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SES/Rivlin Special Issue

FINITE DEFORMATIONS OF FIBRE-REINFORCED ELASTIC SOLIDS
WITH FIBRE BENDING STIFFNESS

A. J. M. Spencer and K. P. Soldatos

School of Mathematical Sciences, University of Nottingham

In memory of Ronald Rivlin

Abstract.

In the conventional theory of finite deformations of fibre-reinforced elastic
solids it is assumed that the strain-energy is an isotropic invariant function of
the deformation and a unit vector A that defines the fibre direction and is
convected with the material. This leads to a constitutive equation that involves
no natural length . To incorporate fibre bending stiffness into a continuum
theory, we make the more general assumption that the strain-energy depends
on deformation, fibre direction, and the gradients of the fibre direction in the
deformed configuration. The resulting extended theory requires, in general, a
non-symmetric stress and the couple stress. The constitutive equations for stress
and couple-stress are formulated in a general way, and specialized to the case
in which dependence on the fibre direction gradients is restricted to dependence
on their directional derivatives in the fibre direction. This is further specialized
to the case of plane strain, and finite pure bending of a thick plate is solved
as an example. We also formulate and develop the linearized theory in which
the stress and couple-stress are linear functions of the first and second spacial
derivatives of the displacement. In this case for the symmetric part of the stress
we recover the standard equations of transversely isotropic linear elasticity, with
five elastic moduli, and find that, in the most general case, a further seven
moduli are required to characterize the couple-stress.

1. Introduction

The continuum theory of finite deformations of elastic materials reinforced
by cords or fibres was initiated by Adkins and Rivlin [1] and further developed
by Adkins [2-4]. Initially they assumed that the reinforcing cords lay in discrete
surfaces, but they also considered the case in which the fibres are continuously
distributed through the bulk of the material. These developments are described
in Green and Adkins [5].

A slightly different approach was followed by Spencer [6]. In this theory the
fibres are characterized by a unit vector field that defines the fibre direction and
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is convected with the material. This vector is treated as a constitutive variable
with appropriate invariance properties. From this follows a formulation that is
free from dependence on the choice of any special coordinate system, and does
not restrict the reinforcement to any special geometrical arrangement. This
approach has close connections with the theory of anisotropic tensor represen-
tations based on the use of structural tensors that was initiated by Boehler [7]
and developed and extended by Zheng [8]. The fibre vector formulation has
been applied to many kinds of material behaviour. Particular applications to
the theory of finite elastic deformations are in Spencer [6, 9] and Rivlin [10].
Recently the theory has been applied extensively to the analysis of biological
materials (see, for example, Holzapfel and Ogden [11]). The theory is outlined
in Sections 2 and 3.

In all of this work there is an assumption, either explicit or implicit, that the
reinforcing fibres are perfectly flexible. This assumption is a valid approxima-
tion in many cases of interest, but is not invariably applicable. A consequence of
it is that the constitutive equations contain no parameter with the dimensions
of length. Consequently the theory cannot account for any size effects, such as
those due to fibre diameter or fibre spacing. In Section 4 we show by an illus-
trative example that in general size effects are present, and that the theory that
assumes perfect fibre flexibility is a limiting case. To incorporate fibre bending
stiffness into a continuum theory, in Section 5 we make the constitutive assump-
tion that the elastic strain-energy depends not only on the deformation and the
fibre vectors, but also on the space derivatives of the deformed fibre vector,
subject to appropriate invariance requirements. This leads to a theory that has
some similarities to the theory of liquid crystals, although there are important
differences. The extended theory requires the inclusion of couple stress and non-
symmetric stress. The constitutive equations for the stress and couple-stress are
formulated in Section 5. In Section 6 we specialize to a simpler theory in which
dependence on the fibre vector gradients is restricted to dependence only on
the directional derivative in the fibre direction of the fibre vector. In Section 7
we consider plane strain deformations, and in Section 8 we apply the theory to
the problem of pure bending of a rectangular block into a sector of a circular
cylinder. Finally in Section 9 we develop the linear theory for the case of small
displacement gradients. It is shown that in this case, in addition to the usual
five elastic moduli required to describe transversely isotropic linear elasticity, an
additional seven moduli are required for specification of the couple-stress, but a
single one of these suffices for the linearized version of the restrited theory that
is described in Section 6.

The theory of elastic materials with couple-stress has been examined in detail
by Toupin [12] and Mindlin and Tiersten [13]. These authors also give references
to earlier work in this area. We also mention that Hilgers and Pipkin [14]
formulated a theory of large deformations of elastic membranes with bending
stiffness which has some connections to the theory presented here.

2. Notation and general theory
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All vector and tensor quantities are referred to a rectangular Cartesian co-
ordinate system Ox1x2x3. In the conventional notation, a typical particle is
initially at a position X, with coordinates XR, in a reference configuration, and
moves to the position x, with coordinates xi, in the deformed configuration.
The deformation is described by equations

x = x(X) or xi = xi(XR). (2.1)

The deformation gradient tensor F has components FiR, where

FiR = ∂xi/∂XR. (2.2)

If the material is incompressible, then det F = 1. The deformation tensors C
and B and their components CRS , Bij , are defined as

C = FT F, B = FFT , CRS =
∂xi

∂XR

∂xi

∂XS
, Bij =

∂xi

∂XR

∂xj

∂XR
. (2.3)

For a material reinforced by a single family of fibres, the fibre direction is defined

by a unit vector field A(X) in the reference configuration, and a unit vector field
a(x) in the deformed configuration. The fibres are convected with the material,
and thus

λa = FA, λai = FiRAR, λ2 = ARASCRS , (2.4)

where λ denotes the stretch in the fibre direction. If the fibres are inextensible,
then

λ = 1, ARASCRS = 1. (2.5)

The Cauchy stress tensor is denoted as σ, and its components as σij . If
the material is incompressible, then σ includes a reaction stress −pI,where p
represents a pressure. If it is inextensible in the fibre direction, the reaction
stress has the form Ta⊗ a, where T represents a tension in the fibre direction.

3. Finite deformations of a fibre-reinforced elastic solid without
bending stiffness

In this section we give a brief summary of the theory of finite deformations
of fibre-reinforced elastic materials as formulated by Spencer [6, 9]. We consider
an elastic solid with a strain-energy function W = W (FiR), or in the reduced
form, W =W (CRS). Then the constitutive equation for the stress is

σij =
ρ

ρ0
FjR

∂W

∂FiR
, (3.1)

or, in the reduced form

σij =
ρ

ρ0
FiRFjS

(
∂W

∂CRS
+
∂W

∂CSR

)
, (3.2)
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where ρ and ρ0 denote densities in the deformed and reference configurations
respectively. If the material is reinforced by a single family of fibres, character-
ized by the unit vector A in the reference configuration (or, more generally, is
locally transversely isotropic with preferred direction A), then

W =W (C,A), with W =W (C,A) =W (QCQT ,QA), (3.3)

for any orthogonal tensor Q. If the sense of A is not significant, then W is even
in the components of A, andW can be expressed as a function of C and A ⊗ A.
It follows that W can be expressed as a function of the invariants

I1 = tr C =tr B, I2 =
1
2

{
(tr C)2 − tr C2

}
=

1
2

{
(tr B)2 − tr B2

}
,

I3 = det C =det B =
(
ρ0
ρ

)2

,

I4 = ACA = λ2, I5 = AC2A = aBa. (3.4)

Then it follows that

σ =
2ρ
ρ0

F{ (W1 + I1W2 + I2W3) I− (W2 + I1W3)C +W3C2

+W4A⊗ A +W5 (A⊗ CA + CA ⊗ A)}FT , (3.5)

or equivalently

σ =
2ρ
ρ0

{(I2W2 + I3W3) I +W1B − I3W2B−1

+ I4W4a ⊗ a + I4W5 (a ⊗ Ba + Ba⊗ a)}, (3.6)

where Wα = ∂W/∂Iα. If the material is incompressible, I3 = 1, and then

σ = 2
{
W1B−W2B−1 + I4W4a ⊗ a + I4W5 (a ⊗ Ba + Ba ⊗ a)

}− pI. (3.7)

If also the material is inextensible in the A direction, then I4 = 1, and

σ = 2
{
W1B−W2B−1 +W5 (a ⊗ Ba + Ba ⊗ a)

}− pI+Ta⊗ a. (3.8)

4. Micromechanical considerations
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The constitutive equation (3.6) is homogeneous in X and does not include
any natural length scale, and so can not account for any size effects, such as
effects of fibre diameter or fibre spacing. In fact there are experimental and
theoretical reasons to expect size effects to be observed in real fibre composites.

