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Abstract

A nonlinear mechanical model of nonshallow linearly elastic suspended cables is em-

ployed to investigate the nonlinear modal characteristics of the free planar motions. An

asymptotic analysis of the equations of motion is carried out directly on the partial-

differential equations overcoming the drawbacks of a discretization process. The direct

asymptotic treatment delivers the approximation of the individual nonlinear normal modes.

General properties about the nonlinearity of the in-plane modes of different type - geometric,

elasto-static and elasto-dynamic - are unfolded. The spatial corrections to the considered

linear mode shape caused by the quadratic geometric forces are investigated for modes be-

longing to the three mentioned classes. Moreover, the convergence of Galerkin reduced-order

models is discussed and the influence of passive modes is highlighted.

Keywords: Nonshallow cables, nonlinear normal mode, direct method of multiple scales,

reduced-order models.

1 Introduction

The linear and nonlinear dynamics of suspended elastic cables have received considerable

attention due to their use in several applications in the fields of communications, electricity,

mooring systems, transportation, and crane-operation systems. The linear vibration theory

of suspended cables is attributed to the work of Irvine and Caughey [1], Irvine [2], and

Triantafyllou and co-workers [3, 4]. The modal properties of shallow cables have been

shown to depend on one elasto-geometric parameter, the so-called Irvine’s parameter.
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Free nonlinear vibrations were studied in [5, 6] to mention only a few works. Several

studies dealt either theoretically or experimentally with harmonically forced oscillations

both for the nonresonant and the resonant cases, the latter including a plethora of modal

interactions. In particular, it has been demonstrated that the responses of shallow sus-

pended cables near the first crossover exhibit complex behavior due to the presence of

multiple internal resonances involving in-plane and out-of-plane modes. Examples include

the coexistence of different types of periodic motions and the occurrence of quasiperiodic

and chaotic oscillations [7]-[10].

The great majority of the works, especially those addressing nonlinear vibrations,

deals with shallow cables described by approximate mechanical models based on the static

condensation of the longitudinal dynamics. In particular, a characterization of the nonlinear

normal modes of shallow cables has been addressed in [11, 12]. An extensive and updated

review of the state of the art on shallow cables can be found in [10].

On the contrary, a few studies have addressed linear and nonlinear dynamic behaviors

of nonshallow cables whereas nonshallow configurations may occur in a number of engineer-

ing applications such as in cables used for cable railways, transmission lines, mooring lines

or tag-lines. Hence, there is a practical and theoretical interest in investigating nonshallow

cable configurations and the leading dynamics around them.

In [13, 14], a nonlinear mechanical model of nonshallow cables, describing the fully

coupled longitudinal and transverse dynamics, was presented. Therein, results of the in-

vestigations into the spectral properties of linear free vibrations around the catenary con-

figurations were reported. Differently from shallow cables, whose linear dynamics depend

solely on Irvine’s parameter, it is shown that the linear vibration properties of nonshal-

low cables depend on two parameters separately regulating the cable elastic and geometric

stiffnesses. Among other properties, it was also determined where, in parameter space, the

three classes of modes appear, namely, geometric, elasto-static and elasto-dynamic modes

which were already partly mentioned in [3]. It was demonstrated that the elastic modes

belong to a complete sequence of symmetric and skew-symmetric stretching modes starting
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from the lowest elasto-static stretching mode with nearly constant elongation. These modes

are manifested in the neighborhood of the various crossovers - the well-known (elasto-static)

lowest crossovers and the highlighted higher-order (elasto-dynamic) crossovers. Away from

these crossovers, the modes are geometric modes, in the sense that they are prevalently

governed by the geometric stiffness, and exhibit leading transverse displacements.

In this paper, the primary focus is on the effects of the geometric nonlinearity on the

modal properties; in particular, the objective is to characterize the nonlinear properties

of the individual in-plane modes with a clear effort towards unfolding general properties.

Further, the a priori knowledge of the nonlinear modal properties is the basis for the pre-

diction of the features of unimodal forced responses and interaction phenomena (the type

of bifurcations, the possible routes to chaotic solutions,...).

The nonlinear partial-differential equations of motion and boundary conditions are

recast in first-order form to make the employed asymptotic scheme suitable for higher-order

approximations. Then, the asymptotic analysis of individual nonlinear normal modes is

presented. The main results on the nonlinear characteristics of the modal motions are

summarized. They mostly relate to the so-called effective nonlinearity coefficient of the

considered mode which regulates the bending of the backbone and to the shape functions

dictating the spatial corrections to the considered linear mode shape at second order. Gen-

eral conclusions are drawn about the nonlinear laws of the modes, depending on whether

they are geometric, elasto-static or elasto-dynamic.

