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Introduction

The problem of wave propagation in an infinite layer, composed of linear isotropic elastic material with traction free faces, is a classical elasto-dynamic problem. In fairly recent times this problem has been extended to elucidate both the influences of pre-stress and/or anisotropy, see for example [START_REF] Ogden | The effect of pre-stress on vibration and stability of elastic plates[END_REF] and [START_REF] Rogeron | Some asymptotic expansions of the dispersion relation for an incompressible elastic plate[END_REF] in the incompressible case and [START_REF] Roxburgh | Stability and vibration of pre-stressed compressible elastic plates[END_REF] and [START_REF] Nolde | Dispersion of small amplitude waves in a pre-stressed, compressible elastic plate[END_REF] for the compressible counterpart.

There have also been a small number of articles investigating the effect of different boundary conditions on the faces, in particular the so-called fixed face conditions whereby the boundary conditions are taken to be those of zero displacement, see [START_REF] Nolde | Long wave asymptotic integration of the governing equations for an incompressible elastic layer with fixed faces[END_REF] and [START_REF] Kaplunov | Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate with Fixed Faces[END_REF]. One motivation for these boundary conditions are certain geophysical phenomena, particularly in respect of coal layers, see for example [START_REF] Liang | Effects of artificially induced vibrations on the prevention of coal mined bumps[END_REF].

A c c e p t e d m a n u s c r i p t

In the case of fixed face conditions it has previously been established that no so-called low frequency motion is possible, resulting in the absence of either bending or extension, or their pre-stressed counterparts, see for example [START_REF] Nolde | Long wave asymptotic integration of the governing equations for an incompressible elastic layer with fixed faces[END_REF]. In the case of symmetric motion, some abnormal long wave dispersion phenomena has previously been reported in respect of nearly incompressible linear isotropic elastic solids, see [START_REF] Kaplunov | Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate with Fixed Faces[END_REF]. In particular, non-local long wave high frequency asymptotic behaviour has been observed. The purpose of our present paper is to extend this study to include the influence of pre-stress and approach the incompressible limit from the full compressible equations, rather than by merely perturbing the incompressible case.

This paper is organised as follows. In section 2 the appropriate forms of the basic equations associated with a pre-stressed compressible elastic solid are noted, together with a brief derivation of both the symmetric and anti-symmetric dispersion relations. In Section 3, numerical solutions of the dispersion relations are presented, showing frequency as a function of wave number. In both cases, the absence of any fundamental modes is noted. Additionally, in the symmetric case, some particularly striking long wave behaviour is observed on the dispersion curves in the almost incompressible case. Specifically, there is a very rapid increase in gradient and in consequence any approximations will not be valid within the neighbourhood of the cut-off frequencies. Any approximations will therefore be non-local to the cut-off frequencies.

In Section 4, long wave approximations are derived, with particular attention focussed upon the nearly incompressible symmetric case. In this case, the long wave behaviour may only be fully elucidated by considering the interaction between two small parameters, the wave number and a small parameter introduced to indicate the material's compressibility. Motivated by these approximations, we seek to derive appropriate asymptotic approximations of the displacements in each case. The appropriate asymptotic models are briefly discussed in Section 5. After this, in Section 6, appropriate scales for displacements, together with scales for spatial variables and time, are introduced and models derived for the compressible case in respect of symmetric motion. In Section 7, the case of a nearly incompressible plate is considered and appropriate models derived in respect of symmetric motion. All the results established throughout this paper are done so for the most general strain energy function. However, when numerical comparisons of asymptotic and numerical results are presented a compressible neo-Hookean type function is employed to facilitate this.

Basic equations and the dispersion relation

We begin by considering a compressible elastic body subject to the pure homogeneous strain

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (2.1)
in which λi is the principal stretch along Oxi. Moreover, X and x denote the position vectors of a typical particle in a natural (un-stressed) and statically deformed pre-stressed states B0 and Be, respectively. The body in question is assumed to form a plate which is finite in one spatial 

in which αij = Aiijj , γ1 = A1212, γ2 = A2121, β= α12 + γ2 -σ2, ( 2.3) 
where A ijkl are components of the fourth order elasticity tensor, the non-zero components of which are given by

Aiijj = J -1 λiλjWij , Aiijj = J -1 λ 2 i λ 2 i -λ 2 j (λiWi -λjWj) , (i = j) Aijji = Ajiij = Aijij -σi, (i = j),
where

Wi ≡ ∂W ∂λi , Wij ≡ ∂ 2 W ∂λi∂λj , σi = J -1 λiWi,
within which σi is the principal Cauchy stress in Be in the xi direction. We also note that in deriving the form of the equations of motion presented, the facts that α12 = α21 and γ1 -σ1 = γ2 -σ2 have also been taken into account. We also note that the strong ellipticity condition requires that

α11 > 0, α22 > 0, γ1 > 0, γ2 > 0, (2.4) 
and

√ α11α22 + √ γ1γ2 ± β > 0, (2.5) 
see for example [START_REF] Roxburgh | Stability and vibration of pre-stressed compressible elastic plates[END_REF] or [START_REF] Nolde | Dispersion of small amplitude waves in a pre-stressed, compressible elastic plate[END_REF].

