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Dynamic Bifurcations of Damped Planar Beams
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‡ DISG, University of Rome “La Sapienza”, via Eudossiana, 18, 00184 Rome, Italy

Abstract

The critical and post-critical behavior of a nonconservative nonlinear structure, un-

dergoing statical and dynamical bifurcations, is analyzed. The system consists of a purely

flexible planar beam, equipped with a lumped visco-elastic device, loaded by a follower force.

A unique integro-differential equation of motion in the transversal displacement, with relevant

boundary conditions, is derived. Then, the linear stability diagram of the trivial rectilinear

configuration is built-up in the parameter space. Particular emphasis is given to the role

of the damping on the critical scenario. The occurrence of different mechanisms of insta-

bility is highlighted, namely, of divergence, Hopf, double zero, resonant and non-resonant

double Hopf, and divergence-Hopf bifurcation. Attentions is then focused on the two latter

(codimension-two) bifurcations. A Multiple Scale analysis is carried-out directly on the con-

tinuous model, and the relevant nonlinear bifurcation equations in the amplitudes of the two

interactive modes are derived. The fixed-points of these equations are numerical evaluated

as functions of two bifurcation parameters and some equilibrium paths illustrated. Finally,

the bifurcation diagrams, illustrating the system behavior around the critical points of the

parameter space, are obtained.

Keywords: Stability analysis, damping effects on stability, non-conservative loads,

bifurcation, Multiple Scales Method, direct perturbation approach, divergence and Hopf bi-

furcations, beam continuous model.
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1 Introduction

Columns subjected to follower forces, after the pioneering paper by Beck [1], have recently

attracted the attention of many researchers, particularly in aerospace, where tangential forces

are produced by jets and rocket motors [2]. Columns with a tip mass have also been studied,

to account for the influence of the mass of the device delivering the load [3]. Lumped damping

forces and couples have then been considered to model the external action of air on the mass

[4]. On the other hand, passive control systems for vibration reduction also demand the

introduction of dissipation devices (dashpots), which can remarkable affect the critical and

postcritical column behavior. The effect of dashpots on the linear stability of the Beck

column has, for example, been studied in [5]; a general treatment of the effect of an added

small damping on the stability of linear continuous nonconservative systems can be found

in [6]. However, except for [3], where the Multiple Scale Method has been employed to

investigate supercritical and subcritical Hopf bifurcations, the attention of the aforementioned

researchers has been limited to the linear stability problem. Here, it is believed important

to extend the analysis to the nonlinear range, accounting for possible interactions between

static and dynamic bifurcation mechanism. Such a problem has been deeply studied in [7]-[8],

where some discrete versions of the continuous column have been considered.

It is well-known that the essential dynamics of a nonlinear system, finite-or infinite-

dimensional, close to a bifurcation point, is captured by an equivalent, lower dimensional,

reduced system [9]-[11]. Reduction method, as linear and nonlinear Galerkin, center manifold

and approximate inertial manifold methods, have been thoroughly discussed in [12]. In the

last decade, as an alternative and more engineering oriented approach, the authors have

systematically applied the Multiple Scales Method to analyze a number of bifurcations of

linear codimension-one, two and three, to general finite dimensional systems [13]-[17]; a

review paper [18] resumes their main results. More recently, they have extended the method

to infinite dimensional system, to analyze divergence, Hopf and double-zero bifurcations

[19]-[22]. The method is based on the direct treatment of the original (integro)-differential

equations, avoiding any a priori discretization (as that, e.g., performed in [3]), according
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to the so-called direct method, widely applied by Nayfeh and co-workers [23]-[25], and many

other authors (see, e.g., [26, 27]), to several problems of nonlinear dynamics.

In this paper the algorithm is applied to study a cantilever beam, constrained by a spring

and two dashpot, loaded by a follower force. This system, for its simplicity, was already stud-

ied in [19, 20] as an example of structure undergoing divergence, Hopf and double-zero bifur-

cation. A deeper parametric analysis performed on the system permitted to reveal a richer

bifurcation scenario, including Hopf-divergence and resonant and non-resonant double-Hopf,

not discovered in the previous analysis. Therefore, the beam viscous-elastically restrained

could be taken as paradigmatic system undergoing all the low-codimension bifurcations of

mechanical interest. Here, the analysis of the codimension-two bifurcations is completed,

while the codimension-three one (resonant Hopf-Hopf) is left for future investigation.

The paper is thus organized. In Sect. 2 the equations of motions are given, and detailed

in Appendix A, where they are derived through a procedure alternative to that of Ref. [19].

Moreover the linear adjoint problem is defined. In Sect. 3 the critical scenario is depicted.

Considerably emphasis is given to the influence of the relative magnitude of the two dashpots

on bifurcations. The well-known destabilizing effect of damping is detected, and a new para-

doxical result discovered. In Sect. 4 the post-critical analysis is carried-out. The bifurcation

equations are first derived and then numerically studied to built-up equilibrium paths and

bifurcation diagrams. Finally, in Sect. 5 some conclusions are drawn.