To illustrate the theoretical basis for expecting size effects, it is sufficient
to consider pure bending in plane strain of a linear elastic plate with variable
Young’s modulus. In terms of rectangular Cartesian coordinates (x, y, z), sup-
pose the middle surface of the plate lies in the plane y = 0, and the lateral
surfaces are y = ±h. Also suppose the plate undergoes a pure bending de-
formation, as in the elementary Euler-Bernoulli bending theory, so that the
displacement in the x direction is

u =
xy

R
, (4.1)

where R is the radius of curvature of the deformed plate. Further, suppose that
the extension modulus E in the x direction depends on y, so that E = E(y),
with mean value E0, where

E0 =
1
2h

∫ h

−h

E(y)dy. (4.2)

Then the stress component σxx is

σxx = E(y)
∂u

∂x
= E(y)

y

R
, (4.3)

and the bending moment applied to a section x = const., per unit length in the
z direction, is

Mz =
∫ h

−h

σxxydy =
1
R

∫ h

−h

E(y)y2dy, (4.4)

and so the bending stiffness B is

B =MzR =
∫ h

−h

E(y)y2dy. (4.5)

On the other hand, if the extension modulus has the constant value E0 the
bending stiffness is

B0 =
∫ h

−h

E0y
2dy =

2
3
E0h

3. (4.6)

Clearly, in general B and B0 are not the same. To take a simple example for
illustration, let

E(y) = E0 − E1 cos
πy

d
, where d = h/N, (4.7)

and N is an odd integer. Thus d is a measure of the scale of the inhomogeneity
of the material. Then from (4.5)
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B = B0 +
4d2hE1

π2
= B0 +B1

d2

h2
, B1 =

6E1

E0π2
, (4.8)

and so the bending stiffness differs from B0 by a term of order (d/h)2. Similar
results (with a slightly different value of B1) are obtained if we consider that the
plate is composed of alternate layers of materials with extension moduli E0±E1

respectively.
In the theory of fibre-reinforced materials proposed by Adkins and Rivlin [1]

it was explicitly assumed that the fibres are infinitesimally thin, and thus in-
finitely flexible, with zero bending stiffness for an individual fibre (represented in
the theory by a mathematical curve). The same assumption is made, explicitly
or implicitly, in the subsequent literature. It plainly corresponds to the limit
d/h → 0 in the above illustration. In order to relax this assumption, whilst
remaining within a continuum theory, it is necessary to introduce some length
scale into the theory, which effectively endows the fibres with bending stiffness.
This is the purpose of the present paper.

5. Fibres with bending stiffness

A natural way to incorporate bending stiffness into the theory described in
Section 3 is to assume that the strain-energy densityW depends not only on the
right Cauchy-Green deformation tensor C and the fibre direction A, but also
on the gradients of the deformed fibre vectors. This means, for example, that
the fibre curvature is included. Dependence on the gradient of a implies that
the stress σ is not necessarily symmetric and that in general a couple stress
tensor m, with Cartesian components mij , is present. The resulting theory
in many respects resembles the continuum theory of liquid crystals (see, for
example Stewart [15]) and also the theory of nematic elastomers, but there are
important differences from these theories. For example, in the present theory
the trajectories of the fibre direction a are material curves, but in liquid crystal
theory the directors do not, in general, define material curves. We emphasize
that, because the fibres are assumed to be embedded in the matrix, the fibre
direction vector components are not variables to be determined independently
of the deformation, but are given by (2.4). Hence the essential problem is to
determine the position vector x.We do not enter into a detailed consideration of
boundary conditions, but note the discussion of boundary conditions for couple-
stress in linear elasticity by Mindlin and Tiersten [13].

The equilibrium equations for the stress and couple-stress, neglecting body
forces and body couples, are

∂σji

∂xj
= 0,

∂mji

∂xj
+ eijkσjk = 0, (5.1)

where eijk is the third-order alternating tensor. In accordance with the usual
definitions of Cauchy stress and couple-stress, if S is a surface with unit normal
n, then the components ti of the traction vector t and li of the moment l per
unit area applied to S are given by
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ti = σjinj , li = mjinj. (5.2)

We denote by dij and ωij the components of the rate-of deformation and
spin tensors d and ω respectively, and by ωi the components of the spin vector
1
2∇× v. Thus

dij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, ωij =

1
2

(
∂vi
∂xj

− ∂vj
∂xi

)
,
∂vi
∂xj

= dij + ωij ,

ωi =
1
2
eijk
∂vk
∂xj

= −1
2
eijkωjk, ωjk = −eijkωi. (5.3)

We also note that it can be shown [6] that the material derivative
•
a of the fibre

vector a has components

·
ai = (δij − aiaj) ak ∂vj

∂xk
. (5.4)

To proceed, we have to formulate constitutive equations for the symmetric
part of the stress and for the couple stress. The anti-symmetric part of the stress
is then given by the equilibrium equation (5.1). For quasi-static deformations,
and neglecting body forces and moments, (there is no difficulty in incorporating
inertia and body forces and couples, but this has no effect on the final results)
we propose the usual energy balance equation for an arbitrary volume V in the
deformed configuration. Thus if V has surface S, then

D

Dt

∫
V

WdV =
∫

S

{t · v + l · ω}dS, (5.5)

where the components ti of t and li of l are given by (5.2). By applying the
divergence theorem and Reynold’s Transport Theorem in the conventional way,
it follows that

ρ

ρ0

·
W = σji

∂vi
∂xj

+mji
∂ωi

∂xj
+ vi
∂σji

∂xj
+ ωi

∂mji

∂xj
, (5.6)

and hence, using (5.1), (5.2) and (5.3)

ρ

ρ0

·
W = σji

∂vi
∂xj

+mji
∂ωi

∂xj
− eijkωiσjk

= σji (dij + ωij) +mji
∂ωi

∂xj
+ ωjkσjk

= σjidij +mji
∂ωi

∂xj
. (5.7)

We make the constitutive assumption that W depends, in addition to the
displacement gradients FiR and A, on the gradients of the deformed fibre
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vectors. However rather than including dependence on the gradients ∂ai/∂XR,
it is more convenient to introduce a vector b, with Cartesian components bi,
such that

b = λa, bi = λai = AR
∂xi

∂XR
= FiRAR, (5.8)

and to assume that W depends instead on the gradients ∂bi/∂XR. Since λ2 =
ARASFiRFiS , dependence on F, a and A is equivalent to dependence on F,b
and A. The advantage of using b rather than a is that

•
bi = AR

∂vi
∂XR

= AR
∂vi
∂xj

∂xj

∂XR
= bj

∂vi
∂xj
, (5.9)

which is a simpler form than (5.4). Therefore we postulate that

W =W (FiR, GiR, AR) , or W =W (F,G,A), (5.10)

where
FiR =

∂xi

∂XR
, GiR =

∂bi
∂XR

. (5.11)

Therefore

·
W =

∂W

∂FiR

·
F iR +

∂W

∂GiR

·
GiR =

∂W

∂FiR

∂vi
∂XR

+
∂W

∂GiR

∂
·
bi
∂XR

. (5.12)