Our specific concern is a layer with fixed faces, the boundary conditions then being

u1 = 0, u2 = 0, at x2 = ±h. (2.6)
To begin we insert solutions of the form (u1, u2) = (U, V )e kqx 2 e ik(x 1 -vt) into the equations of motion (2.2), resulting in the following quadratic equation for

q 2 α22γ2q 4 + β 2 -α22(α11 -v2 ) -γ2(γ1 -v2 ) q 2 + (α11 -v2 )(γ1 -v2 ) = 0, v2 = ρv 2 . (2.7)
Solutions for u1 and u2 may now be expressed as linear combinations of the solutions generated by (2.7). This involves eight arbitrary constants, which may be reduced to four by using the equations of motion. Inserting these solutions into (2.6) yields a homogeneous system of four equations in four unknowns. Due to the symmetry of the problem about the mid-plane, this system may be decomposed into two homogeneous linear systems of two equations in two unknowns. The condition that the first of these systems admits non-trivial solutions results in the with the second system producing the anti-symmetric counterpart

q1F(q2, v) tanh(q1η) = q2F(q1, v) tanh(q2η), (2.9) 
where η = kh denotes the scaled wave number and F(q, v) = α11 -v2 -γ2q 2 within both (2.8) and (2.9). It is further noted that the homogeneous system of equations arising from the boundary conditions may be employed to represent the displacement components in terms of only one parameter, Û say. In the symmetric case this enables us to express u1 and u2 in the forms

u1 = iβq1q2 [cosh(q2kh) cosh(kq1x2) -cosh(q1kh) cosh(kq2x2)] Ũ, (2.10) u2 = [q2F(q1, v) cosh(q2kh) sinh(kq1x2) -q1F(q2, v) cosh(q1kh) sinh(kq2x2)] Ũ , (2.11)
within which and the exponential function e ik(x 1 -vt) has been incorporated into the parameter Ũ = Ûe ik(x 1 -vt) . The analogous results for the anti-symmetric case are obtainable by interchanging sinh and cosh in equations (2.10) and (2.11).

Numerical analysis

All numerical results will be presented in respect of the two-parameter compressible neo-Hookean strain-energy function

W = µ 2 λ 2 1 + λ 2 2 + λ 2 3 -3 -2lnJ + κ 2 (J -1) 2 , J = λ1λ2λ3, ( 3.1) 
within which κ = κ-2 3 µ, and where µ and κ (often denoted by λ) are the Lamé moduli and κ is the bulk modulus of the material in the un-stressed configuration, see [START_REF] Ogden | Non-linear Elastic Deformations[END_REF]. For this strain-energy function we have

αii = κ J + µJ -1 (1 + λ 2 i ), α12 = κ (2J -1), γi = µJ -1 λ 2 i , ( 3.2) 
where i = 1, 2 and there is no implied summation.

In Figures 1(a) and (b), plots of the dispersion relations (2.8) and (2.9), depicting the scaled frequency ω = vη against the scaled wave number η, are presented in respect of the two-parameter compressible neo-Hookean strain-energy function (3.1). These graphs show dispersion curves for both symmetric and antisymmetric motion. The parameters used for Figure 1(a) correspond to a highly compressible case, with Figure 1(b) presenting an example of a nearly incompressible case. In the nearly incompressible case κ >> 1 and J ∼ 1, with the incompressible limit being realised by allowing κ → ∞ and J → 1 in such a way that the product κ(J -1) remains finite, see [8, p.510]. The first thing to notice in these graphes is that there are no modes for which ω → 0 as η → 0. This is in contrast to a compressible elastic plate with
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traction free, rather than dispacement free, upper and lower surfaces, see [START_REF] Roxburgh | Stability and vibration of pre-stressed compressible elastic plates[END_REF] and [START_REF] Nolde | Dispersion of small amplitude waves in a pre-stressed, compressible elastic plate[END_REF]. It is then the case that the fixed-face boundary conditions preclude so-called low frequency motion and there are therefore no fundamental modes. This has been previously noted in the analogous incompressible fixed-face case, see [START_REF] Nolde | Long wave asymptotic integration of the governing equations for an incompressible elastic layer with fixed faces[END_REF].

A striking feature of Figure 1(b) is the flattening of symmetric branches in the long wave regime. In each case they have a near zero gradient very close to the cut-off frequency, with the gradient then rapidly steepening after which the behaviour is similar to that usually expected.

Similar unusual long wave behaviour was previously noted in linear isotropic nearly incompressible elastic plates with fixed faces, see [START_REF] Kaplunov | Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate with Fixed Faces[END_REF]. In this article the authors perturbed the equations for an incompressible plate; our motivation is to generalise this study to the pre-stressed case and in doing so use as our starting point the general compressible, pre-stressed elastic equations.

