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Abstract 

 

Stability of an isolated membrane lying in a uniform two-dimensional low subsonic 

flow is studied theoretically and experimentally. The problem is formulated in a form of a 

boundary integral equation and differential equations. The boundary integral equation is 

solved by the boundary element method and the finite difference method is used to solve the 

differential equations. An effect of a membrane wake is used in the analysis. The theoretical 

critical divergence velocity is compared with the experimental value. 

 

1. Introduction 

 

Stability of membranes in a flow has a practical meaning in the case of membrane 

roofs made of technical fabric used in civil engineering. At significant values of an air flow 

velocity divergence and flutter type of stability loss may occur. These problems were 

theoretically and experimentally analyzed by many authors (see, e.g. [1, 3, 4, 5]). 

In problems of  structures in a fluid flow non-conservative loading takes place. Several 

papers were devoted to such an analysis. The influence of damping is especially important in 

the behaviour of such systems (see [7, 8, 9]). 

 Experiments in a wind tunnel carried out by the author on membranes made of latex 

rubber showed, that after the divergent loss of stability large deflections occur in membranes 

and subsequent phenomena are non-linear. It was observed, that the divergent mode was not 

symmetric with respect to the centre line (x = l/2). These experiments were a motivation to 

create a theoretical model, which would allow to obtain the mode similar to the one observed 

in the experiment. 

 In the theoretical model a membrane supported at two edges lying in a two-

dimensional subsonic flow is analyzed. The membrane wake formed behind the trailing edge 

was taken into account. The problem was described by one boundary integral equation and 

three differential equations. The boundary element method and the finite difference method 

were used in the solution. 

 

2. Experimental investigations 

 

 Experimental testing of a membrane with length l = 535mm and width b = 75mm was 

carried out. The membrane was made of two 0.8mm thick layers of latex rubber. It was 

simply-supported on two edges. The initial tension was T = 288N/m. Figure 1 presents the 

sketch of the model. The wind tunnel, where the membrane stability tests were carried out is a 

closed circuit tunnel with a 920×640mm closed test section. The membrane behaviour was 

monitored by a video camera. 
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Fig. 1. View of membrane model 

 

 It was observed that a limited increase of the flow velocity resulted in a small increase 

in membrane deformation. Beyond U = 45 m/s the deflection increased significantly and the 

membrane lost stability by divergence with a non-symmetric mode shape shown in Fig. 2(a). 

Further increase of the flow velocity led to larger membrane deflections and at about U = 58 

m/s flutter-type oscillations around the already deflected membrane shape were observed. 

These vibrations formed a standing wave type of behaviour exhibiting a three half-waves 

mode shape as shown in Fig. 2(b.). The further increase of the flow velocity caused the 

increase of the flutter vibration amplitude. The relationship between the dimensional flow 

velocity versus the membrane deflection is shown in Fig. 3.  

 Additional testing on the stability of square, rectangular and circular membranes was 

carried out. Qualitatively, the same phenomena were observed in all these cases. 

 

 

   
        Fig. 3. Flow velocity versus  

        membrane deflection  

 

 

 

 

Fig. 2. Membrane shape at various flow velocities 

a) divergence (U = 54 m/s) 

b) flutter         (U = 60 m/s)  
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3. Theoretical analysis 

 

 The one-dimensional equation of motion of a membrane shown in Figure 4 subjected 

to a fluid flow on both sides is given by  

 

    0
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∂
∂− ∆p

t

w

x

w
T µ ,     (1)  

 

where T is the tension in the membrane per unit length, µ  – the membrane mass per unit 

area, ( )txww ,≡  – its lateral deflection, ( )x,t∆p∆p ≡  – the load per unit area on the 

membrane equal to the difference between the perturbation pressures on the upper and lower 

surfaces of the membrane caused by its deflection ( )2121  , pppp∆p =−= . The leading 

and trailing edges of the membrane are simply – supported. 