Hence

·
W =

∂W

∂FiR

∂xj

∂XR

∂vi
∂xj

+
∂W

∂GiR

∂xj

∂XR

∂
·
bi
∂xj

= FjR

 ∂W∂FiR

∂vi
∂xj

+
∂W

∂GiR

∂
·
bi
∂xj

 .
(5.13)

From (5.9)

FjR
∂
·
bi
∂xj

=
∂xj

∂XR

∂bk
∂xj

∂vi
∂xk

+ FjRbk
∂2vi
∂xj∂xk

= GkR
∂vi
∂xk

+ FjRbk
∂2vi
∂xj∂xk

, (5.14)

and so from (5.12) and (5.13)

•
W =

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
(dij + ωij) + FjR

∂W

∂GiR
bk
∂2vi
∂xj∂xk

. (5.15)

We now denote the components of the symmetric and antisymmetric parts of σ
as σ(ij) and σ[ij] respectively, so that

σ(ij) =
1
2
(σij + σji), σ[ij] =

1
2
(σij − σji), σij = σ(ij) + σ[ij], (5.16)

8



Acc
ep

te
d m

an
usc

rip
t 

and note that

σ(ij)ωij = 0, σ[ij]dij = 0. (5.17)

Hence, by comparing (5.7) and (5.15), we obtain

{
σ(ij) − ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)}
dij− ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
ωij

+mji
∂ωi

∂xj
− ρ

ρ0
FjR

∂W

∂GiR
bk
∂2vi
∂xj∂xk

= 0. (5.18)

Since dij and ωij are arbitrary, it follows that

σ(ij) =
ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
, (5.19)

and that the coefficient of ωij in (5.18) is symmetric with respect to interchanges
of i and j, thus

FjR
∂W

∂FiR
+GjR

∂W

∂GiR
= FiR

∂W

∂FjR
+GiR

∂W

∂GjR
. (5.20)

Equation (5.19) is the constitutive equation for the symmetric part of the stress
σ; (5.20) is a restriction on the admissible forms of W, the validity of which is
confirmed below. There now remains from (5.18)

mji
∂ωi

∂xj
− ρ
ρ0
FjR

∂W

∂GiR
bk
∂2vi
∂xj∂xk

= 0, (5.21)

or equivalently, using (5.3),(
−1

2
epikmjp − ρ

ρ0
FjR

∂W

∂GiR
bk

)
∂2vi
∂xj∂xk

= 0. (5.22)

It follows that the symmetric part (with respect to the indices j and k) of the
bracketed term in (5.22) must be zero, and therefore

−1
2
(epikmjp + epijmkp) =

ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj) . (5.23)

By multiplying each side of (5.23) by erik and using the ε− δ identities, there
follows

2δprmjp + (δprδkj − δrjδkp)mkp = −2erik
ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj) , (5.24)

and hence

3mjr −mkkδrj = −2erik
ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj) (5.25)
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which is a constitutive equation for the couple stress mij .
If we set r = j in (5.25), then each side reduces to zero, and so the spherical

part mkk of mij is indeterminate. This is consistent with the observation that
if mij is decomposed into its spherical and deviatoric parts

mjr = mjr +
1
3
mkkδrj, (5.26)

then, because ∂ωi/∂xi = 0, mkk makes no contribution to the energy bal-
ance equation (5.7). This indeterminacy in the couple-stress is not specific to
fibre-reinforced materials, but is a general result in couple-stress theory. It is
discussed at length in Toupin [12] and Mindlin and Tiersten [13]. Using (5.26)
we can write (5.25) as

mjr = −2
3
erik

ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj) , mkk = 0. (5.27)

Clearly, if r 
= j, then mjr = mjr .
Invariance under the superposed rigid rotation x → Qx requires that

W (F,G,A) =W (QF,QG,A), (5.28)

for any orthogonal tensor Q. It follows that W depends on the scalar products
of the vectors with components (for each fixed R) FiR and GiR, and therefore
W can be expressed as a function of the tensors

C = FTF, Γ = GT G, Λ = FTG, ΛT = GT F (5.29)

and the vector A, where C,Γ,Λ,A have components, respectively

CRS =
∂xi

∂XR

∂xi

∂XS
= FiRFiS , ΓRS =

∂bi
∂XR

∂bi
∂XS

= GiRGiS ,

ΛRS =
∂xi

∂XR

∂bi
∂XS

= FiRGiS , and AR. (5.30)

However, from (5.29)

Γ = ΛTC−1Λ, C = ΛΓ−1ΛT , (5.31)

and, by the Cayley-Hamilton Theorem for C

I3C−1 = C2 − I1C + I2I. (5.32)

Hence Γ can be expressed in terms of Λ,C and invariants of C, and therefore
W can be expressed as a function of these quantities. Invariance under rigid
rotations of the undeformed body then requires that

W (C,Λ,A) =W (QCQT ,QΛQT ,QA), (5.33)
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so that W can be expressed as an isotropic invariant of C,Λ,A. If the sense
of the fibres is not significant, then W must also be even in the components of
A and even in the components of Λ. In this case dependence on the vector A
can be replaced by dependence on the tensor A ⊗ A, but we do not impose
this restriction at this stage.

Since W depends on F and G only through the tensors C and Λ, we have

∂W

∂FiR
=
∂W

∂CPQ

∂CPQ

∂FiR
+
∂W

∂ΛPQ

∂ΛPQ

∂FiR
,

∂W

∂GiR
=
∂W

∂CPQ

∂CPQ

∂GiR
+
∂W

∂ΛPQ

∂ΛPQ

∂GiR
, (5.34)

and, since CPQ = FkPFkQ and ΛPQ = FkPGkQ

∂CPQ

∂FiR
= δikδPRFkQ + δikδQRFkP = FiQδPR + FiP δQR,

∂CPQ

∂GiR
= 0,

∂ΛPQ

∂FiR
= δikδRPGkQ = GiQδRP ,

∂ΛPQ

∂GiR
= δikδRQFkP = FiP δRQ. (5.35)

Hence from (5.34 ), using (5.35)

FjR
∂W

∂FiR
= FjR

{
∂W

∂CPQ

∂CPQ

∂FiR
+
∂W

∂ΛPQ

∂ΛPQ

∂FiR

}
= FjR

{
(FiQδPR + FiP δQR)

∂W

∂CPQ
+GiQδRP

∂W

∂ΛPQ

}
= FjRFiP

(
∂W

∂CPR
+
∂W

∂CRP

)
+ FjRGiP

∂W

∂ΛRP
,

GjR
∂W

GiR
= GjR

∂W

∂ΛPQ

∂ΛPQ

∂GiR
= GjRFiP

∂W

∂ΛPR
,

FjR
∂W

GiR
= FjR

∂W

∂ΛPQ

∂ΛPQ

∂GiR
= FjRFiP

∂W

∂ΛPR
. (5.36)

Hence from (5.36)

FjR
∂W

∂FiR
+GjR

∂W

∂GiR
= FjRFiP

(
∂W

∂CPR
+
∂W

∂CRP

)
+(FjRGiP +FiRGjP )

∂W

∂ΛRP
,

(5.37)
from which (5.20) follows immediately. Hence (5.19) and (5.27) can now be
expressed (with some renaming of indices) as

σ(ij) =
ρ

ρ0

{
FiRFjS

(
∂W

∂CRS
+
∂W

∂CSR

)
+ (GiRFjS +GjRFiS)

∂W

∂ΛSR

}
,

mji =
2
3
eikm

ρ

ρ0

∂W

∂ΛPR
FmP (FjRbk + FkRbj) . (5.38)
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If the couple-stress is non-zero, then in general the stress must have an anti-
symmetric part in order to preserve moment equilibrium of an element of the
body. This antisymmetric part of the stress is given by the equilibrium equation
(5.12).

