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Abstract.

In the conventional theory of finite deformations of fibre-reinforced elastic
solids it is assumed that the strain-energy is an isotropic invariant function of
the deformation and a unit vector A that defines the fibre direction and is
convected with the material. This leads to a constitutive equation that involves
no natural length . To incorporate fibre bending stiffness into a continuum
theory, we make the more general assumption that the strain-energy depends
on deformation, fibre direction, and the gradients of the fibre direction in the
deformed configuration. The resulting extended theory requires, in general, a
non-symmetric stress and the couple stress. The constitutive equations for stress
and couple-stress are formulated in a general way, and specialized to the case
in which dependence on the fibre direction gradients is restricted to dependence
on their directional derivatives in the fibre direction. This is further specialized
to the case of plane strain, and finite pure bending of a thick plate is solved
as an example. We also formulate and develop the linearized theory in which
the stress and couple-stress are linear functions of the first and second spacial
derivatives of the displacement. In this case for the symmetric part of the stress
we recover the standard equations of transversely isotropic linear elasticity, with
five elastic moduli, and find that, in the most general case, a further seven
moduli are required to characterize the couple-stress.

1. Introduction

The continuum theory of finite deformations of elastic materials reinforced
by cords or fibres was initiated by Adkins and Rivlin [1] and further developed
by Adkins [2-4]. Initially they assumed that the reinforcing cords lay in discrete
surfaces, but they also considered the case in which the fibres are continuously
distributed through the bulk of the material. These developments are described
in Green and Adkins [5].

A slightly different approach was followed by Spencer [6]. In this theory the
fibres are characterized by a unit vector field that defines the fibre direction and



is convected with the material. This vector is treated as a constitutive variable
with appropriate invariance properties. From this follows a formulation that is
free from dependence on the choice of any special coordinate system, and does
not restrict the reinforcement to any special geometrical arrangement. This
approach has close connections with the theory of anisotropic tensor represen-
tations based on the use of structural tensors that was initiated by Boehler [7]
and developed and extended by Zheng [8]. The fibre vector formulation has
been applied to many kinds of material behaviour. Particular applications to
the theory of finite elastic deformations are in Spencer [6, 9] and Rivlin [10].
Recently the theory has been applied extensively to the analysis of biological
materials (see, for example, Holzapfel and Ogden [11]). The theory is outlined
in Sections 2 and 3.

In all of this work there is an assumption, either explicit or implicit, that the
reinforcing fibres are perfectly flexible. This assumption is a valid approxima-
tion in many cases of interest, but is not invariably applicable. A consequence of
it is that the constitutive equations contain no parameter with the dimensions
of length. Consequently the theory cannot account for any size effects, such as
those due to fibre diameter or fibre spacing. In Section 4 we show by an illus-
trative example that in general size effects are present, and that the theory that
assumes perfect fibre flexibility is a limiting case. To incorporate fibre bending
stiffness into a continuum theory, in Section 5 we make the constitutive assump-
tion that the elastic strain-energy depends not only on the deformation and the
fibre vectors, but also on the space derivatives of the deformed fibre vector,
subject to appropriate invariance requirements. This leads to a theory that has
some similarities to the theory of liquid crystals, although there are important
differences. The extended theory requires the inclusion of couple stress and non-
symmetric stress. The constitutive equations for the stress and couple-stress are
formulated in Section 5. In Section 6 we specialize to a simpler theory in which
dependence on the fibre vector gradients is restricted to dependence only on
the directional derivative in the fibre direction of the fibre vector. In Section 7
we consider plane strain deformations, and in Section 8 we apply the theory to
the problem of pure bending of a rectangular block into a sector of a circular
cylinder. Finally in Section 9 we develop the linear theory for the case of small
displacement gradients. It is shown that in this case, in addition to the usual
five elastic moduli required to describe transversely isotropic linear elasticity, an
additional seven moduli are required for specification of the couple-stress, but a
single one of these suffices for the linearized version of the restrited theory that
is described in Section 6.

The theory of elastic materials with couple-stress has been examined in detail
by Toupin [12] and Mindlin and Tiersten [13]. These authors also give references
to earlier work in this area. We also mention that Hilgers and Pipkin [14]
formulated a theory of large deformations of elastic membranes with bending
stiffness which has some connections to the theory presented here.

2. Notation and general theory



All vector and tensor quantities are referred to a rectangular Cartesian co-
ordinate system Oxjxoxs. In the conventional notation, a typical particle is
initially at a position X, with coordinates Xg, in a reference configuration, and
moves to the position x, with coordinates z;, in the deformed configuration.
The deformation is described by equations

x=x(X) or z; =x;(Xg). (2.1)
The deformation gradient tensor F has components F;r, where
If the material is incompressible, then det F = 1. The deformation tensors C

and B and their components Crs, B;;, are defined as

Bxi 8:51 o Bxi ij
0Xr0Xs Y 0XpdXgp

C=FT'F, B=FFT, Cgrs= (2.3)

For a material reinforced by a single family of fibres, the fibre direction is defined

by a unit vector field A (X) in the reference configuration, and a unit vector field
a(x) in the deformed configuration. The fibres.are convected with the material,
and thus

Aa = FA, )\ai = iRAR» /\2 = ARAscRs, (24)

where A\ denotes the stretch in the fibre direction. If the fibres are inextensible,
then

A= 1, ARASCRS =1 (25)

The Cauchy stress tensor is denoted as o, and its components as o0;;. If
the material is incompressible, then ¢ includes a reaction stress —pI,where p
represents a pressure. If it is inextensible in the fibre direction, the reaction
stress has the form Ta ® a, where T represents a tension in the fibre direction.

