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Abstract

The governing non-linear high-order, sixth-order in space and third-order in
time, differential equation is constructed for the unsteady flow of an incompress-
ible conducting fourth-grade fluid in a semi-infinite domain. The unsteady flow
is induced by a periodically oscillating two-dimensional infinite porous plate with
suction/blowing, located in a uniform magnetic field. It is shown that by augment-
ing additional boundary conditions at infinity based on asymptotic structures and
transforming the semi-infinite physical space to a bounded computational domain
by means of a coordinate transformation, it is possible to obtain numerical so-
lutions of the nonlinear magnetohydrodynamic equation. In particular, due to
the unsymmetry of the boundary conditions, in numerical simulations non-central
difference schemes are constructed and employed to approximate the emerging
higher-order spatial derivatives. Effects of material parameters, uniform suction
or blowing past the porous plate, exerted magnetic field and oscillation frequency
of the plate on the time-dependent flow, especially on the boundary layer structure
near the plate, are numerically analysed and discussed. The flow behaviour of the
fourth-grade non-Newtonian fluid is also compared with those of the Newtonian
fluid.

Key words: Fourth-grade fluid; non-Newtonian fluid; magnetohydrodynamic
fluid; time-dependent flow.

1 Introduction

The inadequacy of the classical Navier-Stokes theory to describe rheologically complex
fluids such as polymer solutions, blood, paints, certain oils and greases, has led to the
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development of several theories of non-Newtonian fluids. In recent years, amongst the
many models which have been used to describe the non-Newtonian behaviours exhibited
by certain fluids, the fluids of differential type [16] have received special attention, as
well as much controversy, see e.g. [5] for a complete discussion of the relevant issues. The
fluids of second and third grade, which form a subclass of the fluids of the differential
type, have been studied successfully in various types of flow situations. We mention
here some of the studies such as Akyildiz [1], Benharbit and Siddiqui [3], Erdogan [6],
Gupta and Massoudi [7], Hayat et. al. [8, 9] and Rajagopal [14].

Although the second-grade model is found to predict the normal stress differences, it
does not properly respond to shear thinning or thickening due to its constant apparent
shear viscosity. For this reason, some experiments may be well described by the fluids
of grade three or four [2, 4, 11]. Keeping this fact in view, the aim of the present
analysis is to venture further into the regime of fourth-grade fluids. Only fairly scarce
literatures are available [10, 12, 17]. No attempt has been made to model unsteady
flows of fourth-grade fluids in the context of magnetohydrodynamics. In the present
analysis, such an attempt is made. Literature survey reveals no previous attempts at
studying such a high-order nonlinear partial differential equation even in the absence
of plate porosity and magnetic field. The modelled partial differential equation is in a
generalized form and is a significant contribution to understand the behaviour of fourth-
grade fluids both from physical and mathematical standpoints. We examine numerically
the unsteady flow in a semi-infinite space caused by the periodic motion of an infinite
plate. In solving this problem the additional boundary conditions that are imposed
at infinity are of particular interest. Furthermore, by a coordinate transformation, the
flow problem needs to be solved only in a bounded computational domain instead of
the investigated semi-infinite physical space. Due to the inequality of the numbers of
the boundary conditions at both boundaries, i.e., much more boundary conditions at
infinity than at the plate, in numerical simulations non-central difference schemes are
constructed and employed to approximate the emerging higher-order spatial derivatives.
These difference schemes are inclined toward the boundary at infinity and but still of
second-order accuracy. The effects of the material parameters of the fourth-grade fluid,
magnetic field and suction through the plate on the velocity spatial distribution and its
time series are investigated and compared with the Newtonian fluid.

2 Equation of Motion

The basic field equations governing the flow of an incompressible conducting fluid are

div v = 0, (1)

ρ
dv

dt
= div T + J × B, (2)

where ρ is the density, v the velocity, T the Cauchy stress tensor, J the current density
and B the total magnetic field so that B = B0 + b, b is the induced magnetic field.
d/dt denotes the material time derivative.

