
HAL Id: hal-00501746
https://hal.science/hal-00501746

Submitted on 12 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constitutive model for fibrous tissues considering
collagen fiber crimp

F. Cacho, P.J. Elbischger, J.F. Rodríguez, M. Doblaré, G.A. Holzapfel

To cite this version:
F. Cacho, P.J. Elbischger, J.F. Rodríguez, M. Doblaré, G.A. Holzapfel. A constitutive model for
fibrous tissues considering collagen fiber crimp. International Journal of Non-Linear Mechanics, 2007,
42 (2), pp.391. �10.1016/j.ijnonlinmec.2007.02.002�. �hal-00501746�

https://hal.science/hal-00501746
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/nlm

Author’s Accepted Manuscript

A constitutive model for fibrous tissues considering
collagen fiber crimp

F. Cacho, P.J. Elbischger, J.F. Rodríguez, M. Doblaré,
G.A. Holzapfel

PII: S0020-7462(07)00055-8
DOI: doi:10.1016/j.ijnonlinmec.2007.02.002
Reference: NLM 1340

To appear in: International Journal of Non-
Linear Mechanics

Received date: 30 December 2006
Revised date: 6 February 2007
Accepted date: 6 February 2007

Cite this article as: F. Cacho, P.J. Elbischger, J.F. Rodríguez, M. Doblaré and G.A.
Holzapfel, A constitutive model for fibrous tissues considering collagen fiber crimp, Inter-
national Journal of Non-Linear Mechanics (2007), doi:10.1016/j.ijnonlinmec.2007.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.02.002


Acc
ep

te
d m

an
usc

rip
t 

A constitutive model for fibrous tissues

considering collagen fiber crimp

F. Cacho a,b, P.J. Elbischger c, J.F. Rodŕıguez b
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Abstract

A micromechanically-based constitutive model for fibrous tissues is presented. The
model considers the randomly crimped morphology of individual collagen fibers, a
morphology typically seen in photomicrographs of tissue samples. It describes the
relationship between the fiber endpoints and its arc-length in terms of a measur-
able quantity, which can be estimated from image data. The collective mechanical
behavior of collagen fibers is presented in terms of an explicit expression for the
strain-energy function, where a fiber-specific random variable is approximated by a
Beta distribution. The model-related stress and elasticity tensors are provided. Two
representative numerical examples are analyzed with the aim of demonstrating the
peculiar mechanism of the constitutive model and quantifying the effect of param-
eter changes on the mechanical response. In particular, a fibrous tissue, assumed
to be (nearly) incompressible, is subject to a uniaxial extension along the fiber di-
rection, and, separately, to pure shear. It is shown that the fiber crimp model can
reproduce several of the expected characteristics of fibrous tissues.
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1 Introduction

The central role of collagen as the major structural protein of mammalian
tissue, comprising approximately one-third of the total protein in mammalian
organisms, has motivated a significant effort towards determining its mechan-
ical properties at all levels, ranging from single monomers [1,2] and long-chain
polymers [3,4] to a structural element within a (macroscopic) biological tissue
[5–8].

On the basis of the mechanical properties, a number of constitutive mod-
els have been developed in the past in attempts to describe the experimental
data. While at the microscopic level, chain models such as the (Kratky-Porod)
worm-like model are popular [9–11], at the macroscopic level the continuum
theory of finite elastic deformations of solids reinforced with fibers is frequently
the constitutive theory of choice. The basic ideas of the theory are contained
in [12], with further developments on strongly anisotropic solids in [13], and
applications to model, e.g., arterial walls in [14,15]; see also the recent vol-
ume [16]. In such macroscopic models the collagen fibers are assumed to be
continuously arranged in the matrix material, as utilized in [17], and the char-
acteristic nonlinear stiffening is best represented by means of an exponential
function. Effective alternatives are based on limiting chain models, see, for
example, [18], and references therein.

The pioneering work by Lanir [19,20] on the mechanics of fibrous (connec-
tive) tissues as a consequence of its microstructure has influenced much of the
works on microstructural constitutive models. Essentially, the works [19,20]
postulate that the fibers are crimped and that they have different lengths so
that for a given macroscopic deformation in the material each individual fiber
is stretched differently. There is, thus, a distribution in either the stretch of
the fibers or their lengths. This idea has also been adopted subsequently by
means of constitutive models to describe the mechanical response of, e.g., ar-
terial walls ([21] with ideas from [22,14]) or tendons and ligaments [23], just
to name a few. All these constitutive models, however, assume unbounded
statistical distributions for the fiber length (or stretch), which is a bounded
quantity. In addition, in these models no attempt has been made to correlate
the fiber morphology (crimp) with the associated mechanical response in the
form of stress-stretch relationships. It was Lanir who considered the possibility
that the stretch could be nonuniform due to crimping, with a generic distri-
bution along the fiber axis, which he assumed to be Gaussian. Recently, Freed
and Doehring [24] have proposed a model where crimped fibrils in a fascicle
are approximated as a helical spring. Thereby, the collagen fiber waveforms
have a pre-defined arrangement; no statistical distribution is used. In differ-
ent works, such as [25–27], the distribution of the fiber orientations has been
addressed; however, therein, the mechanical properties of the collagen fibers
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within the tissue were considered to be independent of the degree of crimping.