3. Finite deformations of a fibre-reinforced elastic solid without
bending stiffness

In this section we give a brief summary of the theory of finite deformations
of fibre-reinforced elastic materials as formulated by Spencer [6, 9]. We consider
an elastic solid with a strain-energy function W = W (F;g), or in the reduced
form, W = W(CRrg). Then the constitutive equation for the stress is

P
oi; = —F; , 3.1
J 00 iR OF.r ( )
or, in the reduced form
p ow ow
ii= —FrFis| —— +——1, 3.2
T g S <3CRS * 9Csr (3:2)



where p and pg denote densities in the deformed and reference configurations
respectively. If the material is reinforced by a single family of fibres, character-
ized by the unit vector A in the reference configuration (or, more generally, is
locally transversely isotropic with preferred direction A), then

W =W(C,A), with W =W(C,A)=W(QCQT, QA), (3.3)
for any orthogonal tensor Q. If the sense of A is not significant, then W is even

in the components of A, and W can be expressed as a function of C and A ® A.
It follows that W can be expressed as a function of the invariants

L=trC=trB, L= % {(tr C)? —tr 02} - {(tr B)® —tr BQ},

N | =

2
Iy = det C =det B = (p—po) :
I, =ACA = )\*, I;=AC’A = aBa. (3.4)

Then it follows that

2
o= p—pF{ (Wi + LW + L, W3) T = (Ws + I1Ws) C 4 W3C?
0
+WiA®A+W;5(A®CA+CA®A)}FT, (3.5)

or equivalently

2
o= p—p{(IQWQ + W)L+ W,B — LW,B™!
0
+ILiWa®a+ L1Ws(a®@ Ba+Ba®a)}, (3.6)

where W, = OW/0I,,. If the material is incompressible, I3 = 1, and then

o =2{WB-W,B™'+ [Wiawa+L,W;(awBa+Ba®a)} —pl. (3.7)

If also the material is inextensible in the A direction, then I, = 1, and

c=2{WiB-W,B™'+W;(a@Ba+Ba®a)} —pl+Ta®a. (3.8)

4. Micromechanical considerations



The constitutive equation (3.6) is homogeneous in X and does not include
any natural length scale, and so can not account for any size effects, such as
effects of fibre diameter or fibre spacing. In fact there are experimental and
theoretical reasons to expect size effects to be observed in real fibre composites.

To illustrate the theoretical basis for expecting size effects, it is sufficient
to consider pure bending in plane strain of a linear elastic plate with variable
Young’s modulus. In terms of rectangular Cartesian coordinates (z,y, z), sup-
pose the middle surface of the plate lies in the plane y = 0, and the lateral
surfaces are y = +h. Also suppose the plate undergoes a pure bending de-
formation, as in the elementary Euler-Bernoulli bending theory, so that the
displacement in the = direction is

Yy
u= 7, (4.1)
where R is the radius of curvature of the deformed plate. Further, suppose that
the extension modulus E in the z direction depends on y, so that £ = E(y),
with mean value Ey, where

1 [t
Ey=— E(y)dy. 4.2
0=35; ) (y)dy (4.2)
Then the stress component o, is
ou Y
2z = BE(y)=— = E(y)=, 4.3
0o = E) 55 = E() % (43)

and the bending moment applied to a section & = const., per unit length in the
z direction, is

h 1 h
M, =/ Oaaydy = —/ E(y)y*dy, (4.4)
h R/,

and so the bending stiffness B is

h
B=M.,R= /_h E(y)y*dy. (4.5)

On the other hand, if the extension modulus has the constant value Ej the
bending stiffness is

h
2
By = / Eoy?dy = §E0h3. (4.6)
—h

Clearly, in general B and By are not the same. To take a simple example for
illustration, let

Ey :E(J—E1COS7T—y7 where d = h/N, 4.7
d

and N is an odd integer. Thus d is a measure of the scale of the inhomogeneity
of the material. Then from (4.5)



4d*hEy d? 6E,
=By+Bi—, Bi=——
) o+ D1 L= Bon?

B =By + (4.8)

h2’
and so the bending stiffness differs from By by a term of order (d/h)?. Similar
results (with a slightly different value of B;) are obtained if we consider that the
plate is composed of alternate layers of materials with extension moduli Ey+ E;
respectively.

In the theory of fibre-reinforced materials proposed by Adkins and Rivlin [1]
it was explicitly assumed that the fibres are infinitesimally thin, and thus in-
finitely flexible, with zero bending stiffness for an individual fibre (represented in
the theory by a mathematical curve). The same assumption is made, explicitly
or implicitly, in the subsequent literature. It plainly corresponds to the limit
d/h — 0 in the above illustration. In order to relax this assumption, whilst
remaining within a continuum theory, it is necessary to introduce some length
scale into the theory, which effectively endows the fibres with bending stiffness.
This is the purpose of the present paper.

5. Fibres with bending stiffness

A natural way to incorporate bending stiffness into the theory described in
Section 3 is to assume that the strain-energy density W depends not only on the
right Cauchy-Green deformation tensor C and the fibre direction A, but also
on the gradients of the deformed fibre vectors. This means, for example, that
the fibre curvature is included. Dependence on the gradient of a implies that
the stress ¢ is not necessarily symmetric and that in general a couple stress
tensor m, with Cartesian components m;;, is present. The resulting theory
in many respects resembles the continuum theory of liquid crystals (see, for
example Stewart [15]) and also the theory of nematic elastomers, but there are
important differences from these theories. For example, in the present theory
the trajectories of the fibre direction a are material curves, but in liquid crystal
theory the directors do not, in general, define material curves. We emphasize
that, because the fibres are assumed to be embedded in the matrix, the fibre
direction vector components are not variables to be determined independently
of the deformation, but are given by (2.4). Hence the essential problem is to
determine the position vector x. We do not enter into a detailed consideration of
boundary conditions, but note the discussion of boundary conditions for couple-
stress in linear elasticity by Mindlin and Tiersten [13].

The equilibrium equations for the stress and couple-stress, neglecting body
forces and body couples, are

aO'ji -0 8mji

813j ’ 813j
where e;;;, is the third-order alternating tensor. In accordance with the usual
definitions of Cauchy stress and couple-stress, if S is a surface with unit normal
n, then the components ¢; of the traction vector t and [; of the moment 1 per
unit area applied to S are given by

+ eijrojr =0, (5.1)



ti = 04iNly, li = Mmy;;ny;. (52)

We denote by d;; and w;; the components of the rate-of deformation and
spin tensors d and w respectively, and by w; the components of the spin vector
%V x v. Thus

d,,_l 8vi+avj w.._l 8vi_6vj %_d_i_w
E 2 ij 3%1 ’ E 2 ij 82131 ’ 813j o R
1 81}k 1
w; = 56@%@ = —§eijkwjk, Wik = —€ijkWs. (5.3)

We also note that it can be shown [6] that the material derivative a of the fibre
vector a has components
a; = ((51']' — aiaj) akg—;i. (54)
To proceed, we have to formulate constitutive equations for the symmetric
part of the stress and for the couple stress. The anti-symmetric part of the stress
is then given by the equilibrium equation (5.1). For quasi-static deformations,
and neglecting body forces and moments, (there is no difficulty in incorporating
inertia and body forces and couples, but this has no effect on the final results)
we propose the usual energy balance equation for an arbitrary volume V in the
deformed configuration. Thus if V' has surface S, then