The above system of equations will be closed by a constitutive equation for the stress
tensor T . We examine the flow of an incompressible fourth-grade fluid described by the
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constitutive equation

T = −pI +
n
∑

j=1

Sj (3)

with n = 4, in which

S1 = µA1, (4)

S2 = α1A2 + α2A
2
1, (5)

S3 = β1A3 + β2(A1A2 + A2A1) + β3(trA
2
1)A1, (6)

S4 = γ1A4 + γ2(A3A1 + A1A3) + γ3A
2
2 + γ4(A2A

2
1 + A

2
1A2)

+γ5(trA2)A2 + γ6(tr A2)A
2
1 + [γ7tr A3 + γ8tr (A2A1)] A1, (7)

where µ is the coefficient of shear viscosity, and αi (i = 1, 2), βi (i = 1, 2, 3), γi (i =
1, 2, . . . , 8) are material parameters. The Rivlin-Ericksen tensors An are defined by the
recursion relation:

An =
dAn−1

dt
+ An−1(gradv) + (gradv)T

An−1, n > 1,

(8)
A1 = (gradv) + (gradv)T .

We note that when γi = 0 (i = 1, 2, . . . , 8) the fourth-grade model reduces to the
third-grade model, i.e., n = 3 in (3), while when βi = 0 (i = 1, 2, 3) and γi = 0
(i = 1, 2, . . . , 8) the model reduces to a second-grade fluid, corresponding to the case of
n = 2 in (3). If all of the high-order material parameters vanish, i.e., αi = 0 (i = 1, 2),
βi = 0 (i = 1, 2, 3) and γi = 0 (i = 1, 2, . . . , 8), the model reduces to the classical
Navier-Stokes fluid.

We consider the unsteady flow of the incompressible, conducting fourth-grade fluid,
excited by the longitudinal oscillation of an infinite porous plate with suction/blowing.
We employ a spatial coordinate system with the origin on the plate, x-axis along the
plate in the direction of the plate movement, and y-axis perpendicular to the plate
directed toward the fluid, which is in contact with the plate and occupies the whole
semi-infinite region y ≥ 0. A uniform magnetic field B0 = B0k (k is a unit vector
normal to the plate in the y-direction) is applied to the fluid system. In the low-
magnetic-Reynolds-number approximation, in which the induced magnetic field b can
be ignored, the magnetic body force becomes (see e.g. [18])

J × B = −σB2
0v, (9)

in which σ is the electrical conductivity of the fluid.
Under these conditions, the flow is independent of x. Thus, it follows from the

equation of continuity (1) that
∂v

∂y
= 0, (10)

hence the velocity component in y-direction, v, is a function of time only. We take

v = const = −v0, (11)
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where v0 is the suction (v0 > 0) and blowing (v0 < 0) velocity normal to the plate.
We shall seek a velocity field of the form

v = (u, v, w) = (u(y, t),−v0, 0) , (12)

where u, v and w are the x, y and z components of the velocity field.
Substituting (4)–(8), (11) and (12) into (3), then the resulting constitutive relations

together with (9) again into the momentum equation (2), and subsequently eliminating
the emerging pressure gradients ∂p/∂x and ∂p/∂y by cross differentiation, after some
intricate computations, we can obtain a differential equation

ρ

[

∂2u

∂y∂t
− v0

∂2u

∂y2

]

= µ
∂3u

∂y3
− σB2

0

∂u

∂y
+ α1

(

∂4u

∂y3∂t
− v0

∂4u

∂y4

)

+ β1

(

∂5u

∂y3∂t2
− 2v0

∂5u

∂y4∂t
+ v2

0

∂5u

∂y5

)

+6(β2 + β3)
∂

∂y

{

(

∂u

∂y

)2
∂2u

∂y2

}

+ γ1

(

∂6u

∂y3∂t3
− 3v0

∂6u

∂y4∂t2
+ 3v2

0

∂6u

∂t∂y5
− v3

0

∂6u

∂y6

)

+(6γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ7 + 2γ8)
∂2

∂y2

(

(

∂u

∂y

)2(
∂2u

∂y∂t
− v0

∂2u

∂y2

)

)

. (13)

Its dimensionless form can be written as

∂

∂t̄

{

∂ū

∂ȳ
− ᾱ1

∂3ū

∂ȳ3
+ 2β̄1v̄0

∂4ū

∂ȳ4
− 3γ̄1v̄

2
0

∂5ū

∂ȳ5

}

− 2γ̄

[

(

∂2ū

∂ȳ2

)2

+
∂ū

∂ȳ

∂3ū

∂ȳ3

]