Long wave approximations

As previously mentioned, in the case of a plate with fixed faces there are no fundamental modes, so-called low frequency motion is therefore precluded. We shall therefore begin an analysis of long wave high frequency motion, which is characterised by the fact that as η → 0, v2 /γ2 ∼ O(η -2 ). From (2.7) it may be deduced that both q1 and q2 are in this case imaginary and can therefore be written as q1 = iq1, q2 = iq2, where q1 and q2 are both real and positive and

q2 1 = v2 α22 + Q1 + O(v -2 ), q2 2 = v2 γ2 + Q2 + O(v -2 ), (4.1) 
in which

Q1 = β 2 -γ1(γ2 -α22) α22(γ2 -α22) , Q2 = β 2 + α11(γ2 -α22) γ2(γ2 -α22) .
In order to investigate the previously observed long wave numerical peculiarities for nearly incompressible plates with fixed faces, we introduce the non-dimensional parameter κ in the form

κ = JW33 γ2 . (4.2)
This parameter depends on the compressibility of the material and tends to infinity for incompressible materials. Note, that κ is included within the following material parameters

αij = αij + γ2κ, i,j∈ 1, 2, (4.3) 
where αij /γ2 is assumed O(1).

Compressible case

We begin our investigation of long wave dispersion and consider symmetric and anti-symmetric motion separately. 

λ 1 = 1.7, λ 2 = 2.0, λ 3 = 1.6, µ = 1.0, κ = 0.1; (b) λ 1 = 1.1, λ 2 = 0.91, λ 3 = 1.0, µ = 0.7, κ = 10 3 .

A c c e p t e d m a n u s c r i p t 4.1.1 Symmetric motion

In the long wave region the symmetric dispersion relation (2.8) may be rewritten as

q1F(q2, v) tan(q2η) = q2F(q1, v) tan(q1η), (4.4) 
with

F(qi, v) = α11 -v2 + γ2 q2 i , i= 1, 2. (4.5)
As η → 0, we deduce from (4.4) that either tan(q2η) ∼ η -2 or tan(q1η) ∼ η 2 . The former case implies that at leading order q2η = (n -1/2)π ≡ Λ s sh . For this type of motion it is possible to use (2.10) and (2.11) to establish that u1 >> u2. The associated scaled frequencies, given by ω2 = γ2(Λ s sh ) 2 , are commonly referred to as the thickness shear resonance frequencies. Similarly, the case tan(q1η) ∼ η 2 , from which we may deduce that u1 << u2, defines thickness stretch resonance, with the associated resonance frequencies given by ω2 = γ2χ -2 (nπ) 2 ≡ γ2(Λ s st ) 2 , where χ 2 = γ2/α22. We shall now consider motion within the vicinities of the thickness shear and stretch resonance frequencies in turn.

(a) Motion in the vicinity of the thickness shear resonance frequencies

In this case (η → 0, tan(q2η) 1) we seek the following forms of expansion q2η = Λ s sh + φη 2 + O(η 4 ), tan(q2η) = -

1 φη 2 + O(1), ( 4.6) 
where the correction term φ may be found by inserting the approximations (4.6) into (4.4) and equating like powers of η, yielding

φ = β 2 cot(χΛ s sh ) (α22 -γ2) 2 χ(Λ s sh ) 2 . (4.7)
It is now possible to deduce that in the long wave region

ω2 = γ2(Λ s sh ) 2 + C s sh η 2 + O(η 4 ), (4.8) 
within which 

C s sh = γ2 -Q2 + 2β 2 cot(χΛ s sh ) (α22 -γ2) 2 χΛ s sh . ( 4 
ψ = - β 2 tan(Λ s st ) (α22 -γ2) 2 χ(Λ s st ) 2 . (4.11)
For motion in the vicinity of the symmetric thickness stretch resonance frequencies, an expansion for the appropriate scaled frequencies ω associated with the n th harmonic may now be obtained,

namely ω2 = γ2(Λ s st ) 2 + C s st η 2 + O(η 4
), (4.12)

A c c e p t e d m a n u s c r i p t

where

C s st = -α22 Q1 + 2β 2 tan(Λ s st ) (α22 -γ2) 2 Λ s st .
(4.13) Good agreement between numerical and asymptotic results near the first thickness shear and stretch resonance frequencies, see (4.8) and (4.12), respectively, is demonstrated in Figure 2.