2 Equations of motion

We denote (O, i, j, k) the orthonormal basis of a fixed inertial reference frame with origin

in O (Fig. 1), let N∗
0 and N∗ describe the static axial force due to gravity in the initial

configuration C0 and the incremental dynamic force arising in the change from the initial to

the current configuration C. Imposing the balance of linear and angular momentum yields
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the equation of free undamped motions as

∂ [N∗
0 (a − â0)]

∂x∗ +
∂ (N∗a)

∂x∗ = m0 sec θ0
∂2u∗

∂t∗2
(1)

where x∗ indicates the horizontal coordinate along the fixed i direction. In Eq. (1), m0 is

the mass per unit cable length in its initial configuration C0 lying in the (i, j)-plane - here

expressed as p̂∗
0(x∗) = x∗i+y∗(x∗)j; u∗ is the displacement vector, henceforth conveniently

decomposed as u∗(x∗, t∗) = û∗+w∗k with û∗ being the in-plane displacement (i.e., lying in

the (i, j)-plane); â0(x∗) is the unit tangential vector in C0 and θ0(x∗) is the angle between

â0 and i given by θ0(x∗) = arctan(dy∗/dx∗); a is the unit vector tangent to the current

configuration of the cable axis. Henceforth, the same notation will be employed throughout

the manuscript, namely, lowercase bold italic letters indicate vectors in E3, hatted lowercase

bold italic letters denote vectors lying in the (i, j)-plane, and lowercase bold italic letters

denote the corresponding algebraic vectors.

The cable axial dilatation associated with the deformation from C0 to C is

ν =
∣∣∣∣dp∗

ds∗

∣∣∣∣ = cos θ0

∣∣∣∣dp∗

dx∗

∣∣∣∣ = cos θ0

√
(1 + u′)2 + (tan θ0 + v′)2 + w′2 (2)

where |.| represents the magnitude of the vectorial argument and the prime indicates dif-

ferentiation with respect to the nondimensional coordinate x = x∗
� , s∗ is the arclength

along the cable axis in C0. Further, the displacement components are nondimensionalized as

u := u∗
� , v := v∗

� , w := w∗
� . The unit vector in the current tangential direction is expressed

as

a :=
p

′

|p′ | ≡ cos θ0
(1 + u

′
)i + (tan θ0 + v

′
)j + w

′
k

ν
(3)

Due to the relatively high axial stiffness of typical engineering cables, the initial con-

figuration of the cable, represented by the catenary, and the axial load are, respectively,

y(x) =
1
γ

[
cosh

γ

2
− cosh γ

(
1
2
− x

)]
, N0(x) = cosh γ

(
1
2
− x

)
(4)

where y := y∗
� , γ := mg�

H∗
0
is solution of the geometric compatibility condition sinh

(γ
2

)
= γ

2η0

with η0 := L0
� , L0 is the initial total length of the cable, N0(x) :=

N∗
0 (x∗)
H∗

0
, and H∗

0 is the
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horizontal projection of N∗
0 . The extensibility of the cable under its own weight is neglected

as it is typically done for engineering cables [2] since the elastic elongation is indeed very

small, hence, uninfluential on the static equilibrium. On the contrary, for cables with a

low elastic stiffness relative to the geometric stiffness, the cable elastic deformation mode

should be accounted for. This can be shown rigorously for an elastic cable subject to its own

weight. The compatibility condition delivering the horizontal component of the equilibrium

axial force is
η0

k
+

2
γ
sinh−1

(η0γ

2

)
= 1 (5)

where k := E A0
H∗

0
, E is Young’s modulus of elasticity and A0 is the area of the undeformed

cable cross section. When k is sufficiently large, the equation reduces to that governing the

catenary, obtained neglecting the cable elasticity.

A linear constitutive elastic law relating the incremental axial load to the axial strain is

adopted in the form N∗ = EA0 (ν−1) where ν−1 =: e is the axial elongation. Introducing

a suitable nondimensional time t := ωct
∗ with ωc :=

√
H∗

0
m0�2

, and the nondimensional axial

force N := N∗
H∗

0
= k (ν−1), the ensuing nondimensional equations of motion, in componential

form, are then expressed as

(sec θ0)ü −
{
cos θ0

ν

[
N0(u′ − ν + 1) +N(1 + u′)

]}′
= 0

(sec θ0)v̈ −
{
cos θ0

ν

[
N0(v′ − tan θ0(ν − 1)) +N(v′ + tan θ0)

]}′
= 0

(sec θ0)ẅ −
[
(N0 +N)

cos θ0

ν
w′
]′
= 0

(6)

The equations of motion are supplemented with the boundary conditions u(0, t) = 0 and

u(1, t) = 0, for a cable suspended from two supports at the same level (Fig. 1).

