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FLUTTER INSTABILITY AND OTHER SINGULARITY PHENOMENA IN SYMMETRIC 

SYSTEMS VIA COMBINATION OF MASS DISTRIBUTION AND WEAK DAMPING 

by 
Anthony N. Kounadis 
Academy of Athens 

 
Abstract 
 
The local dynamic instability of autonomous conservative, lumped-mass (discrete) systems, is 

thoroughly discussed when negligibly small dissipative forces are included. It is shown that 

such small forces may change drastically the response of these systems. Hence, existing, 

widely accepted, findings based on the omission of damping could not be valid if damping, 

being always present in actual systems, is included. More specifically the conditions under 

which the above systems may experience dynamic bifurcations associated either with a 

degenerate or a generic Hopf bifurcation are examined in detail by studying the effect of the 

structure of the damping matrix on the Jacobian eigenvalues. The case whereby this 

phenomenon may occur before divergence is discussed in connection with the individual or 

coupling effect of non-uniform mass and stiffness distribution. Jump phenomena in the 

critical dynamic loading at a certain mass distribution are also assessed. Numerical results 

verified by a nonlinear dynamic analysis using 2-DOF and 3-DOF models confirm the 

validity of the theoretical findings as well as the efficiency of the technique proposed herein.  

 
1. Introduction 
 
 The effect of damping on the elastic stability of flexurally vibrating nonconservative 

systems was recognized long time ago as a factor of decisive importance [Ziegler (1952), 

Nemat-Nasser and Hermann (1966), Crandall (1970)]. In such mechanical systems although 

dissipative forces are often very small their effect may be great. However, this effect was, in 

general, ignored in the case of elastic dynamic stability of conservative systems. Indeed, it 

was widely accepted that the presence of damping in undamped conservative systems which 

are stable does not charge their stability [Gantmacher (1970), Huseyin (1986)]. The energy 

loss due to damping is either dissipated within the system or transmitted away by radiation. A 

classification of various sorts of damping is reported by Gaul (1999). The behavior of 

conservative discrete systems when damping is included can be described using a local 

(linear) analysis by the matrix-vector differential equation [Gantmacher (1970), Huseyin 

(1978), Kounadis (2006)]. 
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                                                           0VqqCqM =++ &&& ,                                                        (1) 

 

where the dot denotes a derivative with respect to time t; q(t) is an n-dimensional state vector 

with coordinates  and V are n x n real symmetric matrices. More 

specifically, matrix M associated with the total kinetic energy of the system is a function of 

the concentrated masses  being always positive definite; matrix C with elements 

the damping coeffecients may be positive definite, positive semi-definite as in 

the case of pervasive damping [Zajac (1964, 1965), Huseyin (1978)] or indefinite   [Sygulski 

(1996), Laneville and Mazouzi (1996), Misra, Wong and Paidoussis (2001)]; V is a 

generalized stiffness matrix whose elements are also linear functions of a suddenly applied 

external load λ with constant direction and infinite duration [Kounadis (1999)], i.e. 

(λ). Apparently due to this type of loading the system under discussion is 

autonomous. When the external loading λ is applied statically, one can obtain the static 

(divergence) instability or buckling loads  by imposing the condition of 

vanishing the determinant of the stiffness matrix  

CM,n);1,...,(i (t)qi =

n)1,...,(imi =

n)1,...,j(i,cij =

ijV

ijij VV =

n)1,...,(jλc
j =

( )λV , i.e.  

                                                                            ( )λV =0.                                                       (2)  

Clearly, eq. (2) yields an nth degree algebraic equation with respect to  λ. Assuming  distinct 

critical points  is positive definite for ( )λV λ c
(1)λ< ,  positive semi-definite for  λ =    and 

indefinite for  < 

c
1λ

c
1λ λ   < . c

2λ

        This study was  motivated by the fact that previous analyses of the author (1994, 

1997 ) using 2–DOF and 3–DOF Ziegler’s models under partial follower loading have 

shown that in a small region of divergence instability, flutter (dynamic) instability may occur 

before divergence (e.g. for  

1

λ   < ), if  infinitesimal damping is included. A similar finding 

in an aeroelastic model was also reported by Bolotin, Grishko and Petrovsky (1996). It was 

also reported by Paidoussis at al (1990) that flutter can arise in an inherently conservative 

system but for large daqmping. 

c
1λ

The objective of this paper is to present a thorough discussion of the conditions under 

which the above autonomous potential systems may exhibit dynamic bifurcational modes of 

instability before divergence (i.e. for  λ  < ) when negligibly small damping is included. 

Indeed, as will be proven in what follows, such an infinitesimal damping may change 

c
1λ
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drastically the behavior even of a conservative system. This shows the importance of 

inclusion of damping for the precise modeling of a system. Thus, previous widely accepted 

results referring to undamped systems (e.g. jump phenomena) should eventually be 

reconsidered. This work, being an extension of a very recent study of the author (2006), 

presents a new very simple and efficient approach for establishing degenerate and generic 

Hopf bifurcations based on necessary and sufficient conditions. To this end, the effect of 

damping on the Jacobian eigenvalues in connection with the influence of the loading λ, 

concentrated mass  and stiffness (j=1,…,n) parameters (multi–parameter system) is 

thoroughly discussed using 2–DOF and 3–DOF models. The case of a positive semi-definite 

or indefinite damping matrix C will be studied in connection with a positive definite, positive 

semi-definite or indefinite stiffness matrix V (λ).  In this respect, the individual and coupling 

effect of the non-uniform mass and stiffness distribution is fully assessed. Discontinuity 

(jump) phenomena in the critical dynamic loading may occur at a certain mass distribution.  

jm jk

Attention is focused on seeking steady-state solutions of autonomous conservative 

weakly damped mechanical systems governed by eq. (1) associated with periodic motions 

either around centers or due to Hopf bifurcations (limit cycles). The impetus of the present 

study was that such local dynamic bifurcations which could be explored via a classical  

(linear) analysis escaped the attention of eminent researchers in the past. Certainly, the global 

stability of these dynamic bifurcations can be established only by using a nonlinear dynamic 

analysis.  