The strain-energy W is an isotropic invariant of the tensors C,Λ and the
vector A. Canonical forms for these invariants are known and can be read from
tables (for example, Zheng [8, Table 1]). A list of the invariants is given in
the Appendix. This list contains thirty-three independent invariants which in
the general case clearly leads to excessively complicated constitutive equations.
In order to progress, therefore, it is necessary to make further simplifying as-
sumptions. There are several plausible ways in which this may be done; for
example by considering only restricted classes of deformations, as in the plane
strain theory discussed in Section 7, or by adopting the linearized theory which
is described in Section 9. Another possibility, not pursued here, is to restrict W
to be at most quadratic in the gradients of the fibre vector, which is analogous
to the assumption usually made in liquid crystal theory. This assumption has
the consequence that the equations then contain a single parameter with the
dimensions of length, which can be interpreted as a characteristic fibre radius
of curvature. This quadratic formulation can be interpreted as the first approx-
imation to the general theory when the characteristic fibre radius of curvature
is large compared to the dimensions that characterize the microstructure of the
material (for example fibre diameters or fibre spacings).

In appropriate cases, some simplification can be achieved by introducing the
kinematic constraints of incompressibility and/or fibre inextensibility. Another
simplified theory is described in the next section.

6. Dependence on fibre curvature

In this section it is assumed that, rather than general dependence on the
gradients of b, the strain energy depends on the gradients of b only through the
directional derivative of the fibre vector in the fibre direction; that is, essentially,
on the curvature of the fibres. In doing this, we exclude effects due to fibre ‘splay’
and fibre ‘twist’, both of which feature in liquid crystal theory, but it is plausible
that in fibre composite solids the major factor is fibre curvature.

Accordingly we make the initial assumption that the strain-energy depends
on the deformation gradients ∂xi/∂XR, the directional derivatives AR∂bi/∂XR,
and the initial fibre direction vector A. Invariance under a superposed rigid
rotation x → Qx of the deformed body requires that W can be expressed as
a function of the scalar products, formed by contracting on the index i, of the
vectors ∂xi/∂XR = FiR, andAR∂bi/∂XR = GiRAR = κi. These scalar products
are

CRS = FiRFiS , KR = κiFiR = AS
∂xi

∂XR

∂bi
∂XS

= ΛRSAS ,

κ2 = κiκi = ARAS
∂bi
∂XR

∂bi
∂XS

= ARASΓRS . (6.1)
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Then invariance under rotations of the undeformed body requires that W is an
isotropic invariant of the tensor C (components CRS), the vectors K (compo-
nents KR) and A, and the scalar κ2. It follows from tables of invariants that W
can be expressed as a function of

J1 = I1 = tr C =tr B,

J2 = I2 =
1
2

{
(tr C)2 − tr C2

}
=

1
2

{
(tr B)2 − tr B2

}
,

J3 = I3 = det C =det B,
J4 = I4 = ACA = b • b,

J5 = I5 = AC2A = bBb,

J6 = K • K = AΛT ΛA = bβTBβb,

J7 = KCK = AΛTCΛA = bβTB2βb,

J8 = KC2K = AΛTC2ΛA = bβTB3βb,

J9 = A • K = AΛA = bβb,
J10 = ACK = ACΛA = bBβb,

J11 = AC2K = AC2ΛA = bB2βb, (6.2)

where
βij =

∂bi
∂xj
, βF = G = F−T Λ. (6.3)

The invariant κ2 = AΓA = AΛTC−1ΛA = bβTβb can be expressed as a
linear combination of J6, J7 and J8 by the Cayley-Hamilton theorem for B, and
so is omitted from the list.

From (6.2) there follow

∂J1/∂C = I, ∂J2/∂C = I1I − C, ∂J3/∂C = I2I−I1C + C2,

∂J4/∂C = A⊗ A, ∂J5/∂C = A⊗ (CA)+ (CA)⊗A,

∂J6/∂C = 0, ∂J7/∂C = (ΛA) ⊗ (ΛA) , ∂J8/∂C = (ΛA)⊗ (CΛA) ,
∂J9/∂C = 0, ∂J10/∂C = A ⊗ (ΛA) , ∂J11/∂C = A ⊗ (CΛA) ,
∂J1/∂Λ = 0, ∂J2/∂Λ = 0, ∂J3/∂Λ = 0, ∂J4/∂Λ = 0, ∂J5/∂Λ = 0,

∂J6/∂Λ = 2ΛA⊗ A, ∂J7/∂Λ = 2 (CΛA)⊗A, ∂J8/∂Λ = 2
(
C2ΛA

)⊗A,

∂J9/∂Λ = A⊗ A, ∂J10/∂Λ = (CA)⊗A, ∂J11/∂Λ =
(
C2A

)⊗A,
(6.4)

where ∂Jα/∂C denotes the tensor whose (R,S) component is ∂Jα/∂CRS , and
similarly with ∂Jα/∂Λ. From these results it is straightforward to write down
the constitutive equations for the case in which W is a function of J1 −J11, but
in this generality the resulting equations are still too complicated for practical
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applications. For further simplification, in the next section we consider plane
strain deformations.

7. Plane strain

In this section, Greek indices take the values 1, 2. For plane strain deforma-
tions with fibres lying in the (X1, X2) planes

xα = xa(XΓ), bα = ba(XΓ), x3 = X3, A = (A1, A2, 0)T .

Thus

F =
[

F̂ 0
0 1

]
, G =

[
Ĝ 0
0 0

]
, C =

[
Ĉ 0
0 1

]
, Λ =

[
Λ̂ 0
0 0

]
, A =

[
Â
0

]
,

F̂αΓ =
∂xα

∂XΓ
, ĜαΓ =

∂bα
∂XΓ

, ĈΛΓ =
∂xα

∂XΛ

∂xα

∂XΓ
, Λ̂ΛΓ =

∂xα

∂XΛ

∂bα
∂XΓ

, Â = (A1, A2)T .

(7.2)
The constitutive equations (5.38) reduce to

σ(αβ) =
ρ

ρ0

{
F̂αΓF̂β∆

(
∂W

∂ĈΓ∆

+
∂W

∂Ĉ∆Γ

)
+
(
F̂αΓĜβ∆ + F̂βΓĜα∆

) ∂W
∂Λ̂Γ∆

}
,

mα3 =
2
3
εβγ
ρ

ρ0

∂W

∂Λ̂∆Γ

F̂γ∆

(
F̂αΓb̂β + F̂βΓb̂α

)
,

m3α = 0, m12 = 0, m21 = 0, m11 = 0, m22 = 0, m33 = 0, (7.3)

(and hence m11 = m22 = m33) where

εαβ =
[

0 1
−1 0

]
. (7.4)

In direct notation, (7.3)1,2 may be written as

1
2
(
σ + σT

)
=
ρ

ρ0

{
F̂
(
∂W

∂Ĉ
+
∂W

∂ĈT

)
F̂T + F̂

∂W

∂Λ̂
ĜT + Ĝ

∂W

∂Λ̂T
F̂T

}
, (7.5)

m̂ =
2ρ
3ρ0

{[
tr εF̂

∂W

∂Λ̂
F̂T

]
b̂−

[
F̂
∂W

∂Λ̂T
F̂T

] (
εb̂
)}
, (7.6)

where

m̂ =
[
m13

m23

]
=
[
m13

m23

]
, ε =

[
0 1
−1 0

]
, (7.7)

∂W / ∂Ĉ is the tensor whose (∆,Γ) component is ∂W / ∂Ĉ∆Γ, and similarly
for ∂W / ∂Λ̂.