In [13, 14] it was shown that, differently from shallow cables as far as the linear

dynamics are concerned, nonshallow cables are governed by two independent parameters,

relating to the geometric and elastic stiffness, namely, γ and k or λ := γ
√

k
ηe

with ηe :=∫ 1
0 cos3 θ0 dx. In [14] it was shown that typical values of k for engineering cables are within

the range [103, 104].
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3 Asymptotic analysis of individual nonlinear normal modes

An asymptotic approach is well-suited to characterize the nonlinear properties of the indi-

vidual nonlinear normal modes of cables. This type of nonlinear analysis can not be pursued

via standard numerical solution approaches such as those based on weak formulations (fi-

nite elements, weighted residuals) unless a good initial estimate of the nonlinear modes is

available. When the individual nonlinear modal manifolds of a nonlinear unforced and un-

damped system are not known a priori, the numerical responses would be affected by many

modes (in principle, all the modes captured by the numerical discretization). The ensuing

numerical responses would not be helpful for disclosing the featured nonlinear behaviors of

individual normal modes. Furthermore, the employed direct asymptotic expansion is the

most accurate local solution approach since it does not discard any spatial information of

the motion but it embodies all of it into the solutions of a few boundary-value problems at

second order.

The cable motions are assumed to occur in the neighborhood of the initial configuration

C0 and are such that the cable tension never vanishes. The cable responses are consequently

described seeking the solutions of the following third-order Mac Laurin series expansion of

the equation of motion:

sec θ0ü − [N0a1 + ke1â0]′ − [N0a2 + ke2â0 + 2ke1a1]′

− [N0a3 + ke3â0 + 3ke2a1 + 3ke1a2]′ = 0
(7)

where ej and aj are the jth-order terms of e and a, respectively. Letting u := (u, v,w)�

and v := (u̇, v̇, ẇ)� represent the algebraic vectors associated to the Euclidean displacement

and velocity vectors, the ensuing equations can be cast as:

u̇− v = 0

Iv̇+ Lu = N 2(u,u) + N 3(u,u,u)
(8)

along with the boundary conditions previously described.

In (8), I = (sec θ0)(x)I (I is the identity tensor) and L denote the inertial and linear

elasto-geometric operators, respectively. Namely, L := diag[L̂,L] due to the uncoupling
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of the equations of motion where L̂ and L denote the in-plane and out-of-plane stiffness

operators, respectively (reported in [14]). On the other hand, the quadratic and cubic

restoring forces, in operator form, are

N 2(u,u) =[N0a2(u,u) + ke2(u,u)â0 + 2ke1(u)a1(u)]′

N 3(u,u,u) =[N0a3(u,u,u)]′

+ [ke3(u,u,u)â0 + 3ke2(u,u)a1(u) + 3ke1(u)a2(u,u)]′

(9)

Their componential forms are given in Appendix A. For computational reasons, it is worth

noting that N 2 is non-commutative, i.e., N 2(u,w) �= N 2(w,u).

In the following, the analysis is first developed for individual planar modes, away from

internal resonances. To this end, the ansatz on the form of the solutions of Eqs. (8) is

û(x, t) =
3∑

k=1

εkûk (x, t0, t2) + · · · , v̂(x, t) =
3∑

k=1

εkv̂k (x, t0, t2) + · · · (10)

where û := (u, v)�, v̂ := (u̇, v̇)� are the restrictions of the displacement u and velocity

v to the (i, j)-plane, t0 := t is the fast time scale, t2 := ε2 t is the stretched time scale,

and ε is a small dimensionless number introduced to measure the order of magnitude of

the deviations from the initial configuration C0. Then, the first derivative with respect to

time is defined as ∂/∂t = D0 + ε2D2 + · · · where Dk := ∂/∂tk. The solution is considered

independent of the slow time scale t1 = εt because no resonant terms arise at second order

away from 2:1 internal resonances.

Substituting (10) into the system of first-order (in time) equations of motion and

boundary conditions, using the independence of the time scales, and equating coefficients

of like powers of ε yields

Order ε:
D0û1 − v̂1 = 0

Î(D0v̂1) + L̂û1 = 0
(11)
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Order ε2:
D0û2 − v̂2 = 0

Î(D0v̂2) + L̂û2 = N̂ 2(û1, û1)
(12)

Order ε3:

D0û3 − v̂3 = −D2û1

Î(D0v̂3) + L̂u3 = −D2v̂1 + N̂ 2(û1, û2) + N̂ 2(û2, û1) + N̂ 3(û1, û1, û1)
(13)

where N̂ 2 and N̂ 3 denote the restrictions of the quadratic and cubic forces to the (i, j)-

plane, and we further note that use of the non-commutativity of N̂ 2 was made.

Because the considered mode is away from internal resonances with other modes, the

solution at order ε can be assumed as

û1 = Am(t2)eiωmt0φm(x) + cc, v̂1 = iωmAm(t2)eiωmt0φm(x) + cc (14)

where ωm is the linear eigenfrequency of the mth in-plane mode; i :=
√−1, and Am ∈ C

is the complex-valued amplitude of the mode at leading order; cc denotes the complex

conjugate of the preceding terms. Substituting (14) into the second-order problem, Eq.