In this paper a new constitutive model for the macroscopic behavior of fi-
brous tissues is presented. It takes the randomly crimped morphology of the
individual collagen fibers into account. In Section 2 a statistical description
of the fiber crimp is developed, which is used in Section 3 to model the col-
lective behavior of fibers. In Section 4 the mechanical behavior of a fibrous
tissue, assumed to be (nearly) incompressible, is analyzed in detail. The tissue
is subject to a stretch-controlled uniaxial extension along the fiber direction,
and, separately, to pure shear. In particular, the effect of the different model
parameters on the mechanical response is studied. The final section contains a
brief discussion together with a description of some limitations of the proposed
constitutive model.

2 Statistical and constitutive description of a single collagen fiber

In unloaded tissue samples collagen fibers show a wavy structure. In this
section we develop a model that incorporates the random crimp of collagen
fibers to be characterized.

2.1 Random crimp of a single fiber

We start by considering a set of randomly generated data in an interval of
length L0 + w on the X-axis such that at any point x within that interval
the associated coordinates y and z are independent and normally distributed
random variables with zero mean. Under this condition the data generated
can be regarded as white Gaussian noise, and characterized by the variance
σ2. In the following it is assumed that the variances in the Y and Z-directions
are equal, in other words the fiber undulates with equal characteristics in all
directions orthogonal to the X-axis.

The randomness of the data generated may be larger than that of an actual
fiber. By applying a smoothing function or filter h, which averages the coordi-
nates of the points in a neighborhood [−w/2, w/2] of each point, a derived set
of data in the interval [0, L0] is obtained. It is implicitly assumed that h and
its first derivative has compact support in [−w/2, w/2]. The resulting data
are also random and normally distributed with zero mean since the filtering
operation does not affect the Gaussian nature of the distribution. As a con-
sequence, the variance of the new random variable is unequivocally related to
that of the white Gaussian noise through the filter.
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Fig. 1. (a) Schematic representation of a single fiber; (b) stress-stretch behavior of
a single fiber (see eq. (6)).

The infinitesimal arc-length dl of the fiber is then (see Fig. 1(a))

dl = (dx2 + dy2 + dz2)1/2, (1)

where dy and dz are related to dx through the derivative of the filter. Thus, we
can write d = dy/dx = dz/dx, where d is a zero mean, normally distributed
random variable whose variance σ2

d can be directly related to σ2. Therefore, it
follows that

dl =
√
2d2 + 1dx = �dx, (2)

where � is a random variable, which is neither zero mean nor normally dis-
tributed, and whose probability density function, subsequently abbreviated as
P, is (see Appendix A.1)

P =
�

σ2
d

exp

(
−�2 − 1

2σ2
d

)
, � ≥ 1. (3)

Relation (2) describes the arc-length at infinitesimal scale within a single fiber.
Our interest is, however, the establishment of (2) at the fiber level, i.e.

l =

L0∫
x=0

�dx ≈ �̄L0, (4)

where �̄ is a fiber-specific quantity that denotes the mean (or expected value)
of �, i.e. (see Appendix A.2)

�̄ =
√
2σ2

d exp(1/σ
2
d) Γ

(
3

2
,

1

2σ2
d

)
, (5)

where Γ(•, •) is the upper incomplete Gamma function [28]. As L0 increases
with respect to the fiber wavelength, approximation (4)2 improves so that we
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Fig. 2. (a) P versus � for different values of σ2
d according to (3); (b) dependence of

�̄ on σ2
d according to (5).

can assume that the linear relationship l = �̄L0 holds for (very) long fibers
like those in fibrous tissues (see, e.g., [29]).

At this point it is important to note that the probability density function
P and the mean �̄ depend only on the variance σ2

d, which is a (measurable)
quantity that can be obtained from the fiber morphology typically seen in
micrographs [30]. This quantity is determined by the frequency content of the
fiber. The question therefore arises as to what the range of σ2

d should be since
it is clear that the higher its value the more is the waviness. A comparison
of computer-generated curves with typical fibers, as can be seen in images
taken through a microscope of, e.g., the outermost artery layer, motivates a
restriction of the values of σ2

d to the interval [0, 2.25]. Curves that are generated
within this interval look very similar to those seen in micrographs of real
samples [30].

The dependence of P and �̄ on σ2
d has been plotted in Fig. 2.