It follows that now W is an isotropic invariant function of Ĉ,Λ̂,Â, or, if
dependence is only on the fibre curvature,
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W =W (Ĉ,K̂,Â), K̂=Λ̂Â. (7.8)

In the latter case, from tables of invariants (for example, Zheng [8, Table 4] it
follows that W can be expressed as a function of

Î1 = tr Ĉ, Î2 = det Ĉ, Î3 = ÂĈÂ, Î4 = K̂ • K̂ = ÂΛ̂T Λ̂Â,

Ĩ5 = K̂ĈK̂ = ÂΛ̂T ĈΛ̂Â, K1 = Â • K̂ = ÂΛ̂Â, K2 = ÂĈK̂ = ÂĈΛ̂Â.
(7..9)

However, it can be shown by the generalized Cayley-Hamilton theorem in two
dimensions that Ĩ5 can be expressed in terms of Î1, Î2, Î3, Î4,K1 and K2, and
so Ĩ5 may be omitted from the list. Moreover, if W is required to be even in
Λ̂, then K1 and K2 can appear only through their squares and product, and
therefore W is expressible as a function of

Î1, Î2, Î3, Î4, Î5 = K2
1 , Î6 = K2

2 , Î7 = K1K2. (7.10)

From (7.9),

∂Î1/∂Ĉ = I, ∂Î2/∂Ĉ = −Ĉ + Î1I, ∂Î3/∂Ĉ = Â⊗Â, ∂Î4/∂Ĉ = 0,

∂K1/∂Ĉ = 0, ∂K2/∂Ĉ = Â ⊗
(
Λ̂Â

)
,

∂Î1/∂Λ̂ = 0, ∂Î2/∂Λ̂ = 0, ∂Î3/∂Λ̂ = 0, ∂Î4/∂Λ̂ = 2
(
Λ̂Â

)
⊗ Â,

∂K1/∂Λ̂ = Â⊗Â, ∂K2/∂Λ̂ =
(
ĈÂ

)
⊗Â. (7.11)

It follows that

∂W

∂Ĉ
=

7∑
α=1

Wα
∂Îα

∂Ĉ
=
(
W1 + Î1W2

)
I −W2Ĉ +W3Â⊗Â + (2K2W6 +K1W7) Â ⊗

(
Λ̂Â

)
,

∂W

∂Λ̂
=

7∑
α=1

Wα
∂Îα

∂Λ̂
= 2W4

(
Λ̂Â

)
⊗ Â + (2K1W5 +K2W7)Â⊗Â

+ (2K2W6 +K1W7)
(
ĈÂ

)
⊗ Â, (7.12)

where Wα denotes ∂W/∂Îa. Hence, from (7.5) and (7.6)

1
2
(
σ + σT

)
=
ρ

ρ0
[2
(
W1 + Î1W2

)
B̂ − 2W2B̂2 + 2W3b̂⊗b̂ + 2W4

{
κ̂⊗

(
B̂κ̂

)
+
(
B̂κ̂

)
⊗ κ̂

}
+ (2K1W5 +K2W7) (b̂ ⊗ κ̂ + κ̂⊗ b̂)

+ (2K2W6 +K1W7)
{
b̂⊗

(
B̂κ̂

)
+
(
B̂κ̂

)
⊗ b̂ +

(
B̂b̂

)
⊗ κ̂ + κ̂⊗

(
B̂b̂

)}
],

(7.13)
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m̂ =
2
3
ρ

ρ0
[2W4

{
tr
[(
εB̂κ̂

)
⊗ b̂

]
b̂−

[
b̂⊗

(
B̂κ̂

)]
εb̂
}

+(2K2W6 +K1W7)
{
tr
[(
εB̂b̂

)
⊗ b̂

]
b̂ −

[
b̂⊗

(
B̂b̂

)]
εb̂
}

], (7.14)

where

B̂ = F̂F̂T , b̂ = F̂Â, κ̂ = ĜÂ, κ̂α =
∂b̂α
∂XΓ

AΓ =
∂b̂α
∂xβ

∂xβ

∂XΓ
Aγ =

∂b̂α
∂xβ
b̂β .

(7.15)
The first three terms in (7.13) form the usual expression for the symmetric
Cauchy stress in a transversely isotropic elastic solid in plane strain. The re-
maining terms in (7.13) arise from the bending stiffness. To within a length
scaling factor, κ̂ represents the fibre curvature. We also note that

Î4 = κ̂B̂κ̂, K1 = b̂ • κ̂, K2 = b̂B̂κ̂. (7.16)

By using the Cayley-Hamilton theorem for B̂, (7.13) may be written as

1
2
(
σ + σT

)
=
ρ

ρ0
[− 2W2I2I+2W1B̂ + 2W3b̂⊗b̂ + 2W4

{
κ̂⊗

(
B̂κ̂

)
+
(
B̂κ̂

)
⊗ κ̂

}
+ (2K1W5 +K2W7) (b̂ ⊗ κ̂ + κ̂⊗ b̂)

+ (2K2W6 +K1W7)
{
b̂⊗ B̂κ̂+ B̂κ̂⊗ b̂ + B̂b̂ ⊗ κ̂ + κ̂⊗B̂b̂

}
],

(7.17)

or, in the case of an incompressible material

1
2
(
σ + σT

)
= −pI+2W1B̂ + 2W3b̂⊗b̂ + 2W4

{
κ̂⊗

(
B̂κ̂

)
+
(
B̂κ̂

)
⊗ κ̂

}
+ (2K1W5 +K2W7) (b̂ ⊗ κ̂ + κ̂⊗ b̂)

+ (2K2W6 +K1W7)
{
b̂⊗

(
B̂κ̂

)
+
(
B̂κ̂

)
⊗ b̂ +

(
B̂b̂

)
⊗ κ̂ + κ̂⊗

(
B̂b̂

)}
,

(7.18)

where p represents a hydrostatic pressure.
The antisymmetric part of the stress, that in the presence of a couple-stress

is required to preserve local moment equilibrium, is given by the equations of
equilibrium. If it is assumed that in plane strain mαβ = 0, and that m3α and
m33 are independent of x3, these reduce to

σ21 − σ12 =
∂m13

∂x1
+
∂m23

∂x2
. (7.19)

8. Pure bending
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As an example, consider the problem of pure bending in plane strain, in
which a rectangular slab of incompressible material is bent into a sector of a
circular cylinder. For finite deformations of an isotropic elastic material, this
is one of the classic solutions obtained by Rivlin [16,17], and the extension to
transversely isotropic material is described in Green and Adkins [5, Chapter 2].
Suppose that initially the fibres lie in straight lines parallel to the X2 axis, so
that Â = (0, 1)T , and in the deformed body they form concentric circular arcs.
Thus a particle at (X1, X2) in the reference configuration moves to position
(referred to plane polar coordinates) (r, θ) in the deformed configuration, where

r = r(X1), θ = θ(X2). (8.1)

In (r, θ) coordinates

F̂=
[
r′(X1) 0

0 rθ′(X2)

]
, (8.2)

where primes denote derivatives with respect to the stated arguments. The
incompressibility condition gives

det F̂ = r′(X1)rθ′(X2) = r
dr

dX1

dθ

dX2
= 1. (8.3)

The relevant solution is

r
dr

dX1
= λ,

dθ

dX2
=

1
λ
, (8.4)

where λ is constant. Hence

r2 − a2 = 2λX1, θ =
X2

λ
, (8.5)

where the plane X2 = 0 becomes the plane θ = 0, and the plane X1 = 0 deforms
into the circular cylindrical surface r = a. If initially the block is bounded by
planes X1 = 0 and X1 = B, then the surface X1 = B deforms into the circular
cylindrical surface r = b, where

b2 − a2 = 2λB. (8.6)

We now have

F̂=
[
λr−1 0

0 λ−1r

]
. (8.7)

Since Â = (0, 1)T , it follows that, in plane polar coordinates

17



Acc
ep

te
d m

an
usc

rip
t 

b̂ =
[

0
λ−1r

]
, κ̂ =

[ −rλ−2

0

]
,

B̂=
[
λ2r−2 0

0 λ−2r2

]
, Ĝ=

[
0 −λ−2r
r−1 0

]
, Λ̂=

[
0 −λ−1

λ−1 0

]
,

Î1 = λ2r−2 + λ−2r2, Î2 = 1, Î3 = λ−2r2, Î4 = λ−2, K1 = 0, K2 = 0.
(8.8)