(12), yields

D0û2 − v̂2 = 0

Î(D0v̂2) + L̂u2 =
(
A2

me2iωmt0 +AmĀm

)
Q̂(x) + cc

(15)

where the bar indicates the complex conjugate and Q̂(x) := N̂ 2(φm,φm). The particular

solution of the second-order problem can be expressed as

û2 =A2
me2iωmt0Φ(∞)(x) +AmĀmΨ(∞)(x) + cc

v̂2 =2iωmΦ(∞)(x)A2
me2iωmt0 + cc

(16)

where the functions Φ(∞) and Ψ(∞) are solutions of the following boundary-value problems:

L̂(x)Φ(∞)(x)− 4ω2
mI(x)Φ(∞)(x) = Q̂(x), L̂(x)Ψ(∞)(x) = Q̂(x) (17)

where, for sake of clarity, the space-dependence of the inertial and stiffness operators has

been made explicit. The boundary conditions are Φ(∞)(0) = 0 andΦ(∞)(1) = 0, Ψ(∞)(0) =

0 and Ψ(∞)(1) = 0.
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Since the inertial and stiffness operators depend on the position coordinate x, closed-

form solutions of (17) do not exist in general. However, the solutions can be conveniently

expressed in series form in terms of the eigenfunctions as follows:

Φ(∞)(x) =
∞∑

j=1

αjφj(x), Ψ(∞)(x) =
∞∑

j=1

βjφj(x) (18)

where

αj :=
1

[(ωj)2 − 4(ωm)2]

(∫ 1

0
φj(x) · Q̂(x) dx

)
, βj :=

1
(ωj)2

(∫ 1

0
φj(x) · Q̂(x) dx

)
(19)

and the dot indicates the standard inner product. We observe that the coefficient in Eq.

(19)1 diverges when ωj = 2ωm, hence the displacement would grow indefinitely large, due

to the fact that a two-to-one internal resonance between the jth and mth mode may be

activated and the expansion based on the individual mode breaks down. In this case, a

two-mode expansion is necessary to properly account for the interaction as it is discussed

further on.

Substituting Eq. (16) into the third-order problem and imposing the solvability con-

dition [18] at this order yields the following modulation equation:

i

4
Ȧm = Γ(∞)A2

mĀm (20)

The effective nonlinearity coefficient Γ(∞) regulates the bending of the backbone of the cable

oscillating in the mth mode, that is, the nonlinear frequency variation with the amplitude

ω(∞)
m := ωm − Γ(∞)a2

m (21)

The coefficient can be regarded as a nonlinear modal constitutive parameter embodying the

combined modal effects of the quadratic and cubic forces as it is given by

Γ(∞) :=Γ(∞)
2 + Γ3, Γ(∞)

2 :=
1

8ωm

∫ 1

0
φm(x) · F(∞)

2 (x) dx,

Γ3 :=
1

8ωm

∫ 1

0
φm(x) ·F3(x) dx

(22)
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The vectors F(∞)
2 (x) and F3(x) represent the resonant geometric forces at third order arising

from the overall quadratic and cubic nonlinear forces, respectively, and are expressed as

F(∞)
2 (x) :=N̂ 2(Φ(∞),φm) + N̂ 2(φm,Φ(∞)) + 2N̂ 2(Ψ(∞),φm) + 2N̂ 2(φm,Ψ(∞))

F3(x) :=3N̂ 3(φm,φm,φm)
(23)

In Eq. (22), Γ(∞)
2 denotes the softening-type contribution of the quadratic forces which,

in principle, depends - through the second-order functions Φ(∞) and Ψ(∞) - on all of the

cable eigenfunctions as emphasized by the superscript ∞, whereas Γ3 is the hardening-type

contribution of the cubic forces depending only on the considered active mode ([18], [16]).

The second-order functions regulate the spatial corrections to the linear mode shape

φm in the displacement field

û(∞)(x, t) =am cos(ω(∞)
m t+ ψm)φm(x)

+
a2

m

2

[
cos(2(ω(∞)

m t+ ψm))Φ(∞)(x) +Ψ(∞)(x)
] (24)

where ψm is a constant. It is clear that the cable oscillates with frequency ω
(∞)
m around

the displaced configuration given by p̂ = p̂0 + 1/2 a2
mΨ

(∞)(x). As it was pointed out in [9],

the calculated individual nonlinear normal modes are not synchronous and, hence, do not

possess all the features of the original definition given by Rosenberg [19].