 

2. Basic equations                          

According to the classical analysis solutions of eq. (1) can be sought in the form 

                                                                q=  r ,                                                                     (3) ρte

where ρ is, in general, a complex number and  r  a complex vector independent of time  t. 

Inserting q  from eq. (3) into eq. (1) we obtain  

 

                                                     L(ρ )=  ( 0 ,                                              (4) V)rρCMρ2 =++

where L(ρ )  V  is a matrix-valued function. Since V= ρCMρ2 ++ =V(λ), matrix L( ) is a 

function of the external loading λ for given matrices M and C. Solutions of eq. (1) are 

intimately related to the algebraic properties of the matrix L (ρ), and more specifically to the 

Jacobian eigenvalues ρ ρ(λ) obtained through the characteristic (secular) equation 

[Gantmacher (1959, 1970), Huseyin (1978)]. 

ρ

=
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                                                     det L(ρ) = VρCMρ2 ++ =0,                                            (5) 

which guarantees the existence of non-trivial solutions of eq. (1) or (4). Expansion of the 

determinantal eq. (5) leads to the characteristic equation [Kounadis (1994)] 

                                                      2n12n
12n

1
2n αρα....ραρ ++++ −

− =0,                                     (6) 

where the real  coefficients 1,...,2n)(iαi == are determined by means of Bôcher formula 

[Pipes & Harvill (1970)]. The eigenvalues (roots) of eq. (6) 1,...,2n)(jρ j == are, in general, 

complex conjugate pairs   (where iiµνρ jjj ±= = ,1−  ν  and  real numbers) with 

corresponding complex conjugate eigenvectors  and 

j jµ

jr jr  (j=1,…,n). Since , clearly 

 ,  )  and  

λ)(ρρ jj =

)λ(νν jj = jj µµ = )λ( , λ(rr jj = )λ(rr jj = . Thus, the solutions of eq. (1) are of the 

form 

                                                          ,        sin ,                                 (7) tcosµe j
tν jA tν jeB tµ j

where A  and B  constants which are determined from the initial conditions. Solutions (7) 

are bounded, tending to zero as t ∞→ , if all eigenvalues of eq. (6) have negative real parts, 

i.e. when  for all j [Gantmacher (1959)]. In this case the algebraic polynomial (6) is 

called a Hurwitz polynomial (since all its roots have negative real parts) and the origin 

(q= 0) is asymptotically stable. According to Routh-Hurwitz criterion, a necessary and 

sufficient condition for the polynomial to be a Hurwitz polynomial is that  

0ν j <

q& =

                    ,0α11 >=∆
23

1
2 α  α

1  α
=∆ > 0,

345

123

1

3

α  α   α

α  α   α
0     1   α

=∆ > 0, …, =∆2n 12n2n∆α − >0.            (8) 

A necessary but not sufficient condition for all roots of eq. (6) to have negative real parts is  

 for all j ( 1,…, 2n). More efficient than Routh-Hurwitz conditions is the stability 

criterion of Liénart and Chipart [Gantmacher (1970)]. According to this criterion a necessary 

and sufficient condition for all roots of eq. (6) to have negative real parts is  > 0 for all j 

( 1, …, 2n), and simultaneously all determinantal inequalities either of odd order 

0α j > =

jα

= 12n−∆ , 

, … or even order , , … to be positive. In this case, the number of Hurwitz 

determinants is about half that of conditions (8). If some of the Hurwitz determinants are 

32n−∆ 2n∆ 22n−∆
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 zero one has to use Orlando’s formula which expresses the determinant in terms of the 

roots . This is given by 

12n−∆

2n21 ρ,...,ρ,ρ

 

                                     2
)1n(2n2

12n )1(
−

− −=∆  .                                                          (9) )ρρ(
2n,...,1

κj
κj∏

<

+

Clearly 0, if and only if, the sum of two roots of eq. (6) is zero. This may occur in 

three cases corresponding to critical states:  if eq. (6) has at least one pair of conjugate pure 

imaginary roots or two real opposite roots or a double zero root (while the remaining roots 

have negative real parts).                 

=∆ −12n

In the following, attention is focused on critical states. More specifically, if the real 

part of at least one pair of eigenvalues (roots of eq. (6)) becomes (at a certain value of the 

slowly varied λ) positive, say , while (λ)0)(λνκ > κµ =  0, the origin is locally unstable 

related to divergence (static) instability (Fig. 1a). If the real part of at least one pair of 

eigenvalues becomes zero, say 0)λ(νκ =  (with 0)λ(µκ ≠ ), while the remaining s are 

negative, the equilibrium state 

jν

0qq == &  is in general critical. In this case of existence of one 

pair of purely imaginary eigenvalues, 0)µ(i ≠λ± , the origin becomes locally unstable and 

the system exhibits a dynamic bifurcation. This is related to two distinct cases. If this 

eigenvalue crosses the imaginary axis with zero slope, i.e. )/dλ(dνκ λ  0= ,  the corresponding 

dynamic bifurcation is a degenerate Hopf bifurcation (Fig. 1b) associated with periodic 

motions around centers; otherwise, i.e. if )/dλ(dνκ λ  0≠ , the system exhibits flutter 

instability (Fig. 1c) associated with limit cycles due to a generic Hopf bifurcation. Another, 

mixed (hybrid) type of coupled divergence-flutter instability occurs when the real and 

imaginary part of at least one pair of eigenvalues becomes zero, occurring at , i.e. 

