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Abstract

If, in a continuum, the Cauchy stress tensor is traceless, the material is said to be in a
state of “pure shear”. Here we derive consequences of a fundamental theorem concerning
pure shear, in the contexts of infinitesimal strain, finite strain, and fluid motion.

1 Introduction

If the Cauchy stress tensor t at a point P in a body is such that tr t = 0, the material at P is
said to be in a state of “pure shear”. It has been shown (see [1] and also [2] [3] [4] [5]) that then
there exists an orthonormal triad m,n,p (say) such that m · tm = n · tn = p · tp = 0. In fact,
there is an infinity of such triads. One of the elements of the triad may be arbitrarily chosen
along any generator of a cone. Then, in [3], a simple geometrical determination of the other two
is described.

Essentially, this is a result in tensor algebra (see [6], p.87, problem 10). Here, we exploit
this result to obtain further consequences in the contexts of the linearized elasticity theory of
isotropic bodies, the finite elasticity theory of isotropic bodies, and in the theory of viscous
fluids.

The plan of the note is as follows. First (§2) we recall basic notation and background results.
Then (§3) we consider infinitesimal strain of isotropic elastic bodies. Next(§4) the finite strain
theory of Bell and Ericksen models is considered (§4). Finally (§5) we close with a few remarks
on fluid motion.

2 Notation and background

We consider real symmetric second order tensors : the Cauchy stress tensor tij, the infinitesimal
strain tensor eij , the rate of strain tensor dij, and the left and right Cauchy-Green strain tensors
Bij and CAB, respectively.

We assume that a body is subjected to a deformation x = x(X, t) in which a particle initially
at X is displaced to x at time t in the deformed state. We recall that the stretch λ(N) of an
infinitesimal material line element initially along the unit vector N at X in the undeformed state
of a body is given by [7]

λ2
(N) = N ·CN = NACABNB , (2.1)

and the “resile” λ(n) of an infinitesimal material line element along the unit vector n at x in the
deformed state of the body is given by [8]

λ2
(n) = n · B−1n = niB

−1
ij nj . (2.2)

If the element that is along N before deformation is along n after deformation, then [8]

λ(N)λ(n) = 1 . (2.3)

The shear γ(M,N) of a pair of infinitesimal material line elements along the unit vectors M
and N which subtend an angle Θ at X is given by [7]

cos(Θ + γ(M,N)) = M · CN/{λ(M)λ(N)} . (2.4)
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Similarly, two infinitesimal material line elements along the unit vectors m and n which subtend
the angle θ at x have been subjected to the shear γ(m,n), given by

cos(θ − γ(m,n)) = m · B−1n/{λ(m)λ(n)} . (2.5)

If the elements along M, N before deformation are along m, n after deformation, then γ(m,n) =
γ(M,N).

Turning now to areal shear [9], let P and Q be unit normals to infinitesimal material planar
elements at X subtending the angle Ψ before deformation. If, after deformation, these material
planar elements at x have unit normals p and q, these subtend the angle ψ = Ψ + α(P,Q),
given by [9]

cos(Ψ + α(P,Q)) = p · q = P · C−1Q/{µ(P)µ(Q)} , µ2(P) = P · C−1P . (2.6)

Also, the dual relation is

cos(ψ − α(p,q)) = P · Q = p ·Bq/{µ(p)µ(q)} , µ2(p) = p · Bp . (2.7)

The “areal stretch” µ(P) and the “areal resile” µ(p) are related by µ(P)µ(p) = 1 , and the angle
α(p,q) = α(P,Q) is the “areal shear”.

In the context of infinitesimal strain theory, the change in length per unit initial length of a
material line element along N in the undeformed state is e(N) given by [10]

e(N) = N · eN = NAeABNB , (2.8)

whilst the shear γ(M,N) is given by [11]

γ(M,N) = sinΘ{e(A) − e(G)} , (2.9)

where the orthogonal unit vectors A, G, coplanar with M and N, are the bisectors of the angle
Θ between M and N, , given by

2 sin(Θ/2)A = M −N , 2 cos(Θ/2)G = M+N . (2.10)

Finally, we note that in the context of fluid motion, the stretching d(n) of an infinitesimal
material line element instantaneously along the unit vector n at x at time t is given by [7]

d(n) = n · dn = nidijnj , (2.11)

whilst the shearing θ̇(m,n), of a pair of material line elements instantaneously along the unit
vectors m and n, and subtending the angle θ at x at time t, is given by [11]

θ̇(m,n) = sin θ{d(a) − d(g)} , (2.12)

with a and g given by

2 sin(θ/2)a = m− n , 2 cos(θ/2)g = m+ n . (2.13)
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3 Infinitesimal strain

We first consider an isotropic compressible elastic material with constitutive equation

tij = 2µeij + λekkδij , (3.1)

where λ, µ are constants. If the material is maintained in a state of simple shear or simple
torsion, for each of which ekk = 0, so that there is no change in volume in the deformation, then,
as Ting has pointed out [4], there exists an orthonormal triad m,n,p such that

e(m) = e(n) = e(p) = 0 . (3.2)