2 Model

A planar beam is considered, fixed at end A and constrained by a linear visco-elastic

device at end B, loaded at the tip by a follower force of intensity P (Fig. 1). The device

consists of an extensional spring of stiffness ke and two dashpots of constants ce and ct, of

extensional and torsional type, respectively. The beam is assumed to be inextensible and

shear-undeformable, so that bending is the unique strain measure.
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2.1 The equations of motion

The equations of motion of the beam were derived in [19] through a variational approach, by

eliminating the rotation through the no-shear constraint and by using a lagrangian multiplier

to account for the axial constraint. Then, after condensation of the longitudinal displacement

and of the lagrangian multiplier, the following, unique, nonlinear integro-differential equation,

corrected up-to the third order, was obtained in nondimensional form:

ü+ u′′′′ + 2µu′′ + u′′3 + 4u′u′′u′′′ + u′2u′′′′ + µ
(

3u′2 − u′2B
)

u′′ (1)

+

[∫ s

1

(∫ s

0

1

2
u′2 ds

)..

ds

]

u′′ +

[(∫ s

0

1

2
u′2 ds

)..]

u′ = 0

with the relevant boundary conditions:

−u′′′B + κuB + ξeu̇B = −µu′3B + u′′′Bu
′2
B + u′′2B u

′
B, u′′B + ξtu̇

′
B = −1

2
ξtu

′2
Bu̇

′
B − 1

2
u′′Bu

′2
B

uA = 0, u′A = 0
(2)

where A and B denote evaluation at the beam ends. In Eqs. (1)-(2) the following nondimen-

sional variables and parameters were introduced:

t̃ = ωt, s̃ = s/l, ũ = u/l, µ = Pl2/2EI

κ = kel
3/EI, ξe = ceωl

3/EI, ξt = ctωl/EI
(3)

where u(s, t) ≡ uy(s, t) is the transversal displacement of the beam at the abscissa s and time

t (with tilde dropped), l is the length, ω = (EI/ml4)1/2 is a frequency and EI the bending

stiffness. Moreover, µ is the load parameter, κ is a nondimensional stiffness parameter and ξe

and ξt two nondimensional damping coefficients, referred ahead as the ‘spring stiffness’ and

the ‘extensional and torsional damping’, respectively.

To make the paper self-contained, the equations of motion (1) and (2) are reobtained

in Appendix A by following a direct method, based on equilibrium and later condensation

of all the internal reactive forces (axial and shear), which are not achievable by a variational

procedure. The direct method, moreover, reveals the existence of an extra-term, lost in the

previous formulation (namely the nonlinearity affected by µ). The slight difference in the

two derivations was due to the (usually accepted) truncation at the second-order, instead of
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the third-order, of the axial strain-displacement relation used in the variational principle. A

recomputation of the variational procedure, accounting for this higher-order term, permitted

to recover the results of the direct method.

2.2 The linear direct and adjoint problems

The linearized problem Eqs. (1)-(2) is first studied. By letting u(s) = φ(s) exp(λt), the

following eigenvalue problem is obtained:

φ′′′′ + 2µφ′′ + λ2φ = 0

φA = 0, φ′A = 0

−φ′′′B + κφB + λξeφB = 0, φ′′B + λξtφ
′
B = 0

(4)

In Eq. (4), λ ∈ C is the eigenvalue and φ(s) ∈ C is the associated (right) eigenvector.

It is useful to introduce for later convenience also the adjoint eigenvalue problem. It

is derived from Eq. (4) performing scalar multiplication (in the complex field) by the dual

variables ψ(s) ∈ C and, successively, integrating by parts (i.e. enforcing the so-called bilinear-

identity). The following equations and boundary conditions was obtained:

ψ′′′′ + 2µψ′′ + λ̄2ψ = 0

ψA = 0, ψ′
A = 0

−ψ′′′
B + κψB − 2µψ′

B + λ̄ξeφB = 0, ψ′′
B + 2µψB + λ̄ξtψ

′
B = 0,

(5)

where the overbar denotes complex conjugate. In Eqs. (5), ψ(s) is the left eigenvector asso-

ciated with the eigenvalue λ (the latter being identical in the two problems).

It should be noted that the two field equations (41) and (51) are identical, while the

mechanical boundary conditions (44,5) and (54,5) differ each other; this is a consequence of

the fact the nonconservative sources (follower force and dashpots) are located at the end of

the beam.
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3 Linear Stability Analysis

Stability of the trivial, rectilinear configuration, of the beam is governed by the eigenvalue

problem Eq. (4). It admits the eigenvector:

φ(s) = c1(cos ps− cosh qs) + c2(sin ps−
p

q
sinh qs) (6)

where:

q2 :=
√

µ2 − λ2 − µ, p2 :=
√

µ2 − λ2 + µ (7)

have been set. The arbitrary constants c = (c1, c2)
T , together with the eigenvalue λ, satisfy

the algebraic equations:

S(λ) c = 0 (8)

where:

S(λ) =

















−(κ+ λ ξe) (cos p− cosh q)

+p3 sin p− q3 sinh q,

−(κ+ λ ξe) (sin p− p/q sinh q)

−p3 cos p− q2p cosh q

−λ ξt(p sin p+ q sinh q)

−p2 cos p− q2 cosh q,

λ ξtp(cos p− cosh q)

−p2 sin p− p q sinh q

















(9)

is the ‘dynamical stiffness matrix’ of the system, depending on the eigenvalue λ, in addition

to the system parameter, µ, κ, ξe and ξt.