It follows from (7.13) that

σrr = −p+ 2W1λ
2r−2 + 4W4λ

−2,

σθθ = −p+ 2(W1 +W3)λ−2r2 − 4W4λ
−2,

σrθ + σθr = 0. (8.9)

If W4 = 0, this reduces to the symmetric stress for bending of a transversely
isotropic elastic material without bending stiffness, as given (in different nota-
tion) in Green and Adkins [5]. For the material with bending stiffness, (8.9)
includes the additional terms in W4, and (7.14) gives the couple stress compo-
nents

mr3 = 0, mθ3 =
8
3
W4λ

−2r. (8.10)

We assume that in plane strain deformations m33 is independent of x3. Then
the antisymmetric part of the stress follows from the equilibrium equation (5.1)
as

σθr − σrθ =
∂mθ3

r∂θ
+
∂mr3

∂r
= 0, (8.11)

so for this deformation the stress is symmetric. This symmetry occurs because

in pure bending the deformation and stress are independent of θ. This result
can be likened to the situation in classical beam theory of pure bending of an
Euler-Bernoulli beam, in which the shear force (analogous to σθr − σrθ) is zero
when the bending moment (analogous to mθ3) is constant along the beam. We
note that mθ3 is proportional to the magnitude of κ, which is a measure of the
curvature of the fibres. The bending moment M , and normal force N, per unit
length in the X3 direction, and applied to a section θ = const., are

M =
∫ b

a

(rσθθ +mθ3) dr, N =
∫ b

a

σθθdr. (8.12)

The tractions on the curved surfaces of the block can be made zero by appro-
priate choices of p and λ.

9. Small displacement gradients - linearized theory
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We define the displacement as u = x − X. Then

FiR = δiR +
∂ui

∂XR
, (9.1)

and so

bi =
(
δiR +

∂ui

∂XR

)
AR = Ai +

∂ui

∂XR
AR. (9.2)

For simplicity we assume that initially the fibres are straight, so that A is
constant. Then

GiR =
∂bi
∂XR

=
∂2ui

∂XR∂XP
AP , ΛRS =

∂xi

∂XR

∂bi
∂XS

=
(
δiR +

∂ui

∂XR

)
∂2ui

∂XS∂XP
AP .

To formulate the linear theory, we suppose that all partial derivatives of ui exist
and are of order of magnitude O(e), where e is much smaller than one. Then
from (9.2)

bi −Ai = O(e).

and it follows that the gradients ∂bi/∂XR are O(e).
We consider that W depends on the 33 invariants I1 − I33 listed in (A2) in

the Appendix, but for the linear theory we suppose W to be quadratic in the
derivatives of ui, so that we disregard terms in W that are O(e3) or of higher
order. For the purposes of this section it is convenient to replace the invariants
I1 − I5 by an equivalent set J1 − J5, where

J1 = I1 − 3, J2 = I22 − 2I1 − 2I2 + 3,

J3 = I31 − 3I21 − 3I1I2 + 3I1 + 3I3 + 6I2 − 3, J4 = I4 − 1, J5 = I5 − 2I4 + 1.
(9.3)

By inserting (9.1) into (3.4) and (9.3) and then retaining only the lowest
order terms, this set of modified invariants reduces to

J1 = 2
∂uR

∂XR
+O

(
e2
)
, J2 = 2

(
∂uR

∂XS

∂uS

∂XR
+
∂uR

∂XS

∂uR

∂XS

)
+O(e3), J3 = O(e3),

J4 = 2
∂uR

∂XS
ARAS +O

(
e2
)
, J5 = 2

(
∂uR

∂XP

∂uS

∂XP
+ 2
∂uR

∂XP

∂uP

∂XS
+
∂uP

∂XR

∂uP

∂XS

)
ARAS +O(e3),

(9.4)

so that of these only J1, J2, J4, J5 can contribute to a first-order elasticity theory.
Similarly, not all of the remaining invariants (A2) can contribute towards the
development of a first-order elasticity theory, because we may discard those with
order of magnitude higher than O(e2). From (A2), (9.1) and (9.2) we find that
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I6 = I10 = I11 =
∂2uR

∂XR∂XS
AS +O(e2),

I7 = I12 = I13 =
1
2
∂2uR

∂XS∂XQ

(
∂2uR

∂XS∂XP
+

∂2uS

∂XR∂XP

)
APAQ +O

(
e3
)
,

I8 = I14 = I15 =
1
2
∂2uR

∂XS∂XP

(
∂2uR

∂XS∂XQ
− ∂2uS

∂XR∂XQ

)
APAQ +O

(
e3
)
,

I9 = I16 = I17 = I26 = I28 = I30 = I31 = I32 = O(e3),

I18 = I29 = I33 = O(e4),

I19 = O(e6), I20 = I23 =
∂2uR

∂XS∂XP
ARASA P +O(e2),

I21 + I22 =
∂2uR

∂XS∂XQ

∂2uS

∂XP∂XM
ARAPAQAM +O(e3),

I21 − I22 =
1
2

(
∂2uR

∂XS∂XQ

∂2uP

∂XS∂XN
+

∂2uS

∂XR∂XQ

∂2uS

∂XP∂XM

)
ARAPAQAM +O(e3),

I24 = I25 =
1
2

(
∂uR

∂XP
+
∂uP

∂XR

)(
∂2uP

∂XS∂XQ
− ∂2uS

∂XP∂XQ

)
ARASAQ +O(e3),

I27 =
1
4

(
2
∂2uR

∂XM∂XQ

∂2uR

∂XN∂XP
− ∂2uM

∂XR∂XQ

∂2uN

∂XR∂XP

)
APAQAMAN +O(e3).

(9.5)

It follows that if W is a function of the invariants (A2), a quadratic function of
the derivatives of ui, and even in the components of A, then it can be expressed
as

W = ã1J
2
1 + ã2J2 + ã3J1J4 + ã4J

2
4 + ã5J5+

+ b̃1I26 + b̃2I7 + b̃3I8 + b̃4I220 + b̃5I21 + b̃6I22 + b̃7I27 + b̃8I6I20, (9.6)

where ãα and b̃α are coefficients. I24 and I25 are excluded because they are of
odd degree in the components of A. The coefficients denoted ãα are associated
with the invariants and products of invariants met in linear transverse isotropic
elasticity theory, while those denoted b̃α are associated with invariants and
products of invariants related to fibre resistance in bending.

Constitutive equations. For convenience we rename the invariants in (9.6) as

(J1, J2, J4, J5, I6, I7, I8, I20, I21, I22, I27) = (Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5, Ĩ6, Ĩ7, Ĩ8, Ĩ9, Ĩ10, Ĩ11),
(9.7)

so that (9.6) becomes
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W = ã1Ĩ
2
1 + ã2Ĩ2 + ã3Ĩ1Ĩ3 + ã4I

2
3 + ã5Ĩ4

+ b̃1Ĩ25 + b̃2Ĩ6 + b̃3Ĩ7 + b̃4Ĩ28 + b̃5Ĩ9 + b̃6Ĩ10 + b̃7Ĩ11 + b̃8Ĩ5Ĩ8. (9.8)

For this form of W , we have W = O(e2). Since ρ/ρ0 = 1 + O (e) , FiR =
δiR + O(e), GiR = O(e), it follows from (5.38) that the symmetric stress and
couple-stress are now given to O(e) in the linearized theory by

σ(ij) =
∂W

∂Cij
+
∂W

∂Cji
=

4∑
n=1

∂W

∂Ĩn

(
∂Ĩn
∂Cij

+
∂Ĩn
∂Cji

)
,

mji − 1
3
mkkδij =

2
3
eikm

(
∂W

∂Λmj
bk +

∂W

∂Λmk
bj

)
=

2
3
eikm

11∑
n=5

∂W

∂Ĩn

(
∂Ĩn
∂Λmj

bk +
∂Ĩn
∂Λmk

bj

)
.