Thus there is no change in length of material line elements initially along m,n,p. It follows
immediately that

p·(em×en) + (m·en)2 = 0 , m·(en×ep) + (n·ep)2 = 0 , n·(ep×em) + (p·em)2 = 0 . (3.3)
Also, using (3.1) and (3.2),

m · tm = n · tn = p · tp = 0 , (3.4)

so that the material is in a state of pure shear. Of course from (3.1), we have tkk = 0, using
ekk = 0. Similar to (3.3), we also have

p·(tm×tn) + (m·tn)2 = 0 , m·(tn×tp) + (n·tp)2 = 0 , n·(tp×tm) + (p·tm)2 = 0 . (3.5)

For an isotropic incompressible elastic material,

tij = 2µeij + pδij , ekk = 0 , (3.6)

where p is a scalar to be determined from the field equations and boundary/initial conditions.
Because ekk = 0, it follows that there exists an orthonormal triad m,n,p (say) such that (3.2)
holds. However, in the present case,

m · tm = n · tn = p · tp = p , (3.7)

which need not be zero, so that the conditions for pure shear do not hold. Even so, the universal
relations

m · tm− n · tn = 0 , n · tn− p · tp = 0 , (3.8)

are valid.
Suppose now that ekk = 0 for a particular deformation or is a constraint on the deformation.

In either case we have an orthonormal triad m,n,p for which (3.2) hold. If the unit vectors r,
s are given by

r = cos(φ/2)m− sin(φ/2)n , s = cos(φ/2)m+ sin(φ/2)n , (3.9)

where φ is arbitrary, then γ(r,s), the shear of the pair of infinitesimal material line elements along
r and s is

γ(r,s) = sin φ{e(m) − e(n)} = 0 , (3.10)

using (3.2). Thus the shear is zero for any pair (r, s) of material line elements given by (3.9) in
which φ is arbitrary, hence any pair (r, s) such that m and n are along the bisectors of the angle
φ subtended by this pair.
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Similarly, there is an infinity of unsheared pairs along (r′, s′) in the plane of (n,p) given by

r′ = cos(φ′/2)n− sin(φ′/2)p , s′ = cos(φ′/2)n+ sin(φ′/2)p , (3.11)

where φ′ is arbitrary, and along (r′′, s′′) in the plane of (p,m) given by

r′′ = cos(φ′′/2)p− sin(φ′′/2)m , s′′ = cos(φ′′/2)p+ sin(φ′′/2)m , (3.12)

where φ′′ is arbitrary.
From (3.1), in the case of a compressible material, we note for the stress that we have

r · ts = r′ · ts′ = r′′ · ts′′ = 0 . (3.13)

In the case of an incompressible material, from (3.6), we have

r · ts = pr · s , r′ · ts′ = pr′ · s′ , r′′ · ts′′ = pr′′ · s′′ , (3.14)

so that
r · ts
r · s =

r′ · ts′
r′ · s′ =

r′′ · ts′′
r′′ · s′′ . (3.15)

Of course, when φ = π/2 (φ′ = π/2, φ′′ = π/2), then r · ts = 0 (r′ · ts′ = 0, r′′ · ts′′ = 0).

4 Finite strain

Turning now to the theory of finite strain we consider two models of homogeneous isotropic
elastic materials, the Bell material [12] and the Ericksen material [13]. These are models of
internally constrained materials. It is observed that the internal constraints may be written in
the form tr ∆ = 0, where ∆ is a symmetric second order tensor, which means that there exists
an orthonormal triad such that the diagonal components of ∆ in this triad are all zero. We
explore the consequences of this fact for the two constraints.

The Bell model is such that the material is assumed to be subject to the internal constraint

tr V = 3 , (4.1)

where V = B1/2, so that the sum of the principal stretches always adds up to three in any
deformation. The constitutive equation is

t = −pV + α1+ βB , (4.2)

where α, β are functions of the invariants (tr B, tr B2) and p is to be determined from the field
equations and boundary/initial conditions.

We note that (4.1) may be written

tr (V − 1) = 0 , or, equivalently, tr (U − 1) = 0 , (4.3)

where U = C1/2. From (4.3) it follows that there exists an orthonormal triad m,n,p (say) such
that

m · Vm = n · Vn = p · Vp = 1 . (4.4)
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It then follows from (4.2) that

n · tn− m · tm
m · tm− p · tp =

n ·Bn −m · Bm

m · Bm− p · Bp
, (4.5)

a universal relation [14] valid for any deformation of the material. Also, using (4.4), we have

u · Vw = 0 , (4.6)

where u, w, orthogonal unit vectors, are given by

√
2u = m+ n ,

√
2w = m− n . (4.7)

Similarly, u′ · Vw′ = 0 and u′′ · Vw′′ = 0, where u′,v′ are unit vectors along the bisectors of
(n,p) at x, and u′′,v′′ are unit vectors along the bisectors of (p,m) at x. From the constitutive
equation (4.2), we then note that

u · tw = βu · Bw , u′ · tw′ = βu′ · Bw′ , u′′ · tw′′ = βu′′ ·Bw′′ , (4.8)

so that we have the universal relations

u · tw
u · Bw

=
u′ · tw′

u′ ·Bw′ =
u′′ · tw′′

u′′ · Bw′′ . (4.9)

Because there is an infinity of orthonormal triads for which (4.4) holds, there is a corresponding
infinity of unit vectors u,v, u′,v′, u′′,v′′ for which these relations are valid.