Antisymmetric motion

A similar analysis to that just carried out in respect of the symmetric case may be performed for antisymmetric motion. Analogous results may be obtained from their symmetric counterparts by putting Λ a sh , Λ a st , C a sh and C a st instead of Λ s sh , Λ s st , C s sh and C s st , respectively, where

Λ a sh = nπ, Λ a st = n - 1 2 π χ , n= 1, 2, ..., (4.14) C a sh = -γ2 Q2 + 2β 2 tan(χΛ a sh ) (α22 -γ2) 2 χΛ a sh , (4.15) C a st = -α22 Q1 - 2β 2 cot(Λ a st ) (α22 -γ2) 2 Λ a st .
(4.16)

Nearly incompressible case

In the nearly incompressible case, κ 1, we note from the definitions of Λ s st and Λ a st that the frequencies of both symmetric and anti-symmetric stretch resonance tend to infinity as the material becomes incompressible. This result is what might be expected in view of the fact that the corresponding incompressible case is characterised by the absence of such motion, see [START_REF] Nolde | Long wave asymptotic integration of the governing equations for an incompressible elastic layer with fixed faces[END_REF].

Within the dispersion relations (2.8) and (2.9) we have two small parameters, namely η and κ -1 , with the asymptotic long wave structure dependent on their relative magnitudes.

Symmetric case

In the symmetric case, the appropriate form of the dispersion relation (2.8) is given by

q1 α11 + γ2κ + q2 2 -v2 tan(q2η) = q2 α11 + γ2κ + q2 1 -v2 tan(q1η). (4.17) Case 1: κη 2 ∼ 1
We first consider the nearly incompressible case, characterised by κη 2 ∼ 1, and for which approximations for q2 1 and q2 2 take form

q2 1 = v2 γ2 -δ + O(η 2 ), q2 2 = -1 + v2 γ2κ + O(η 2 ), (4.18) 
where

δ = α11 + α22 -2 β -γ2 γ2 . ( 4 

.19)

We remark that as previously v/γ2 ∼ η -1 . Using equations (4.18) we are able to deduce that It is now possible to insert approximations (4.18) and (4.20) into the dispersion relation (4.17)

tan(q1η) = tan ω √ γ2 + O(η 2 ), tan(q2η) = q2η + O(η 3 ). ( 4 
to establish that ω satisfies the following transcendental equation

γ2κ ω - √ γ2 tan ω √ γ2 η 2 = ω3 . (4.21)
We remark that in the nearly incompressible case characterised by κη 2 1, we may infer from the above equation that tan(ω/ √ γ2) 1, from which we deduce that at leading order

ω2 = γ2Λ 2 sh + 2κη 2 Λ 2 sh . (4.22)
This result is also obtainable from (4.8) on the assumption that κη 2 1 while κ is not less than of order O(1). The non-local long wave approximations (4.21) provide excellent agreement with the numerical solution, as is illustrated in Figure 3 for the first two symmetric harmonics.

Case 2: κη 4 ∼ 1

In this case appropriate approximations for q1 and q2, obtained from (2.7) are given by 

q2 1 = v2 γ2 -δ + δ -γ1 v2 + O(η 4 ), q 2 2 = 1 + δ -γ1 v2 - v2 γ2κ + O(η 4 ). ( 4 
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We note that (4.24) is a transcendental equation and this is an equation of the type previously found to define the cut-off frequencies in the corresponding incompressible case, see [START_REF] Nolde | Long wave asymptotic integration of the governing equations for an incompressible elastic layer with fixed faces[END_REF]. The occurrence of such an equation to define the cut-off frequencies is unusual. Specifically, this situation arises for symmetric motion through a combination of both the fixed face boundary conditions and the fact that the plate is essentially incompressible. An expansion for the frequency is then sought in the form

ω2 = Λ 2 0 + P0η 2 + O(η 4 ). (4.25)
Using this approximation it is possible to establish appropriate approximations for q1, q2, and tan(q1η) in the forms

q1 = Λ0 √ γ2η + η 2 √ γ2Λ0 P0 -γ2 δ + O(η 3 ), (4.26) q2 = 1 + ( δ -γ1)η 2 2Λ 2 0 - Λ 2 0 2γ2κη 2 + O(η 4 ), (4.27) tan( q1η) = tan Λ0 √ γ2 + η 2 2 √ γ2Λ0 P0 -γ2 δ 1 + tan Λ0 √ γ2 2 + O(η 4 ). (4.28) 
Inserting these approximations into the dispersion relation (4.17) and equating leading order powers of η firstly re-affirms (4.24) and then enables us to determine P0, yielding

P0 = γ2 - 2 3 + δ - 2Λ 2 0 γ2κη 4 . (4.29)
The definition of P0 implies that it may take positive or negative values. However, in the case of a linear isotropic layer this coefficient is positive for all material parameters, see [START_REF] Kaplunov | Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate with Fixed Faces[END_REF]. We therefore infer that in a pre-stressed plate the group velocity vg = ∂ ω/∂η = P0 may be positive or negative, depending on the material parameters and pre-stress. Figure 4 shows numerical solutions of the symmetric dispersion relation (2.8) and both the non-local approximations (4.21), together with (4.25), in respect of a nearly incompressible plate. Two sets of parameters are used in order to demonstrate positive (P0 > 0) and negative (P0 < 0) group velocities.

