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Introduction

The effect of damping on the elastic stability of flexurally vibrating nonconservative systems was recognized long time ago as a factor of decisive importance [START_REF] Ziegler | Die Stabilitätskriterien der Elastomechanik[END_REF], Nemat-Nasser and Hermann (1966), [START_REF] Crandall | The Role of Damping in Vibration Theory[END_REF]]. In such mechanical systems although dissipative forces are often very small their effect may be great. However, this effect was, in general, ignored in the case of elastic dynamic stability of conservative systems. Indeed, it was widely accepted that the presence of damping in undamped conservative systems which are stable does not charge their stability [START_REF] Gantmacher | Lectures in Analytical Mechanics[END_REF], [START_REF] Huseyin | Multiple-Parameter Stability Theory and its Applications[END_REF]]. The energy loss due to damping is either dissipated within the system or transmitted away by radiation. A classification of various sorts of damping is reported by [START_REF] Gaul | The Influence of Damping on Waves and Vibrations[END_REF]. The behavior of conservative discrete systems when damping is included can be described using a local (linear) analysis by the matrix-vector differential equation [START_REF] Gantmacher | Lectures in Analytical Mechanics[END_REF], [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF], [START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]].
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0 Vq q C q M = + + & & & , (1) 
where the dot denotes a derivative with respect to time t; q(t) is an n-dimensional state vector with coordinates and V are n x n real symmetric matrices. More specifically, matrix M associated with the total kinetic energy of the system is a function of the concentrated masses being always positive definite; matrix C with elements the damping coeffecients may be positive definite, positive semi-definite as in the case of pervasive damping [START_REF] Zajac | The Kelvin-Tait-Chetaev Theorem and Extensiens[END_REF][START_REF] Zajac | Comments on Stability of Damped Mechanical Systems, and a Further Extension[END_REF], [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF]] or indefinite [START_REF] Sygulski | Dynamic Stability of Pneumatic Structures in Wind: Theory and Experiment[END_REF], [START_REF] Laneville | Wind-Induced Ovalling Oscillations of Cylindrical Shells: Critical Onset Velocity and Mode Prediction[END_REF], Misra, Wong and Paidoussis (2001)]; V is a generalized stiffness matrix whose elements are also linear functions of a suddenly applied external load λ with constant direction and infinite duration [START_REF] Kounadis | A Geometric Approach for Establishing Dynamic Buckling Loads of Autonomous Potential Two-DOF Systems[END_REF]], i.e.

(λ). Apparently due to this type of loading the system under discussion is autonomous. When the external loading λ is applied statically, one can obtain the static (divergence) instability or buckling loads by imposing the condition of vanishing the determinant of the stiffness matrix C M, n); 1,..., (i (t)

q i = n) 1,..., (i m i = n) 1,..., j (i, c ij = ij V ij ij V V = n) 1,..., (j λ c j = ( ) λ V , i.e.
( )

λ V = 0. (2) 
Clearly, eq. ( 2) yields an n th degree algebraic equation with respect to λ. Assuming distinct critical points is positive definite for ( )

λ V λ c (1) λ <
, positive semi-definite for λ = and indefinite for < This study was motivated by the fact that previous analyses of the author (1994,1997 ) using 2-DOF and 3-DOF Ziegler's models under partial follower loading have shown that in a small region of divergence instability, flutter (dynamic) instability may occur before divergence (e.g. for 1 λ < ), if infinitesimal damping is included. A similar finding in an aeroelastic model was also reported by [START_REF] Bolotin | Secondary Bifurcations and Global Instability of an Aeroelastic Nonlinear System in the Divergence Domain[END_REF]. It was also reported by Paidoussis at al (1990) that flutter can arise in an inherently conservative system but for large daqmping. The objective of this paper is to present a thorough discussion of the conditions under which the above autonomous potential systems may exhibit dynamic bifurcational modes of instability before divergence (i.e. for λ < ) when negligibly small damping is included.

Indeed, as will be proven in what follows, such an infinitesimal damping may change Attention is focused on seeking steady-state solutions of autonomous conservative weakly damped mechanical systems governed by eq. ( 1) associated with periodic motions either around centers or due to Hopf bifurcations (limit cycles). The impetus of the present study was that such local dynamic bifurcations which could be explored via a classical (linear) analysis escaped the attention of eminent researchers in the past. Certainly, the global stability of these dynamic bifurcations can be established only by using a nonlinear dynamic analysis.

Basic equations

According to the classical analysis solutions of eq. ( 1) can be sought in the form

q = r , (3) ρt e 
where ρ is, in general, a complex number and r a complex vector independent of time t.