∂

∂t̄

{

∂ū

∂ȳ

}

−4γ̄
∂ū

∂ȳ

∂2ū

∂ȳ2

∂

∂t̄

{

∂2ū

∂ȳ2

}

− γ̄

(

∂ū

∂ȳ

)2
∂

∂t̄

{

∂3ū

∂ȳ3

}

+
∂2

∂t̄2

{

3γ̄1v̄0
∂4ū

∂ȳ4
− β̄1

∂3ū

∂ȳ3

}

− γ̄1
∂3

∂t̄3

{

∂3ū

∂ȳ3

}

= −B̄
∂ū

∂ȳ
+ v̄0

∂2ū

∂ȳ2
+

∂3ū

∂ȳ3
− ᾱ1v̄0

∂4ū

∂ȳ4
+ β̄1v̄

2
0

∂5ū

∂ȳ5
+ β̄

(

2
∂ū

∂ȳ

(

∂2ū

∂ȳ2

)2

+

(

∂ū

∂ȳ

)2
∂3ū

∂ȳ3

)

−γ̄1v̄
3
0

∂6ū

∂ȳ6
− γ̄v̄0

(

2

(

∂2ū

∂ȳ2

)3

+ 6
∂ū

∂ȳ

∂2ū

∂ȳ2

∂3ū

∂ȳ3
+

(

∂ū

∂ȳ

)2
∂4ū

∂ȳ4

)

, (14)

where the emerging dimensionless variables and parameters are defined by

ū =
u

U
, ȳ =

Uy

ν
, v̄0 =

v0

U
, t̄ =

ρU2

µ
t,

B̄ =
νσB2

0

ρU2
, ᾱ1 =

α1U
2

ρν2
, β̄1 =

β1U
4

ρν3
, γ̄1 =

γ1U
6

ρν4
, (15)

β̄ =
6(β2 + β3)U

4

ρν3
, γ̄ = 2 (3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)

U6

ρν4
,
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in which U is a reference velocity and ν = µ/ρ is the fluid kinematic viscosity.
We note that (14) is a high-order partial differential equation (sixth-order in space

and third-order in time) and thus requires additional boundary conditions except for the
usual boundary conditions for a Newtonian fluid [15]. As we are solving the problem in
an unbounded domain, it is possible to augment the boundary conditions by enforcing
additional asymptotic structures at infinity. Here, we augment the additional boundary
conditions by requiring that the several high-order derivatives in space vanish at infinity.
Similar additional initial conditions are also postulated. Their different choices may have
influence only on the numerical results for the initial time steps. We will solve (14) in
the domain ȳ ∈ [0,∞) with the following boundary conditions

ū = sin(ω̄t̄) at ȳ = 0,

ū = 0,
∂nū

∂ȳn
= 0 (n = 2, 3, 4, 5) at ȳ → ∞,

(16)

and the initial conditions

ū = 0,
∂nū

∂t̄n
= 0, (n = 2, 3) at t̄ = 0. (17)

For the boundary condition at the plate, (16)1, we assume a non-slip condition and
the plate oscillates in a sinusoidal form, in which ω̄ is the corresponding dimensionless
frequency. It should be pointed out that the additional boundary conditions at ȳ → ∞
in (16)2 are specified for n = 2, 3, 4, 5 instead of those for n = 1, 2, 3, 4. This choice is for
no other reason than the consideration of numerical simulations, because the physical
value at the first interior grid point near the boundary ȳ → ∞ would be determined
directly by the boundary conditions instead of the governing differential equation, if the
other choice with n = 1, 2, 3, 4 would be employed. It is also the similar case for the
additional initial conditions (17)2.

For simplicity, in the following we will drop the bars of the dimensionless variables.

3 Numerical Method

Approximate solutions can be obtained by truncating the semi-infinite domain. In
this approximation, the semi-infinite domain y ∈ [0,∞) is replaced by a finite domain
y ∈ [0, H ] and the boundary conditions at infinity y → ∞ are enforced at y = H . The
length H is chosen in such a manner that any further increase in its value does not
significantly alter the solution. It should be emphasized here that proper care should
be exercised in the determination of the solution because it is well known that even in
the case of a Navier-Stokes fluid spurious solutions are possible due to the truncation of
an infinite domain to a bounded one [13].