Antisymmetric case

In the antisymmetric case, the dispersion relation (2.9) may be recast in the form

q1 α11 + γ2κ + γ2 q2 2 -v2 tan(q1η) = q2 α11 + γ2κ + γ2 q2 1 -v2 tan(q2η). (4.30)
In the case κη 2 ∼ 1, it is readily established that tan(q1η) ∼ q-1 1 , indicating that q1η ≈ Λ a sh . In this case it is possible to show that ω2 = γ2(Λ a sh ) 2 + γ2( δ -2)η 2 + O(η 4 ). (4.31)

We remark that this result is obtainable by taking the appropriate limit of C a sh , defined in (4.15). In this case the result is not changed when κη 2 1, for example when κη 4 ∼ 1. It is then clear that abnormal dispersion behaviour is a feature only of symmetric motion. 

A c c e p t e d m a n u s c r i p t 5 Asymptotic model

Our aim is now the derivation of one-dimensional asymptotic models for long wave high frequency motion in a layer with fixed faces. We require these models to be consistent with our previous asymptotic analysis of the appropriate dispersion relations. In the case of a layer with fixed faces, symmetric motion is of particular interest, due to the previously discussed behaviour of the branches in the long wave regime. The derivation of asymptotic models for the compressible case, in which the parameter κ ∼ 1, is very similar to the high frequency case associated with a layer with free faces. In this case, we readily obtain models for motion in the vicinity of thickness shear and stretch resonance frequencies. However, in the symmetric nearly incompressible case (κ 1) we require the introduction of the term p0 = κ(u1,1 + u2,2), analogous to the time-dependent hydrostatic pressure increment associated with incompressibility. Investigation of the relative magnitudes of u1, u2 and p0 motivates appropriate re-scalings in each case. After recasting the equations of motion, and appropriate boundary conditions, in terms of the new variables, a system of governing equations at various orders is derived and solved.

Compressible layer with fixed faces

Due to the similarity of derivation of asymptotic models for antisymmetric and symmetric motion, we will discuss only the latter case in detail.

Relative orders of displacements

We begin by using previously established approximations to determine the relative magnitudes of u1 and u2 in the vicinity of the shear and stretch resonance frequencies in the compressible case κ ∼ 1. For the shear case, expansions (4.1) for q1 and q2, together with approximations (4.6)-(4.8), may be used in equations (2.10) and (2.11), establishing that

u1 ≈ iβχ (Λ s sh ) 2 η 2 cos (χΛ s sh ) cos Λ s sh x2 h Ũ, (6.1) u2 ≈ β 2 χ γ2 -α22 Λ s sh η cot(χΛ s sh ) sin (Λ s sh ) sin χΛ s sh x2 h -sin (χΛ s sh ) sin Λ s sh x2 h Ũ, (6.2) 
where we recall that Λ s sh = (n -1/2)π, n = 1, 2, .... From equations (6.1) and (6.2) it is deduced that if κ ∼ 1, the in-plane displacement u1 is asymptotically leading in respect of motion in the vicinity of the shear resonance frequencies. Moreover, we may further deduce that

u1 ∼ 1 η u2. (6.3)
In the case of motion in the vicinity of the stretch resonance frequencies, approximations (6.1) and ( 6.2) are replaced by

u1 ≈ iβχ (Λ s st ) 2 η 2 cos (χΛ s st ) cos Λ s st x2 h -cos (Λ s st ) cos χΛ s st x2 h Ũ, (6.4) u2 ≈ χ 2 (α22 -γ2) (Λ s st ) 3 η 3 cos (Λ s st ) sin χΛ s st x2 h Ũ, (6.5)
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where Λ s st = nπ/χ, n = 1, 2, .... For motion within the vicinity of the stretch resonance frequencies we therefore infer that u2 ∼ 1 η u1. (6.6)

Shear resonance frequencies

We first aim to derive an asymptotic model for symmetric motion near the thickness shear resonance frequencies. Noting the previously obtained relative orders of displacements, shown in (6.3), we introduce scaled non-dimensional displacement components in the form

u1 = lu * 1 , u2 = lηu * 2 . ( 6.7) 
Appropriate non-dimensional spatial and time variables are also defined as

x1 = lξ, x2 = lηζ, t = lη ρe γ2 τ. ( 6.8) 
For motion in the vicinity of the thickness shear resonance frequencies we assume that

u * k,τ τ + (Λ s sh ) 2 u * k ∼ η 2 u * k , k= 1, 2. (6.9) 
The equations of motion (2.2), subject to fixed boundary conditions u1 = u2 = 0 at x2 = ±h, may now be recast in terms of the new variables. Solutions of this boundary value problem are sought in the form

(u * 1 , u * 2 ) = m l=0 η 2l (u (2l) 1 , u (2l) 
2 ) + O(η 2m+2 ). (6.10)

Inserting solutions (6.10) into the form of governing equations represented in terms of new variables, and taking into account conditions (6.9), we derive a system of equations at different orders m, given by γ2u

(2m) 1,ζζ + γ2(Λ s sh ) 2 u (2m) 1 + α11u (2m-2) 1,ξξ + βu (2m-2) 2,ξζ -γ2η -2 u (2m-2) 1,τ τ + (Λ s sh ) 2 u (2m-2) 1 = 0, α22u (2m) 
2,ζζ + βu

(2m) 1,ξζ + γ2(Λ s sh ) 2 u (2m) 2 + γ1u (2m-2) 2,ξξ -γ2η -2 u (2m-2) 2,τ τ + (Λ s sh ) 2 u (2m-2) 2 = 0, u (2m) 1 = u (2m) 2 = 0 at ζ = ±1, (6.11) 
with m = 0, 1, 2, ....