In order to find divergence and Hopf boundaries in the parameter space, the loci of the

roots λ = 0 and λ = iω of the characteristic equation detS(λ) = 0 must be found, respectively.

In this analysis, the load µ and the stiffness κ are taken as bifurcation parameters, while the

damping coefficients ξe and ξt are assumed to be auxiliary parameters. In other words,

sections ξe = const, ξt = const, of the four-dimensional parameter space are considered.

Divergence occurs at the manifold D on which detS(0) = 0. Since this equation presents

an undetermined form, a limit process for λ → 0 has to be performed. By letting p→ √
2µ,

q → iλ
√

2µ in detS(λ), expanding for small λ and retaining only the leading terms, the

following equation is obtained:

2.82µ3/2κ cos(
√

2µ) − 5.66µ5/2 − 2µκ sin(
√

2µ) = 0 (10)
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which, implicitly, defines a multi-branch curve D in the (κ, µ)-plane.

Hopf bifurcation occurs at the manifold H on which detS(iω) = 0; in addition, <[∂λ/∂n] 6=
0 must hold, n being the normal to the curve in the plane (transversality condition). This

last condition permits to exclude degenerate Hopf cases, as that ones studied by Kounadis

[28]. When λ = iω, p and q are real, so that the unique imaginary terms in S are those due

to damping. By separating real and imaginary terms in the characteristic equation, two real

equations of the type fi(κ, µ, ω; ξe, ξt) = 0 (i = 1, 2) are found. They, again, implicitly define

a multi-branch curve H in (κ, µ)-plane, parameterized in the ω-parameter. Transversality is

either checked numerically, by evaluating <[λ] closely to H, or analytically, via an eigenvalue

sensitivity analysis (see Appendix B). It is worth noting that, in general, Hopf bifurcations

depend on both ξe and ξt parameters. However, when only one of the damping coefficients is

different from zero, the complex characteristic equation splits in two real equations of the type

f(κ, µω) = 0, ξg(κ, µ, ω) = 0 (with ξ = ξe or ξ = ξt), i.e. the Hopf curves are independent of

the (unique) damping.

To better illustrate the system behavior, and emphasize its dependence on damping,

some sub-systems, obtained by removing one of both dashpots from the complete system, are

preliminarily studied. All these systems, of course, exhibit the same divergence curve, while

the Hopf curves change.

Figure 2 shows the linear stability diagram of the undamped (ξe = ξt = 0) system, where

only the (more significant) lower branches of the D- and H-curves have been plotted. The

Hopf curve intersects the µ-axis at the well-known µ = 10.025 value of the Beck beam. Then,

for increasing κ, the dynamical critical load increases, and the curve tangentially merges at

a (degenerate) double zero DZ-point with the upper part of curve D. The disappearance,

for large κ’s, of the dynamic instability is due to the fact that the system tends to the

clumped-support beam, for which the load is of conservative type (see [29]).

The previous scenario abruptly changes, if an extensional damper is added (Fig. 3).

Irrespective of the magnitude of ξe (for the reason above mentioned), the Hopf curve goes

down for all values of κ, and tends to tangentially merge with the lower part of curve D,
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similarly to known results [5, 30]. Therefore, due to extensional damping, dynamic instability

occurs also for large κ’s. However, for small κ’s, ξe has a destabilizing effect, according to

the well-known Ziegler paradox.

The effect of the torsional damping, when it acts alone (ξe = 0), is then studied (Fig. 4).

First, the occurrence of Hopf bifurcations from zero values of the load µ, as suggested by

the numerical analysis, were analytically checked. In this special µ = 0 case, p = q =
√
ω

(Eq. 7), follow. The characteristic equation detS(iω) = 0 then reduces to the very simple

form sin2 p = 0, which admits the double roots pn = nπ (n = 1, 2, . . .). Therefore, at special

values κn (n = 1, 2, . . .) of κ, and µ = 0, two Hopf-curves cross each-other, with the same

values of the frequency, namely ωn = n2π2. Thus, a infinite sequence of 1 : 1 resonant

double Hopf bifurcations (RH) takes place on the κ-axis. It is worth noting that, for such

sub-system, dynamic instability manifests itself both for µ > 0 (compressive) and µ < 0

(tensile) loads. The Hopf curves depicted in Fig. 4 were numerically evaluated, and turned

out to be independent of ξt. Since they cross the divergence curve and, moreover, cross each

other, they reveal the existence of non-resonant Hopf-Hopf points (HH) and Hopf-divergence

points (HD), marked in the figure. In addition, a critical point HHD of higher codimension

appears, in which two Hopf curves and a divergence curve cross each other, two of them being

tangent.