 

 

 
 

Fig. 4. Membrane in two-dimensional flow 

 

 

 Assuming an inviscid, incompressible two-dimensional flow, the perturbation 

pressures can be given by the unsteady Bernoulli equation 
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where ρ  is the fluid density and U – the unperturbed flow velocity. The perturbation velocity 

potential ( )tyx ,,Φ≡Φ  must satisfy the Laplace equation 
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 The solution of equation (3) for an open surface (with the Neumann-type boundary 

condition on the surface) can be expressed by the following boundary integral equation 

 

   ( ) ( ) ( )( ) ' '1ln,'
2

1
,, dxr

z
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S
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π
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where ( ) 222 '' zxxr +−= , ( )tx∆ ,'Φ  is the difference between the perturbation velocity 

potential on the upper and lower surfaces of the membrane (  21 Φ−Φ=Φ∆ ,  21 Φ=Φ , 
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 22 1 Φ=Φ=Φ∆ ). Differentiation of equation (4) with respect to z and letting 0→z  gives 

the normal component of the perturbation fluid velocity ( )txv z ,  on the membrane surface 
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where ( ) ( )txvztzx zz ,,, 0 =∂Φ∂ = . 

 The boundary condition on the membrane is of Neumann type and it is a coupling 

condition between the membrane and the fluid. It reads 
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Behind the trailing edge a membrane wake is formed. The trailing edge is still so the 

velocities of liquid particles across the wake are zero. Hence, the wake condition reads: 

  

      ( ) 0, =txv z .      (7) 

 

4. Numerical solution of the problem 

 

The problem was described by one boundary integral equation (5), three differential 

equations (1), (2) and (6) as well as by the wake condition (7). Upon separation of the space 

and time variables and expressing the solution with respect to time in the exponential form 

(e.g., ( ) ( ) texp∆tx∆p λ~, = , λ is the eigenvalue parameter, ωλ i= , 1−=i , ω is the complex 

eigenfrequency ( IR iωωω += )), equations (1), (2), (5) and (6) yield 
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The finite difference method (FDM) is used to solve differential equations (8), (9) and (11). 

The solution of the boundary integral equation (10) is determined by means of the boundary 

element method (BEM). Using the FDM to solve equations (8), (9) and (10), one obtains the 

following set of algebraic equations  
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where vpw ~ ,~ ,~ ∆  and Φ
~
 are the vectors containing unknowns in the nodes (collocation 

points). Matrices 1B  and 2B  have the form 
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where a  is the distance between collocation points. 

The boundary elements of constant type were used to discretize the boundary integral 

equation (10). The discretization yields the following matrix equation 

 

      ΦAv
~~ −= .      (16) 

 

After the differentiation and integration the entries of matrix A have the form 
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where ( )jir ,  is the distance between collocation points i and j. 

In order to fulfil condition (7) collocation points located in the membrane wake (Fig. 

5) were used. The matrix A in equation (16) is a rectangular matrix with dimensions n1×n, 
where n1 = n + m, n is the number of the collocation points in the membrane and m is the 

number of collocation points in the wake. 

 

 

 
 

Fig. 5. Distribution of collocation points on membrane and its wake 

 

From the equation (16) we get 

 

vAΦ ~~
1

+−= ,      (18) 

 

where A1
+
 is a square matrix n×n extracted from the matrix A

+
 ( ) ( ) ( )[ ]( )  21  1 mnnnnn ×

+
×

++
× = AAA .  

Matrix A
+
 is a pseudoinverse of matrix A and is calculated using singular value 

decomposition [6] 
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T

VΣUA   = ,      (19) 

 

where U  and V are orthogonal matrices, ( )iσdiag=Σ , iσ  is the i-th   singular value. 

Hence  

 
T

UΣVA   ++ = ,     (20) 

 

where ( )++ = iσdiagΣ , ii σσ 1=+ . 

From equations (18), (13) and (14) we get: 
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Now substituting equation (21) into the membrane equation (12) yields the homogenous 

matrix equation  

( ) 0wMGK =++ ~2λλ ,     (22) 

 

where as KKK += , as MMM += , 2 BK Ts −=  is the stiffness matrix of the membrane, 

IM  µ=s  is the mass matrix of the membrane, I  is the identity matrix, += 1 2 AM ρa  is the 

fluid mass matrix, 111

22 BABK += Ua ρ  is the fluid stiffness matrix and 

( )++ += 11112 ABBAG Uρ  is the fluid matrix containing gyroscopic and damping forces. 