Leading order problem

The leading order problem, associated with m = 0, is given by

u (0) 1,ζζ + (Λ s sh ) 2 u (0) 1 = 0, α22u (0) 
2,ζζ + βu

(0) 1,ξζ + γ2(Λ s sh ) 2 u (0) 2 = 0, u (0) 1 = u (0) 2 = 0 at ζ = ±1, (6.12) 
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with a solution readily obtainable in the form

u (0) 1 = u (0,0) 1 sin(Λ s sh ζ), u (0) 2 = v (0,0) 2 cos(Λ s sh ζ) + V (0,0) 2 cos(χΛ s sh ζ), (6.13) 
where

v (0,0) 2 = βu (0,0) 1,ξ Λ s sh (α22 -γ2) , V (0,0) 2 = - β cos(Λ s sh )u (0,0) 1,ξ Λ s sh (α22 -γ2) cos(χΛ s sh ) . ( 6.14) 
The solution (6.14) provides leading order solutions for the displacement components in terms of an essential parameter, u

(0,0) 1
, which is a function of ξ and τ . An equation for u

(0,0) 1
is obtainable from the second order problem.

Second order problem

In order to derive an equation for u (0,0) 1

, we need to consider the following second order equation and boundary condition γ2u

1,ζζ + γ2(Λ s sh )

,ξζ -γ2η -2 u (0) 1,τ τ + (Λ s sh ) 2 u (0) 1 = 0, u 2 u (2) 1 + α11u (0) 1,ξξ + βu (0) 2 
1 = 0 at ζ = ±1.

(

The solution for u

(2) 1

is expressible in the form

u (2) 1 = u (2,0) 1 sin(Λ s sh ζ) + v (2,1) 1 ζ cos(Λ s sh ζ) + U (2,0) 1 sin(χΛ s sh ζ), (6.16) 
within which

v (2,1) 1 = - 1 2Λ s sh η -2 u (0,0) 1,τ τ + (Λ s sh ) 2 u (0,0) 1 + Q2u (0,0)
1,ξξ , (6.17)

U (2,0) 1 = - β 2 cos(Λ s sh )u (0,0) 1,ξξ χ(Λ s sh ) 2 (α22 -γ2) 2 cos(χΛ s sh ) , ( 6.18) 
with the governing equation for u (0,0) 1

given by

γ2η -2 u (0,0) 1,τ τ + (Λ s sh ) 2 u (0,0) 1 -C s sh u (0,0) 1,ξξ = 0. (6.19)
We note that Q2 and C s sh have been previously defined, see directly after equations (4.1) and (4.9). Introducing a new function u [0] (x1, t) = u (0,0) 1 (ξ, τ ), we may recast the above equation in terms of original variables

1 h 2 γ2(Λ s sh ) 2 u [0] + ρe ∂ 2 u [0] ∂t 2 -C s sh ∂ 2 u [0] ∂x 2 1 = 0. (6.20)
Consistency may be verified by direct substitution of the wave form u [0] = ũ[0] e ik(x 1 -vt) into equation (6.20), resulting in the expansion (4.8) for ω.

Stretch resonance frequencies

The appropriate relative orders of displacement components (6.6) lead to the following re-scaling For consistency with the asymptotic analysis of the dispersion relation we assume that for motion near the thickness stretch resonance frequencies that + α11u

u1 = lηu * 1 , u2 = lu * 2 , ( 6 
u * k,τ τ + χ 2 (Λ s st ) 2 u * k ∼ η 2 u * k ,
(2m-2) 1,ξξ -α22η -2 u (2m-2) 1,τ τ + χ 2 (Λ s st ) 2 u (2m-2) 1 = 0, α22u (2m) 2,ζζ + γ2(Λ s st ) 2 u (2m) 2 + γ1u (2m-2) 2,ξξ + βu (2m-2) 1,ξζ -α22η -2 u (2m-2) 2,τ τ + χ 2 (Λ s st ) 2 u (2m-2) 2 = 0, u (2m) 1 = u (2m) 2 = 0 at ζ = ±1, (6.24) 
with m = 0, 1, 2, ....