An other interesting aspect offered by the dynamic bifurcations of the purely torsionally

damped system is the following. At a Hopf point, since the first of the two Eqs. (8) (i.e. the

‘shear’ boundary condition) has real coefficients (rememeber that p and q are real and ξe = 0),

then c1 and c2 are real, and the eigenvector (7) is (quite unusually) also real. This entails

that, in the second of Eqs. (8) (i.e. in the ‘moment ’ boundary condition), the bending

moment (real) and the damping couple (imaginary) must vanish separately. Therefore, at

bifurcation, the tip of the beam does not rotate and the follower force, paradoxically behaves

as a conservative force. However, this exceptional circumstance does not hold any more close

to the curve H, since perturbations of the parameters active the nonconservative mechanism.

Indeed, the transversality conditions turned out to be satisfied.

10
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As a further step, a small extensional damping was added to the purely torsionally

damped system. First, it was analytically checked that, due to ξe, the resonant double Hopf

points vanish, i.e. ξe is an imperfection parameter for such bifurcation. A numerical analysis

led to the plot of Fig. 5. This appear to be a slight perturbation of the plot of Fig. 4, if only

the µ > 0 half-plane is considered. Hopf points was instead not found in the µ < 0 half-plane.

The perturbation, moreover, makes the HHD point to vanish.

Comparable values of the two damping coefficients was finally consider in Figs. 6 and

7. They show (Figs. 6a and 7a) that large extensional damping does not qualitatively modify

the scenario of Fig. 5 (small ξe). Therefore, it can be concluded, that the system behavior is

more strongly affected by torsional damping; extensional damping acts as an imperfection,

destroying some bifurcation points, but slightly modifying the curves.

Figures 6 and 7 are now analyzed in more details. In Fig. 6a, both damping coefficients

was varied, by keeping constant their ratio Ξ := ξe/ξt. It was observed, that all the open

(small κ) Hopf curves die at the same DZ-point on the divergence curve, as already noted

in literature for simple, discrete systems [31]. The close (larger κ) Hopf curves also intersect

the D-curve at different, damping-dependent, HD-points. The influence of the Ξ-parameter

is shown in Fig. 6b, where κ was kept fixed and Ξ varied. It is observed that the range

of ξe, in which the dynamic bifurcation occurs at a load lower than the static bifurcation,

sensibly depends on Ξ. In Figure 7a only ξe was varied, by keeping ξt fixed. The property of

coalescence of DZ-points does not hold any more (as for discrete systems); in addition, for

large ξe-damping, the close Hopf curve does not intersect the divergence curve. The analysis,

when repeated for a fixed κ and different values of the ξt-parameter, leads to the results of

Fig. 7b. This shows that, when ξe vanishes, the critical load is independent of ξt, consistently

with results of Fig. 4.

4 Post-Critical Analysis

The Multiple Scale Method [32] is applied to analyze the system behavior at a Hopf-divergence

and at a non-resonant double-Hopf points. The fundamental steps of the method are resumed
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here. A perturbation parameter ε is introduced as a measure of the distance of a generic

point from a bifurcation point in the parameter space (κ, µ). Several independent time-

scales tk := εkt are defined and the state variable u(s) is expanded in a Taylor series of ε.

By equating terms of the same power of ε, linear perturbation equations having the same

operator are obtained, and then solved in sequence for the series coefficients. Except for the

lower-order eigenvalue problem, higher-order equations are non-homogeneous; they admit a

solution if and only if the known term belongs to the range of the singular operator, i.e. if it

is orthogonal to the solutions of the adjoint homogeneous problem (13). Solvability equations

furnish the bifurcation equations, governing the asymptotic dynamics of the system, reduced

to the center manifold. The procedure is sketched ahead.

4.1 Bifurcation Equations

The stiffness κ and the load µ are taken as bifurcation parameters, and their increments with

respect to the critical values κ0 and µ0, denoted by, and ordered as:

β := κ− κ0 = O(ε2), γ := µ− µ0 = O(ε2) (11)

By introducing the series expansions:

u = εu1 + ε3u3 + . . . ,
d

dt
= d0 + ε2d2 + . . . (12)

with dk = ∂/∂tk and tk = εkt (k = 0, 2, . . .), the following perturbation equations and

boundary conditions are derived:

Order ε:






























d2
0
u1 + u′′′′

1
+ 2µ0u

′′
1

= 0

u1A = 0, u′
1A = 0

ξed0u1B − u′′′
1B + κ0u1B = 0

ξtd0u
′
1B + u′′

1B = 0

(13)
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Order ε3:























































d2
0
u3 + u′′′′

3
+ 2µ0u

′′
3

= −2d0d2u1 − 2γu′′
1
− u′′3

1
− 4u′

1
u′′

1
u′′′

1
− u′2

1
u′′′′

1

−µ0

(

3u′2
1
− u′2

1B

)

u′′
1
−

[∫ s
1
d2

0

(∫ s
0

1

2
u′2

1
ds

)

ds
]

u′′
1
−

[(∫ s
0
d2

0

1

2
u′2

1
ds

)]

u′
1

u3A = 0, u′
3A = 0

ξed0u3B − u′′′
3B + κ0u3B = −ξed2u1B − βu1B − µ0u

′3
1B + u′′′

1Bu
′2
1B + u′′2

1Bu
′
1B

ξtd0u
′
3B + u′′

3B = −ξtd2u
′
1B − 1

2
ξtu

′2
1Bd0u

′
1B − 1

2
u′′

1Bu
′2
1B

(14)

Equations (14) (generating solution) admit the following non-decaying solution:

u1 = A1(t2, t4, . . .)φ1(s)e
iω1t0 +A2(t2, t4, . . .)φ2(s)e

iω2t0 + c.c. (15)

or

u1 = a1(t2, t4, . . .)φ1(s) +A2(t2, t4, . . .)φ2(s)e
iωt0 + c.c. (16)

for non-resonant double Hopf or Hopf-divergence bifurcation, respectively. In Eqs. (15) Aj =

1/2 aj exp(iθj) (j = 1, 2) are complex constants with real amplitude aj and phase θj , φj(s)

are complex eigenfunctions and c.c. stands for the complex conjugate of preceding terms.

The same notation holds for Eq. (16), with a1 ∈ R and φ1(s) ∈ R. Substituting Eqs. (15) or

(16) in Eqs. (141) and enforcing solvability, bifurcation equations, formally identical for the

two cases, are drawn:







ȧ1 = (α1ββ + α1γγ) a1 +R122a1a
2
2
+R111a

3
1
+ O

(

|a1|5 + |a2|5
)

ȧ2 = (α2ββ + α2γγ) a2 +R112a
2
1
a2 +R222a

3
2
+ O

(

|a1|5 + |a2|5
) (17)

The coefficients α’s and R’s appearing in Eqs. (17) was obtained via a symbolic manipulation

program [33]. Since they assume quite cumbersome forms, they are not reported here. How-

ever, the numerical values that they assume at the bifurcation points studied ahead (Sect.

4.2), are given in the Appendix C. Equations (17) constitute the bifurcation equations, in

standard normal form and specialized to a symmetric system, for two pairs of nonresonant

purely imaginary critical eigenvalues, or for a one zero and a purely imaginary pair of critical

eigenvalues [11]. They are invariant under the transformations a1 → −a1 and/or a2 → −a2.
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In order to build-up the bifurcation diagram, it is first necessary to evaluate the steady-

state solutions of the dynamical system (17) and, then, to perform a stability analysis. The

fixed points of Eqs. (17) are determined by setting ȧ1 = ȧ2 = 0. These solutions, in terms

of the original system, correspond to two-frequency quasi-periodic motions around the rec-

tilinear configuration of the beam or to one-frequency periodic motion around a nontrivial

(buckled) position, respectively. Equations (17) admit the trivial solution a1T = a2T =0. Non-

trivial steady-state solutions, with one or two non-vanishing components are then sought. If

a2=0, equation Eq. (172) is identically satisfied, while Eq. (171) yields:

a2

1 = −α1ββ + α1γγ

R111

(18)

Similarly, if a1=0, Eq. (171) is identically satisfied, while Eq. (172) yields:

a2

2 = −α2ββ + α2γγ

R222

(19)

If both a1 and a2 are different from zero, Eqs. (17) give:

a2

1 =
(α2βR221 − α1βR222)β + (α2γR221 − α1γR222)γ

R111R222 −R221R211

a2

2 =
(α2βR111 − α1βR211)β + (α2γR111 − α1γR211)γ

R221R211 −R111R222

(20)

Since a1 and a2 are real, solutions (18)-(20) exist only in a sub-domain of the control param-

eter plane. Finally, stability of the fixed points is analyzed by evaluating the eigenvalues of

the Jacobian matrix at equilibria.

4.2 Numerical Results

The reduced dynamical system (17) is numerically analyzed for two sample systems, respec-

tively at a Hopf-Hopf and at Hopf-divergence points. Figure 8 illustrates the HH and HD

bifurcation points, the relevant critical parameters κ0 and µ0.

The HH bifurcation is studied first. The bifurcation diagram is shown in Fig. 9. The

parameter plane is divided in six sectors, delimited by four straight lines passing for the

origin. Lines r1 and r2, individually delimit the half-plane in which monomodal periodic
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solutions (a1, 0) and (0, a2) respectively exist, according to Eq. (18) and (19); lines r11 and

r22, together, delimit the sector in which the bimodal quasi-periodic solution (a1, a2) exists,

according to Eqs. (20). A sketch of the phase portraits relevant to the six sectors is also

shown in Figure. It appears that stable solutions only exist in sectors 2 (trivial solution), 3,

where the motion is periodic, and in sector 4, where the motion is bi-periodic.