2.2 Constitutive model of a single fiber

The long and thin collagen fibers are essentially one-dimensional entities. Their
wavy appearance in the reference configuration motivates the assumption that
they are unable to sustain compressive loads. For the modeling of the tensile
behavior, we follow the work of others and consider that a given fiber carries
load only after unfolding, assuming that the force necessary to perform this
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is negligible [22,23]. Once the fiber starts to bear load, it is assumed that it
follows Hooke’s law until rupture [31].

The parameter �̄, thus, enters the constitutive model as the stretch at which
the fiber becomes mechanically active, and, subsequently, it will be called (zero
force) ‘stretchability’. In terms of the engineering stress Pf in a single collagen
fiber, the constitutive model may be written piece-wise as

Pf =



0 λ ≤ �̄,

k(λ− �̄) �̄ < λ ≤ �̄+ εmax,

0 λ > �̄+ εmax,

(6)

where the subindex f emphasizes the fact that this relationship applies to a
single fiber, k denotes the elastic modulus of the fiber, λ is the fiber stretch,
and εmax is the maximum stretch the fiber can undergo after unfolding (be-
fore failure). For an illustration of (6) see Fig. 1(b). Note that, while �̄ is a
fiber-specific (geometric) quantity, εmax and k may be considered as material
constants with physical meaning. The symbol ε is used here to denote finite
(unidimensional) stretch.

As Pf and λ are work conjugate, the associated elastic strain energy ψf stored
in a single fiber with stretch λ is

ψf(λ, �̄) =
k

2

(
λ− �̄

)2
, �̄ < λ ≤ �̄+ εmax. (7)

Hence, the energy needed to rupture a fiber equals the elastic energy stored
at maximum stretch, i.e.

ψmax =
k

2
ε2max, (8)

which is independent of the fiber-specific (geometric) morphology.

3 Mechanical behavior of fibrous tissues

3.1 General mechanical behavior

The higher-order structure of fibrous tissues is formed by fiber bundles, which
are groups of fibers that share a common orientation, subsequently called fiber
families. Different fiber families may have different orientations such as is the
case in the outermost layer (the adventitia) of a human artery. In the following
developments we neglect the statistical distribution of fiber orientations and
consider that within a fiber family the fibers have the same mean orientation.
We may describe the macroscopic mechanical behavior of a collagen fiber

6



Acc
ep

te
d m

an
usc

rip
t 

family by means of a continuum formulation, which also simplifies numerical
implementations.

We consider a representative volume element within the fibrous tissue and
assume that the fibers and the matrix material do not interact mechanically,
but undergo affine deformations described by the right Cauchy-Green tensor
C. Under these conditions, the strain energy ψtissue stored in the tissue may
be written as

ψtissue = ψmatrix(C) +
N∑

i=1

ψfibers (C,Ai) , (9)

applying an additive split, as first proposed in [32]. This equation considers
N distinct fiber families with specific orientations, each of which is described
by means of a unit vector ai0 in the reference configuration, with the resulting
dyadic product Ai = ai0 ⊗ ai0 . The quantity Ai denotes the structure tensor
associated with family i so that the corresponding stretch λi of the fiber family
i is

λi = (C : Ai)
1/2 . (10)

In a general situation, ai0 is a three-dimensional vector. Note that according
to the continuum theory of finite elastic deformations of solids reinforced with
fibers, the fibers are assumed to be infinitesimally thin [12].

In eq. (9), the term ψmatrix represents the behavior of the aqueous, gel-like
matrix material in which the fiber families are embedded. This substance is
usually considered to behave isotropically. Although several models capable
of describing large deformations are suitable for ψmatrix [33], it is common to
apply the neo-Hookean model because of its simplicity (see, e.g., [17, Chapter
6]). For the fibers, we assume that the morphology is independent of the
orientation. It is clear, however, that each fiber can have a different waviness
due to the intrinsic randomness of the fiber assembly process. This leads to
the realization that the stretchability �̄ is a statistically distributed variable
in the tissue (across the fibers), with distribution P(�̄).

In the subsequent development, without loss of generality, we consider a fibrous
tissue with only one family of collagen fibers (N = 1). At a given stretch λ
some fibers in the tissue may still be slack, if �̄ is greater than the stretch λ
(see Fig. 1(b)). Therefore, only those fibers that have been already unfolded
can contribute to ψfibers according to

ψfibers =

λ∫
	̄=1

ψf(λ, �̄)P(�̄)d�̄. (11)

Subsequently, we use the symbol ψ instead of ψfibers for simplicity.