Leading order problem

For m = 0, we arrive at the leading order equations of motion A c c e p t e d m a n u s c r i p t

γ2u (0) 1,ζζ + βu (0) 2,ξζ + γ2(Λ s st ) 2 u (0) 1 = 0, α22u (0) 

Second order problem

At second order, we consider only those equations required to derive a governing equation for v (0,0) 2

. Accordingly, we consider only the following equation of motion with appropriate boundary condition α22u

(2)

2,ζζ + γ2(Λ s st ) 2 u (2) 2 + γ1u (0) 2,ξξ + βu (0) 1,ξζ -α22η -2 (u (0) 2,τ τ + χ 2 (Λ s st ) 2 u (0) 2 ) = 0, u (2) 
2 = 0 at ζ = ±1.

(6.29)

The solution for u

(2) 2 may be written as

u (2) 2 = v (2,0) 2 cos(χΛ s st ζ) + u (2,1) 2 ζ sin(χΛ s st ζ) + V (2,0) 2 cos(Λ s st ζ), (6.30) within which u (2,1) 2 = 1 2χΛ s st η -2 v (0,0) 2,τ τ + χ 2 (Λ s st ) 2 v (0,0) 2 + Q1v (0,0) 2,ξξ , (6.31) V (2,0) 2 = - β 2 sin(χΛ s st )v (0,0) 2,ξξ χ(Λ s st ) 2 (α22 -γ2) 2 sin(Λ s st ) , ( 6.32) 
with the governing equation for v (0,0) 2 taking the form

α22η -2 v (0,0) 2,τ τ + χ 2 (Λ s st ) 2 v (0,0) 2 -C s st v (0,0) 2,ξξ = 0, (6.33) 
where the constants Q1 and C s st were defined previously, see directly after (4.1) and (4.13). Introducing the function v [0] (x1, t) = v (0,0) 2 (ξ, τ ), the above equation may be written in terms of original variables, yielding

1 h 2 γ2(Λ s st ) 2 v [0] + ρe ∂ 2 v [0] ∂t 2 -C s st ∂ 2 v [0] ∂x 2 1 = 0. ( 6 

.34)

We remark that consistency may again be readily established.

Nearly incompressible layer

In view of the abnormal dispersion behaviour associated with symmetric long wave motion, we shall now examine the asymptotic structure of the governing equations in more detail.

Relative magnitudes of displacement and pressure

We first define p0 = κ(u1,1 + u2,2), where p0 is a term analogous to the hydro-static pressure increment known to occur in incompressible elasticity, see for example [START_REF] Ogden | Non-linear Elastic Deformations[END_REF]. Moreover, in the incompressible limit it is known that κ → ∞, (u1,1 + u2,2) → 0 in such a way that the product tends to the dynamic part of the incompressible hydro-static pressure term. It is possible to use equations (2.10) and (2.11) to establish that

p0 = -κkq1q2 [(F(q1, v) -β) cosh(q2η) cosh(kq1x2) + (β -F(q2, v)) cosh(q1η) cosh(kq2x2)] Ũ. ( 7.1) 
We shall now establish the relative long wave magnitudes of u1 and u2 in the two particularly interesting cases κη 2 ∼ 1 and κη 2 1, together with the relative order of p0. 

≈ -i κ η ω √ γ2 q2 cos ω √ γ2 x2 h -cos ω √ γ2 Ũ, (7.2) u2 ≈ -κ q2 sin ω √ γ2 x2 h -ω √ γ2 x2 h cos ω √ γ2 Ũ, (7.3) p0 ≈ - κ η 3 k q2 ω3 √ γ2 cos ω √ γ2 Ũ . (7.4)
It is now possible to use (7.2)-(7.4) in order to establish that for the case κη 2 ∼ 1

u1 ∼ k -1 η 2 p0, u2 ∼ k -1 η 3 p0. (7.5)

Case 2: κη 2 1

In the case κη 2 1 it is possible to establish that approximations for u1, u2 and p0 are given by (7.2)-(7.4), with ω replaced by Λ0. Hence, the asymptotic structure in this case is the same as that shown in (7.5). We note that the nearly incompressible case may in general be characterised in which p0 = κ(u1,1 + u2,2). In this case the scales introduced in (6.7), (6.8), supplemented with p0 = η -2 p * , may now be used to re-cast (7.6) 

A c c e p t e d m a n u s c r i p t

  direction and of infinite lateral extent. Relative to a Cartesian coordinate system coincident with the principal axes of deformation, and with origin in its mid-plane, the plate occupies the region -∞ < x1 < ∞, -h x2 h and -∞ < x3 < ∞. Small amplitude two-dimensional motions, for which u3 ≡ 0 and u1 and u2 independent of x3, are now superimposed upon Be.