2/ WdV:/{t-v—i-l-w}dS, (5.5)

where the components ¢; of t and [; of 1 are given by (5.2). By applying the
divergence theorem and Reynold’s Transport Theorem in the conventional way,
it follows that

P B’Ui Bwi aO'ji iji
—W =0ji7— jig— + U i ; 5.6
Lo i al'j +m] al'j v al'j tw al'j ( )
and hence, using (5.1), (5.2) and (5.3)
D ov; ow;
p_()W = Uji%j + mji%j — €ijkWi0jk
(dij + wij) +m Owi +w
= 0ji (dij + wij ji kO jk
i \Gij J 9z, kO
Bwi
= 0jidij + Mijig (5.7)
j

We make the constitutive assumption that W depends, in addition to the
displacement gradients F;r and A, on the gradients of the deformed fibre



vectors. However rather than including dependence on the gradients da;/0Xg,
it is more convenient to introduce a vector b, with Cartesian components b;,
such that
ox;

b= /\a, b; = da; = 141{8){Z = ZRARa (58)
and to assume that W depends instead on the gradients 9b;/0Xg. Since \? =
ARrAgsF;rF;s, dependence on F,a and A is equivalent to dependence on F,b
and A. The advantage of using b rather than a is that

81)1- 8% 813j 8%

b R(’?XR Ral'j BXR bJ al'j’ (5 9)

which is a simpler form than (5.4). Therefore we postulate that

W =W (Fir,Gir,Ar), or W =W(F,G,A), (5.10)
where 5 o
T i
Fip= —b Gip = —t 11
R= 5%, R oy, (5.11)
Therefore
oW oW oW Qv OW b,
= _—F,; iR = . 12
W OFir R+5Gz‘RGR 6-FiRBXR+aGiR 0XRr (5.12)
Hence
_OW dx; Qv | OW. a; b | OW dui  OW b
T OFR 0Xg 0x; - 0Gig 0Xg0x; ) 0Fg 0x;  0Gig Ox;
(5.13)
From (5.9)
by Ox; by, Ov; 9%v; ov; 0%v;
- Fjrb =G Fjrb 5.14
R s T 0Xp 0, 0w | L Gy g — Gy, tHiRb g G (5:14)
and so from (5.12) and (5.13)
. oW oW ow . 9%
= ( Fipse— + Gjpo— ) (dij +wij) + F 1
w < JRaFiR+GJRaGiR)(dJ+wJ)+ JRBGszkaxjaxk (5.15)

We now denote the components of the symmetric and antisymmetric parts of o
as o(;;) and o[;; respectively, so that

1 1
0(ij) = 50 +0ji), 0l = (005 = 05i), 0ij = 0 + oy, (5.16)



and note that

I(ijwij = 0, ofij)dij = 0 (5.17)
Hence, by comparing (5.7) and (5.15), we obtain

p ow ow P ow ow
PR 9 L F . y
{U(U) Po < M OF R * GJRaGiR dij po \ " OF R T Cin 0G;r “ig
ow; p ow 9%v;
i P, O —0. (5.1
+ m] aff] PO JR BGZR bk 62CJ6$]€ 0 (5 8)

Since d;; and w;; are arbitrary, it follows that

p ow ow
76 = 0 <FjR—8FiR +Giry~— | (5.19)

and that the coefficient of w;; in (5.18) is symmetric with respect to interchanges
of ¢ and j, thus

ow e A — " ow
Borr " MoGir  TMoFgr | TMoGie
Equation (5.19) is the constitutive equation for the symmetric part of the stress
o; (5.20) is a restriction on the admissible forms of W, the validity of which is
confirmed below. There now remains from (5.18)

F; (5.20)

Ow; p ow 0%v;

. — = Fip—>by——— =0, 5.21
M aCL‘j Lo ]RBGZ'R k@xj(?xk ( )
or equivalently, using (5.3),
1 P ow 0%,
“sepmy, — LF b = 0. 5.22
( D PR L Team ‘“) D50y, (5.22)

It follows that the symmetric part (with respect to the indices j and k) of the
bracketed term in (5.22) must be zero, and therefore

1 ow
3 (epikmjp + epijmkp) = p_pom (Fijk + Fkaj) . (5.23)
By multiplying each side of (5.23) by e, and using the € — § identities, there
follows

ow
2610ijp + (5pr5kj - 5Tj5kp)mkp = _2€rikﬁ— (Fijk + Fkaj) , (5.24)
po 0GR
and hence
ow
Imjr — Mprdrj = —2€”‘k£— (Fjrbi + Fkaj) (5.25)
po 0GR



which is a constitutive equation for the couple stress m;;.

If we set r = j in (5.25), then each side reduces to zero, and so the spherical
part myy of m;; is indeterminate. This is consistent with the observation that
if m;; is decomposed into its spherical and deviatoric parts

1

Mjr = Myjr + gmkkisrj, (5.26)

then, because Ow;/dz; = 0, my, makes no contribution to the energy bal-
ance equation (5.7). This indeterminacy in the couple-stress is not specific to
fibre-reinforced materials, but is a general result in couple-stress theory. It is
discussed at length in Toupin [12] and Mindlin and Tiersten [13]. Using (5.26)
we can write (5.25) as
2 p OW
Mir = —=€pik— =—— (Fjrbr + Frrb;), Mgr =0. 5.27
Jr 3 rzkpo anR( JR k+ kR ]) kk ( )
Clearly, if r # j, then M, = mj,.
Invariance under the superposed rigid rotation x — Qx requires that

W(F,G,A) = W(QF,QG, A), (5.28)

for any orthogonal tensor Q. It follows that W depends on the scalar products
of the vectors with components (for each fixed R) F;r and G;r, and therefore
W can be expressed as a function of the tensors

C=F'F, T=G'G, A=FTGg, AT=GTF (5.29)

and the vector A, where C,I'; A, A have components, respectively

Ox; Oz 0b; 0Ob;

Crs = X OXs irFis, T'rs= OX70Xs GirGis,
Aps = 8‘9;; 88;?5 = F,pG;g, and  Ap. (5.30)
However; from (5.29)
I=ATC'A, C=AT'AT, (5.31)
and, by the Cayley-Hamilton Theorem for C
LC'=C?-I,C+ LI (5.32)

Hence T can be expressed in terms of A, C and invariants of C, and therefore
W can be expressed as a function of these quantities. Invariance under rigid
rotations of the undeformed body then requires that

W(C,A,A) = W(QCQ",QAQT, QA), (5.33)

10



so that W can be expressed as an isotropic invariant of C, A, A. If the sense
of the fibres is not significant, then W must also be even in the components of
A and even in the components of A. In this case dependence on the vector A
can be replaced by dependence on the tensor A ® A, but we do not impose
this restriction at this stage.