In order to avoid such possible spurious solutions, in this paper the coordinate trans-
formation η = 1/(y + 1) is applied to transform the semi-infinite physical domain
y ∈ [0,∞) to a finite calculation domain η ∈ [0, 1], by the following transformation
relations

y =
1

η
− 1,

∂

∂y
= −η2 ∂

∂η
,

∂2

∂y2
= η4 ∂2

∂η2
+ 2η3 ∂

∂η
,

5
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∂3

∂y3
= −η6 ∂3

∂η3
− 6η5 ∂2

∂η2
− 6η4 ∂

∂η
,

∂4

∂y4
= η8 ∂4

∂η4
+ 12η7 ∂3

∂η3
+ 36η6 ∂2

∂η2
+ 24η5 ∂

∂η
, (18)

∂5

∂y5
= −η10 ∂5

∂η5
− 20η9 ∂4

∂η4
− 120η8 ∂3

∂η3
− 240η7 ∂2

∂η2
− 120η6 ∂

∂η
,

∂6

∂y6
= η12 ∂6

∂η6
+ 30η11 ∂5

∂η5
+ 300η10 ∂4

∂η4
+ 1200η9 ∂3

∂η3
+ 1800η8 ∂2

∂η2
+ 720η7 ∂

∂η
.

With these transformations, the governing differential equation (14) can be rewritten
in the η coordinate. Here, we avoid writing its explicit form because of its complexity.
The boundary conditions (16) in terms of η can be rewritten as

u = sin(ωt), at η = 1,

u = 0,
∂nu

∂ηn
= 0 (n = 2, 3, 4, 5), at η = 0.

(19)

In the subsequent simulations for most cases the dimensionless oscillation frequency of
the plate, ω, is simply taken as ω = 1, but we will also discuss the effect of various
values of ω on the time series of velocity and the structure of the boundary layer near
plate.

The differential equation (14) is a nonlinear high-order differential equation. We can
solve this initial-boundary value problem (14), (17) and (19) by finite difference method.
We can discretize (14) (in fact its form in terms of η) for M uniformly distributed discrete
points η = (η1, η2, . . . , ηM) ∈ (0, 1) with a space grid size of ∆η = 1/(M + 1) and time
steps t = (t(1), t(2), ..., t(n), ...) = (∆t, 2∆t, ..., n∆t, ...), where ∆t is the time step size.
Due to the inequality of the numbers of the boundary conditions at both boundaries,
i.e., five conditions at η = 0, but only one at η = 1, we cannot use central differences
to approximate the high-order derivatives emerging in (14) and (19) (if the order > 2).
The following finite difference schemes are constructed and employed for different order
derivatives. Except for the first and second derivatives they are not central differences,
but inclined towards the boundary η = 0, where more boundary conditions are specified;
however they are still of second-order accuracy. Here, we omit the laborious derivation
and only list the formulas for the derivatives at point η = ηj :

∂u

∂η
|η=ηj

=
uj+1 − uj−1

2(∆η)
+ o(∆η2),

∂2u

∂η2
|η=ηj

=
uj+1 − 2uj + uj−1

(∆η)2
+ o(∆η2),

∂3u

∂η3
|η=ηj

=
3uj+1 − 10uj + 12uj−1 − 6uj−2 + uj−3

2(∆η)3
+ o(∆η2),

(20)
∂4u

∂η4
|η=ηj

=
2uj+1 − 9uj + 16uj−1 − 14uj−2 + 6uj−3 − uj−4

(∆η)4
+ o(∆η2),
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∂5u

∂η5
|η=ηj

=
5uj+1 − 28uj + 65uj−1 − 80uj−2 + 55uj−3 − 20uj−4 + 3uj−5

2(∆η)5
+ o(∆η2),

∂6u

∂η6
|η=ηj

=
3uj+1 − 20uj + 57uj−1 − 90uj−2 + 85uj−3 − 48uj−4 + 15uj−5 − 2uj−6

(∆η)6

+o(∆η2),

in which o(∆η2) denotes quantities which are higher order small than ∆η2.
For the fifth-order derivative emerging in the boundary condition at infinity η = 0