Instead of the direct perturbation approach, we can employ a full-basis Galerkin dis-

cretization, û(x, t) =
∑∞

j=1 qj(t)φj(x), and, subsequently, the method of multiple scales

may be applied to the resulting infinite-dimensional set of ODE’s. It turns out that the

cubic part of the effective nonlinearity coefficient is the same as in Eq. (22) whereas the

contribution from the quadratic forces is expressed as [16]

Γ(∞)
2 =

∞∑
j=1

Sj, Sj =
1

8ωm

[
(Λmmj + Λmjm)

(
2Λjmm

ω2
j

+
Λjmm

ω2
j − 4ω2

m

)]
,

Λjkh :=
∫ 1

0
φj · N̂ 2(φk,φh) dx

(25)

In agreement with our previous observation, the coefficient in Eq. (25) diverges when

ωj = 2ωm due to a 2:1 internal resonance between the jth and mth mode. To account for
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the 2:1 interaction, the generating solution must include the two interacting modes and a

third-order expansion has to be pursued. The expansion was obtained for a general system

with quadratic and cubic nonlinearities in [11]. Here, we summarize only the modulation

equations governing the slow variations of the amplitudes and phases of the two interacting

modes; that is,

i

4
Ȧm =

1
8ωm

(Λmmn + Λmnm)AnĀmei δ t + Γ̂∞A2
mĀm +

1
8ωm

Γ̂∞
mnAmAnĀn

i

4
Ȧn =

1
8ωn

ΛnmmA2
me−i δ t + ∆̂∞A2

nĀn +
1

8ωn
Γ̂∞

mnAnAmĀm

(26)

where Am and An are the complex-valued amplitudes of the interacting modes at first order,

δ is a small parameter expressing the detuning of the internal resonance, ωn = 2ωm + δ.

The softening part of the nonlinearity coefficient of the mth mode, Eq. (25), is modified

as follows in the presence of the 2:1 resonance: the summation does not include the nth

term (i.e., the term corresponding to the high-frequency mode) which, on the contrary, is

9/(4ω2
n)Λnmm (Λmmn + Λmnm) /(8ωm). Here and henceforth, the modified coefficient will be

denoted Γ̂(∞). The other coefficients appearing in Eq. (26) are given in Appendix B.

On the other hand, when a truncation to the lowest M modes is performed, a reduced-

order model yields an effective nonlinearity coefficient given by

ΓM =
M∑

j=1

Sj + Γ3 (27)

and, in turn, the nonlinear frequency is ωM
m := ωm − ΓMa2

m.

3.1 Limits of validity of the no-compression cable model

The adopted cable model does not account for the fact that, when the tensile force van-

ishes, the cable can not resist compression. Several studies have addressed the effect of

cable loosening on nonlinear vibrations of shallow cables [20]. Here, we are interested in

calculating the amplitude range of validity of the no-compression cable model. To this end,

the elongation, to within second order, is expressed as

em(x, t) = am cosϕm(t)Υ1(x) + a2
m [cos 2ϕm(t)Υ2(x) + Υ3(x)] (28)

12
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where ϕm(t) := ω
(∞)
m t+ ψm

Υ1(x) = cos θ2
0

[
φ′

1(m) + tan θ0φ
′
2(m)

]
Υ2(x) =

1
2
cos θ2

0

{
Φ′

1 + tan θ0Φ′
2 +

1
2
cos θ2

0

[
φ′

1(m) − tan θ0φ
′
2(m)

]2 }
Υ3(x) =

1
2
cos θ2

0

{
Ψ′

1 + tan θ0Ψ′
2 +

1
2
cos θ2

0

[
φ′

1(m) − tan θ0φ
′
2(m)

]2 }
(29)

Here, φj(m) (j = 1, 2) indicates the jth component of the mth mode, Φj and Ψj are the jth

components of the functions Φ(∞) and Ψ(∞), respectively. Then, the total nondimensional

tension is

N̂(x, t; am) = N0(x) + k em(x, t; am) (30)

The tension is assumed to attain the minimum when the modal elongation attains its

maximum (i.e., the elastic cable shortening em = νm−1 is maximum) at xm (e.g., xm = 1
2 or

1
4 for the first symmetric and skew-symmetric modes, respectively). Hence, N̂(xm, t; a) =:

Ň(t; am) becomes a function of time t and the amplitude am at the natural frequency.

To determine the minimum of Ň(t; am), the extremal values of ěm := em(xm, t; am) are

sought. They are obtained when (i) sinϕm(t) = 0 or (ii) cosϕm(t) = −Υ̌1/(4amΥ̌2) where

Υ̌j := Υj(xm). In the first case,

ěm = ±amΥ̌1 + a2
m

(
Υ̌2 + Υ̌3

)
(31)

and the amplitude that makes Ň(a) vanish is

am = 1/2
[
±Υ̌1 ±

√
(Υ̌1)2 − 4/kŇ0(Υ̌2 + Υ̌3)

]
(Υ̌2 + Υ̌3)−1 (32)

provided that Υ̌ 2
1 ≥ 4/k|Ň0(Υ̌2 + Υ̌3)|. In case (ii),

ěm = a2
m(Υ̌3 − Υ̌2)Υ̌2 − Υ̌ 2

1

8
(33)

and the amplitude where Ň(a) vanishes is

am =

√(
Υ̌ 2

1

8Υ̌2

− Ň0

)(
Υ̌3 − Υ̌2

)−1 (34)

provided that the argument of the square root be greater than zero. Consequently, the

admissible upper bound of the amplitude for maintaining positive tension in the cable is

the minimum of the positive values expressed by Eqs. (32) and (34).
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4 Nonlinear modal motions

The nonlinear properties of the individual modes are investigated with specific efforts to-

wards unfolding general properties. Besides regulating the system free nonlinear oscillations,

these nonlinear modal properties allow also to predict the features of the unimodal forced

responses or interactions. The nonlinear laws of the modes, as discussed in the preced-

ing section, are dictated by the effective nonlinearity coefficient Γ(∞). Its investigation is

conducted under different static regimes and for different cable parameters generalizing

previous results on shallow cables. Further, the convergence of the effective nonlinearity

coefficient is studied outlining the reliability of low-dimensional Galerkin-reduced models.