According to (5), �̄ depends nonlinearly on σ2
d, which has a limited range, as

discussed in Section 2.1. Numerical tests suggest that P(�̄) can be approxi-
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λ
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a +m+ εmax

m ≤ εmax

λ

a
εmax
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a+m+ εmax

b εmax
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Fig. 3. Schematic representation of two possible loading phases distinguished by
m, the range of the fiber-specific quantity �̄: m ≤ εmax in which fully recruited
fibers are reached before tissue failure, and m > εmax in which the fibers start to
fail before the maximum stretch is reached. The bell-shaped curves show the Beta
distribution (both sketches are based on the same parameters, only m is different),
while the other nonlinear curves represent the stiffening of the tissue up to failure.
The parameters a and εmax denote the value of the stretchability �̄ at minimum
σ2

d, and the maximum stretch a fiber can undergo after unfolding, respectively. The
parameter b refers to the unloading/reloading behavior (see Section 3.3).

mated satisfactorily by the Beta function, which has lower and upper limits
and can represent symmetric and non-symmetric datasets [34]. In what fol-
lows, the lower limit is denoted by a, i.e. the value of �̄ when σ2

d takes on its
smallest value, while the upper limit is denoted by a + m, i.e. the value of
�̄ at which σ2

d is a maximum. Hence, m is the range of �̄ describing the fiber
morphology across the tissue. According to [28] the (symmetric) Beta function
is

β(η, γ) =
Γ(η)Γ(γ)

Γ(η + γ)
, (12)

where η and γ are called shape parameters, and Γ(•) denotes the Gamma
function with argument •.

3.2 Tissue behavior during monotonic loading

For subsequent developments it is convenient to introduce the modified pa-
rameters λ̄ = λ−a and �̃ = �̄−a, where �̃ is then within the range [0, m]. With
these variable changes and the introduction of a as the lower limit, eq. (11)
can be rewritten as

ψ =

λ̄∫
	̃=0

ψf(λ, �̃)β
m
0 (η, γ; �̃)d�̃, (13)
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where

βm
0 (η, γ; �̃) =

1

m

1

β(η, γ)

(
�̃

m

)γ−1 (
1− �̃

m

)η−1

(14)

represents the two-parameter Beta distribution of �̃ ∈ [0, m]. Consequently,
by introducing the hypergeometric function 2F1, [28], the integral in (13) can
be written as

ψ = 2B

(
λ̄

m

)γ+2

2F1

(
1− η, γ, γ + 3,

λ̄

m

)
, B =

k

2

1

β(η, γ)

m2

γ(γ + 1)(γ + 2)
, (15)

with 0 ≤ λ̄ ≤ min(m, εmax), and β given by (12). Note that, although the
behavior of a single fiber is considered to be linear, the tissue as a whole
behaves nonlinearly, as described in (15).

When a fibrous tissue is subject to tensile loading in the direction of the fiber
orientation, we then distinguish between two cases for the proposed model
(see also Fig. 3):

(i) m ≤ εmax: in this case the fibers are gradually recruited, as the tissue is
stretched. At a certain point, all fibers are then unfolded and the stiffness
due to the fibers is constant. Hence, a fully recruited elastic phase is reached
before tissue failure.

(ii) m > εmax: in this case the fibers start to fail when the maximum stretch
εmax is reached, while other fibers are still slack. This is a phase we call ‘mixed
recruitment/failure’.

For case (i), eq. (15) can be simplified to

ψ =
k

2

[
λ̄2 − 2mγλ̄

η + γ
+

γ(γ + 1)m2

(η + γ)(η + γ + 1)

]
, m < λ̄ ≤ εmax, (16)

while, for case (ii), integration of (13) gives the strain energy

ψ = 2B

(
λ̄

m

)γ+2

2F1

(
1− η, γ, γ + 3,

λ̄

m

)
+ ψ̂, εmax < λ̄ ≤ m, (17)

where the notations
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ψ̂=−B

(
λ̂

m

)γ+1
λ̄+ εmax

m
(γ + 1)(γ + 2)2F1

(
1− η, γ, γ + 1,

λ̂

m

)

+2B

(
λ̂

m

)γ+1
λ̄

m
γ(γ + 2)2F1

(
1− η, γ + 1, γ + 2,

λ̂

m

)

−B

(
λ̂

m

)γ+2

γ(γ + 1)2F1

(
1− η, γ + 2, γ + 3,

λ̂

m

)
, (18)

and λ̂ = λ̄− εmax have been used.

If λ̄ increases beyond max(m, εmax) (beyond either full recruitment or mixed
recruitment/failure) the strain energy required to stretch the tissue until com-
plete failure (i.e. at λ̄ = m+ εmax) is

ψ=
k

2

[
λ̄2−2mγλ̄

η+γ
+

γ(γ+1)m2

(η+γ)(η+γ+1)

]
+ψ̂, max(m, εmax)<λ̄≤m+εmax. (19)

Equations (15)–(19) define the various energies required to stretch the (fibrous
part of the) tissue monotonically along the fiber orientation. For m ≤ εmax we
then have

ψ =



eq. (15) 0 ≤ λ̄ ≤ m,

eq. (16) m < λ̄ ≤ εmax,

eq. (19) εmax < λ̄ ≤ m+ εmax,

(20)

while the equations summarize for m > εmax according to

ψ =



eq. (15) 0 ≤ λ̄ ≤ εmax,

eq. (17) εmax < λ̄ ≤ m,

eq. (19) m < λ̄ ≤ m+ εmax.