(j = 0) and the sixth-order derivative emerging in the differential equation (14) for the
first interior grid point near the boundary of infinity η = 0 (j = 1) only difference ap-
proximations with first-order accuracy are used to avoid additional unknown imaginary
boundary values, i.e.,

∂5u

∂η5
|η=ηj

=
uj+1 − 5uj + 10uj−1 − 10uj−2 + 5uj−3 − uj−4

(∆η)5
+ o(∆η), (j = 0)

(21)
∂6u

∂η6
|η=ηj

=
uj+1 − 6uj + 15uj−1 − 20uj−2 + 15uj−3 − 6uj−4 + uj−5

(∆η)6

+o(∆η) (j = 1).

Similarly, a temporally afterwards form for the third-order time derivative is used

∂3u

∂t3
|t=t(n) =

3u(n+1) − 10u(n) + 12u(n−1) − 6u(n−2) + u(n−3)

2(∆t)3
+ o(∆t2),

(22)

whilst for the first- and second-order time derivative still traditional central difference
schemes are employed.

In so doing, for each time step a linear algebraic equation system emerges. Its
coefficient matrix has a bandwidth of eight elements. This equation system can be
solved e.g. by Gaussian elimination. The values of the velocity field u at the boundary
points η0 = 0 (j = 0), ηM+1 = 1 (j = M + 1) and the imaginary points outside the
domain (j = −1,−2,−3,−4) can be obtained by using the boundary conditions (19).

4 Numerical Results and Discussions

We compare the velocity profiles for two kinds of fluids: the Newtonian fluid, for which
α1 = 0, β = β1 = 0 and γ = γ1 = 0, and the full fourth-grade non-Newtonian fluid,
in which for most cases we choose α1 = β1 = β = γ1 = γ = 1 without physical
reasons. In addition the influences of other different values of the material parameters
are also investigated. In order to clearly observe the structure of the boundary layer
near the plate, all numerical results are depicted in the y-coordinate only for a truncated
physical domain y ∈ [0, 9] (corresponding to η ∈ [0.1, 1]) near the plate, after finishing
the simulations in the whole computational domain η ∈ [0, 1], corresponding to the
physical domain z ∈ [0,∞).

7
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0 5 10 15 20 25 30 35 40

−0.5

0

0.5

y = 0.0 
y = 0.25
y = 1.0 
y = 2.0 

ωt

Figure 1: Time series of the flow velocity at several different distances from the plate
y = 0, 0.25, 1.0, 2.0 within the first seven periods ωt ∈ [0, 14π] for the fourth-grade
non-Newtonian fluid with the chosen material parameters α1 = β = β1 = γ = γ1 = 1.
The other parameters are chosen as B = 0, v0 = 0 and ω = 1.

u

0 5 10 15 20 25 30 35 40

−0.5

0

0.5

y = 0.0 
y = 0.25
y = 1.0 
y = 2.0 

ωt

Figure 2: Time series of the flow velocity at several different distances from the plate
y = 0, 0.25, 1.0, 2.0 within the first seven periods ωt ∈ [0, 14π] for the Newtonian fluid,
for which α1 = β = β1 = γ = γ1 = 0. The other parameters are chosen as B = 0, v0 = 0
and ω = 1.

The time series of the flow velocity in several different positions (different distances
from the plate) for the first seven periods ωt ∈ [0, 14π] are displayed in Fig. 1 for the
fourth-grade non-Newtonian fluid and in Fig. 2 for the Newtonian fluid, respectively.
Obviously, periodic flows can be reached almost immediately after the set-up of the flow
conditions, at most after two periods. Due to the no-slip boundary condition at the solid
boundary the fluid near the plate oscillates together with the plate in the same phase and
the amplitude. The velocity amplitude decays rapidly with the increase of the distance
from the plate. Whilst the flow of the fourth-grade non-Newtonian fluid in the whole
flow domain oscillates approximately in phase with the driving plate movement (Fig. 1),
a phase lag behind the excitation occurs for the Newtonian fluid which increases with the
increase of the distance away from the plate (Fig. 2). Actually, these phase difference
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depends on the ratio of viscous to inertial forces for the investigated fluids. If the
apparent viscosity of the fluid is sufficiently large, i.e., the viscous forces dominate, the
flow can simultaneously adapt to the current driving force and oscillates approximately
with the same phase in the whole flow domain. This is the case for the fourth-order
non-Newtonian fluid. For the Newtonian fluid displayed in Fig. 2 the inertial forces
dominate and the flow slowly reacts to the changes of the plate movement, hence in the
flow velocity a phase lag behind the excitation occurs. This time delay increases with
the increase of the distance from the plate.