Inserting q from eq. ( 3) into eq. ( 1) we obtain

L( ρ ) = ( 0 , (4) V)r ρC M ρ 2 = + + where L( ρ ) V is a matrix-valued function. Since V = ρC M ρ 2 + + = V(λ), matrix L( ) is a
function of the external loading λ for given matrices M and C. Solutions of eq. ( 1) are intimately related to the algebraic properties of the matrix L (ρ), and more specifically to the Jacobian eigenvalues ρ ρ(λ) obtained through the characteristic (secular) equation [START_REF] Gantmacher | The Theory of Matrices[END_REF][START_REF] Gantmacher | Lectures in Analytical Mechanics[END_REF], [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF]]. 

det L(ρ) = V ρC M ρ 2 + + = 0, (5) 
which guarantees the existence of non-trivial solutions of eq. ( 1) or [START_REF] Gantmacher | Lectures in Analytical Mechanics[END_REF]. Expansion of the determinantal eq. ( 5) leads to the characteristic equation [ [START_REF] Kounadis | On the Failure of Static Stability Analyses of Nonconservative Systems in Regions of Divergence Instability[END_REF]]

2n 1 2n 1 2n 1 2n α ρ α .... ρ α ρ + + + + - - = 0, (6) 
where the real coefficients 1,...,2n) (i

α i = =
are determined by means of Bôcher formula [START_REF] Pipes | Applied Mathematics for Engineers and Physicists[END_REF]]. The eigenvalues (roots) of eq. ( 6 

λ) ( ρ ρ j j = ) λ ( ν ν j j = j j µ µ = ) λ ( , λ ( r r j j = ) λ ( r r j j = and 
. Thus, the solutions of eq. ( 1 where A and B constants which are determined from the initial conditions. Solutions [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF] are bounded, tending to zero as t ∞ → , if all eigenvalues of eq. ( 6) have negative real parts, i.e. when for all j [START_REF] Gantmacher | The Theory of Matrices[END_REF]]. In this case the algebraic polynomial ( 6) is called a Hurwitz polynomial (since all its roots have negative real parts) and the origin (q = 0) is asymptotically stable. According to Routh-Hurwitz criterion, a necessary and sufficient condition for the polynomial to be a Hurwitz polynomial is that

0 ν j < q & = , 0 α 1 1 > = ∆ 2 3 1 2 α α 1 α = ∆ > 0, 3 4 5 1 2 3 1 3 α α α α α α 0 1 α = ∆ > 0, …, = ∆ 2n 1 2n 2n ∆ α ->0. (8) 
A necessary but not sufficient condition for all roots of eq. ( 6) to have negative real parts is for all j ( 1,…, 2n). More efficient than Routh-Hurwitz conditions is the stability criterion of Liénart and Chipart [START_REF] Gantmacher | Lectures in Analytical Mechanics[END_REF]]. According to this criterion a necessary and sufficient condition for all roots of eq. ( 6) to have negative real parts is > 0 for all j

( 1, …, 2n), and simultaneously all determinantal inequalities either of odd order

0 α j > = j α = 1 2n - ∆ ,
, … or even order , , … to be positive. In this case, the number of Hurwitz determinants is about half that of conditions [START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]. If some of the Hurwitz determinants are . This is given by

1 2n - ∆ 2n 2 1 ρ ,..., ρ , ρ 2 ) 1 n(2n 2 1 2n ) 1 ( - - - = ∆ . ( 9 
) ) ρ ρ ( 2n ,..., 1 κ j κ j ∏ < +
Clearly 0, if and only if, the sum of two roots of eq. ( 6) is zero. This may occur in three cases corresponding to critical states: if eq. ( 6) has at least one pair of conjugate pure imaginary roots or two real opposite roots or a double zero root (while the remaining roots have negative real parts).

= ∆ -1 2n
In the following, attention is focused on critical states. More specifically, if the real part of at least one pair of eigenvalues (roots of eq. ( 6)) becomes (at a certain value of the slowly varied λ) positive, say , while (λ) 0 ) (λ ν κ > κ µ = 0, the origin is locally unstable related to divergence (static) instability (Fig. 1a). If the real part of at least one pair of eigenvalues becomes zero, say 0 )

λ ( ν κ = (with 0 ) λ ( µ κ
≠ ), while the remaining s are negative, the equilibrium state

j ν 0 q q = = &
is in general critical. In this case of existence of one

pair of purely imaginary eigenvalues, 0 ) µ( i ≠ λ ±
, the origin becomes locally unstable and the system exhibits a dynamic bifurcation. This is related to two distinct cases. If this eigenvalue crosses the imaginary axis with zero slope, i.e. )/dλ ( dν κ λ 0 = , the corresponding dynamic bifurcation is a degenerate Hopf bifurcation (Fig. 1b) associated with periodic motions around centers; otherwise, i.e. if