(21)

Note that the first and third rows in (20) and (21) involve the same equations,
however, the range of λ̄ is different; depending on the relative values of m and
εmax.

3.3 Tissue behavior during unloading/reloading

We assume that reloading follows the last unloading path, and neglect viscous
effects. Similarly to Section 3.2, for the unloading/reloading process we may
also distinguish two cases: (i) elastic unloading/reloading, where the fibers
are unfolded (gradually recruited) as before; (ii) tissue damage occurs due
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to individual fiber failure upon further stretching (mixed recruitment/failure
phase).

The energy required for elastic unloading/reloading is

ψ = 2B

(
λ̄

m

)γ+2

2F1

(
1− η, γ, γ + 3,

λ̄

m

)
+ ψb, b ≤ λ̄ ≤ min(m, εmax). (22)

Here the notations

ψb =−B
λ̄2

m2

(
b

m

)γ

(γ + 1)(γ + 2)2F1

(
1− η, γ, γ + 1,

b

m

)

+2B
λ̄

m

(
b

m

)γ+1

γ(γ + 2)2F1

(
1− η, γ + 1, γ + 2,

b

m

)

−B

(
b

m

)γ+2

γ(γ + 1)2F1

(
1− η, γ + 2, γ + 3,

b

m

)
, (23)

and b = λmax − a− εmax (see Fig. 3) have been used, where λmax denotes the
maximum stretch reached during the loading history.

For m ≤ εmax all non-failed fibers can be stretched in the unloading/reloading
path, and the above expression turns into

ψ =
k

2

[
λ̄2 − 2mγλ̄

η + γ
+

γ(γ + 1)m2

(η + γ)(η + γ + 1)

]
+ ψb, m < λ̄ ≤ b+ εmax. (24)

The expressions (20)–(24) can now be reconciled, and written for general load-
ing conditions as

ψ =




if λ̄ = λ̄max and δλ̄ ≥ 0 eq. (20) for m ≤ εmax,

eq. (21) for m > εmax,

else if b ≤ λ̄ ≤ min(m, εmax) eq. (22),

else if m < λ̄ ≤ b+ εmax eq. (24),

else if b < λ̄ 0,

(25)

where δλ̄ represents an admissible variation of λ̄.
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Parameter Symbol Value Dimension

Elastic modulus of the fiber k 400 MPa

Maximum fiber stretch εmax 0.2 –

Shape parameters η 4.5 –

γ 2.8 –

Range of �̄ m 0.15, 0.25 –

Range of damaged fibers b 0.05 –
Table 1
Parameter values used for the numerical examples.

4 Numerical examples

In this section we provide the stress and elasticity tensors for the considered
constitutive model proposed in Section 3 and two representative numerical
examples that demonstrate the applicability of the model. The parameters
used for the constitutive model are chosen arbitrarily, and are summarized in
Table 1.

4.1 Stress and elasticity tensors

For both examples the fibrous tissue is assumed to be (nearly) incompressible.
The mechanical behavior of the matrix material is assumed to follow the neo-
Hookean model. Thus,

ψmatrix =
c

2
(I1 − 3), I1 = C : I, (26)

where I is the identity tensor. The stresses are derived from the strain-energy
function according to, [17],

Stissue = −JpC−1 + 2
∂ψtissue

∂C
= −JpC−1 + Smatrix + Sfibers, (27)

where J = (detC)1/2 denotes the volume ratio, with J = 1 for the incompress-
ible limit, and p is the hydrostatic pressure. The tensor Stissue is the second
Piola-Kirchhoff stress tensor, and Smatrix and Sfibers are the contributions to it
from the matrix and fibers, respectively. By means of eqs. (26), (10) and the
chain rule, we find the explicit expressions

Smatrix = 2
∂ψmatrix(C)

∂C
= cI, (28)

12
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Sfibers = 2
N∑

i=1

∂ψfibers(C,Ai)

∂C
=

N∑
i=1

1

λi
ψλi

Ai, (29)

where the abbreviation ψλi
= ∂ψfibers(λi)/∂λi has been introduced, with the

individual strain energies ψfibers summarized in (25). Note that ∂ψfibers/∂λi =
∂ψfibers/∂λ̄i, as λi and λ̄i only differ by the constant a. The derivative ψλi

may
be obtained explicitly by applying the following property of the hypergeomet-
ric function 2F1, [28]:

∂2F1(a, b, c, z)

∂z
=

ab

c
2F1(a + 1, b+ 1, c+ 1, z). (30)