Thereafter, the nonlinear modifications of the modal motions are discussed.

4.1 The nonlinearity of the individual normal modes

The effective nonlinearity coefficient of low-order modes belonging to the three classes of

modes are considered; namely, geometric, elasto-static and elasto-dynamic modes. In the

(γ, λ)−plane (Fig. 2b), we consider three regions corresponding to three principal static

regimes [14]: γ ∈ [0, 0.5] is the region of shallow profiles (the dark grey region in Fig. 2b)

whereas γ > 1 is identified with the region of nonshallow profiles (the lightly shaded region

in Fig. 2b). The interposed region, γ ∈ [0.5, 1], is a transition region between the two static

regimes where the cable is considered as being neither shallow nor nonshallow. These regions

ensue from appreciating how the sag-to-span ratio d varies with γ (Fig. 2a). Further, in

Fig. 2b, the region of admissible elastic stiffness k in the (γ, λ)−plane is shown. The iso-

stiffness curves are drawn according to the definition of Irvine’s parameter. The two lateral

thick curves denote the boundaries of the admissible region and correspond to k1 = 5 · 102

and k3 = 5 · 104, respectively. In Figs. 2c and 2d, the frequencies of the transition cables

with γ = 0.75 and those of nonshallow cables with γ = 1.5 are shown, respectively. The

shaded area denotes regions of non physically admissible cable parameters.

The nonlinear characteristics of the modal properties are discussed considering vari-

ations of the effective nonlinearity coefficient with Irvine’s parameter λ and fixed values
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of the geometric flexibility parameter γ. In the following, the modes of two representative

cases are considered, namely, the transition regime (γ = 0.75) and the nonshallow regime

(γ = 1.5). Previous results relating to shallow cables [12, 15] have shown that the lowest

mode is initially hardening (Γ < 0), then it becomes softening (Γ > 0) around its crossover

and then hardening again before diverging due to a 2:1 resonance with the third symmetric

mode. In Fig. 3, the effective nonlinearity coefficient of the lowest mode of the transition

cables is shown. The mode m = 1 is a skew-symmetric geometric mode with two half-

waves. The thick lines denote the coefficients Γ(∞) and Γ̂(∞) obtained with the individual

mode assumption and considering the 2:1 internal resonance (thicker line); the dashed line

indicates the coefficient Γ(m) obtained with the one-mode discretization, retaining in Eq.

(25) only the mth active linear mode. The coefficient Γ(∞) indicates a hardening mode al-

most everywhere except for a region where a 2:1 internal resonance between the third mode

(m = 3) and the considered first mode is activated around λ ≈ 3.9π and the coefficient of

the individual mode consequently diverges. However, the coefficient Γ̂(∞) indicates that the

mode preserves its hardening nature. The one-mode discretization captures the qualitative

character of the mode although it greatly overestimates the nonlinear modal stiffness for

higher λ.

In Fig. 4, the nonlinearity of the second symmetric mode (m = 3) of the transition

cables is investigated. This mode undergoes a crossover with the second skew-symmetric

mode for λ slightly below 4π where the mode becomes elasto-static. For low values of

λ the mode is slightly hardening, thereafter around the crossover it becomes softening.

There are divergences for 2:1 internal resonances between the considered mode and the

seventh or ninth modes, respectively, occurring in a very narrow parameter range. Further

increasing λ, the mode (above the crossover, m = 4) becomes hardening again with a

strong divergence in the region around the 2:1 internal resonance with the ninth mode. The

coefficient Γ̂(∞) accounting for the interaction is always negative indicating a hardening

behavior. In the interaction region, there occurs a crossover between the frequencies of the

ninth and the tenth mode indicating that the ninth mode is elasto-static. The nonlinearity
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of the considered mode (m = 3) decreases significantly due to the softening contribution

delivered by the coupled high-frequency elasto-static mode.

Then, the nonshallow regime, γ = 1.5, is investigated in the lowest symmetric modes;

namely, the third symmetric mode, m = 5 (Fig. 5), the fourth symmetric mode, m = 7 (Fig.