)/dλ ( dν κ λ 0 ≠ , the system exhibits flutter instability (Fig. 1c) associated with limit cycles due to a generic Hopf bifurcation. Another, mixed (hybrid) type of coupled divergence-flutter instability occurs when the real and imaginary part of at least one pair of eigenvalues becomes zero, occurring at , i.e. with /d

c 1 λ λ = ) (λ ν c 1 κ = 0 ) (λ µ c 1 κ = ) (λ dν c 1 κ 0 λ = , while for
the two real eigenvalues are moving in opposite directions in the real axis (Fig. 1d). This dynamic bifurcation corresponds to a double zero eigenvalue.

c 1 λ λ >
Another type of flutter instability may occur in undamped circulatory (nonconservative) systems, when two consecutive conjugate purely imaginary roots coincide at a certain value of the loading λ (Fig. 1e), whereas for a slight increase in it, eventually leave the imaginary axis moving in opposite directions, thus producing an eigenvalue with a positive real part (self-excited oscillations). However, the coincidence of
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two purely imaginary eigenvalues is a necessary but not sufficient condition for flutter, since the corresponding eigenvectors must also coincide [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF] & (1986), [START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]]. Coincident eigenvalues which may be associated with solutions composed from powers of time t multiplied with the exponential functions of relation [START_REF] Huseyin | Vibrations and Stability of Damped Mechanical Systems[END_REF] are not considered herein.

Multi-parameter system

So far we have considered only one control parameter, the external loading λ (main control parameter). However, the response of the system is influenced by several independently varying parameters. For a given damping matrix C, the matrix-valued function 

L( ) is (in addition to ρ λ ) a
2n) 1,2,..., κ = ) ρ(λ; ρ κ η = ) ν(λ; ν κ η = ) µ(λ; µ κ η = and = ν ( λ ; κ η ).
In the following, the critical condition under which the above multi-parameter autonomous conservative system may exhibit a dynamic mode of instability before divergence if negligibly small dissipative forces are included will be discussed in detail.

Solution technique

Premultiplying eq. ( 4) by Τ r , the conjugate transpose of r, we obtain

0 V)r ρC Μ (ρ r 2 Τ = + + , (10) 
Since all quadratic forms are real (scalar) quantities, eq. ( 10) is a 2 nd degree algebraic polynomial with respect to ρ , from which we obtain [ ]

Vr) r Mr)( r 4( Cr) r ( Cr r Mr r 2 1 ρ Τ Τ 2 Τ Τ Τ - ± - = (11) 
or

(i iµ ν ρ + = ) 1 - = , where Mr r 2 Cr r ν Τ Τ - = , 2 Τ Τ 2 ν Mr r Vr r µ - = . ( 12 
)
Let the corresponding to r complex conjugate eigenvectors be

r , iy x + = iy x r - = , (13) 
where x and . Introducing expressions (12) into eq. ( 10) and setting real and imaginary parts equal to zero we get 

[ ] [ ] ⎪ ⎭ ⎪ ⎬ ⎫ Μ + - = + + - Μ + = + + - x ) 2ν µ(C y V νC )M µ (ν )y 2ν µ(C x V νC )M µ (ν 2 2 2 2
For a non trivial solution the determinant of the homogeneous system ( 14) must be zero. For (as stated in the Introduction) matrix V for given values of the stiffness parameters (j=1,…,n) is positive definite. If in addition matrix C is positive definite and given that matrix M is always positive definite, according to the Parodi theorem [START_REF] Bellman | Introduction to Matrix Analysis[END_REF]] all eigenvalues of eq. ( 5) or all roots of eq. ( 6) have negative real parts. Hence, the system is asymptotically stable. Indeed, if C is positive definite, as 

Conditions for dynamic bifurcation

Attention is mainly focused on dynamic bifurcations associated either with degenerate or generic Hopf bifurcation (Fig. 1b and Fig. 1c, respectively) which may occur before divergence (i.e. for

). This will be discussed in connection with the sign of the quadratic form c 1 λ λ < Cr r Τ which may be positive semi-definite or indefinite.

As mentioned above, the necessary condition for the existence of a degenerate or a Hopf bifurcation is the existence of one at least pair of conjugate pure imaginary eigenvalues (i.e.