with /d

c
1λλ =

)(λν c
1κ = 0)(λµ c

1κ = )(λdν c
1κ 0λ = , while for  the two real eigenvalues are 

moving in opposite directions in the real axis (Fig. 1d). This dynamic bifurcation corresponds 

to a double zero eigenvalue. 

c
1λλ >

Another type of flutter instability may occur in undamped circulatory 

(nonconservative) systems, when two consecutive conjugate purely imaginary roots 

coincide at a certain value of the loading λ (Fig. 1e), whereas for a slight increase in it, 

eventually leave the imaginary axis moving in opposite directions, thus producing an 

eigenvalue with a positive real part (self-excited oscillations). However, the coincidence of 
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two purely imaginary eigenvalues is a necessary but not sufficient condition for flutter, since 

the corresponding eigenvectors must also coincide [Huseyin (1978) & (1986), Kounadis 

(2006)]. Coincident eigenvalues which may be associated with solutions composed from 

powers of time t multiplied with the exponential functions of relation (7) are not considered 

herein. 

Multi-parameter system 

 So far we have considered only one control parameter, the external loading λ  (main 

control parameter). However, the response of the system is influenced by several 

independently varying parameters. For a given damping matrix C, the matrix-valued function 

L( ) is (in addition to ρ λ ) a function of the concentrated masses  and stiffnesses  

(j=1,…,n) which can be represented by the external parameters 

jm jκ

κη  ( . Hence, 

 and in general , 

2n) 1,2,...,κ =

)ρ(λ;ρ κη= )ν(λ;ν κη= )µ(λ;µ κη= and =ν ( λ ; κη ). 

In the following, the critical condition under which the above multi-parameter 

autonomous conservative system may exhibit a dynamic mode of instability before  

divergence if negligibly small dissipative forces are included will be discussed in detail.  

3. Solution technique 

Premultiplying eq. (4) by Τr , the conjugate transpose of r, we obtain 

                                                     0V)rρCΜ(ρr 2Τ =++ ,                                                     (10) 

Since all quadratic forms are real (scalar) quantities, eq. (10) is a 2nd degree algebraic 

polynomial with respect to ρ , from which we obtain 

                                     [ ]Vr)rMr)(r4(Cr)r(Crr
Mrr2

1ρ ΤΤ2ΤΤ
Τ −±−=                                 (11) 

or                                               (iiµνρ += )1−= ,                                                           

 

where                           
Mrr2
Crrν Τ

Τ

−=  , 2
Τ

Τ
2 ν

Mrr
Vrrµ −= .                                                         (12) 

Let the corresponding to r complex conjugate eigenvectors be 

                                     r ,   iyx += iyxr −= ,                                                                        (13) 

 

where x  and . Introducing expressions (12) into eq. (10) and 

setting real and imaginary parts equal to zero we get   

Τ= )x,...,x( n1
Τ= )y,...,(yy n1
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                                       .                                     (14) 
[ ]
[ ] ⎪⎭

⎪
⎬
⎫

Μ+−=++−

Μ+=++−

x)2νµ(Cy VνC)Mµ(ν
)y2νµ(Cx VνC)Mµ(ν

22

22

For a non trivial solution the determinant of the homogeneous system (14) must be zero. For 

  (as stated in the Introduction) matrix V for given values of the stiffness parameters  

(j=1,…,n) is positive definite. If in addition matrix C is positive definite and given that matrix 

M is always positive definite, according to the Parodi theorem [Bellman (1970)] all 

eigenvalues of eq. (5) or all roots of eq. (6) have negative real parts. Hence, the system is 

asymptotically stable.  Indeed, if C is positive definite, as 

c
1λλ < jκ

λ  increases gradually from zero, at 

least a pair of complex conjugate eigenvalues follows in the ρ -complex plane the path shown 

in Fig. 1a becoming a double negative eigenvalue at a certain 0λ=λ  slightly smaller than  

due to the vanishing of the discriminant of eq. (11). For 

c
1λ

0λ>λ  but less than  the 

discriminant becomes positive related to two unequal negative eigenvalues moving in 

opposite directions in the real axis. At 

c
1λ

=λ c
1λ  one of these eigenvalues vanishes, becoming 

positive and increasing for , yielding static (divergence) instability, while the other 

(negative) eigenvalue decreases algebraically. 

>λ c
1λ

 

3.1. Conditions for dynamic bifurcation 

 Attention is mainly focused on dynamic bifurcations associated either with 

degenerate or generic Hopf bifurcation (Fig. 1b and Fig. 1c, respectively) which may occur 

before divergence (i.e. for ). This will be discussed in connection with the sign of the 

quadratic form 

c
1λλ <

CrrΤ  which may be positive semi-definite or indefinite.  