6a), and the ninth symmetric mode, m = 17 (Fig. 6b). The third symmetric mode (Fig. 5)

is hardening in the whole range except for the region where it becomes elasto-static around

λ = 5.7π while undergoing a crossover with the third skew-symmetric mode. In Fig. 6a, the

nonlinearity of the fourth symmetric mode predicted with Γ(∞) follows the same pattern as

that of the second symmetric mode of the transition cable; it is hardening, then around the

crossover it becomes softening, then hardening again and diverges due a 2:1 resonance with

the ninth symmetric mode (n = 17). In this case, Γ̂(∞) indicates that, in the interaction

region, the mode is hardening then softening with a change of curvature occurring where

the interacting mode undergoes a crossover. Away from the resonance region, the mode

regains its hardening signature. As shown in Fig. 6b, the high-frequency interacting mode

is hardening except for the region where it undergoes the crossover thus attaining its peak

elasto-static strain energy; hence, its softening contribution to the low-frequency coupled

mode renders this mode softening while engaged in the interaction.

Finally, it is of interest to investigate the lowest elasto-dynamic mode exhibited by the

nonshallow cable, with γ = 1.5. The considered mode is the seventeenth and its effective

nonlinearity coefficient variation is shown in Fig. 7. This mode is hardening except for the

region around its crossover with the eighteenth mode where it appears to be softening. This

region corresponds to that where the mode becomes elasto-dynamic possessing a longitudi-

nal motion much larger than the transverse component as shown in the modal displacements

for λ = 6.81π (right below the elasto-dynamic crossover). On the other hand, the mode is

predicted as hardening with the one-mode discretization where it is indeed softening. How-

ever, where the coefficient becomes nearly vanishing, the one-mode discretization suggests

the need of more passive modes in the discretization.
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4.2 Spatial characteristics of the nonlinear modal motions

In this section, the quadratic spatial corrections to the active linear mode shape are discussed

with the aim of quantifying the extent of its influence and the spectral content of these

nonlinear corrections.

The displacement field at the instant of time when the velocity field vanishes takes the

form (24) with cosϕm(t) = cos 2ϕm(t) ≡ 1. In Fig. 8, the lowest (first skew-symmetric) mode

of a nonshallow cable, when γ = 1.5 and λ = 7π, is considered. The u and v displacement

components of the first- and second-order approximations are shown in parts (a) and (b),

respectively, with the amplitude corresponding to the maximum admissible value (such that

the corresponding motion maintains non-negative tension in the cable). It can be observed

that the quadratic nonlinearities introduce appreciable spatial distortion into the shape

of the leading motion making the horizontal symmetric and the vertical skew-symmetric

displacement components neither symmetric nor skew-symmetric. To gain more insight into

the characteristics of the motion, the modal coefficient αk in Φ(∞) and the function itself,

and the coefficient βk and Ψ(∞) are shown in parts (c) and (d), respectively. The considered

skew-symmetric mode generates symmetric quadratic forces, hence, contributions from the

even (symmetric) modes only are expected. However, besides the second, fourth and sixth

mode shapes, there is a meaningful contribution of the seventh mode shape and minor

contributions of the ninth and eleventh modes. The leading contributing modes, namely

the sixth and seventh modes, are on the ramping parts of the ωn − λ curves (see Fig. 2d),

where, they turn out to be both symmetric elasto-static modes thus breaking down the

natural sequence of symmetric and skew-symmetric modes as illustrated in [14]. In Fig.

9, we show how these signatures reflect themselves onto the convergence of the effective

nonlinearity coefficient. As expected, the main contribution to the softening part of the

effective nonlinearity coefficient comes from the two elasto-static modes, the sixth and

seventh modes. The symmetric quadratic forces generate stretching of the cable axis which

is almost entirely captured by the lowest symmetric elasto-static modes.

In Fig. 10, again the displacement field of the lowest mode (skew-symmetric) is shown
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along with the coefficients αk (and Φ(∞)) and βk (and Ψ(∞)) when γ = 1.5 and λ = 12.6π.

In this case, although with the same sag-to-span ratio, the cable possesses a higher axial

elastic stiffness. Besides the second mode, all of the even modes up to, and including the

twelfth mode, contribute although a remarkable contribution comes from the twelfth and

thirteenth modes. The reason for this participation is the same as in the previous case;

that is, the twelfth and thirteenth modes are the lowest two elasto-static symmetric modes.

Similarly, these modes determine the convergence of the effective nonlinearity coefficient.

5 Concluding remarks

A mechanical model describing finite motions of nonshallow cables around their initial cate-

nary configurations has been employed to investigate the nonlinear vibration characteristics

of individual in-plane modes. An asymptotic treatment based on the method of multiple

scales has been applied directly to the partial-differential equations of motion and boundary

conditions, overcoming the drawbacks of a discretization process.

The nonlinear characteristics of the modes of different type have been studied, namely,

those relating to geometric modes (with prevalent transverse motion and negligible stretch-

ing), elasto-static modes (with prevalent transverse motion and appreciable stretching),

elasto-dynamic modes (with prevalent longitudinal motion and stretching).