(9.9)

Moreover

∂Ĩ1
∂Cij

= δij ,
∂Ĩ2
∂Cij

= Cij = δij +
∂ui

∂Xj
+
∂uj

∂Xi
+O(e2),

∂Ĩ3
∂Cij

= AiAj ,

∂Ĩ4
∂Cij

= AiCjkAk = δij +AiAk
∂uj

∂Xk
+O(e2),

∂Ĩ5
∂Cij

= 0,

∂Ĩ6
∂Cij

= 0,
∂Ĩ7
∂Cij

= 0,
∂Ĩ8
∂Cij

= 0,
∂Ĩ9
∂Cij

= 0,
∂Ĩ10
∂Cij

= 0,
∂Ĩ11
∂Cij

= 0,

∂Ĩ1
∂Λkj

= 0,
∂Ĩ2
∂Λkj

= 0,
∂Ĩ3
∂Λkj

= 0,
∂Ĩ4
∂Λkj

= 0,

∂Ĩ5
∂Λkj

= δkj ,
∂Ĩ6
∂Λkj

= Λkj + Λjk =
(
∂2uj

∂Xk∂Xl
+
∂2uk

∂Xj∂Xl

)
Al +O(e2),

∂Ĩ7
∂Λkj

= Λkj − Λjk = −
(
∂2uj

∂Xk∂Xl
− ∂2uk

∂Xj∂Xl

)
Al +O(e2),

∂Ĩ8
∂Λkj

= AkAj ,

∂Ĩ9
∂Λkj

=
1
2
[Ak(Λjm + Λmj) +Aj(Λkm + Λmk)]Am =

(
∂ekq

∂Xm
Aj +

∂ejq

∂Xm
Ak

)
AqAm +O

(
e2
)
,

∂Ĩ10
∂Λkj

=
1
2
[Ak(Λjm − Λmj) −Aj(Λkm − Λmk)]Am

=
1
2

[(
∂2uj

∂Xq∂Xm
− ∂2uq

∂Xj∂Xm

)
Ak −

(
∂2uk

∂Xq∂Xm
− ∂2uq

∂Xk∂Xm

)
Aj

]
AqAm +O(e2),

∂Ĩ11
∂Λkj

=
1
2
[Ak(Λjm − Λmj) +Aj(Λkm − Λmk)]Am

=
1
2

(
∂2uk

∂Xq∂Xm
Aj − ∂2uq

∂Xj∂Xm
Ak

)
AqAm +O

(
e2
)
. (9.10)
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By inserting (9.8) and (9.10) in (9.9), and retaining only leading order terms,
we obtain the linearized constitutive equations in the form

σ(ij) = 4(2ã1eRR + ã3eRQARAQ)δij + 8ã2eij
+ 2(2ã3eRR + 4ã4eRQARAQ)AiAj + 4ã5(eikAkAj + ejkAkAi),

(9.11)

mji − 1
3
mkkδij = −2

3
eijM

(
2b̃1

∂2uR

∂XR∂XQ
+ b̃8

∂2uP

∂XN∂XQ
APAN

)
AQAM

− 2
3
eikM (̃b2 − b̃3)

(
∂2uk

∂Xj∂XQ
AQAM +

∂2uk

∂XM∂XQ
AQAj

)
− 2

3
eikM (̃b2 + b̃3)

(
∂2uj

∂Xk∂XQ
AQAM +

∂2uM

∂Xk∂XQ
AQAj

)
− 2

3
eikM

(
(̃b5 − b̃6 + b̃7)

∂2uk

∂XP∂XQ
+ (̃b5 + b̃6)

∂2uQ

∂Xk∂XP

)
AQAPAjAM

− 1
3
eikM

(
(̃b5 − b̃6 − b̃7) ∂2uQ

∂XM∂XP
+ (̃b5 + b̃6)

∂2uM

∂XQ∂XP

)
AQAPAjAk,

(9.12)

where eij denote the components of the infinitesimal strain tensor

eij =
1
2

(
∂ui

∂Xj
+
∂uj

∂Xi

)
. (9.13)

The expressions (9.11) are essentially the constitutive equations of trans-
verse isotropic linear elasticity. Comparison with the corresponding constitutive
equations (6.44) of [9] gives

8ã1 = λ, 4ã2 = µT , 4ã3 = α, 8ã4 = β, 2ã5 = µL − µT , (9.14)

where the moduli appearing in the right hand sides are elastic moduli employed
in transverse isotropic linear elasticity. It is of interest that the constitutive
equation for σ(ij) involves only the coefficients ãα, and that for mij involves
only the coefficients b̃α, so that in the linear theory the constitutive equations
for σ(ij) and mij ( and hence for σ[ij]) are uncoupled. However there is coupling
through the equilibrium equations, which involve both the symmetric and the
anti-symmetric parts of the stress tensor. We also note that the coefficient b̃4
does not appear in (9.12), because by the properties of the alternating tensor

eikmFjRFkS
∂W

∂(Ĩ28 )

∂(Ĩ28 )
∂ΛSR

bm = 2eikmFjRFkS Ĩ8
∂W

∂(Ĩ28 )
ASARbm = 2eikmĨ8

∂W

∂(Ĩ28 )
bjbkbm = 0.

This result obtains for finite as well as for infinitesimal deformations. To leading
order in e, the invariant Ĩ8 represents the directional derivative in the fibre
direction of the fibre stretch.
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Fibres aligned along the x1-direction. If the family of the straight fibres is
aligned along the x1-direction, then,

A = (1, 0, 0)T , (9.15)

and the constitutive equations (9.11) and (9.12) reduce to

σ(ij) = 4(2ã1err + ã3e11)δij + 8ã2eij + 4(ã3err + 2ã4e11)δ1iδ1j + 4ã5(ei1δj1 + ej1δi1),

mji − 1
3
mkkδij = −2

3
eij1

[
2b̃1

∂2uR

∂XR∂X1
+ b̃8

∂2u1
∂X2

1

]
− 2

3
eik1

[
(̃b2 − b̃3) ∂2uk

∂Xj∂X1
+ (̃b2 + b̃3)

∂2uj

∂Xk∂X1

]
− 2

3
eikmδj1

[
(̃b2 − b̃3) ∂2uk

∂Xm∂X1
+ (̃b2 + b̃3)

∂2um

∂Xk∂X1

]
− 1

3
eik1δj1

[(
b̃5 − 3b̃6 + 2b̃7

) ∂2uk

∂X2
1

+
(
b̃5 + 3b̃6 + b̃7

) ∂2u1
∂Xk∂X1

]
.

(9.16)

It follows thatm21 = m31 = 0, and hence the couple-stress tensor possesses only
seven non-zero components. The moment equilibrium equations (5.12) reduce
to

σ[sr] =
1
2
eirs
∂mji

∂xj
, (9.17)

which can be expressed in the form

σ[sr] − 1
2
ejrs
∂mkk

∂Xj
=

2
3
b̃3

(
∂3us

∂X2
1∂Xr

− ∂3ur

∂X2
1∂Xs

)
+

1
3
(̃b2 − b̃3)

(
δs1

∂3ur

∂Xm∂Xm∂X1
− δr1

∂3us

∂Xm∂Xm∂X1

)
+

1
3
(2b̃1 + b̃2 + b̃3)

(
δs1

∂3um

∂Xm∂Xr∂X1
− δr1

∂3um

∂Xm∂Xs∂X1

)
+

1
3

(
b̃5 − 3b̃6 + 2b̃7

)(
δs1
∂3ur

∂X3
1

− δr1
∂3us

∂X3
1

)
+

1
3

(
b̃5 + 3b̃6 + b̃7 + b̃8

)(
δs1

∂3u1
∂X2

1∂Xr
− δr1

∂3u1
∂X2

1∂Xs

)
.