Since W depends on F and G only through the tensors C and A, we have

oW OW 0Cpg  OW Ao
OF;r  9Cpg OFir ~ OApg OFir’
oW OW dCpg . OW dApg
0Gir n 8013@ 0Gir 3APQ 0Gir’

and, since OPQ = kaFkQ and APQ = kaGkQ

(5.34)

dCpq 9Cpq

= 0;0prF; 0itdorFLp = Fiod Fipdor, 0,
9Fin kOPRFLQ + 0ikOQRLKP QopRr t+ Fipogr 9Gr
OApg 0Apg

= 0i0rPGro = Giodrp, ——=% = 0i0roFrp =F;pdro. 5.35
OFn kORPGEQ QORP 9Cin kORQ L kP PORQ ( )

Hence from (5.34 ), using (5.35)

b OW [ OW 0Cpq _OW 0hrg
MoFg " 0Cpq OFip~ OApg OFir
ow ow
=F; F;06 F;po Gi00rp————
jR{( QOPR + PQR)aOPQ+ QRPaAPQ}
ow ow ow
= FpFp (2 L DV ) | Fga; ,
I <3CPR + 3CRP> + R P OArp
oW awW 9Apo oW
Gir~—=Gjrg— 5~ = GjrFip77—,
R Gir ]RaAPQ 0Gir " DA pr
oW oW 9Apq oW
Fn L g2V 00re _pop, OW 5.36
e LT W T R L LT (5.36)
Hence from (5.36)
ow ow ow ow ow
F; j =FirFip | 75—+ 57— | +(FjrGip+EirRGjp) 57—
JRaFiR+GjR6GiR JRzE (aCPR * BCRP>+( irGipt RGJP)BARP
(5.37)

from which (5.20) follows immediately. Hence (5.19) and (5.27) can now be
expressed (with some renaming of indices) as

p ow oW oW
=LA EREs (2 L) L (GirFys + GyrE :
(i5) 0 { RIS (aCRS + QCSR + ( RL ;S + iR S) 8ASR
- 2 p OW
mj; = geikmp—omFmp (Fijk =+ Fkaj) . (538)

11



If the couple-stress is non-zero, then in general the stress must have an anti-
symmetric part in order to preserve moment equilibrium of an element of the
body. This antisymmetric part of the stress is given by the equilibrium equation
(5.13).

The strain-energy W is an isotropic invariant of the tensors C, A and the
vector A. Canonical forms for these invariants are known and can be read from
tables (for example, Zheng [8, Table 1]). A list of the invariants is given in
the Appendix. This list contains thirty-three independent invariants which in
the general case clearly leads to excessively complicated constitutive equations.
In order to progress, therefore, it is necessary to make further simplifying as-
sumptions. There are several plausible ways in which this may be done; for
example by considering only restricted classes of deformations, as in the plane
strain theory discussed in Section 7, or by adopting the linearized theory which
is described in Section 9. Another possibility, not pursued here, isto restrict W
to be at most quadratic in the gradients of the fibre vector, which is analogous
to the assumption usually made in liquid crystal theory. This assumption has
the consequence that the equations then contain a single parameter with the
dimensions of length, which can be interpreted as a characteristic fibre radius
of curvature. This quadratic formulation can be interpreted as the first approx-
imation to the general theory when the characteristic fibre radius of curvature
is large compared to the dimensions that characterize the microstructure of the
material (for example fibre diameters or fibre spacings).

In appropriate cases, some simplification can be achieved by introducing the
kinematic constraints of incompressibility and/or fibre inextensibility. Another
simplified theory is described in the next section.

6. Dependence on fibre curvature

In this section it is-assumed that, rather than general dependence on the
gradients of b, the strain energy depends on the gradients of b only through the
directional derivative of the fibre vector in the fibre direction; that is, essentially,
on the curvature of the fibres. In doing this, we exclude effects due to fibre ‘splay’
and fibre ‘twist’, both of which feature in liquid crystal theory, but it is plausible
that in fibre composite solids the major factor is fibre curvature.

Accordingly we make the initial assumption that the strain-energy depends
on the deformation gradients 0z; /90X g, the directional derivatives Ardb; /0 Xk,
and the initial fibre direction vector A. Invariance under a superposed rigid
rotation x — Qx of the deformed body requires that W can be expressed as
a function of the scalar products, formed by contracting on the index 7, of the
vectors 0x; /0X g = Fir, and Ardb;/0Xr = G;rAr = ki. These scalar products
are

Crs = FinFis, Kr=riFip = Ag—t D0 _ N poAs,
RS rtis R R S(’?XRGX RSAS
ob; Ob;
2_ N R — i ° p—
K® = KiK; ARAS&XR IXs ArAgsTRs. (6.1)

12



Then invariance under rotations of the undeformed body requires that W is an
isotropic invariant of the tensor C (components Cgrs), the vectors K (compo-
nents Kg) and A, and the scalar k2. It follows from tables of invariants that W
can be expressed as a function of

Jy =1 =tr C=tr B,

(tr B)® — tr B2},
{ j

N | =

Jo=1Ip = % {(tr C)? —tr 02} -
Js = Iy = det C =det B,
Jy=I,=ACA =beb,

Js = I = AC?A = bBb,
Js=KeK =AATAA = bs"Bpb,

J: = KCK = AATCAA = bs"B?4b,
Js = KC’K = AATC?AA = bs"B?jb,
Jo=A eK =AAA =bpb,

Jio = ACK = ACAA = bBgb,

Ji1 = AC?’K = AC?AA = bB?4b, (6.2)
where
6= gRG-=FTA (6.3)
9 Oxy T ' -

The invariant k2 = ATA = AATC'AA = bsT b can be expressed as a
linear combination of Jg, J7 and Jg by the Cayley-Hamilton theorem for B, and
so is omitted from the list.