 As mentioned above, the necessary condition for the existence of a degenerate or a 

Hopf bifurcation is the existence of one at least pair of conjugate pure imaginary eigenvalues  

(i.e. , while the remaining eigenvalues are complex conjugate with negative real 

parts. Since  from eq. (12), it follows that  

iµ± )0ν =

0ν =

                                   0CrrΤ =   (for r )0≠ .                                                                         (15) 

Eq. (15) is satisfied when the damping matrix C is either positive semi-defnite (since 0C = ) 

or indefinite. Since C is a given matrix, the indefinite quadratic form  CrrΤ  may become zero  

for a suitable value of r, depending on the loading  λ  and the parameters  ( , 

since r . 

κη )1,...,2nκ =

)λ;(r κη=
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 The sufficient condition for a generic Hopf bifurcation is the fulfillment of the 

transversality condition [Huseyin (1986)] 

                                              0
dλ
dν

λλ

≠
Η=

,                                                                               (16) 

where   is the load for which the real part of )λ(λλ c
1H <= ρ  becomes zero, i.e. 0);ν(λ κH =η . 

Clearly, if condition (16) is violated, namely if  

                                                

                                              0
d
dν

=
λ

Ηλ=λ

,                                                                             (17) 

we have a degenerate Hopf bifurcation. 

Assuming that the necessary condition for a Hopf (degenerate or generic) bifurcation 

is satisfied, we can introduce into eq. (4) the pair of conjugate pure imaginary eigenvalues 

. This leads to iµ±

                                         (A iµC)r± =0,                                                                                (18) 

where A . Clearly, for a non-trivial solution (i.e. for rMµV 2−= )0≠  the corresponding 

determinant must be zero, namely 

                                                 0CiA =µ±                                                                         (19) 

According to the proof by Peremans-Duparc-Lekkerkerrer [Bellman (1970), p. 67] if A and C 

are real symmetric matrices such that A is non-negative definite, then eq. (19) implies that 

there exists a non-trivial real vector r satisfying eq. (18) which yields 

                                                 Ar  0,       Cr = =  0  (r )0≠ .                                                   (20) 

 

Eqs. (20) are simultaneously satisfied if the determinants of both matrices A and C are zero, 

i.e. 

                                             0A =  ,          0C = .                                                                (21) 

 

The second of eqs. (21) is fulfilled if matrix C is positive semi-definite. In this case for given 

C one can determine by means of the 2nd of eqs (20) the components  (j=1,…, n-1) of r as 

function of the component . Introducing ) into the 2

jr

nr jr ( nr
nd of eqs (12), after setting ν=0, 

leads to 
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                                  );(µ
Mrr
Vrrµ 2

Τ

Τ
2

κηλ== ,                                                                         (22) 

from which  is eliminated. Clearly, nr κη )1,...,2nκ( =  includes the stiffness components 

 and the concentrated masses . Note also that )n1,...,i(κ j = n)(1,...,m j
ΤΤ rr =  since r is a real 

vector.  

By virtue of the 1st of eqs (21) one can obtain the determinantal equation 

                                              0MµV 2 =− ,                                                                           (23) 

whose expansion is an nth algebraic polynomial with respect to . From eqs (22) and (23) 

we can determine  and λ for given stiffness components and masses , where j=1,…,n. 

The smallest positive root which satisfies eqs (22) and (23) corresponds to the critical 

dynamic bifurcational load associated either with a degenerate or a generic Hopf 

bifurcation. 

2µ
2µ jκ jm

Ηλ=λ

 

a: C is positive semi-definite 

It can readily be shown that if C is a positive semi-definite matrix the dynamic 

bifurcation is a degenerate Hopf bifurcation since the transversality condition is violated 

(Fig. 1b). Indeed, using the expression of ν given in the 1st of eqs (12), one can show that 

condition (17) is satisfied. Clearly, since  while , condition (17) is fulfilled 

provided that  

0CrrΤ = 0MrrΤ ≠

                                                0Cr
d
dr2Cr)(r

d
d Τ

Τ =
λ

=
λ

,                                                       (24) 

which is true since due to (20)  Cr=0. Such a result was anticipated since r evaluated through 

the 2nd of homogeneous eqs. (20) is independent of  λ. Note also that a real eigenvector r 

corresponds to both pure imaginary eigenvalues iµ+ and –iµ [Kounadis (2006)]. It is worth 

noticing that the above finding is also valid if C is a symmetric singular matrix (i.e. C is not 

necessarily positive semi-definite). 

One can now obtain a new finding of paramount importance for a multi-parameter 

system. By means of the 2nd of eqs (20) we can determine )(rrr nj= ,  where j=1,…,n-1. 

Inserting these values into the 1st of eqs (20), after setting , we obtain MµVA 2−=

                             .                                                                             (25) 0M)rµV( 2 =−

Writing eq. (25) analytically and solving each of the resulting equations with respect to 

we find 

2µ  
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n1n111

n1n1112

rΜ...rΜ
rV...rVµ

++
++

= ==
++
++

= ...
rΜ...rM

rV...rV
n2n121

n2n121

nnn1n1

nnn1n1

rΜ...rΜ
rV...rV

++
++ .                 (26) 

 

Relations (26) and (22) furnish n equations from which we can determine λ and (n-1) from 

the  parameters. In this solution we are looking for the minimum positive value 

of  λ  which must be less than . For instance, if n=2 we can determine in addition to 

1,...,2n)(κκ =η

c
1λ Hλλ =  

one parameter. 

 

b: C is indefinite 

            If the matrix C is indefinite (since  )0C <  the eigenvectors satisfying eq. (18) must 

be complex. Multiplication of eq. (18)by Τr (complex conjugate transpose of r) leads to  

                                                0r)Ci(ArΤ =µ± .                                                                    (27)  

Since ArrΤ and  CrrΤ  are real (scalar) quantities, eq. (27) yields  

                                                ArrΤ =0, CrrΤ =0.                                                                   (28) 

Eqs (28) are also obtained from relation (12), after setting ν=0 and V , since 

matrix M is always positive definite. 