Equation (22) represents a quadratic eigenvalue problem. By introducing the new variable  

ww ~ λ=∗  it can be transformed to a standard eigenvalue problem 
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The eigenvalues of equation (23) for an assumed flow velocity U  allow one to 

determine the character of the membrane motion and to predict, whether the membrane 

motion is stable or unstable. For the case when 0 =λ (static loss of stability) equation (22) is 

reduced to 

 

( ) 0wKK =− ~
1

2Us ,      (24) 

 

where 1111  2 BABK
+−= ρ . Equation (24) is a generalized eigenvalue problem. By solving 

this problem one obtains the critical velocities of the divergent type instability of the 

membrane.   

 

5. Numerical results 

 

Computer programs were written based on the formulation presented in Sections 3 and 

4. The dimensionless parameters used in the analysis are TlUU ρ22 = , Tl µωω 222 =  and 

( )lρµµ = , where U  is the dimensionless flow velocity, ω  is the dimensionless frequency 

and µ  is the dimensionless mass of the membrane. 
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The divergence velocity of the membrane was calculated using equation (24). Fifty 

collocation points on the membrane and on its wake were used. The calculations were 

performed with and without the wake. The theoretical model predicted loss of stability by 

divergence at 76.1=cdU  when the wake effect was included in the model and loss of 

stability at 67.1=cdU when the wake effect was eliminated from the model. The divergent 

modes for both cases are presented in Fig. 6. It is clear that the inclusion of the wake in the 

calculations yields a non-symmetric mode shape solution. This results coincides with the 

observation from experiments in a wind tunnel (see Fig. 2a). For the membrane used in the 

experiment the theoretical value of divergence velocity m/s37=cdU  and the experimental 

value m/s45=cdU . The difference is about 18%. 

 

 

 
 

Fig. 6. Divergence mode,  a) with wake,  b) without wake 

 

 

 The relationship of 2U  versus real and imaginary parts of the eigenfrequencies Rω  

and Iω  relationship for 0.1=µ  and 1.0=µ  for the cases with and without wake are given 

in Figs. 7 and 8, respectively. It can be observed that including the effect of the membrane 

wake influences significantly the theoretical results. For the membrane with the wake non-

zero imaginary parts of the eigenfrequency are observed prior to divergence (see Figs. 7(b) 

and 8(b)). At 76.1=cdU  the membrane loses stability by divergence and at higher flow 

velocity 00.2=flU  for 0.1=µ  and 22.2=flU  for 1.0=µ , the system loses stability by 

single mode flutter. For the case in which the wake effects are not considered, the imaginary 

part of the eigenfrequency is zero prior to divergence (see Figs. 7(a) and 8(a)). In this case the 

membrane loses stability by divergence at 67.1=cdU . At higher flow velocity, 03.2=flU  

for 0.1=µ  and 15.2=flU  for 1.0=µ , the membrane loses stability by classical coupled-

-mode flatter. 

Similar phenomena were reported in [2] for a plate with symmetric boundary 

conditions (e.g. pinned-pinned case) and with non-symmetric boundary conditions (e.g. 

clamped-pinned case). 

The inclusion of the membrane wake in the theory caused non-symmetric flow 

conditions on the leading and trailing edges. 
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Fig. 7. Dimensionless complex eigenfrequencies versus squared dimensionless velocity, 

    0.1=µ ,  a) without wake, b) with wake 

 

 

 

  

a) 

 b) 
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Fig. 8. Dimensionless complex eigenfrequencies versus squared dimensionless velocity, 

        1.0=µ ,  a) without wake, b) with wake 

 

  

a) 

  

 b) 
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6. Conclusions 

 

Results of theoretical and experimental analysis of stability of a membrane in a two-

dimensional subsonic flow are presented in this paper. The influence of membrane wake on 

its stability was investigated. The problem related to membranes has not been analysed yet. 

The boundary element method and the finite difference method were used in the numerical 

solution of the problem. 

The following conclusions can be stated: 

1. Divergent mode of stability loss for a membrane is not symmetric.  

2. Experiments show, that flutter vibrations occur around the divergent deflected shape 

of the membrane and have a form of a standing wave. 

3. Inclusion of the membrane wake in the theoretical model allowed to get a non-

symmetric divergent mode, similar to the experimental one. 

4. The linear model of the membrane stability is valid until the divergent loss of stability. 

The increase of the flow velocity beyond this limit leads to a significant membrane 

deflection and the calculation of the subsequent flutter velocity would require a non-

linear model. 
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