A c c e p t e d m a n u s c r i p t

  so-called symmetric dispersion relation q1F(q2, v) tanh(q2η) = q2F(q1, v) tanh(q1η),(2.8) 

Figure 1 :

 1 Figure 1: Scaled frequency against scaled wave number for the Neo-Hookean material with: (a)

  .9) (b) Motion in the vicinity of the thickness stretch resonance frequencies Making use of the fact that tan(η q1) 1 as η → 0, we obtain the following expansion forms q1η = χΛ s st + ψη 2 + O(η 4 ), tan(q1η) = ψη 2 + O(η 4 ). (4.10) Substituting expansions (4.10) into the symmetric dispersion relation (4.4), we obtain the correction term ψ, given by

Figure 2 :

 2 Figure 2: Scaled frequency against scaled wave number for the Neo-Hookean material with the same parameters as Figure 1(a) (a) near the first thickness shear resonance frequency; (b) near the first thickness stretch resonance frequency.

Figure 3 :

 3 Figure 3: Scaled frequency against scaled wave number for the Neo-Hookean material with the same parameters as Figure 1(b), showing the first two symmetric harmonics.

Figure 4 :

 4 Figure 4: Scaled frequency against scaled wave number for the Neo-Hookean material with: (a) the same parameters as Figure 1(b); (b) λ 1 = 0.9, λ 2 = 1.4, λ 3 = 1.0, µ = 0.7, k = 10 4 .

  employed together with the following non-dimensional space and time variable scalings x1 = lξ, x2 = lηζ,

2 ,

 2 ζζ + γ2(Λ s st ) have thus obtained leading order solutions in terms of the essential function v (0,0) 2 , which is a function of ξ and τ . A governing equation for this function may be derived from the next order problem.

A c c e p t e d m a n u s c r i p t 7 . 1 . 1 Case 1 : κη 2 ∼ 1

 71111 In this case it is possible to substitute the approximations (4.18)-(4.21) into equations (2.10),(2.11) and (7.1) to show that u1

  by κ ∼ η -2m θ, with θ an O(1) quantity and m > 0. Motivated by the appropriate dispersion relation approximations previously established, we consider the two cases m = 1 and m = 2. Before proceeding it is convenient to re-write the equations of motion (2.2) in the form α11u1,11 + γ2u1,22 + βu2,12 + p0,1 = ρe ü1, (7.6) γ2u2,11 + α22u2,22 + βu1,12 + p0,2 = ρe ü2, (7.7)

7. 2

 2 Case 1: m = 1, η 2 κ = θIn the case in which η 2 κ = θ, we are essentially very close to the resonance frequency and may therefore consider the stationary case, for which ∂/∂τ ≡ iω. The appropriate leading order problem may therefore be written as γ2u may be inserted into the governing equations (7.26) and (7.27)the plate is almost incompressible. A two parameter asymptotic analysis has been carried out, both to derive long wave approximations of the dispersion relation and establish corresponding asymptotic forms of the displacement components. Motivated by these asymptotic forms, appropriate scalings have been introduced and specific models have been derived for long wave motion in this particular case.

  ,(7.7) and the definition of p0 as

	γ2u * 1,ζζ -γ2u * 1,τ τ + p * ,ξ + η 2 α11u * 1,ξξ + βu * 2,ξζ	= 0,	(7.8)
	p * ,ζ + η 2 α22u * 2,ζζ + βu * 1,ξζ -γ2u * 2,τ τ + η 4 γ2u * 2,ξξ = 0,	(7.9)
	p * = η 2 κ u * 1,ξ + u * 2,ζ ,		(7.10)
	which must be solved subject to the boundary conditions	
	u * 1 = 0,	u * 2 = 0,	at ζ = ±1.		(7.11)

A c c e p t e d m a n u s c r i p t

The general solution of this system of equations may be represented in the from

(1,0) 2 .

(7.13)

Inserting these general solutions into equations (7.12)1,3, results in the following equations

with the boundary conditions also requiring that

(7.15)

The system of equations (7.14) and (7.15) may be used to obtain solutions for

and

Additionally, a governing equation for U (0,0) 1 is also readily obtainable, being expressible as

In order to derive an appropriate asymptotic model in this case we may utilise equations (7.8)-(7.11).

Leading order problem

The leading order problem in this case is given by

.

A c c e p t e d m a n u s c r i p t

The general solution of this system takes the same form as shown in (7.13), with Λ0 replacing ω, which may then be used to establish that

with the boundary conditions also requiring that

It is now possible to use four of the five equations shown in (7.21) and (7.22) to represent

with the fifth equation merely confirming that

as expected in light of (4.24).

Second order problem

The second order governing equations may be expressed in the form γ2u

(2)

,ξ + α11u The general solution of this system of equations is given by

A c c e p t e d m a n u s c r i p t

with the boundary conditions dictating that

= 0, (7.37) 

with equations (7.35) and (7.32)2 then used to show that from the boundary conditions into (7.32)1, then using previously obtained solutions and a little algebraic manipulation to obtain

We remark that derived one-dimensional model is consistent with asymptotic analysis of the exact dispersion relation.

Some concluding remarks

The dispersion of small amplitude waves, in a plate composed of pre-stressed, compressible elastic material, has been investigated. In contrast with the classical case, the upper and lower faces of the plate are assumed fixed and the displacement on these faces is zero. In the case of symmetric motion rather unusual non-local long wave dispersion behaviour has