The general results about the investigated nonshallow cables, in line with known results

on shallow cables, indicate that the geometric modes are hardening. Conversely, in the

neighborhood of the localized regions where the frequencies undergo crossovers, the modes

suffer a transition into elasto-static or elasto-dynamic modes; this transition, occurring

within the linear eigenvalue structure, further makes the nonlinear mode of the softening-

type. The physical phenomenon inherent in the change of the nonlinearity may be explained

accounting for the fact that the relevant mode, around the crossovers, exhibits a shape with

an appreciable transverse displacement inducing stretching which is quite sensitive to the

upward or downward displacement directions. Indeed, a significant drift is caused by the

quadratic geometric forces towards the upper configurations where the tension in the cable
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can vanish thus leading to unsymmetrical softening behavior.

Moreover, the nonlinear shape modifications of the modal motions have been studied

with a particular attention on the modal spatial content. It was found that quadratic modal

forces involve modes with stretching, hence those modes that belong to the family of elasto-

static modes whose frequency locus unfolds along the successive lowest crossovers. From the

convergence analysis, the contribution of these modes was shown to be important; therefore,

they must be included in the nonlinear description by reduced-order models, although they

are far from the considered individual modes.

The issues pointed out about the suitability of reduced-order models of nonshallow

cables are felt to be general and applicable also to those systems possessing stiffnesses/strain

energies of different type and different orders of magnitude such as arches, membranes and

shells.
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A The nonlinear force and strain expansions

The quadratic and cubic geometric force operators are

N 2(u,u) · i = [cos θ0 (k − N0)
(
e2
1 − e2 − e1u

′)]′
N 2(u,u) · j =

[
cos θ0 (k − N0)

(
tan θ0

(
e2
1 − e2

)− e1v
′
)]′

N 2(u,u) · k =
[
cos θ0 (N0 − k)w′e1

]′
(35)

N 3(u,u,u) · i = [cos θ0 (N0 − k)
(
e3
1 − 2e1e2 + e3 − e2

1u
′ + e2u

′)]′
N 3(u,u,u) · j =

[
cos θ0 (N0 − k)

(
tan θ0

(
e3
1 − 2e1e2 + e3

)− e2
1v

′ + e2v
′
)]′

N 3(u,u,u) · k =
[
cos θ0 (k − N0)

(
e2
1 − e2

)
w′]′

(36)

The first-, second-, and third-order strains are

e1 = cos2 θ0(u′ + tan θ0v
′)

e2 =
1
2
cos4 θ0

[
(u′ tan θ0 − v′)2 +

w′2

cos2 θ0

]

e3 = −1
2
cos6 θ0(u′ + tan θ0v

′)
[
(u′ tan θ0 − v′)2 +

w′2

cos2 θ0

] (37)

B 2:1 interaction coefficients

The coefficients in Eq. (26) are [11]

∆̂(∞) =
1

8ωn

∞∑
j=1

[
(Λnnj + Λnjn)

(
2Λjnn

ω2
j

+
Λjnn

ω2
j − 4ω2

n

)]

+
3

8ωn
Θnnnn

(38)

Γ̂(∞)
mn =

∞∑
j=1,j �=m

[(Λmjn + Λmnj) (Λjmn + Λjnm)

×
(

1
ω2

j − 9ω2
m

+
1

ω2
j − ω2

m

)
+
2Λjnn

ω2
j

(Λmmj +Λmjm)

]

+
(Λmmn + Λmnm)

2

8ω2
m

+
4

ω2
m

(ΛmnnΛmmm)

+ 2 (Θmnnm +Θmnmn +Θmmnn)
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where

Θijkh =
∫ 1

0
φi · N̂ 3(φj ,φk,φh)dx (39)
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Figure 6: Variations of Γ(∞), Γ̂(∞) and Γ(m) with λ/π of (a) the seventh mode (m = 5) and

(b) the seventeenth mode (m = 17) when γ = 1.5.
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Figure 7: Variation of Γ(∞) and Γ(m) with λ/π of the lowest elasto-dynamic mode (m = 17)

of a nonshallow cable (γ = 1.5).
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Figure 8: The lowest mode (skew-symmetric). First-order (thin line) and second-order

(thick) approximations of the displacement field: (a) u(x) and (b) v(x); in part (c) αk and

(Φ(∞)
1 , Φ(∞)

2 ); in part (d) βk and (Ψ(∞)
1 , Ψ(∞)

2 ) when γ = 1.5 and λ = 7π.
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Figure 9: The lowest mode (skew-symmetric): (a) modal coefficient of the softening part of

the effective nonlinearity coefficient; (b) convergence of the effective nonlinearity coefficient

when when γ = 1.5 and λ = 7π.
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Figure 10: The lowest mode (skew-symmetric). First-order (thin line) and second-order

(thick) approximations of the displacement field: (a) u(x) and (b) v(x); in part (c) αk and

(Φ(∞)
1 , Φ2)(∞); in part (d) βk and (Ψ1, Ψ2) when γ = 1.5 and λ = 12.6π.
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