usual, writing that the solution is given by the parameters [START_REF] Boisgard | Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip-microlever[END_REF],α α

= , A A = ,α α = & & and A A = & & yields ( ) 2 3 / 2 2 2 2 0 c AC mA k A A D A α γ = - + - - & & ( 25 
)
When the time variation of the oscillation amplitude is neglected, equation [START_REF] Cleveland | Energy dissipation in tapping-mode atomic force microscopy[END_REF] gives the known stationary result :

( )

2 3 0 0 3 / 2 2 2 2 0 0 1 2 a A D A ω ω ω κ ω ω   - - -   -   ; ; (26) 
where, following [START_REF] Aimé | Non-linear dynamic behavior of an oscillating tip-microlever system and the contrast at the atomic scale[END_REF], α ω 

∂   =   ∂ ∂   & becomes: 2 2 1 2 2 d A mA m mAA dt α α α   = +     ( ) [ ] ( 0 1 1 sin cos 2 2 e a L AA AA D ) γ α α γα ω α α α ∂ = -- - ∂ & & - (28) 
+ - +    & 0  =  (29) 
When the variations of the oscillator properties are restricted to a shift of the resonance frequency, the observed change of the damping parameter is given by:

2 0 0 a Q d D dt ω ω γ ω ω   +    ;  (30) 
Therefore, when no extrinsic dissipation occurs, the FM mode is described with the two equations ( 25) and [START_REF] Wang | The role of damping in phase imaging in tapping mode atomic force microscopy[END_REF]. The first term means that the damping coefficient, scaling as 1 Q , is slightly modified because of the frequency shift. Typical variations are about 10 -4 , thus can be neglected. The second term rises when images are non-adiabatically recorded. The second term becomes noticeable when variations in the frequency occur within the time scale of the period, i.e. t Q ω ∆ : . Therefore, equation [START_REF] Wang | The role of damping in phase imaging in tapping mode atomic force microscopy[END_REF] tells us that the instrumental contribution to the damping coefficient should always be negligible when the FM mode is perfectly set at the resonance frequency. However, as shown recently [START_REF] Couturier | Aimé Damping and instability in non-contact AFM: contribution of the Instrument[END_REF]42] in a narrow domain of frequencies an unstable behavior occurs that can lead to a strong enhancement of the damping signal.

Such an instrumental contribution can be removed by varying the scan frequency.

Equation [START_REF] Cleveland | Energy dissipation in tapping-mode atomic force microscopy[END_REF] predicts an observed frequency shift given by: ( )

3 0 0 3/ 2 2 2 0 1 log 2 2 a A d A Q dt D A ω ω κ ω - = - + - (31) 
Here again, for many experimental cases we may consider the contribution of changes in the oscillation amplitude as a function of time negligible regarding its the influence on the tip sample interaction.

Equations ( 30) and [START_REF] Aimé | Non-linear dynamic behavior of an oscillating tip-microlever system and the contrast at the atomic scale[END_REF] were found to be precise enough to describe the contribution of the machine on many of the experimental results obtained with a FM-AFM [START_REF] Couturier | Aimé Damping and instability in non-contact AFM: contribution of the Instrument[END_REF]. Therefore, in spite of the complexity of the machine, there are simple expressions that provide an unambiguous way to discriminate between contributions of the tip sample interaction and of the feedback electronic loop. 
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where Ω is the surface of contact.

Using the approximate sample speed ( ) ( 1

n diss res s T n s E n T n τ η π ω ρ τ ω = Ω   ∆     + ∑ ; (A9)
Finally, the measured damping coefficient int γ is deduced from the relation

2 int diss T E A πγ ω = .
The great difficulty is to evaluate the geometrical parameter Ω and ρ in equation A9. Here, is the surface of contact between the tip and the material, Ω ρ is the contact diameter. These must both be expressed as a function of ∆ . The relation between the indentation depth and the geometrical parameter driving the shear displacement inside the polymer requires an accurate knowledge of the size and shape of the tip. Unfortunately, in AFM an accurate knowledge of the tip at the nanometer scale is often missing, thus, as an example, we only consider a simple tip shape. For a conical tip From equations B1 and B2 we write a lagrangian from which we can retrieve these equations by application of the least action principle. 
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  where D a and D a0 are the damping signals measured when the tip is close to the surface and far from the surface respectively.
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  To calculate the stress and the dissipated energy we use the Boltzmann superposition principle relating the stress to the history of the strain[START_REF] Ferry | Viscoelastic Properties of Polymers 3rd[END_REF].