MA 2µ+=

            If C is an indefinite matrix the quadratic form CrrΤ depending on the values of 0ν ≠  

may be negative or positive. Hence, it may also vanish for a certain  (where 

κ=1,2,…,2n) depending on the value of  λ for given values of the parameters  . 

0)ν(λ; κ ≠η

κη

             Given that conditions (20) are not valid (since ),0A,0C ≠≠  the procedure 

established previously based on CrrΤ =0 cannot be adopted in connection with conditions 

(28). Instead of this, one can apply eq. (19), the expansion of which, after setting real and 

imaginary parts equal to zero furnishes two equations in λ  and  that can be determined 

provided that all  (κ=1,…,2n) and matrix C are known. Clearly, the determinant in eq. (19) 

can be established for n>2 by using symbolic algebra. For n=2, eq. (19), after setting 

, yields 

2µ

κη

MµVA 2−=

 

                 .                    (29) 
⎪⎭

⎪
⎬
⎫

=−−−+−

=−−−−−−

0)Mµ(V2c)Mµ(Vc)Mµ(Vc

0)cc(cµ)Mµ(V)Mµ)(VMµV(

12
2

121211
2

112222
2

2211

2
122211

22
12

2
1222

2
2211

2
11

 

Eqs. (29) can also be written as follows: 
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⎪
⎭

⎪
⎬

⎫

−+
−+

=

==−

121211222211

1212112222112

22

M2cMcMc
V2cVcVcµ

CµAMµV
,                                             (30) 

Eliminating  from eqs (30) we can find λ for given matrix C and values of . The lowest 

positive value of  is the dynamic instability critical (flutter) load  which 

implies a dynamic bifurcation occurring before divergence. 

2µ κη

)λλ( c
1< Hλλ =

One may also apply another procedure for establishing . Using the expressions of 

r and 

Hλ

r   given in eq. (13), after setting ν=0, eqs (14) and (28) become 

                                     with                                           (31) 
⎪⎭

⎪
⎬
⎫

−=

=

µCxAy

µCyAx
MµVA 2−=

and 

                                     ,         .                                        (32) 0AyyAxx ΤΤ =+ 0CyyCxx ΤΤ =+

 

From eqs (31) we obtain 

                                                    

⎪
⎪
⎭

⎪⎪
⎬

⎫

−=

=

−

−

AyC
µ
1x

AxC
µ
1y

1

1

.                                                                  (33) 

 

Substituting the expression of the vector y into the 2nd of eqs (33) we get 

 

                                         ( ,                                                                              (34) 0C)xµ2 =+Β

where . For a non-trivial solution the determinant of the above homogeneous 

system must be zero, i.e. 

AAC 1−=Β

                                         0Cµ2 =+Β ,                                                                                  (35) 

which is a function  of  and λ for given matrix C and parameters 2µ κη (κ=1,…, 2n). 

Eqs (32) using relations (33) become 

                              
MyyMxx
VyyVxxµ ΤΤ

ΤΤ
2

+
+

= ,          .                                        (36) 0C)xµ(x 2 =+ΒΤ

Introducing the expression of y from relation (33) into the 1st of eqs (36) we obtain 
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A)xMCACM(µx
A)xVCACV(µxµ 112Τ

112Τ
2

−−

−−

+
+

=  ,                                                                     (37) 

where . MµVA 2−=

From the homogeneous system (34) using symbolic algebra one can express via the 

homogeneous system 34 the  components of the vector x as function of the 

component  as well as of  and λ for given matrix C and parameters (κ=1,…, 2n). 

Introducing  into the 1

1n1 x,...,x −

nx 2µ κη

1n1 x,...,x −
st of eqs. (36) we obtain a relation between  and λ which 

together with the 2

2µ
nd of eqs. (36) constitute a nonlinear algebraic system with respect to 

and λ which can be solved numerically. The lowest positive value of is the dynamic 

instability critical load  at which a dynamic bifurcation occurs before divergence. 

2µ  

)λλ( c
1<

Hλλ =

 This dynamic bifurcation is a generic Hopf bifurcation since the sufficient condition 

related to the transversality condition is satisfied, namely 0d/);(d ≠ληλν κ  (Fig. 1c). Indeed, 

due to the 1st of eqs (12) it follows that  ν=0 which yields 0CrrΤ = . Thus, one has to show 

                                         

                                0Cr)r(
dλ
d

Ηλλ

Τ ≠
=

,                                                                                  (38) 

where );(rr κηλ=  and =r ).;(r κηλ  For a given matrix C the quadratic form Cr,rΤ  

corresponding to a critical condition  (since iµρ ±= ), is a real polynomial of 2nd degree with 

respect to the loading λ  for known values of the parameters κη (κ=1,…, 2n). If  the derivative 

of this polynomial with respect to λ  is zero, then at Hλλ =  corresponds to a twofold root of 

eq. (6); a case which is excluded since only distinct critical points are considered. 

 Clearly, the proof for transversality condition presented here for both the degenerate 

and generic Hopf bifurcation is simpler than that recently reported [Kounadis (2006)]. 