From (6.2) there follow

0J1/0C =1, 0.J:/0C =L1-C, 0J3/0C = LI-I,C + C?,
0J,/0C=A® A, 0J5/0C = A® (CA)+ (CA)®A,
0Js/0C =0,  0J;/0C = (AA)® (AA), 0J3/0C = (AA)® (CAA),
0J9/0C =0,  0J;p/0C =A® (AA), 0J,,/0C =A@ (CAA),
J1/OA =0, 0J2/ON =0, 0J3/0A=0, 0J;/OA=0, 3J5/0A =0,
0Js/ON =2AA @ A, 0J7/0A =2 (CAA)®A, 0J3/0A =2 (C*AA) ®A,
dJg/OA=A® A, 0J10/0A = (CA)®RA, 08J11/0A = (C*A)®A,

(6.4)

where 0.J,/0C denotes the tensor whose (R, S) component is 8.J,/0Cgs, and
similarly with 9J,/0A. From these results it is straightforward to write down
the constitutive equations for the case in which W is a function of J; — Ji1, but
in this generality the resulting equations are still too complicated for practical
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applications. For further simplification, in the next section we consider plane
strain deformations.

7. Plane strain

In this section, Greek indices take the values 1,2. For plane strain deforma-
tions with fibres lying in the (X1, X2) planes

Lo = ZEa(XF), ba = ba(XF), Tr3 = Xg_’ A = (Al,AQ, O)T

The coustitutive equations (5.38) reduce to

~ o~ ow ow ~ ~ ow
U(aﬁ) = p_po {FaFFBA ( + > + (FapGﬁA + FﬁpGaA) (’)K } )

(96FA BGAF rA
2 p OW = A SN
Ma3 = s€gy— —<—F4a (Fan + F Fba)a
3 3 B'Ypo OA AL vy B B
m3a =0, mi2=0, m21 =0, M1 =0, M22=0 m33=0, (7.3)

(and hence my1 = maa = ms3) where

o — [ O } . (7.4)

In direct notation, (7.3); 2 may be written as

Loy = L {ﬁ (a_KV n ‘LW) 7 2 ar a‘LWﬁT}, (7.5)
2 Po dC  9CT AA OAT
P { [tr eﬁa_%ﬂ B [ﬁalfT] (eg)} , (76)
3p0 OA OAT
where
~ mis o mlg o 0 1
I e P IS R

OW /dC is the tensor whose (A,T) component is OW /8Car, and similarly
for OW / OA.

It follows that now W is an isotropic invariant function of G,K,K, or, if
dependence is only on the fibre curvature,

14



W =W(C,K,A), K=AA. (7.8)

In the latter case, from tables of invariants (for example, Zheng [8, Table 4] it
follows that W can be expressed as a function of

I =tr C, I =detC,

However, it can be shown by the generalized Cayley-Hamilton theorem in two
dimensions that I5 can be expressed in terms of Iy, I3, I3, I4, K1 and K3, and
so Is may be omitted from the list. Moreover, if W is required to be even in
A, then K; and Ky can appear only through their squares and product, and
therefore W is expressible as a function of

EJ j\-27 j\?n j;h ‘/[}):K127 ‘/[\6:K227 E:K:[KQ. (710)
From (7.9),

81, /0C =1, 81,/0C = —C + LI, 9l3/0C = A®A, 81,/0C =0,
0K, /0C =0, 0K,/0C=A (KK) ,

05, /0A =0, 0I,/OA =0, OL;/0A =0, OL/OA =2 (KK) @A,
OK1/OA = AoA, OK,J0A = (6@) ®A. (7.11)

It follows that

W . Ola ~ . SN SO
=Y WL (W1 n 11W2) I WoC + WaA®A + (2K Ws + KyWe) A @ (AA) :
aC = “aC
W o Ol N S
=N wa e —ow, (AA) ® A+ (2K, Ws + KaWi)A®A
oA = “0A

(2K, W + K Wr) (6@) ® A, (7.12)

where W, denotes BW/afa. Hence, from (7.5) and (7.6)

DN | =

(0+07) = p—po[2 (W1 + Lz ) B — 2w, B2 4 2Wibwb + 2Ws {& @ (BR) + (BR) @ 7 |
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= ;pﬁopm [ir [(BR)ob] b [be (BR)| b
(2K W + K1 W) {tr Keﬁﬁ) ®E} b— [E@ (EB)} eb} l,(7.14)
where
B_FFT. B_FA #-GA, g:% :%375 Wzg‘_izaﬂ.

(7.15)
The first three terms in (7.13) form the usual expression for the symmetric
Cauchy stress in a transversely isotropic elastic solid in plane strain. The re-
maining terms in (7.13) arise from the bending stiffness. To within a length
scaling factor, K represents the fibre curvature. We also note that

I, =7BR, K,=ber, K,=DbBg. (7.16)
By using the Cayley-Hamilton theorem for B, (7.13) may be written as
1 T P
sloto")=—
5 ( )=l
+ 2K W5+ KoWr) (bR + KR Db)
+ (2K, Ws + K1 Wr) {B @Br+Brob+Bb®k + E@ﬁﬁ}],
(7.17)
or, in the case of an incompressible material
1 - ~ =~ N .
5 (0 +07) = <pL+2WiB + 2Wsbeb + 2y {7 © (BR) + (BR) 97}
4 (2K \Ws + KsWo) (b @R + R® b)

+ (2K, W + Ky Wr) {B ® (ﬁﬁ) + (ﬁﬁ) ®b+ (EB) ® R+ R® (B

where p represents a hydrostatic pressure.

The antisymmetric part of the stress, that in the presence of a couple-stress
is required to preserve local moment equilibrium, is given by the equations of
equilibrium. If it is assumed that in plane strain mq,g = 0, and that ms, and
mgas are independent of x3, these reduce to

Omiz ~ Omas
Bxl 81‘2 '

(7.19)

021 — 012 =

8. Pure bending
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As an example, consider the problem of pure bending in plane strain, in
which a rectangular slab of incompressible material is bent into a sector of a
circular cylinder. For finite deformations of an isotropic elastic material, this
is one of the classic solutions obtained by Rivlin [16,17], and the extension to
transversely isotropic material is described in Green and Adkins [5, Chapter 2].
Suppose that initially the fibres lie in straight lines parallel to the X» axis, so
that A = (0,1)7, and in the deformed body they form concentric circular arcs.
Thus a particle at (X7, X53) in the reference configuration moves to position
(referred to plane polar coordinates) (r, ) in the deformed configuration, where

r:r(Xl), 9:6‘(X2) (81)
In (r,0) coordinates

= | (X1) 0

F=1 % o) | (8.2)

where primes denote derivatives with respect to the stated arguments. The
incompressibility condition gives

drdf

detF =7/ (X)) (X3) = r—— — = 1. 8.3
e ' (X1)ro (X2) Frevie (8.3)
The relevant solution is
dr df 1
—_— =)\ — == 8.4
TG T dX, N (8:4)
where )\ is constant. Hence
X
rP—a® =2)\X,, 0= 72 (8.5)

where the plane X5 = 0 becomes the plane § = 0, and the plane X; = 0 deforms
into the circular cylindrical surface » = a. If initially the block is bounded by
planes X; = 0 and X; = B, then the surface X; = B deforms into the circular
cylindrical surface r = b, where

b —a® = 2)\B. (8.6)
We now have
BN Ar—t 0
F= { 0 \lr ] (8.7)