In the Ericksen model, the material is assumed to be subject to the internal constraint

tr C = 3 , or, equivalently, tr B = 3 . (4.10)

so that the sum of squares of the principal stretches always adds up to three. The constitutive
equation is

t = −pB + γ1+ δB−1 , (4.11)

where γ, δ are functions of the invariants (tr B2, tr B3) and p is to be determined from the field
equations and boundary/initial conditions.

We note that (4.10) may be written

tr (C − 1) = 0 , or, equivalently, tr (B − 1) = 0 . (4.12)

Hence, from (4.12)1, there exists an orthonormal triad M,N,P (say) at X such that

M · CM = N · CN = P ·CP = 1 , (4.13)

or, equivalently,
λ2

(M) = λ2
(N) = λ2

(P) = 1 , (4.14)

so that the infinitesimal material line elements initially along M,N,P (say) are unstretched in
the deformation. Also, using (4.13) we have

R · CS = 0 , (4.15)
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where R, S, orthogonal unit vectors along the bisectors, internal and external, of the right angle
subtended by M and N, are given by

√
2R = M+N ,

√
2S = M −N . (4.16)

Thus, using (2.4),
γ(R,S) = 0 , (4.17)

the pair of orthogonal material line elements initially along R,S, the bisectors of the angle
between M and N at X, is unsheared.

Similarly, the pairs of orthogonal material line elements initially along the bisectors of the
angle between N and P, and between P and M, are unsheared.

From (4.12)2, it follows that there exists an orthonormal triad f , g,h (say) at x such that

f · Bf = g · Bg = h · Bh = 1 . (4.18)

It then follows from the constitutive equation (4.11) that we have the universal relation

f · tf − g · tg
g · tg − h · th =

f · B−1f − g · B−1g

g ·B−1g − h · B−1h
, (4.19)

valid for any deformation of the material. Also, using (4.18), we have

k · Bl = 0 , (4.20)

where k, l, orthogonal unit vectors along the bisectors, internal and external, of the right angle
subtended by f and g, are given by

√
2k = f + g ,

√
2 l = f − g . (4.21)

Thus, using (2.7),
α(k,l) = 0 , (4.22)

the pair of material planar elements with unit normals k, l at x has suffered no planar shear.
Similarly, k′ ·Bl′ = 0 and k′′ ·Bl′′ = 0, where k′, l′ are unit vectors along the bisectors of (g,h)
at x, and k′′, l′′ are unit vectors along the bisectors of (h, f) at x. From the constitutive equation
(4.11), we then note that

k · tl = βk ·B−1l , k′ · tl′ = βk′ · B−1l′ , k′′ · tl′′ = βk′′ · B−1l′′ , (4.23)

so that we have the universal relations

k · tl
k · B−1l

=
k′ · tl′

k′ ·B−1l′
=

k′′ · tl′′
k′′ ·B−1l′′

. (4.24)

Because there is an infinity of orthonormal triads for which (4.18) holds, there is a corresponding
infinity of unit vectors k, l, k′, l′, k′′, l′′ for which these relations are valid.
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5 Fluid motion

If a fluid is incompressible or the motion of a fluid is isochoric, then in either case,

tr d = 0 , (5.1)

where d is the rate of strain tensor. It follows that there exists an orthonormal triad m,n,p
(say) such that

m · dm = n · dn = p · dp = 0 , (5.2)

that is, the stretchings alongm,n and p are all zero. For the unit vectors r and s subtending the
arbitrary angle φ and given by (3.9), the instantaneous shearing θ̇(m,n) of the pair of infinitesimal
material line elements along (r, s) at X at time t is given by

θ̇(r,s) = sin φ{d(m) − d(n)} = 0 . (5.3)

Thus, the shearing θ̇(r,s) is zero for all pairs of material line elements at x, at time t, instanta-
neously symmetrically disposed with respect to m and n. Similar statements are valid for all
pairs symmetrically disposed with respect to n and p (p and m) in the plane of n and p (p and
m), instantaneously at x at time t.

Suppose the constitutive equation for the fluid is

tij = −pδij + 2µdij , dkk = 0 , (5.4)

where µ is a constant and p is to be determined from the field equations and boundary/initial
conditions. Then,

m · tm = n · tn = p · tp = p , (5.5)

so that, in particular, the normal components of traction along m,n,p are related through

m · tm− n · tn = 0 , n · tn− p · tp = 0 , (5.6)

valid for every motion of the fluid.
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