 The above, rather cumbersome, analysis for establishing the load   associated 

with a generic Hopf bifurcation  can be drastically simplified in the case of an indefinite 

matrix C when 

Hλλ =

2εC −<  for . In the following an approximate technique for a simple, 

rapid and reliable evaluation of  and  will be presented. The accuracy of the results 

obtained by using this technique increases substantially as  approaches zero. 

0ε→

Hλλ = 2µ

ε
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3.2. Approximate technique: 2εC −<  for  0ε→

 If this case in which the determinant of the damping matrix C is negative but 

negligibly small and ,we may consider that 0Cr ≠ CrrΤ =0 in eq. (28) can be approximately 

satisfied by a real vector,  0);(r ≠ηλ κ , as in the previous case of a positive semi-definite 

matrix C, where 0C = . Namely, we may assume that at a certain  there exists a 

vector for given  for which 

Hλλ =

);r(λ κH η 0≠ κη

                                                                                                                                  (39) 0CrrΤ =

and due to eqs (28)            .                                                                                      (40) 0ArrΤ =

 We may also assume that the latter case is satisfied if 0A =  which implies  

                                                      Ar=0                    ( )0r ≠ .                                                 (41) 

Analytically eq. (41) is written as follows: 

                                                                                   (42) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

αααα

αααα

αααα

nn1-nn,n2n1

2n    1-n2,2221

1n1-n1,1211

     .       ...        
......  .     ...............................

    .     ...        

     .        ...        

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

n

1n

1

r
r
.
.
.
r

or in a partitioned form 

                                                           ⎥
⎦

⎤
⎢
⎣

⎡
αΑ
ΑΑ

nn21

1211 0
r
r~

n

=⎥
⎦

⎤
⎢
⎣

⎡
,                                                    (43) 

where  is an (n-1)x(n-1) non-singular symmetric matrix,  an nx1 (column) matrix 

such that ;  is a real (scalar) quantity, 

11A 12A

21
Τ
12 AA = nnα Τ

−= )r,...,(rr~ 1n1  is a vector and  the nnr
th 

component of the vector r. From eq. (43) one can find 

                                                     12
1

11n AArr~ −−= ,         ( 0rn ≠ ).                                            (44) 

Introducing this expression of  r~  into eq. (39) we obtain 

                                        )r  r~( n
Τ

⎥
⎦

⎤
⎢
⎣

⎡

nn21

1211

C  C
C  C

⎥
⎦

⎤
⎢
⎣

⎡

nr
r~

  =0,                                                            (45) 

where 
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                           C12 .                                            (46) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

− 1-n1,-n1,1n

1-n1,11

11

c    ... c
......................

c    ...    c

C ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

−

Τ

n,1n

n1

21

c
.
.
.
c

C

From eq. (45) it follows that 

0crr~C2rr~Cr~                                               nn
2
n21n11

Τ =++                                                     (47) 

or due to eq. (44) 

                                        .                                       (48) 0cAA2CAACAA nn12
1

112112
1

1111
1

11
Τ
12 =+− −−−

Eq. (48) along with the determinantal equation  

                                                                          0A =                                                            (49) 

furnish a nonlinear system of two equations with unknowns λ  and  which can be solved 

numerically provided that the matrix C and all parameters 

2µ

)1,...,2n(κ κ =η  are known. The 

lowest positive ) is the dynamic instability load λλ( c
1< Hλλ =  which corresponds to a generic 

Hopf bifurcation. This is so because the transversality condition is also satisfied according to 

the proof given above. 

4. Numerical examples 

A nonlinear dynamic analysis using 2-DOF and 3-DOF cantilever models [Fig. 2 a,b] 

confirms the validity of the theoretical findings as well as the efficiency and simplicity of the 

proposed technique. The nonlinear equations of motion for the perfect 2-DOF model shown 

in Fig. 2a are obtained from Kounadis (1994) after setting 0=γ  and η=1, as follows 

           
( )

,0sincc)sin()cos(

,0sinkcc)sin()cos(m1

22111222221
2
12112

112121211121
2
22121

=θλ−θ+θ−θ+θ+θ−θθ−θ−θθ+θ

=θλ−θ+θ−θ+θ+θ+θ−θθ+θ−θθ+θ+
&&&&&&&

&&&&&&&

                                                                                                                                                (50) 

where 22121 k/Pl,k/kk,m/mm =λ== . 

Linearization of eqs. (50) after setting  

                                                    
ϕ=⎥

⎦

⎤
⎢
⎣

⎡
ϕ
ϕ

=⎥
⎦

⎤
⎢
⎣

⎡
θ
θ

=Θ et

2

1et

2

1 ee
 

gives 

                                                     ( ) 0VCM2 =ϕ+ρ+ρ                                                          (51) 
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where                   M ,                              (52) ⎥
⎦

⎤
⎢
⎣

⎡
λ−−

−λ−+
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
=

11
11k

V,
cc
cc

C,
11
1m1

2212

1211

The static buckling (divergence) equation is given by  

                                                      ,                                                        (53) 0k)k2(2 =+λ+−λ

 

whose lowest root is the first buckling load  equal to  c
1λ

                                                       = 0.5 (c
1λ )4k2k 2 +−+ .                                               (54) 

Clearly, for the entire interval of values k>0, eq. (54) yields 0≤ c
1λ <1. The case of equal roots 

is excluded. The variation of the static buckling load  versus k is shown in Fig. 3.   c
1λ

The equations of motion for the perfect 3-DOF model, shown in Fig. 2b, are obtained 

from Kounadis (1997 ) after setting 2 0=γ=δ and η=1, i.e. 