The material elasticity tensor Ctissue associated with Stissue is given by

Ctissue = 2
∂Stissue

∂C
= Cvol + Cmatrix + Cfibers, (31)

with

Cfibers = 2
N∑

i=1

∂Sfibers

∂C
=

N∑
i=1

(
ψλiλi

λ2
i

− ψλi

λ3
i

)
Ai ⊗ Ai, (32)

where ψλiλi
= ∂2ψfibers(λi)/∂λ

2
i . The tensor Cvol in (31) is given in [17], p. 254,

and Cmatrix reduces to the (fourth-order) zero tensor for the neo-Hookean
model. Note the explicit appearance of the structure tensor Ai associated
with each fiber family i in the expressions for the stress and elasticity tensors.

The engineering (first Piola-Kirchhoff) stress tensor P then follows from S
through the relation P = FS.

4.2 Uniaxial extension test with loading along the fiber direction

We consider now a fibrous tissue with only one collagen fiber family (N = 1)
subject to stretch-controlled uniaxial extension along the fiber direction, as
shown in Fig. 4(a). The tissue is stretched until individual collagen fibers fail,
then it is unloaded and reloaded until complete tissue failure. In order to
focus just on the fibers, in this example we omit the contribution due to the
matrix material so that the parameter c in (26)1 is zero. In several fibrous
tissues the matrix material is essentially an aqueous substance with negligible
tensile stiffness in comparison with the collagen fibers, which explains the high
compliance of these tissues in the low-stretch domain and justifies the above
assumption.

The resulting relations between the engineering stress P and the stretch λ̄
for m ≤ εmax and m > εmax are plotted in Figs. 4(b) and 4(c), respectively.
These plots are independent of the parameter a, i.e. the value of �̄ when σ2

d
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Fig. 4. (a) Schematic representation of the uniaxial extension test along the fiber
direction; (b), (c) engineering stress P (in MPa) versus stretch λ̄ for loading and
unloading/reloading paths for m ≤ εmax and m > εmax, respectively. Solid curves
corresponds to the elastic collagen recruitment phase; dotted curves relate to the
phase in which all collagen fibers are fully recruited, i.e. (b), and to the mixed
recruitment/failure phase, i.e. (c); dashed curves correspond to the failure phase
and dash-dotted curves to the recruitment phase in the unloading/reloading paths.

takes on its smallest value. The different m values do not affect the shape of
the Beta distribution or the cumulative strain energy required to stretch the
tissue until complete failure. However, as can be seen by comparing the two
plots in Fig. 4, the fibers are recruited more rapidly and may sustain higher
stresses for m ≤ εmax, although they fail more abruptly; total fiber failure
is reached at a smaller stretch value λ̄ for the case m ≤ εmax. In addition,
when full recruitment is achieved the linear stress-stretch relationship that
describes the behavior of a single fiber is recovered, while this is not the case
for m > εmax.

Although ψfibers, and hence its derivatives, are defined piecewise, see (25),
Figs. 4(b) and (c) feature smooth curves. In fact, ψfibers is twice differentiable
in the whole domain of the monotonically increasing loading paths, and also
for the unloading/reloading paths except for the stretch λ̄ at b+ εmax = 0.25.
This is due to the smoothness of the Beta distribution that describes the fiber
morphology at the tissue level. Note, however, that special methods such as
the arc-length method must be applied in a numerical simulation in order to
handle the softening effect induced by the progressive failure of the fibers,
which results in a negative definite tangent matrix.
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4.2.1 Effect of the shape parameters η and γ on the stress-stretch behavior

We consider the same loading protocol as above to study the effect of the
shape parameters η and γ on the Beta distribution, and, therefore, on the
final form of the strain energy ψfibers and the resulting stress-stretch behavior.

Depending on the values ofm and εmax, there are basically two different stress-
stretch behaviors for each pair of (η, γ). Here we restrict our analysis to bell-
shaped Beta distributions (γ > 1 and η > 1), and investigate two cases with
equal shape parameters (γ = η = 2 and γ = η = 8), which lead to symmetric
Beta distributions, and two additional cases with γ = 2, η = 8 and γ = 8,
η = 2. The results are plotted in Fig. 5 and organized as follows: the first
column shows the Beta distribution over the normalized domain �̄/m for the
given values of the shape parameters; the second and third columns show the
related stress-stretch relations in terms of engineering stress P and stretch λ̄
for m ≤ εmax and m > εmax, respectively, where the unloading curves have
been omitted. The patterns for the individual curves are as shown in Fig. 4.
Except for γ and η all material parameters are taken from Table 1.