;

  relaxation times of the sample are: for all n (see equation A9 in the appendix) and thus, using an approximate expression for the sum,

τ

  Therefore when the relaxation time of the viscous material s τ obeys the inequality 1 s τ ω ? , the damping follows a ( ) 2 s τ ω -power law: thus relaxation processes with too long s τ do not A c c e p t e d m a n u s c r i p t contribute to dissipation. At fixed indentation depth ∆ the oscillation amplitude dependence corresponds to the asymptotic behavior for relaxation times much longer than that of the oscillation period T. Equations 10 and 11 give two power laws, one related to the indentation depth ∆ the second to the oscillation amplitude A. The power laws, A for short sample relaxation time 3/ 2 s , and A for long sample relaxation time 5/ 2 -

2 A & 2 ω

 22 that varies rapidly with time. Typically, the first time derivative isα ω ≈ & , while the time derivative of α & varies slowly with time. The expression of the tip velocity is: into account that A & and α ω = & & &are slow temporal variables, quadratic expressions of the form and & are neglected in the following.From an experimental point of view, the oscillating amplitude, or the frequency, are given by devices that have their own response time, i.e. the bandwidth. Let CG τ be this characteristic time, corresponding to the coarse-graining scale. The time CG τ must be greater than the period, typically a few milliseconds or several hundreds of periods. Therefore a precise temporal description can only be done on events whose experimental characteristic times τ are greater than CG τ . The following inequality then applies:

  and α &.

  this work, we have presented two non-linear behaviors observed with the dynamic modes of AFM. One deals with phenomena occurring when a viscoelastic material is investigated. The other case concerns the behavior of the oscillator when it becomes unstable because of the non-linearity induced by the tip sample interaction. The non-linearity can produce significant variations of the recorded damping coefficient that can be considered as artefacts and not as the result of additional dissipated energy. Therefore the effects of abrupt changes of the oscillating properties induced by an unstable behavior are investigated. A complete theoretical description, including the electronic feedback loop of the machine, is performed giving two simple equations. The two equations allow discriminating between effects from an unstable behaviour of the oscillator and a dissipation induced by the physical properties of the sample.

  Gauthier, M., Pérez R., Arai, T. et al Interplay between Nonlinearity, Scan Speed, Damping, and Electronics in Frequency Modulation Atomic-Force Microscopy. Phys. Rev. Let. 2002, 89, 146104-146107.[43] Nony, L., Boisgard, R., Aimé, J.P. Stability Criterions of an oscillating tip-cantilever system in dynamic force microscopy. Eur. Journ. of Phys. B 2001,24, 221-229. 

  the cone half-angle. Then this simple geometrical consideration gives the expression of the damping coefficient int γ for a cone :

ξ

  When a mechanical oscillator is inserted within a feedback loop that maintains the oscillation amplitude constant, the general differential equation is: mass of the cantilever, k is the cantilever stiffness, m c γ the dissipation coefficient due to the hydrodynamic action to the surrounding fluid, F is the interacting force between the tip apex and the surface, and int ( )e f t is the, a priori unknown,forcing with a general time dependence that keeps the oscillation amplitude constant.Equation B1 aims to describe the oscillation of an AFM micro cantilever oscillating in a FM machine[42]. In this case the general expression of ( ) is a linear operator that imposes the phase to satisfy the Barkhausen condition and is the recorded damping signal. Let us note that we have introduce the parameter ( ) to give to the damping the dimensional signification of a dissipation coefficient. The diagram of figure B1 helps to understand the operation performed with the FM machine.

  Figure B1. Scheme of the FM-AFM electronic loop including the oscillating cantilever. The feedback loop keeps the oscillation amplitude constant

& &

& & &

& & & & & & & &

& & & & & (20)the result given by equation (20) is based on the assumption that α is quickly varying with time, as α is nearly the same as α , the difference α α varies slowly with time. Therefore,

& & &

& & & & &(27)

& &Here we would raise a difficulty associated with the use of the underscored variable notation.By so doing, it means that the variables are not varied during the minimization procedure that occurs in the application of the least action principle. It is a standard procedure to handle nonconservative interaction with the Lagrangian formalism.

; t [START_REF] Giessibl | Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy[END_REF] where we have used the assumption that the quadratic term in A & is negligible.

For the potential term:
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Appendix A: Indentation of an oscillating tip in a Visco-elastic material.

The indentation depth can be written as 0 ( ) cos( )

with the Fourier coefficients :

( ) ( )

and the crude assumption : 

with ρ the contact diameter. Thus, the corresponding stress generated by the tip motion:

Using the well know relations between the real and imaginary parts of complex viscosity and modulus [START_REF] Ferry | Viscoelastic Properties of Polymers 3rd[END_REF] ( ) ( )

The corresponding energy loss per period is given by 0 ( )
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To be complete, one has also to consider the differential equations describing the electronic feedback loop keeping the oscillation amplitude constant : a peak detector or diode rectifier followed by a proportional-integrator monitor (PI) [42]. Thus, together with equation B1 we obtain the set of equations : 

The second and third equations describe the action of the diode rectifier that extracts the amplitude measurement. The fourth equation is the first order differential equation that controls the oscillation amplitude with integral and proportional gain according to a set point amplitude .