         121 )mm1( θ++ && +(1+ 22 )m θ&& cos ( +θ−θ+θ+θ−θθ+θ−θ )sin()m1()cos() 212
2
231321
&&&  

                                      ,0sin)(kkcc)sin( 11221121211131
2
3 =θλ−θ−θ−θ+θ+θ+θ−θθ &&&  

 

          
.0sin)(kccc)sin(

)sin()m1()cos()cos()m1()m1(

22312232311222232
2
3

21
2
12323211222

=θλ−θ+θ−θ−θ+θ+θ+θ+θ−θθ+

θ−θθ+−θ−θθ+θ−θθ++θ+
&&&

&&&&&&&
 

 

            33331
2
132

2
23113223 c)sin()sin()cos()cos( θ+θ−θθ−θ−θθ−θ−θθ+θ−θθ+θ &&&&&&&&&

                                                                                    ,                                          0sinc 323232 =θλ−θ−θ+θ+ &

                                                                                                                                                                               

where           ,m/mm 311 =  ,322 m/mm =  311 k/kk =  and ,322 k/kk =  .k/Pl 3=λ               (55) 

Linearizing  eqs. (55) and then setting 

 

,ee tρ

2

1tρ

2

1 ϕ=⎥
⎦

⎤
⎢
⎣

⎡
ϕ
ϕ

=⎥
⎦

⎤
⎢
⎣

⎡
θ
θ

=Θ  

 

we obtain         

                                                         ,                                                    (56) 0)VCM( 2 =ϕ+ρ+ρ

where  
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   M= ,
111
1m1m1
1m1mm1

22

221

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++
+++

  C= , V=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3323

232212

1211

cc0
ccc
occ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ−−
−λ−+−

−λ−+

110
1k1k

0kkk

22

221

. (57)   

The static buckling (divergence) equation is equal to  

 

                                   0kk)kkk3k2()k2k2( 212121
2

21
3 =−λ+++λ++−λ ,                        (58) 

whose roots are real and positive, since   (i=1,2,3) are the eigenvalues of the positive 

definite matrix  (i.e. obtained from eq. (57) for 

cλ

)0(V =λ )0=λ . Moreover, one can show that 

the case of  a double root of eq. (58) is excluded.  

 

2-DOF model  

For a degenerate Hopf bifurcation, associated with a positive semi-definite matrix C, 

using  eqs (20) and (21) for n=2, we get  

                                                           112221 c/cr/r −==r .                                                     (59) 

Application of eq. (36) due to eqs (52) gives 

                                                         ( )
( ) 1

1
1m1

11k
+

λ−+−
=

++
−λ−+

r
r

r
r ,                                         (60) 

from which we obtain the degenerate Hopf bifurcation load Hλ=λ , i.e. 

                         ,                                            (61) 2)mk()2km()1m( 2
H

2 −−+++=λ−− rrrr

where  m  and  k  are positive quantities, while r  may be positive or negative. Note that if    

, the critical load     exhibits a discontinuity (varying from  to 01m2 =−− rr Hλ ∞+ ∞− ). 

For 2r 02)mk()2km( =−−+++ r  it follows that 0=λ . Clearly, for given r the above 

extreme values of   may occur for various combinations of values of the parameters m and 

k. 

Hλ

 It is worth noticing that the discontinuity in the flutter load Hλ  (being independent of 

the stiffness ratio k) occurs at . Namely, for a given damping ratio  rr /)1(m 2 −= r ,  one can 

find a critical value of  m,  i.e. , which corresponds to a discontinuity in the load  crmm = Hλ . 

As stated above, since   does not depend on )c/c 1122−=r( λ , eq. (12) yields 0d/νd =λ  

(violation of the transversality sufficient condition for a degenerate Hopf bifurcation). 

 From eq. (26) we obtain 
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r

r
+

λ−+−
=−=

1
1ρµ 22                  ( r )1−≠ .                                    (62) 

For the above 2-DOF model with k=1, m=10 and a positive semi-definite matrix C 

with ,  and 01.0c11 = 002.0cc 2112 == 0004.0c22 =  (i.e. 0C = ) we find     

,  =0.32/1.04=0.307692307, and   [Kounadis (2006)]. 

The critical mass ratio for which a discontinuity in the flutter load 

381966011.0c
1 =λ

20.0r −= Hλ 115384615.122 −=µ−=ρ

Hλ  for this degenerate 

Hopf bifurcation occurs is:  The variation of .80.4mcr = Hλ  with respect to m>0 for k=1 is 

shown in Fig. 4a.  

For a generic Hopf bifurcation, associated with a given indefinite matrix C, according 

to the exact analysis, one can obtain Hλ  and   by solving the system of eqs. (30).  2µ

 In case of a matrix C for which  C <  with 2ε− 0→ε , the determination of the flutter 

load  (and then ) is appreciably simplified  without diminishing its accuracy. Thus, 

application of eq. (26) gives 

Hλ
2µ

                                                     
2212

2212

1211

12112

MM
VV

MM
VV

+
+

=
+
+

=µ
 r
 r

 r
 r ,                                        (63) 

which leads to eq. (60) and then to eq. (61). The ratio r is obtained from eq. (39), i.e.  