Since A = (0,1)T, it follows that, in plane polar coordinates
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~ 0 . —rA72
=)+ [ 7]
~ A\2p—2 0 =~ 0 22 ~ 0 At
B= |: 0 /\—2T2 :| ) G= |: —1 :| 5 A= |: :| ;
L=Xr23022%2 =1, L=X%% I,=\2 K =0, Ky,=0.
(8.8)

It follows from (7.13) that

Orr = —p+ 2WiA2r~2 4 AW A2,
099 = —p + 2(W1 + W3)A"2r? — AW\ "2,
org + 09 = 0. (8.9)

If W4 = 0, this reduces to the symmetric stress for bending of a transversely
isotropic elastic material without bending stiffness, as given (in different nota-
tion) in Green and Adkins [5]. For the material with bending stiffness, (8.9)
includes the additional terms in Wy, and (7.14) gives the couple stress compo-
nents

myz =0, mgs= §W4)\_2r. (8.10)

We assume that in plane strain deformations mss is independent of x3. Then
the antisymmetric part of the stress follows from the equilibrium equation (5.1)
as

Omes . Omy3
rd0 or
so for this deformation the stress is symmetric. This symmetry occurs because

=0, (8.11)

Ofr — Org =

in pure bending the deformation and stress are independent of 6. This result
can be likened to the situation in classical beam theory of pure bending of an
Euler-Bernoulli beam, in which the shear force (analogous to g, — 0,4) is zero
when the bending moment (analogous to mygs) is constant along the beam. We
note that mgs is proportional to the magnitude of x, which is a measure of the
curvature of the fibres. The bending moment M, and normal force N, per unit
length in the X3 direction, and applied to a section 6 = const., are

b b
MZ/ (roge + mes) dr, N=/ oo dr. (8.12)

The tractions on the curved surfaces of the block can be made zero by appro-
priate choices of p and A.

9. Small displacement gradients - linearized theory
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We define the displacement as u = x — X. Then

Ou;
Fip =6; _—, 9.1
R R+ X1 (9.1)
and so
ou; ou;
b = | 6; ' VAp=A;, + —~Ap. 9.2
<R+8XR> r=Ait xR (92)

For simplicity we assume that initially the fibres are straight, so that A is
constant. Then

Gir =

8bi 82ui Bxi 8b1 ( ou; ) azui
Ap.

oXn ~ axpaxs A Ars = ox-ax. — 9" T ax, ) aXsox,

To formulate the linear theory, we suppose that all partial derivatives of u; exist
and are of order of magnitude O(e), where e is much smaller than one. Then
from (9.2)

bi — AZ = 0(8)

and it follows that the gradients 0b;/0X g are O(e).

We consider that W depends on the 33 invariants Iy — I33 listed in (A2) in
the Appendix, but for the linear theory we suppose W to be quadratic in the
derivatives of u;, so that we disregard terms in W that are O(e?®) or of higher
order. For the purposes of this section it is convenient to replace the invariants
I — I5 by an equivalent set J; — J5, where

Ji=10 -3, Jo=1I3~2I — 2, + 3,
Jy =13 =3I} =31+ 30 +3I3+6I,—3, Jy=1,—1, Js=1I5—2[4+1.
(9.3)

By inserting (9.1) into (3.4) and (9.3) and then retaining only the lowest
order terms, this set of modified invariants reduces to

J1:28U—R+O(62)7 J2:2<auR 8”5’ +8UR a’U,R

) +0(e3), J3=0(e?),

0Xr 0Xs 0Xgr 0Xg0Xg

oug 9 Our Oug Our Oup Jup Oup 3
Ji=2——ARA 0] Js =2 2 ARA 0]
1= 255 ArAs 0 (), s (axpaxp+ 0Xp 0Xs 8XR8X5) rAs +0(e),

(9.4)

so that of these only Jy, Jo, Jy, J5 can contribute to a first-order elasticity theory.
Similarly, not all of the remaining invariants (A2) can contribute towards the
development of a first-order elasticity theory, because we may discard those with
order of magnitude higher than O(e?). From (A2), (9.1) and (9.2) we find that
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82’(LR

Ig=lLo=Il11=———A 2
6 10 11 OXROX s s +0(e?),
1 B%up 0%ur Dug
T & (8X58Xp+8XRaXp> i +0(<),
1 0%up O%upr Dug
Is=1Iy=1Is== _ AnA 3
T <6XSBXQ aXRaXQ> pdg+0(e),

Iy =Iig = Iy = Ing = Ios = I30 = I31 = I32 = O(e?),
Lig = Ixg = Iz33 = O(e?),

Lig = O(%), Iy =l = %ARASAP +0(e?),
L+ I = 5 )?2151;(@ 5 ;j;;M ApApAgAy + O(e),
Iy — Ipp = % ( 5 )‘Z;;Q 5 ;Z;;N +3 )?Zgi(Q > X‘?jg;M) ApApAgAn + O(),
=t = 5 (G5 ) (i ooy ) AndsAe + O
2 2 2 2
Ior = i ( a)fMg}Q a)?;g(p - a)(?}%(@ a)(?Rg(p) ArAgAyAx +0(E7).

(9.5)

It follows that if W is a function of the invariants (A2), a quadratic function of
the derivatives of u;, and even in the components of A, then it can be expressed
as

W = 61J12 +asJo + aszJiJy + Zi4Jf + asJ5+
—i—glfg + 521'7 +53I8 +Z4I§O -1-35[21 +EGI22 +E7IQ7 +gg,[6[20, (9.6)

where a,, and Za are coefficients. Io4 and I35 are excluded because they are of
odd degreein the components of A. The coefficients denoted a, are associated
with the invariants and products of invariants met in linear transverse isotropic
elasticity theory, while those denoted b, are associated with invariants and
products of invariants related to fibre resistance in bending.