, while the remaining eigenvalues are complex conjugate with negative real parts. Since from eq. ( 12), it follows that iµ

± ) 0 ν = 0 ν = 0 Cr r Τ = (for r ) 0 ≠ . ( 15 
)
Eq. ( 15) is satisfied when the damping matrix C is either positive semi-defnite (since 0 C = ) or indefinite. Since C is a given matrix, the indefinite quadratic form Cr r Τ may become zero for a suitable value of r, depending on the loading λ and the parameters ( , since r .

κ η ) 1,...,2n κ = ) λ; ( r κ η =
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The sufficient condition for a generic Hopf bifurcation is the fulfillment of the transversality condition [START_REF] Huseyin | Multiple-Parameter Stability Theory and its Applications[END_REF]]

0 dλ dν λ λ ≠ Η = , (16) 
where is the load for which the real part of )

λ ( λ λ c 1 H < = ρ becomes zero, i.e. 0 ) ; ν(λ κ H = η .
Clearly, if condition ( 16) is violated, namely if

0 d dν = λ Η λ = λ , ( 17 
)
we have a degenerate Hopf bifurcation.

Assuming that the necessary condition for a Hopf (degenerate or generic) bifurcation is satisfied, we can introduce into eq. ( 4) the pair of conjugate pure imaginary eigenvalues . This leads to iµ ±

(A iµC)r ± = 0, (18) 
where A . Clearly, for a non-trivial solution (i.e. for r

M µ V 2 - = ) 0 ≠
the corresponding determinant must be zero, namely

0 C i A = µ ± (19) 
According to the proof by Peremans-Duparc-Lekkerkerrer [START_REF] Bellman | Introduction to Matrix Analysis[END_REF], p. 67] if A and C are real symmetric matrices such that A is non-negative definite, then eq. ( 19) implies that there exists a non-trivial real vector r satisfying eq. ( 18) which yields Ar 0,

Cr = = 0 (r ) 0 ≠ . ( 20 
)
Eqs. [START_REF] Gantmacher | The Theory of Matrices[END_REF] are simultaneously satisfied if the determinants of both matrices A and C are zero, i.e.

0 A = , 0 C = . ( 21 
)
The second of eqs. ( 21) is fulfilled if matrix C is positive semi-definite. In this case for given By virtue of the 1 st of eqs [START_REF] Pipes | Applied Mathematics for Engineers and Physicists[END_REF] one can obtain the determinantal equation

0 M µ V 2 = - , ( 23 
)
whose expansion is an n th algebraic polynomial with respect to . From eqs [START_REF] Bellman | Introduction to Matrix Analysis[END_REF] and [START_REF] Kounadis | Stability of Elastically Restrained Timoshenko Cantilevers with attached masses subjected to Follower Forces[END_REF] we can determine and λ for given stiffness components and masses , where j=1,…,n.

The smallest positive root which satisfies eqs ( 22) and ( 23) corresponds to the critical dynamic bifurcational load associated either with a degenerate or a generic Hopf bifurcation. 1b). Indeed, using the expression of ν given in the 1 st of eqs [START_REF] Laneville | Wind-Induced Ovalling Oscillations of Cylindrical Shells: Critical Onset Velocity and Mode Prediction[END_REF], one can show that condition [START_REF] Bolotin | Secondary Bifurcations and Global Instability of an Aeroelastic Nonlinear System in the Divergence Domain[END_REF] 

= λ = λ , (24) 
which is true since due to (20) Cr=0. Such a result was anticipated since r evaluated through the 2 nd of homogeneous eqs. ( 20) is independent of λ. Note also that a real eigenvector r corresponds to both pure imaginary eigenvalues iµ + and -iµ [ [START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]]. It is worth noticing that the above finding is also valid if C is a symmetric singular matrix (i.e. C is not necessarily positive semi-definite).

One can now obtain a new finding of paramount importance for a multi-parameter system. By means of the 2 nd of eqs [START_REF] Gantmacher | The Theory of Matrices[END_REF] we can determine ) (r r r n j

=

, where j=1,…,n-1.

Inserting these values into the 1 st of eqs [START_REF] Gantmacher | The Theory of Matrices[END_REF], after setting , we obtain M µ V A 

b: C is indefinite

If the matrix C is indefinite (since ) 0 C < the eigenvectors satisfying eq. ( 18) must be complex. Multiplication of eq. ( 18)by Τ r (complex conjugate transpose of r) leads to

0 r ) C i (A r Τ = µ ± . ( 27 
)
Since Ar r Τ and Cr r Τ are real (scalar) quantities, eq. ( 27) yields Ar r Τ =0, Cr r Τ =0.