As expected, for the case m ≤ εmax the linear stress-stretch relationship is
recovered for the phase in which all fibers are recruited. For all displayed curves
for m ≤ εmax the maximum stress value is higher than for m > εmax. Higher
values for η and γ tend to make the bell of the Beta distribution narrower
and higher, and to increase the maximum stress value (compare the first two
rows in Fig. 5). For non-symmetric Beta distributions, i.e. the third and fourth
rows in Fig. 5, the final shapes of the stress-stretch curves depend strongly
on whether the distribution of �̄ is shifted towards a lower or a higher value,
i.e. whether or not γ is lower or larger than η. For example, for γ < η, third
row in Fig. 5, the Beta distribution is shifted towards the left, and the stress
that the fibers can sustain decreases abruptly as soon as the first fiber fails
(for λ̄ > εmax). For γ > η, however, the Beta distribution is shifted towards
the right, and the stress in the fibers is small when the (elastic) recruitment
phase ends, but the stress continues to increase after the fibers start to fail.

4.3 Pure shear test

In this example we consider a fibrous tissue with two collagen fiber families
(N = 2) subject to pure shear, as shown in Fig. 6. The fiber families are
located in the X-Y plane, and are symmetrically disposed with respect to the
X axis and described in terms of the angle θ. The tissue is stretched in the
Y -direction, while the length in the X-direction is kept constant. For that
kinematics the matrix representation of the right Cauchy-Green tensor C has
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Fig. 5. Beta distributions (P versus �̄/m) and related stress-stretch relationships (P
versus λ̄) for four sets of shape parameters η and γ, and for the cases m ≤ εmax and
m > εmax. Units for P are given in MPa. The patterns for the individual curves are
as in Fig. 4.
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θ

Fig. 6. Schematic representation of the pure shear test.

the form

[C] =



1 0 0

0 λ2 0

0 0 λ−2


 , (33)

where λ denotes the stretch in the Y -direction. According to the material and
load symmetries, the stretch in the fibers is the same for both families. Thus,
from (10) we find that

λi = (C : ai0 ⊗ ai0)
1/2 = (cos2 θ + λ2 sin2 θ)1/2, i = 1, 2, (34)

where λ1 = λ2. The material parameters are taken from Table 1. For the
matrix material a (neo-Hookean) parameter with value c = 15 kPa was chosen
for the model (26).

In Fig. 7 the engineering stress components Px and Py in the X and Y -
directions are plotted versus the stretch λ for different fiber orientations θ
(90 ◦, 60 ◦, 50 ◦, 40 ◦, 30 ◦, 15 ◦), and for monotonic loading up to λ = 1.75.
Plots are shown for the two cases m ≤ εmax and m > εmax. No unloading
paths are presented for clarity.

The case for which the fibers are located at θ = 0 ◦ (in the X-direction)
is considered to be special because, according to (34), because the stretch
λ1 = λ2 = 1 in the fiber families is independent of the applied stretch λ.
Hence, the stress contribution due to the fibers is zero. In the case of θ = 90 ◦,
for which the fibers are located along the Y -direction, the stretch λ1 = λ2 in
the fiber families is equal to the applied stretch λ. Hence, the corresponding
component of the structure tensor is zero and the stress contribution of the
fibers in the X-direction vanishes. These apparently counterintuitive results
are a consequence of the consideration that the collagen fibers are parallel and
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Fig. 7. Pure shear test for different fiber orientations and for the two cases m ≤ εmax

and m > εmax: engineering stress components Px, Py (in X and Y -directions) versus
stretch λ applied in the Y -direction, compare with Fig. 5. Units for the stresses are
given in MPa. The patterns for the individual curves are as in Fig. 4.

decoupled from the matrix material.

For all fiber orientations higher stresses are reached for the case m ≤ εmax.
The stress-stretch relationship is also linear in the fully recruited phase. As the
fibers are increasingly aligned with the loading direction, the maximum stress
Pymax in the Y -direction increases, while complete tissue failure happens at
smaller stretch values. Naturally, for the engineering stress in the X-direction,
the maximum value Pxmax decreases with increasing alignment of the fiber
family with the loading direction. This is due to the more progressive fiber
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recruitment at lower fiber angles.

For low values of θ complete tissue failure is not reached within the studied
stretch range, as can be seen in the plots of Fig. 7. From the modeling point of
view higher λ values are not realistic since the matrix material would also be
damaged. Finally, is is worth noting that the slopes of the stress-stretch curves
change with the fiber orientation. For the X-direction, the slope increases with
increasing θ until it reaches a maximum at about 45 ◦, and then it decrease
again. For the Y -direction, the slopes of the stress-stretch curves decreases
monotonically with θ.

5 Discussion

In this paper a new constitutive model for fibrous tissues that considers the
randomly crimped morphology of the individual collagen fibers has been pre-
sented. On the basis of continuum mechanics the (macroscopic) constitutive
model is formulated in terms of a few parameters, and it can capture material
softening due to fiber failure. The collagen fiber is allowed to undulate ran-
domly and its morphology may be described by a single parameter, which is
measurable through micrographs using signal processing techniques. Although
in the present model we have assumed that a single fiber may fail abruptly, the
fibrous tissue fails progressively due to the different waviness of the fibers. This
reflects our experimental observation when a fibrous tissue is stretched until
rupture. This is also an important aspect for the numerical implementation in
an implicit finite element code.