Some equilibrium paths, denoted by I to IV in Fig. 9, are shown in Fig. 10. They can

be thought as planar sections of three-dimensional plots (ai, β, γ), with i = 1, 2. Points A to

L marked in Fig. 10 correspond to homonymous points in Fig. 9. It is seen that (Fig. 10a),

for β increasing along path I, the trivial solution is (locally) stable up to point A, where a

stable monomodal a2-motion takes place. Then, at point B, such motion exchanges stability

with a bimodal (a1, a2)-motion. This disappears at point C, where only an unstable a1-

motion, originating at D, exists. Behind D, only the unstable a2-motion, originated at A,

exists. Figure 10b, relevant to path II, is self-explaining. Figure 10c illustrates path III.

At point G un unstable a1-motion arises; at point H a stable a2-motion takes place. This

exchange stability at I with the stable (a1, a2)-motion. Path IV is finally shown in Fig. 10d,

that displays as the a1-amplitude of the bi-periodic motion does not depend on the load

γ = µ− µ0.

The HD bifurcation is then addressed. The relevant bifurcation diagram is plotted in

Fig. 11. Here, lines r1, r2, r11 and r22 keep the meaning previously illustrated, where the

index 1 refers to divergence and index 2 to Hopf. As a peculiarity of this system, lines r2

and r22 are nearly undistinguishable; as a result, the parameter plane is divided in only five

sectors. The relevant phase-portraits, in contrast with the previous case (Fig. 9), reveal the

existence of a stable solution in the whole plane. The two equilibrium paths shown in Fig. 12

are therefore sufficient to illustrate the post-critical behavior. Along path I (Fig. 12a), a

divergence of amplitude a1 occurs at point A. Then, at point B, two bifurcations coalesce:

an unstable periodic a2-motion and a new, stable, two-components motion (a1, a2). Along

path II (Fig. 12b), a stable periodic motion around the trivial configuration is triggered C;

then, at D, after an unstable static bifurcation, a new equilibrium path arises. Finally, at
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point E, the motion around the buckled configuration loses stability, and a stable (a1, a2)

periodic motion around a new equilibrium position takes place.

5 Conclusions

The critical and post-critical behavior of a beam constrained by lumped spring and dashpots,

loaded by a follower force, has been studied. The following conclusions are drawn.

1. The beam undergoes Hopf, divergence, double-zero, Hopf-divergence and double-Hopf

bifurcations, resonant or not, for different combinations of parameters.

2. If both dashpots are removed, an Hamiltonian Hopf bifurcation takes place along a

curve tangent to the divergence curve, similarly to known results.

3. If only a dashpot of extensional type is added to the undamped beam, however small

is the damping coefficient, it has a destabilization effect for any values of the spring

stiffness, and the well-known Ziegler paradox takes place. Discontinuity exists between

the undamped and the damped system.

4. If only a torsional damper is added to the undamped beam, an infinite number of reso-

nant double-Hopf manifests itself for zero values of the load, so that simple Hopf bifur-

cations occur both for positive (compressive) and negative (tensile) forces. However, if

a small extensional damping is added, such bifurcations are destroyed and instability

for traction disappears.

5. In the purely torsional damping case, the critical mode at a generic Hopf point entails

vanishing of both bending and rotation at the tip of the beam. Therefore, as a paradox,

the nonconservative force behaves as a conservative one at the bifurcation.

6. A non degenerate double-zero bifurcation, occurring at the crossing of a Hopf and a

divergence curve, where the first one dies, only can exist if both dampers are present

in the structure.
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7. The scenario of the complete model can usefully be interpreted as a perturbation, due

to the extensional damping, of the scenario of the purely torsionally damped structure.

8. The bifurcation equations relevant to the nonresonant double-Hopf and Hopf-divergence

bifurcations are formally similar. They lead to a bifurcation scenario in a two-dimensional

parameter space in which periodic motions around the trivial or buckled configurations,

as well as bi-periodic motions, are present. Some sections of the amplitude-parameter

surfaces have been given.

A Equations of Motion

A Lagrangian description of the motion is adopted (Fig. 1b). The beam is straight in its rest

reference configuration C0, coincident with the prestressed equilibrium state, with directors

Dj , (j = x, y), oriented as the orthonormal versors of a fixed inertial reference frame (A;aj).

The reference configuration is therefore described by X(s) = sax where s ∈ (0, l) denotes

an abscissa and l is the beam length. The referential description of the current beam con-

figuration Ct at time t is specified by the position vector x(s, t) = X(s) + u(s, t) with u(s, t)

the vector displacement, and by the proper orthogonal tensor R(s, t) describing the rotation

that leads the directors Dj to match the current directors dj (i.e. dj = RDj); in the fixed

inertial reference (A;aj), it admits the following scalar representation:

R =





cosϑ − sinϑ

sinϑ cosϑ



 (21)

where ϑ is the amplitude rotation around the axes oriented by the versor az = ax × ay.