                                                         , 0cc2c 2212
2

11 =++  r r

or                                                    ( )2211
2
1212

11

cccc
c
1

−±−= r .                                           (64) 

 

Clearly, the equation yielding a discontinuity in the flutter load Hλ , i.e. , is 

still valid. For the above 2-DOF model with k=1 and m=10 related to an indefinite matrix C 

with   and 

01m2 =−= rr

,01.0c11 = 0325.0cc 2112 == 012.0c22 =  (i.e. C =-9.3625X  we find, 

according to the exact analysis, =0.193698381< , and 

)010 4 <−

Hλ
c
1λ 109221303.1=µ   [Kounadis 

(2006)]. On the basis of the approximate analysis we obtain using eq. (64) r = – 0.190179743 

and thereafter through eq. (63), =0.193830151 and Hλ ,109204333.1=µ  respectively, which 

practically coincide with the previously found values of Hλ  and µ . The plot  versus m>0 

with the corresponding asymptotes 

Hλ

068.5m =  and 19018.1=λ  is shown in Fig. 4b. Fig. 5a 

shows the Hopf bifurcation load versus mass ratio m (Hλ )m/m 21= > 5.068 for various 

values of stiffness ratio k . The small circle in each k-curve corresponds to the )k/k( 21=
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critical divergence (buckling) load  (c
)1(λ Hλ≡ ). This corresponds to a dynamic bifurcation 

associated with a coupled divergence-flutter instability. This double zero eigenvalue dynamic 

bifurcation is called an Arnold-Bogdanof dynamic bifurcation [Kounadis (2006)]. Below the 

small circle we have Hλ <  for each value of k. Clearly, both  and  increase with 

the increase of k.  Fig. 5b shows Hopf bifurcations loads 

c
)1(λ

c
)1(λ Hλ

Hλ  versus mass ratio m 

< 5.068 for various stiffness ratios k)m/m( 21= )k/k( 21= . The values of  are higher than 

 (asymptote). It is worth noticing that a discontinuity in the flutter load versus 

mass was first observed in a continuous damped cantilever model carrying concentrated 

(attached) masses [Kounadis (1977), Kounadis and Katsikadelis (1980)]. 

Hλ

19018.1=λ

Table 1 gives values of c
)1(λ ≡ Hλ , of Hλ <  and of  c

)1(λ Hλ  slightly smaller than  

for various values of the stiffness and mass ratio k and m respectively, together with the 

corresponding amplitudes  of the stable limit cycles. Note that 

c
)1(λ

)(1 τθ )(1 τθ  increases with the 

increase of  k and m. 

Fig. 6 shows the phase-plane portrait 2θ vs  corresponding to the above generic 

bifurcation with k=10, m=46.838455646 and  Note that the 

(absolutely) maximum amplitude of 

2θ&

.9009805.0898.0 c
H =λ<=λ

)(2 τθ  corresponding to this generic Hopf bifurcation, is 

nearly 0.008 rad. The maximum (absolutely) amplitudes of )(1 τθ  are, as expected, lower than 

the corresponding |max |. )(2 τθ

5. Conclusions 

The conditions under which symmetric weakly damped systems under potential loading  may 

exhibit Hopf bifurcations, discontinuities of flutter loads and other phenomena, are 

thoroughly discussed. The most important findings are the following: 

1. A solution methodology for establishing necessary and sufficient conditions for 

degenerate and generic Hopf bifurcations as well as double zero eigenvalue 

bifurcations is presented. 

2. Besides this exact analysis an efficient and readily employable technique suitable for 

multi-degree of freedom systems with negligibly small damping, is comprehensively 

established. 

3. It was, strangely enough, found that the coupling effect of negligibly small damping 

with non-uniform mass distribution may lead to flutter load discontinuities. This may 
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have important applications in the dynamic response of multi-story buildings 

(simulated by cantilever models). 

4. The individual and coupling effect of the mass and stiffness ratios on the buckling and 

flutter load,  and , respectively, are assessed. c
)1(λ Hλ

5. Combinations of values of m and k for which the flutter load  of generic Hopf 

bifurcations, associated with stable limit cycles, occurs prior to divergence, are also 

assessed. 

Hλ

6. The effect of the above parameters m and k on the maximum (final) amplitudes of the 

angles  and , being independent of the initial conditions, are also presented.  )(1 τθ )(2 τθ
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Fig. 1a Fig. 1b 

  
Fig. 1c Fig. 1d 

 
Fig. 1e 
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Fig.1 a,b,c,d,e. Types of dynamic bifurcations. 

 
Fig. 2. 2-DOF and 3-DOF perfect models under partial follower loading 

 

 22



Acc
ep

te
d m

an
usc

rip
t 

 

 
23

 



Acc
ep

te
d m

an
usc

rip
t 

 

 
24

 



Acc
ep

te
d m

an
usc

rip
t 

 
25

 



Acc
ep

te
d m

an
usc

rip
t 

 
26

 
 

Hλ
Fi

g.
5a

. H
op

f b
ifu

rc
at

io
n 

lo
ad

 
 v

er
su

s m
as

s r
at

io
 m

 (=
 m

1/m
2 )

 >
5.

06
8 

fo
r v

ar
io

us
 v

al
ue

s o
f s

tif
fn

es
s r

at
io

 k
 (=

 k
1/k

2 )
. 



Acc
ep

te
d m

an
usc

rip
t 

 

 
Fi

g.
5b

. H
op

f b
ifu

rc
at

io
n 

lo
ad

 
Hλ

 v
er

su
s m

as
s r

at
io

 m
 (=

 m
1/m

2 )
 <

5.
06

8 
fo

r v
ar

io
us

 v
al

ue
s o

f s
tif

fn
es

s r
at

io
 k

 (=
 k

1/k
2 )

. 

 
27

 



Acc
ep

te
d m

an
usc

rip
t 

 

 
28

 



Acc
ep

te
d m

an
usc

rip
t 

 

 
29

 