From Figs. 3 and 4 it can be clearly seen that the investigated fourth-grade non-
Newtonian fluid shows a larger apparent viscosity than the corresponding Newtonian
fluid. In both figures the velocity profiles at two different phases ωt = (2n + 1/2)π
(wave peak) and ωt = (2n + 3/2)π (wave trough) within a period ωt ∈ [2nπ, 2(n + 1)π]
with a sufficiently large value of n, for which the periodic flow has been reached (e.g.
after several periods), are represented for various values of the second-order (α1) in
Fig. 3 and third-order material parameters (β, β1) in Fig. 4 of the non-Newtonian fluid,
respectively. For comparison, the corresponding velocity profiles of the Newtonian fluid
are also displayed (solid lines in the figures). In general, the non-Newtonian fluid exhibits
a much thicker boundary layer, indicating a larger apparent viscosity than that of the
Newtonian fluid. Increasing these second- and third-order material parameters (α1 in
Fig. 3 and β, β1 in Fig. 4) causes further thickening of the boundary layer. Furthermore,
increasing the fourth-order material parameters, γ and γ1, indicates a similar tendency,
that is for briefness not shown here.

The numerical results obtained by using various suction velocities v0 through the
plate are illustrated in Fig. 5. The alteration tendencies of the velocity distributions by
varying v0 are practically converse for the Newtonian fluid and the fourth-grade fluid.
For the Newtonian fluid (Fig. 5a), when the suction velocity v0 increases, as one may
expect, the boundary layer near the plate (y = 0) tends to become thinner. On the
contrary, for the fourth-order fluid (Fig. 5b) the effect of increase in the suction velocity
increases the boundary layer thickness. Test computations with other different high-
order material parameters show similar tendency, except when all high-order material
parameters are chosen to be very small, for which the fourth-grade fluid behaves like a
Newtonian fluid. In general, the boundary layer for the Newtonian fluid is much thinner
than that for the fourth-order fluid, especially for the case with a suction through the
porous plate. For a blowing through the plate, the fluids behave qualitatively opposite
to a suction velocity. In this case, with the increase of the blowing velocity, for the
Newtonian fluid the shear boundary layer becomes thicker rapidly, whilst for the fourth-
grade fluids the thickness of boundary layers is not so sensitive to variations in the
blowing, and only slight thinning of the boundary layer occurs. To save space, the
corresponding results with a blowing are not graphically displayed.

The dependence of the distributions of the flow velocity on the magnetic field is
shown in Fig. 6. An applied magnetic field tends to restrict the shearing to a thinner
boundary layer near the plate not only for the investigated fourth-order non-Newtonian
fluid but also for the Newtonian fluid, although this thinning seems to be more obvious
for the fourth-order fluid than that of the Newtonian fluid. The reason for this thinning
is that the magnetic field provides a resistance to the flow and hence decrease the flow
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Figure 3: Profiles of the flow velocity u(y, t) at two different time slices ωt = (2n+1/2)π
(left panel) and ωt = (2n+3/2)π (right panel) for the Newtonian fluid (solid lines) and
the fourth-grade non-Newtonian fluid with various values of the second-order material
parameter, α1 = 1, 2, 5, while the other high-order material parameters are fixed, β =
β1 = γ = γ1 = 1. Here n is chosen to be sufficiently large to assure that the periodic
flow has been reached. The other parameters are chosen as B = 0, v0 = 0 and ω = 1.
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Figure 4: Profiles of the flow velocity u(y, t) at two different time slices ωt = (2n+1/2)π
(left panel) and ωt = (2n+3/2)π (right panel) for the Newtonian fluid (solid lines) and
the fourth-grade non-Newtonian fluid with various values of the third-order material
parameters, β = β1 = 1, 3, 5, while the other high-order material parameters are fixed,
α1 = γ = γ1 = 1. Here n is chosen to be sufficiently large to assure that the periodic
flow has been reached. The other parameters are chosen as B = 0, v0 = 0 and ω = 1.