Denoting by (ux, uy) the Cartesian components of u in the basis (ax,ay), the current

configuration Ct is described by the longitudinal displacement ux(s, t), the transversal dis-

placement field uy(s, t) and the rotation ϑ(s, t). The three displacements, however, are not

independent, because of the internal constraints:

tanϑ =
u′y

1 + u′x
, (1 + ux

′)2 + uy
′2 − 1 = 0 (22)
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expressing shear-undeformability and inextensibility, respectively (where (•)′ := d/ds). By

taking u := uy as active kinematic variable, from Eqs. (22), the remaining passive variables

(ux, ϑ), truncated at the third order, are obtained:

ux = −1

2

∫ s

0

u′2 dx, ϑ = u′ +
1

6
u′3 (23)

where the geometrical boundary conditions,

ux(0, t) = 0, ϑ(0, t) = 0 (24)

have been used. Furthermore, the unique non zero strain measure, the curvature χ(s, t) := ϑ′,

becomes:

χ = u′′ +
1

2
u′2u′′ (25)

Denoting by t (s, t) and m (s, t) the internal contact force and couple respectively, and b(s, t)

and c(s, t) the distributed body forces and couples per unit reference length, respectively, the

dynamic balance equations, in Lagrangian form, are expressed as:

t′ + b = 0, m′ + x′ × t + c = 0 (26)

along with the mechanical boundary conditions:

tB = − (keuB + ceu̇B)ay − PdB mB = −ctϑ̇Baz (27)

where B denotes evaluation at the end B of the beam and the overdot indicates differentiation

with respect to time. Equilibrium in C0 entails that t0(s) = −Pax and m0(s) = 0. To obtain

the scalar form of the incremental balance equations, the internal contact forces and couples

in the current configuration Ct are expressed as t(s, t) = [−P +H(s, t)] ax + V (s, t)ay and

m(s, t) = M(s, t)az. Recalling that, for Kirchhoff’s beam model, x′ = dx = cosϑax+sinϑay,

the equations of motions (26) for the dynamic components, projected onto (ax,ay)-basis, are:

H ′ −müx = 0, V ′ −mü = 0, M ′ + V cosϑ+ (P −H) sinϑ = 0 (28)

while the boundary conditions Eq. (27) becomes:

HB = P (1 − cosϑB), VB = − (keuB + ceu̇B) − P sinϑB, MB = −ctϑ̇B (29)
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having neglected the rotatory inertia and expressed the translational inertial forces in the

form b = −m(üxax + üay), where m is the mass density.

In Eqs. (28), H and V are reactive internal forces. In order to express the equilibrium

equations in terms of the unique configuration variable u, they must be condensed. To this

end, from Eq. (281) the component H is derived, namely:

H = P (1 − cosϑB) +

∫ s

l
müx ds (30)

where the boundary condition Eq. (291) has been used. To eliminate the V component

Eq. (283) is solved with respect to V , thereby obtaining V = −M ′/ cosϑ + (H − P ) tanϑ.

Then, substituting V into Eq. (282) it follows:

mü+

(

M ′

cosϑ

)′

+ [(P −H) tanϑ]′ = 0 (31)

while the boundary conditions Eq. (292,3) becomes:

M ′
B = − (keuB + ceu̇B) cosϑB, MB = −ctϑ̇B (32)

A linear constitutive equation is assumed in the form M = EIχ, where EI is the flexural

stiffness of the beam. Substituting it in Eq. (31), using Eq. (22), and Taylor expanding up-to

third order, the following equation is obtained:

mü+ EIu′′′′ + Pu′′ + EI
(

u′′3 + 4u′u′′u′′′ + u′2u′′′′
)

+
1

2
P

(

3u′2 − u′2B
)

u′′ (33)

+

[

m

∫ s

l

(∫ s

0

1

2
u′2 ds

)..

ds

]

u′′ +

[

m

(∫ s

0

1

2
u′2 ds

)..]

u′ = 0

while the associated kinematic and dynamic boundary conditions becomes:

uA = 0, u′A = 0

−EIu′′′B + keuB + ceu̇B = −1

2
Pu′3B + EI

(

u′′′Bu
′2
B + u′′2B u

′
B

)

,

EIu′′B + ctu̇
′
B = −1

2
ctu

′2
Bu̇

′
B − 1

2
EIu′′Bu

′2
B

(34)

When Eqs. (33) and Eqs. (34) are put in nondimensional form via Eqs. (3), Eqs. (1) and (2)

are finally derived.
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B Eigenvalue Transversality Condition

Let O ≡ (κ0, µ0) a point of the parameter space at which the eigenvalue λ is purely imaginary,

namely λ0 := iω0 (Hopf-point). In order the bifurcation occurs, however, <[∂λ/∂ε] 6= 0, with

ε a perturbation of the parameters (not tangent to H). By letting:

λ = λ0 + ελ1 + · · · , c = c0 + εc1 + · · · (35)

in the eigenvalue problem S(λ; ε)c(ε) = 0, the perturbation equations follow (see also [34]):

ε0 : S0c0 = 0

ε : S0c1 =
[

S,0ε +S,0λ λ1

]

c0

(36)

where a comma denotes total differentiation with respect the following variable, and the apex

0 denotes evaluation at C. Enforcing solvability of the ε-order equation, it follows:

λ1 = −bH
0
S,0ε c0

bH
0
S,0λ c0

(37)

where b0 is the left eigenvector of S0 (namely, (S0)Hb0 = 0, with H the transpose conjugate).