Constitutive equations. For convenience we rename the invariants in (9.6) as

(Jr, J2, Ju, J5, I, I7, Is, Ioo, o1, Ioo, Io7) = (In, 1o, I3, 14, I5, Is, I7, Ig, 1o, I10, 111),
(9.7)
so that (9.6) becomes
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W = @} + aola + ashils 4+ asl? + asly
+51jfg + 52;6 +E3T7 +54T82 +g5fg; +56T10 +57T11 +58f5f8. (9.8)
For this form of W, we have W = O(e?). Since p/py = 1+ O (e), F;r =

0ir + O(e), Gir = O(e), it follows from (5.38) that the symmetric stress and
couple-stress are now given to O(e) in the linearized theory by

_owow _Z“:a_w oL, . oI,
70 T 90, T a0, 4= 9r, \9C;  9C; )’

s = e (i ) =S S0 (s S
(9.9)
Moreover
;g::j - ;Tfi =G =0t g)l? 3;2 (e%), aacI:i = A4,
aazf; =0 a(xij R, 4 ff; =0, ;f:j =0,
jTI; = A= (a)ig}l - af(jg];g) At 0, aaszj = Ay,
aﬁi’j = % [Ar(Ajm + Anj) + Aj (A + Ani)] Ay (g;’“q Aj + g;q Ak) AgAm + 0 (€2),
g/ii - % [Ar(Ajm = Amj) = A (Akm — Amie)] A
= % Ka)f;g;(m B a)?jg;(m) Ay — <8)?jg§(m — 8)?:g§(m) AJ} AgAm + O(e?),
% = % [Ak(Ajm = Amj) + Aj(Akm — Anie)] Am

1 < 0uy, 0?u,

L 2
IX,0x,, anaXmAk>Aqu+0(e). (9.10)
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By inserting (9.8) and (9.10) in (9.9), and retaining only leading order terms,
we obtain the linearized constitutive equations in the form

O(ij) = 4(261633 =+ ageRQARAQ)(Sij + 86261'3'
+ 2(26361{1{ + 4&4€RQARAQ)AZ-AJ' + 4&5(61-1614]@143' + EjkAkAi),

(9.11)
1 2 ~ BQ’U,R -~ BQ’U,P
Mmj; — gmkkéij = —3ciM (251 IXndXg + b IXnOXg APAN) AgAm
2 ~ ~ 32uk 32uk
= ot (s — T (= 4 Ay + =T g4,
geint (b2 = ba) (anaXQ QM 0y e J)

2 ~ ~ 82Uj 82’&]\4
e T A A 4 =2 UM p A
g cinnr (b2 + bs) (axkaXQ QA Tt o Xy e J)

OXpoXg

~ D?ug ~ o~ QPuy )

1 - ~
— —e; bs — bg — by) —2—
3€kM (( 5 — g 7)8XM8XP

2 -~~~ 02 ~ o~ 07
— §eikM ((b5 —bg + b7)$ (b5 + bg)%) AQAPAjAM

where e;; denote the components of the infinitesimal strain tensor

1 8u1 3Uj
- ) 9.13
¢ 2<6Xj+axi) (9.13)
The expressions (9.11) are essentially the constitutive equations of trans-

verse isotropic linear elasticity. Comparison with the corresponding constitutive
equations (6.44) of [9] gives

821:1 = )\, 462 = KT, 463 = Q, 864 = ﬂ, 221:5 = UL — MU, (914)

where the moduli appearing in the right hand sides are elastic moduli employed
in transverse isotropic linear elasticity. It is of interest that the constitutive
equation for g(;) involves only the coefficients a,, and that for m;; involves

only the coefficients b,,, so that in the linear theory the constitutive equations
for o(;;y-and m;; ( and hence for o};;1) are uncoupled. However there is coupling
through the equilibrium equations, which involve both the symmetric and the
anti-symmetric parts of the stress tensor. We also note that the coefficient by
does not appear in (9.12), because by the properties of the alternating tensor

oW d(I2) ~ W 1%
- by = 2€51m Fr FrsIs —=—Ag Apbm = 2€ixmIs—=—b,bbym = 0.
8([82)3ASR kmLjRLKS 88(182) SAR k SB(Ig) 0k

eitmFirFLs
This result obtains for finite as well as for infinitesimal deformations. To leading

order in e, the invariant Ig represents the directional derivative in the fibre
direction of the fibre stretch.
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Fibres aligned along the x1-direction. If the family of the straight fibres is
aligned along the x1-direction, then,

A=(1,00)", (9.15)
and the constitutive equations (9.11) and (9.12) reduce to

O(ij) = 4(2616M + 53611)5”' + 85261'3‘ + 4(636M + 264611)5“5“' + 4&5(61'1(%1 + ej15i1),
~  J%up i 32u1}

1 2
My T gMmkkij = i [le OXn0X; | S X?

2 ~ o~ 0%uy, ~ o~ 82uj

_ geikl [(bg - b3)m + (bz + bg)—:|
2 ~  ~ 0%y, ~ o~ O%u,

— geikm5j1 |:(b2 — bg)m + —:|

1 ~ ~ ~\ O%uy ~ v Puy
— geikl(sjl |:(b5 — 3b6 + 2b7) _(‘3X12 + (b5 + 3b6 -+ b7) 8XkaX1:|
(9.16)

It follows that mo; = m31 = 0, and hence the couple-stress tensor possesses only
seven non-zero components. The moment equilibrium equations (5.12) reduce
to

1 8mji
= 5Cirs—a 9.17
U[ST] 26 813j ( )

which can be expressed in the form

L o (% P P
el T % Tgx, T 3% \0XP0X, | 0X?0X,

N &3u, LAt

+3(b2 = by) <551m - Mm)
L &3u,, Py,
29 sloy av av.  °"'3% av o,

+ 3(2b1 + b2 + bs) <5 X ox.ox, ° 1aXmaXsaX1)
1 ~ ~ ~ aBUT 83“’5

+ 3 (b5 — 3bg + 2b7> <5813—Xf’ —0r1 8X13>
1 - -~ OB3uy Puy

+3 (b5+3b6+b7+b8) <5s1m _5’”1m> '

(9.18)