(9.18)

It is of interest also to present the constitutive equations (9.16) in their matrix
forms,
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
σ(11)
σ(22)
σ(33)
σ(23)
σ(31)
σ(12)

 =


c11 c12 c12 0 0 0
c12 c22 c23 0 0 0
c12 c23 c22 0 0 0
0 0 0 1

2 (c22 − c23) 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66




e11
e22
e33
2e23
2e31
2e12

 , (9.19)

 2m11 −m22 −m33

−m11 + 2m22 −m33

−m11 −m22 + 2m33

 =

 b̃3 0
− 1

2 b̃3 −b̃2
− 1

2 b̃3 b̃2

[ ∂2u2/∂x3∂x1 − ∂2u3/∂x2∂x1
∂e23/∂x1

]
,

(9.20)


−m32

m23

−m12

m13

 =


d11 d22 d33 0 0 0 0
d11 d33 d22 0 0 0 0
0 0 0 d31 d13 0 0
0 0 0 0 0 d31 d13





∂e11/∂x1
∂e22/∂x1
∂e33/∂x1
∂2u3/∂x

2
1

∂e11/∂x3
∂2u2/∂x

2
1

∂e11/∂x2


.

(9.21)
Here (9.19) is essentially the form of generalized Hooke’s law for classical trans-
versely isotropic elasticity and contains five independent elastic moduli cij which
are related to ã1....ã5.To describe the couple-stress there appear seven additional
independent elastic moduli which comprise b̃2, b̃3, and five moduli dij which are
related to b̃1....̃b3, b̃5....̃b8 as

d11 =
2
3

(
2b̃1 + b̃8

)
, d22 =

4
3

(
b̃1+b̃2

)
, d33 =

4
3
b̃1,

d13 =
1
3

(
2b̃2 − 2b̃3 + b̃5 + 3b̃6 + 2b̃7

)
, d31 =

1
3

(
2b̃2 + 2b̃3 + b̃5 − 3b̃6 + 2b̃7

)
.

(9.22)

The form of (9.20) and (9.21) shows that the seven couple-stress components
may be split into three groups each one of which interacts independently with
a set of strain gradients. The couple-stresses that appear in (9.20) correspond
loosely to the so-called “twist” mode met in the mechanics of liquid crystals.
We note that in (9.20) the combination m11 +m22 +m33 is indeterminate, as
was discussed in Section 5. The first pair of couple stresses in (9.21) correspond
to the “splay” mode for liquid crystals, while the second pair correspond to the
“bending” mode. Notably, the case of inextensible fibres (e11 = 0) requires the
introduction of only six non-zero curvature strains, and their interpretation then
resembles more closely the interpretation of their counterparts in liquid crystal
mechanics.

For the linearized version of the restricted theory described in Section 7, in
which the strain-energy depends only on the deformation and the fibre curva-
ture, we find that
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b̃2 = 0, b̃3 = 0, d11 = 0, d22 = 0, d33 = 0, d13 = 0, d31 =
2
3

(
2b̃5 + b̃7

)
,

(9.23)
and only one additional modulus d31 is required in this case.

Plane Strain with fibres aligned in the x 1 direction. In the plane strain state

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0,

with A = (1, 0, 0)T , the constitutive equations (9.19) for the symmetric part of
the stress tensor become

σ(11)
σ(22)
σ(33)
σ(12)

 =


c11 c12 0
c12 c22 0
c12 c23 0
0 0 c66


 e11
e22
2e12

 , (9.24)

and, for the antisymmetric part of σ

σ[21] = c1
∂2e22
∂x1∂x2

+ c2
∂2e11
∂x1∂x2

+ c3
∂3u2
∂x31

, (9.25)

where c1, c2, c3 are related to b̃1....̃b3, b̃5....̃b8, so that the total number of the
independent elastic moduli involved in the plane strain version of the theory
reduces to eight. Moreover c23 appears only in the expression for σ(33), which
is not involved in the equations of equilibrium. In the plane strain case the
indeterminacy in the couple-stress has no effect, because ∂mkk/∂x3 (required
for the derivation of (9.25)) is zero.

The third of the equilibrium equations (5.1)1 is trivially satisfied, while the
first and the second of these equations are

∂σ(11)

∂x1
+
∂(σ(12) + σ[21])

∂x2
= 0,

∂(σ(12) − σ[21])
∂x1

+
∂σ(22)

∂x2
= 0. (9.26)

Then inserting the constitutive equations (9.24) and (9.25) into the equilibrium
equations (9.26) gives the Navier-type partial differential equations

c11
∂2u1
∂x21

+ (c12 + c66)
∂2u2
∂x1∂x2

+ c66
∂2u1
∂x22

+ c2
∂4u1
∂x21∂x

2
2

+ c3
∂4u2
∂x31∂x2

+ c1
∂4u2
∂x1∂x32

= 0,

c66
∂2u2
∂x21

+ (c12 + c66)
∂2u1
∂x1∂x2

+ c22
∂2u2
∂x22

− c1 ∂
4u2

∂x21∂x
2
2

− c2 ∂
4u1

∂x31∂x2
− c3 ∂

4u2
∂x41

= 0.

(9.27)
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We note that these equations admit the usual separable (trigonometric-type)
form of solutions for cylindrical bending problems of simply supported rectan-
gular plates.
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Appendix

It is assumed that W is an isotropic invariant of the tensors C,Λ and the
vector A. We denote by Λs and Λa the symmetric and antisymmetric parts
respectively of Λ, so that

Λ = Λs + Λa, ΛT = Λs − Λa,

2Λs = Λ + ΛT , 2Λa = Λ− ΛT . (A1)

Then a complete list of isotropic invariants is (Zheng [8])

I1 = tr C, I2 =
1
2

{
(tr C)2 − tr C2

}
, I3 = det C,

I4 = ACA, I5 = AC2A,

I6 = tr Λs = tr Λ, I7 = tr Λ2
s, I8 = tr Λ2

a, I9 = tr Λ3
s,

I10 = tr CΛs = tr CΛ, I11 = tr C2Λs = tr C2Λ,

I12 = tr CΛ2
s, I13 = tr C2Λ2

s,

I14 = tr CΛ2
a, I15 = tr C2Λ2

a, I16 = tr C2Λ2
aCΛa,

I17 = tr ΛsΛ2
a, I18 = tr Λ2

sΛ
2
a, I19 = tr Λ2

sΛ
2
aΛsΛa,

I20 = AΛsA = AΛA, I21 = AΛ2
sA, I22 = AΛ2

aA,

I23 = ACΛsA, I24 = ACΛaA, I25 = AC2ΛaA, I26 = AΛaCΛ2
aA,

I27 = AΛsΛaA, I28 = AΛ2
sΛaA, I29 = AΛaΛsΛ2

aA.

I30 = tr CΛsΛa, I31 = tr C2ΛsΛa, I32 = tr CΛ2
sΛa, I33 = tr CΛ2

aΛsΛa.
(A2)

This set is complete, but may include redundant elements. The list is not
unique, and for applications it may be convenient to replace some invariants by
other equivalent invariants; for example, instead of I21, I22 and I27 we can use
the equivalent set

AΛ2A = (I21+I22), AΛΛTA = (I21−I22)−2I27, AΛT ΛA = (I21−I22)+2I27.

If the sense of the fibres is not significant, then W has to be even in Λ. Conse-
quently, ifW has to be even in Λ, the invariants I6, I9, I10, I11, I16, I17, I20, I23, I24, I25, I26, I28, I32
can occur in W only through their squares and product in pairs.

In terms of the invariants (A2), the constitutive equations (5.38) take the
form

σ(ij) =
ρ

ρ0

∑
α

∂W

∂Iα

{
FiRFjS

(
∂Iα
∂CRS

+
∂Iα
∂CSR

)
+ (GiRFjS +GjSFiR)

∂Iα
∂ΛSR

}
,

mji =
2
3
eikm

ρ

ρ0

∂W

∂Iα

∂Iα
∂ΛPR

FmP (FjRbk + FkRbj) . (A3)
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This clearly leads to lengthy expressions for σ(ij) and mji
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