velocity.
To our surprise, an applied magnetic field can put forward the oscillation phase in

the domain away from the plate. This can be extracted from the time series of velocity
displayed in Fig. 7 for a fourth-grade fluid with three different values of the magnetic
field B = 0, 1, 2 at two different distances from the plate y = 1, 2, respectively. Even a
phase lead before the driving plate movement occurs which increases with the increase
of the distance away from the plate (by comparing the above and below panels) and
the magnetic field strength B, as it can be easily identified in Fig. 7, in which for
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Figure 5: Profiles of the flow velocity u(y) at the time slice ωt = (2n + 1/2)π with a
sufficiently large value of n for the Newtonian fluid (left panel) and the fourth-grade
fluid α1 = β = β1 = γ = γ1 = 1 (right panel) with different suction velocities in the
absence of the magnetic field B = 0. The dimensionless oscillation frequency of the
plate is fixed as ω = 1.
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Figure 6: Profiles of the flow velocity u(y) at the time slice ωt = (2n + 1/2)π with a
sufficiently large value of n for the Newtonian fluid (left panel) and the fourth-grade
fluid α1 = β = β1 = γ = γ1 = 1 (right panel) with different values of the magnetic
field B = 0, 1, 2 in the absence of suction/blowing through the plate v0 = 0. The
dimensionless oscillation frequency of the plate is fixed as ω = 1.

B = 0 (solid lines) the flow is almost in the same phase as the driving plate movement
(as shown in Fig. 1). As expected, with the increase of B, the amplitude of the flow
decreases because the magnetic force is a resistance to the flow. The influence of B on
the velocity time series of a Newtonian fluid has a similar tendency and is not repeated
here.

As we have pointed out before, to some extent increasing the high-order material
parameters corresponds to the increase of the apparent viscosity of the fourth-grade
fluid. This effect can also be seen from the time series of flow velocity at a fixed position
y = 2 with different values of the second-order material parameter α1, displayed in
Fig. 8. With the increase of α1, the amplitude of the flow velocity at a given distance
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Figure 7: Time series of the flow velocity at two different distances from the plate, y = 1
(above panel) and y = 2 (below panel), within the first seven periods ωt ∈ [0, 14π] for
a non-Newtonian fluid with the chosen material parameters α1 = β = β1 = γ = γ1 = 1.
For the magnetic field strength, three different values are taken: B = 0 (solid lines),
B = 1 (dashed lines) and B = 2 (dotted lines). No suction/blowing past the plate exists
v0 = 0. The dimensionless oscillation frequency of the plate is fixed as ω = 1.

from the plate increases, indicating the boundary layer becomes thickener. For cases in
which a phase difference between the flow and the driving force occurs, increasing the
high-order material parameters will cause the fluid to react to the driving force more
rapidly and hence reduce the possible phase difference (lag or lead). This is the case
for B = 2 displayed in Fig. 8 (below panel), in which the phase lead decreases with the
increase of α1, whilst for the case of B = 0 (the above panel of Fig. 8) the flow velocities
with the different values of α1 are nearly in the same phase with the driving movement,
hence such a phase change by varying α1 is invisible. Numerical results by increasing
the other high-order material parameters β, β1 or γ, γ1 show similar influences, but are
not graphically presented here.

In the numerical results displayed before we took the dimensionless oscillation fre-
quency of the plate as ω = 1. It is fairly interesting to observe the effect of various
values of ω on the time series of the velocity and the structure of the boundary layer
near the oscillating plate. The corresponding numerical results for three different values
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Figure 8: Time series of the flow velocity at a fixed distance from the plate of y = 2
within the first seven periods ωt ∈ [0, 14π] for fourth-grade non-Newtonian fluids with
different values of the second-order material parameter α1: α1 = 1 (solid line), α1 = 2
(dashed line) and α1 = 5 (dotted line). The values of the other material parameters are
fixed: β = β1 = γ = γ1 = 1. The magnetic field strength is chosen as B = 0 (above
panel) and B = 2 (below panel). No suction/blowing past the plate exists: v0 = 0. The
dimensionless oscillation frequency of the plate is fixed as ω = 1.