It is of interest also to present the constitutive equations (9.16) in their matrix
forms,
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0(11) C11 Ci2 Ci2 0 0 O €11
0(22) Cl2 C22 C23 0 0 O €22
O@33) | _ | c12 C23 C22 0 0 0 e33
ooz | | 0 0 0 F(eaa—c3) O O 2ea3 |’ (9.19)
0'(31) 0 0 0 0 C66 0 2831
o(12) 0 0 0 0 0 ces | | 2e1
- b 0
2m11 22 a3 13~ g 82u2/8x38x1 — 8QU3/3$28$1
—mi1+2moz —mg3 | = | —5b3 —by Deas /O
—mi1 — Maz + 2ma33 —%Eg by 23/ 51
] (9:20)
8611/81'1
—m3a di1 d2 dss 0 0O 0 O g?zfgil
ma3 _ d11 d33 dgg 0 0 0 0 621?1’,3 /(9.%‘12
—Mmi12 0 0 0 d31 d13 0 0 36 3/8:131
mi3 0 0 0 0 0 d3 dis oS
0%uq /Ox7
L aell/ﬁxg ]
(9.21)

Here (9.19) is essentially the form of generalized Hooke’s law for classical trans-
versely isotropic elasticity and contains five independent elastic moduli ¢;; which
are related to a;....as.To describe the couple-stress there appear seven additional
independent elastic moduli which comprise b3, b3, and five moduli d;; which are

related to 51....b3, 55....38 as

2/~ = 4 /1~ ~ 4~
d11:§(2b1+b8); d22:§(b1+b2)7 d33:§bla

1/~ NY - . 1/~ ~ ~ ~ -
d13=§(2b2—2b3+b5+3b6+2b7), d31:5(2b2+2b3+b5—3b6+2b7).

(9.22)

The form of (9.20) and (9.21) shows that the seven couple-stress components
may be split into three groups each one of which interacts independently with
aset of strain gradients. The couple-stresses that appear in (9.20) correspond
loosely to the so-called “twist” mode met in the mechanics of liquid crystals.
We note that in (9.20) the combination m1; 4+ mags + mas is indeterminate, as
was discussed in Section 5. The first pair of couple stresses in (9.21) correspond
to the “splay” mode for liquid crystals, while the second pair correspond to the
“bending” mode. Notably, the case of inextensible fibres (e;; = 0) requires the
introduction of only six non-zero curvature strains, and their interpretation then
resembles more closely the interpretation of their counterparts in liquid crystal
mechanics.

For the linearized version of the restricted theory described in Section 7, in
which the strain-energy depends only on the deformation and the fibre curva-
ture, we find that
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[\]

3
(9.23)

and only one additional modulus ds; is required in this case.
Plane Strain with fibres aligned in the x1 direction. In the plane strain state

ul =U1($1,$2), U ZUQ(Jil,ZZ?Q), us ZO,

with A = (1,0,0)7, the constitutive equations (9.19) for the symmetric part of
the stress tensor become

o(11) ci1 c2 0 1l
Op2) | _ | iz c2 O o (9:24)
0(33) c12 ce3 0 %15 ’ ’
0'(12) 0 0 Ce6
and, for the antisymmetric part of o
62622 62611 83’11,2

(9.25)

I = A 021022 ©2 021029 & oz}’
where ¢y, c2, c3 are related to 31....53,55....38, so that the total number of the
independent elastic moduli involved in the plane strain version of the theory
reduces to eight. Moreover cp3 appears only in the expression for o(s3), which
is not involved in the equations of equilibrium. In the plane strain case the
indeterminacy in the couple-stress has no effect, because Omyy/0xs (required
for the derivation of (9.25)) is zero.

The third of the equilibrium equations (5.1); is trivially satisfied, while the
first and the second of these equations are

doay | 9(oaz) +opy)

8131 82132
a(0(12) - 0[21}) T a0(22) B
8$1 8$2 o

:0’

0. (9.26)

Then inserting the constitutive equations (9.24) and (9.25) into the equilibrium
equations (9.26) gives the Navier-type partial differential equations

32u1 82’&2 82’&1 84U1 84UQ 84’&2
cu 02 + (12 + o) 0x10x2 i+ ceo 0z3 e 023013 s 023022 ta 021073
82u2 62’(1,1 62’(1,2 84UQ 84U1 64’(1,2

0668—13% + (12 + o) 0x10x2 e 12 “ 02022 @ dx30zy “ oz
(9.27)
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We note that these equations admit the usual separable (trigonometric-type)
form of solutions for cylindrical bending problems of simply supported rectan-
gular plates.
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Appendix

It is assumed that W is an isotropic invariant of the tensors C, A and the
vector A. We denote by Ay and A, the symmetric and antisymmetric parts
respectively of A, so that

A=As+A, AT =A,-A,,
20, = A+ AT, 2A,=A - AT, (A1)

Then a complete list of isotropic invariants is (Zheng [8])

1
L=trC, I= 5{(tr C)? —tr 02}, I5 = det C,

I, = ACA, I;=AC?A,

Is =tr Ay =tr A, I7:trA§, IthI'Az, IgztrA:;’,
Iio =tr CAy =tr CA, I; =tr C?A, =tr C?A,

Iy = tr CA%, I3 =tr C?A2,

Iy =tr CA%, Ij5=tr C?A2, I, =tr C?A2CA,,

Ly =tr AGA2, g =tr A2A2, g =tr A2A2ALA,,

Iy =AAA = AAA, I = AA’A, Ty = AA2A,

I3 = ACA A, Iy =ACA,A, Ihz=AC?’A,A, I; =AA,CAZA,
Iy = AAAGA, g =AA’A,A, g = AAAA2A.

I3p = tr CAJA,, I3 =tr C?A,A,, I3y =tr CA2A,, I33=tr CA2A A,.
(A2)

This set is complete, but may include redundant elements. The list is not
unique, and for applications it may be convenient to replace some invariants by
other equivalent invariants; for example, instead of Io1, [0 and I>7 we can use
the equivalent set

AA?A = (I +1o2), AAATA = (1) —I2) 207, AATAA = (Iy—Ipo)+2127.

If the sense of the fibres is not significant, then W has to be even in A. Conse-
quently, if W has to be even in ‘A7 the invariants IG; Ig, Ilo, Illa I]_ﬁ, I17, Igo, I23, 124, 125, I267 128, I32
can occur in W only through their squares and product in pairs.
In terms of the invariants (A2), the constitutive equations (5.38) take the
form

P OW [, . (0L | Ol o,
O(ij) = P 2&: oL, {ERFJS <5CRS + 9Csn + (GirFjs + GjsFiRr) Ohen |’

2 p OW 0l
mgj; = 3ezkm 0 8Ia aAPRFmP (F]Rbk + Fka]) . (A3)

27



ACCEPTED MANUSCRIPT

This clearly leads to lengthy expressions for o(;;) and m;;
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