Equation (37) represents the sensitivity of λ at O; if <[λ1] 6= 0, then transversality is satisfied.

C Coefficients of the bifurcation equations

The numerical values assumed by the critical parameters, the eigenpairs and the coefficients

appearing in the bifurcation equations (17) are reported here for the two selected points, HH

and HD of Fig. 8.

Double Hopf

The critical values of the parameters are κ0 = 33.478, µ0 = 15.602, ξt = 0.250, ξe = 0.125.

The frequencies ωi (i = 1, 2) associated with the two interactive modes, and the coefficients

p, q, c1 and c2 appearing in the relevant (right) critical eigenvectors φi(s) (Eqs. (6) and (7))

are given in the Table 1. The values assumed by coefficients c1 and c2 in the associated

left eigenvectors ψi(s) (still given by Eq. (7)), are also given in the Table 1. The complex
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bifurcation equations read:

Ȧ1 = (C1ββ + C1γγ)A1 + C111A
2
1
Ā1 + C122A1A2Ā2

Ȧ2 = (C2ββ + C2γγ)A2 + C112A1Ā1A2 + C222A
2
2
Ā2

(38)

with coefficients reported in the Table 2. In Eq. (17), αiβ = <[Ciβ ], αiγ = <[Ciγ ], Rijk =

<[Cijk], while the imaginary parts affect the frequency corrections, not investigated here.

Hopf-divergence

The critical values of the parameters are κ0 = 36.569, µ0 = 14.926, ξt = 0.250, ξe = 0.125.

The frequencies ωi (i = 1, 2) of the two modes and the parameters p and q are reported in

Table 3. Concerning the eigenvectors, φ1(s) assumes the following form when indeterminacy

has been resolved:

φ1(s) = c1(cos px− 1) + c2(sin px− px) (39)

and analogously for ψ1(s); Eq. (7) still holds for φ2(s) and ψ2(s). The relevant coefficient c1

and c2 are displayed in the Table 3. The complex bifurcation equations are:

Ȧ1 = (C1ββ + C1γγ)A1 + C111A
3
1
+ C122A1A2Ā2

Ȧ2 = (C2ββ + C2γγ)A2 + C112A
2
1
A2 + C222A

2
2
Ā2

(40)

with coefficient given in the Table 4. The same notation adopted for the double-Hopf holds

for the coefficients αiβ , αiγ and Rijk of Eq. (17).
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Figure 2: Linear stability diagram for the undamped system.
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Figure 3: Linear stability diagram for the extensionally damped system.
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small extensional damping; comparison with the unperturbed system; ξe = 0.0025, ξt = 0.005.
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κ = const.
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Figure 7: Linear stability diagram for the complete model: (a) ξt = const and different ξe’s;

(b) κ = const and different ξt’s.
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Figure 9: Bifurcation diagram and phase-portraits for the HH bifurcation.
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Figure 10: Equilibrium paths for the HH bifurcation.
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Figure 11: Bifurcation diagram and phase-portraits for the HD bifurcation.
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Figure 12: Equilibrium paths for the HD bifurcation.
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Table 1:

φ(s) ψ(s)

ω p q c1 c2 c1 c2

i=1 2.292 5.601 0.409
−0.114891

−i 0.00562715

−0.150965

+i 0.000271906

0.129513

−i 0.677709

−0.0399445

+i 0.125096

i=2 14.734 6.088 2.420
0.224051

+i 0.221954

−0.144088

−i 0.0731216

−0.0591366

+i 0.0934584

0.0242065

−i 0.039403
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Table 2:

C1β = 0.316801 − i 0.454693 C2β = 0.243336 − i 1.48525

C1γ = −0.215225 − i 0.590027 C2γ = 0.0672233 + i 0.122567

C111 = 4.44357 + i 86.2402 C112 = −8.32264 + i 152.819

C122 = 228.457 + i 1041.15 C222 = −52.8691 − i 69.6809
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Table 3:

φ(s) ψ(s)

ω p q c1 c2 c1 c2

i=1 0 5.464 0 − 0.163872 −0.153036 −1.57691 0.288619

i=2 16.042 6.069 2.643
0.274611

+ i 0.232822

−0.164199

−i 0.0871023

−0.0418632

+i 0.0782989

0.0186516

−i 0.035856
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Table 4:

C1β = 2.98312 C2β = 0.27012 − i 1.35025

C1γ = 1.28722 C2γ = 0.0486464 + i 0.106784

C111 = −472.323 C112 = −1.1714 + i 145.095

C122 = −127.424 C222 = −40.5652 − i 133.828
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