of ω, ω = 0.3, 1, 3, are graphically shown in Figs. 9 and 10, respectively. It is obvious
that, for the investigated forth-order non-Newtonian fluid, the boundary layer near the
oscillating plate becomes thicker when the dimensionless oscillation frequency ω devi-
ates from its value of ω = 1, as seen in Fig. 9. The case with ω = 1 corresponds to the
thinnest boundary layer. As shown in Fig. 1, for the investigated fourth-order fluid in
the absence of the suction/blowing through the plate (v0 = 0) and the magnetic field
(B = 0), the flow for ω = 1 in the whole flow domain oscillates approximately in phase
with the driving plate movement. It is also the case shown in Fig. 10 with ω = 1 (dashed
line). For ω < 1 (solid line) a phase lag after the driving plate movement exists, whilst
for ω > 1 even a phase lead occurs.
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Figure 9: Profiles of the flow velocity u(y, t) at two different time slices ωt = (2n+1/2)π
(left panel) and ωt = (2n + 3/2)π (right panel) for a fourth-grade non-Newtonian fluid
with the chosen material parameters α1 = β = β1 = γ = γ1 = 1. Here n is chosen to be
sufficiently large to assure that the periodic flow has been reached. Three different values
of the dimensionless frequency ω are considered: ω = 0.3, 1, 3. The other parameters
are chosen as B = 0, v0 = 0.
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Figure 10: Time series of the flow velocity at a fixed distance from the plate of y = 2
within the first seven periods ωt ∈ [0, 14π] for a fourth-order non-Newtonian fluid with
the chosen material parameters α1 = β = β1 = γ = γ1 = 1. Three different values of the
dimensionless frequency ω are taken: ω = 0.3, 1, 3. There exists neither suction/blowing
past the plate (v0 = 0) nor external magnetic field (B = 0).

5 Final Remarks

The time-dependent flow field of a magnetohydrodynamic (MHD) fluid of grade four is
investigated. The velocity field is governed by a non-linear higher-order, sixth-order in
space and third-order in time, partial differential equation. The governing equation is
sufficiently general to incorporate the effects of an applied magnetic field and allows the
study of blowing/suction at the boundary. Numerical results for the unsteady MHD
flow caused by a periodic motion of the infinite two-dimensional plate are presented,
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for which the surrounding fluid occupies a semi-infinite space. This offers difficulties
due to the unbounded domain and the lack of sufficient physical boundary conditions,
even in the case of the second- or third-grade fluids, more boundary conditions are
necessary in addition to the usual ones for a Newtonian fluid. In the unbounded domain
the additional boundary conditions are augmented by enforcing additional asymptotic
structure at infinity, although these are relatively weak and physically plausible, see
[15]. In order to circumvent the difficulty with the infinite flow domain, a coordinate
transformation is employed, which causes some complicated derivations. Furthermore,
to match the unsymmetrical boundary conditions, non-central difference schemes for
the high-order spatial derivatives are constructed and used.

The purpose of our analysis is to investigate flows of a fourth-grade fluid with a view
towards understanding its response characteristics. The flow fields of the fourth-order
non-Newtonian fluid are compared with those of a linear Newtonian fluid. Numerical re-
sults show that phase differences in flow fields may appear, which may be a phase lag or
lead, depending on the chosen parameters. Increasing the strength of the applied mag-
netic field decreases the boundary-layer thickness, that is valid for both the Newtonian
fluid and the fourth-order non-Newtonian fluid, while the effect of alteration in suction
velocity through the porous plate shows obvious differences between the Newtonian and
fourth-grade non-Newtonian fluids. In general, the fourth-order non-Newtonian fluid
exhibits a thicker boundary layer than the Newtonian fluid, and increasing the high-
order material parameters of the non-Newtonian fluid causes further thickening of the
boundary layer.

It should be pointed out that the quantitative behaviour of high-order fluids is
strongly dependent on the choice of the material parameters. At the present time
there appears to be no experimental data determining these parameters, particularly
for these material parameters in a theory of fourth-order fluids. In this paper, only the
simplest prototype flow problem, containing the ingredients essential to understanding
the phenomena, is presented. It is only a step towards understanding the behaviour
of fourth-order fluids. A good deal of refinement and extension is required, especially
the determination of physically reasonable high-order material parameters, before more
quantitative answers can be expected.
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