The proposed constitutive model is based on the idea that the energy required
to move the fiber from the initially, crimped state to its fully extended state,
is negligible in comparison with the energy required to stretch the fiber. Such
an approach is relatively common in the literature and can be traced back to
the work [35]. The linear stress-stretch relationship for the fiber was verified
experimentally in [31], and also adopted here.

The basic approach proposed in this work is similar to that of others; see, e.g.,
[19,23,21,36]. However, the underlying tissue characterization is different since
the statistical distribution can be measured [30]. This provides an ‘objective’
approach in the sense that the structure of different fibrous tissues, or regions
within tissues, can be compared with each other without making assumptions
about the collagen fiber length distribution. In the proposed approach the
fibers must only be long enough with respect to their (random) wavelengths,
which is the case for fibrous tissues. In addition, the proposed model enables
the derivation of analytical expressions while capturing the complexity of the
tissue behavior. For the implementation in a general code, it must be noted
that the fibers remain one-dimensional entities irrespective of their spatial
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orientation. Therefore, according to Eq. (34)1, their stress-stretch behavior
is controlled by the scalar λ. The only difficulty is the implementation of
the hypergeometric function. Although programming 2F1(a, b, c, z) for general
cases is not trivial, in our particular case (constant a, b, c and real z > 1) 2F1

is a single-valued function with no singularities. The hypergeometric function
can either be applied directly from existing mathematical libraries, e.g. [37],
or approximated by a quickly convergent series of exponential terms [28].

In the literature there are several other constitutive models for fibrous tissues
available. Among these, a number of structural models have been proposed
that characterize the fiber recruitment process by assuming that either the
fiber length, [19,38,39,22,36], or the stretch at which the fibers engage [23,21]
are statistically distributed. These models use unbounded distributions, which
seem non-physiological for quantities such as the fiber length and the stretch.
The choice of the Beta distribution overcomes this limitation. Fiber mor-
phologies have also been incorporated into other constitutive models such as
[40–42,24], although the characteristic waviness of the collagen fibers given
therein has a pre-defined arrangement.

The proposed constitutive model assumes that the fibers are infinitesimally
thin. It does not consider the volumetric fractions of collagenous and non-
collagenous components. This fraction could essentially be considered by scal-
ing the fiber elastic modulus k and the neo-Hookean parameter c. The extent
to which the fiber-matrix interaction contributes to the overall tissue stiffness
is not known and, therefore, has not been considered. Similarly, the matrix
is assumed to undergo finite deformations without damage. In addition, it
has been assumed that the fibers do not interact with each other, which es-
sentially implies that there is no fiber cross-linking. Moreover, the fibers do
not interact with the matrix material. Images of human blood vessel samples
obtained from, e.g., the outermost collagen-rich layer, taken through a micro-
scope, reveal that collagen fibers are arranged very much in parallel, at least
locally. This motivated the consideration of parallel fiber arrangement in the
present approach. At other locations in a tissue region, however, the collagen
fibers are aligned in a different direction. Hence, more globally, collagen fibers
have distributed orientations which, in addition, need to be incorporated in a
model, a step to be addressed in future.
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A Probability density function and mean of �

A.1 Probability density function P of �

From eq. (2) we know that � =
√
2d2 + 1. Define now r = 2d2, which is a

random variable whose distribution is χ2 with σd, and thus

P(r) =
1

2σ2
d

exp

(
− r

2σ2
d

)
, r ∈ [0,∞). (A.1)

From the definitions of � and r it follows that r = �2 − 1. Now for � ≥ 1 we
may derive the probability density function, and from (A.1) we find that

P(�) = P [r(�)]

∣∣∣∣∣∂r(�)∂�

∣∣∣∣∣ = 1

2σ2
d

exp

(
−�2 − 1

2σ2
d

)
|2�|, (A.2)

which is eq. (3), because � is always positive.

A.2 Mean �̄ of �

The mean �̄ of � is

�̄=

∞∫
	=1

�2

σ2
d

exp

(
−�2 − 1

2σ2
d

)
d� = σd

√
2 exp(1/σ2

d)

∞∫
t=1/(2σ2

d
)

t1/2 exp(−t)dt

=
√
2σ2

d exp(1/σ
2
d)Γ

(
3

2
,

1

2σ2
d

)
, (A.3)

which is the desired result (5). In this derivation the variable change t =
�2/(2σ2

d) has been used, and the last equality follows from the definition of the
incomplete Gamma function [28]. The same procedure can be used to calculate
the variance of �.
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