Eqs (28) are also obtained from relation [START_REF] Laneville | Wind-Induced Ovalling Oscillations of Cylindrical Shells: Critical Onset Velocity and Mode Prediction[END_REF], after setting ν=0 and V , since matrix M is always positive definite. Given that conditions (20) are not valid (since

), 0 A , 0 C ≠ ≠
the procedure established previously based on Cr r Τ =0 cannot be adopted in connection with conditions (28). Instead of this, one can apply eq. ( 19), the expansion of which, after setting real and imaginary parts equal to zero furnishes two equations in λ and that can be determined provided that all (κ=1,…,2n) and matrix C are known. Clearly, the determinant in eq. ( 19) can be established for n>2 by using symbolic algebra. For n=2, eq. ( 19), after setting , yields Eqs. (29) can also be written as follows: 

2 µ κ η M µ V A 2 - = . ( 29 
) ⎪ ⎭ ⎪ ⎬ ⎫ = - - - + - = - - - - - - 0 ) M µ (V 2c ) M µ (V c ) M µ (V c 0 ) c c (c µ ) M µ (V ) M µ )(V M µ V (
M 2c M c M c V 2c V c V c µ C µ A M µ V , (30) 
Eliminating from eqs (30) we can find λ for given matrix C and values of . The lowest positive value of is the dynamic instability critical (flutter) load which implies a dynamic bifurcation occurring before divergence. (33)

Substituting the expression of the vector y into the 2 nd of eqs (33) we get

( , ( 34 
) 0 C)x µ 2 = + Β
where . For a non-trivial solution the determinant of the above homogeneous system must be zero, i.e.

A AC 1 - = Β 0 C µ 2 = + Β , ( 35 
)
which is a function of and λ for given matrix C and parameters 
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A)x MC AC M (µ x A)x VC AC V (µ x µ 1 1 2 Τ 1 1 2 Τ 2 - - - - + + = , (37) 
where . M µ V A 2 -= From the homogeneous system (34) using symbolic algebra one can express via the homogeneous system 34 the components of the vector x as function of the component as well as of and λ for given matrix C and parameters (κ=1,…, 2n).

Introducing into the 1 corresponds to a twofold root of eq. ( 6); a case which is excluded since only distinct critical points are considered.

Clearly, the proof for transversality condition presented here for both the degenerate and generic Hopf bifurcation is simpler than that recently reported [START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]].

The above, rather cumbersome, analysis for establishing the load associated with a generic Hopf bifurcation can be drastically simplified in the case of an indefinite matrix C when

H λ λ = 2 ε C - < for .
In the following an approximate technique for a simple, rapid and reliable evaluation of and will be presented. The accuracy of the results obtained by using this technique increases substantially as approaches zero. We may also assume that the latter case is satisfied if

0 A = which implies Ar=0 ( ) 0 r ≠ . ( 41 
)
Analytically eq. ( 41) is written as follows:

(42) 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ α α α α α α α α α α α α nn 1 - n n, n2 n1 2n 1 - n 2, 22 21
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - n 1 n 1 r r . . . r or in a partitioned form ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ α Α Α Α nn 21 12 11 0 r r ~n = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ , (43) 
where is an (n-1)x(n-1) non-singular symmetric matrix, an nx1 (column) matrix such that ; is a real (scalar) quantity, 

A A r r ~-- = , ( 0 r n ≠ ). ( 44 
)
Introducing this expression of r ~ into eq. ( 39) we obtain

) r r ( n Τ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ nn 21 12 11 C C C C ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ n r r ~ =0, (45) 
where A c c e p t e d m a n u s c r i p t Hopf bifurcation. This is so because the transversality condition is also satisfied according to the proof given above.

C 12 . ( 46 
) ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = - 1 - n 1, - n 1 , 1 n 1 - n 1,

Numerical examples

A nonlinear dynamic analysis using 2-DOF and 3-DOF cantilever models [Fig. 2 a,b] confirms the validity of the theoretical findings as well as the efficiency and simplicity of the proposed technique. The nonlinear equations of motion for the perfect 2-DOF model shown in Fig. 2a are obtained from [START_REF] Kounadis | On the Failure of Static Stability Analyses of Nonconservative Systems in Regions of Divergence Instability[END_REF] after setting 0 = γ and η=1, as follows ( )

, 0 sin c c ) sin( ) cos( , 0 sin k c c ) sin( ) cos( m 1 2 2 1 1 12 2 22 2 1 2 1 2 1 1 2 1 1 2 1 2 12 1 11 2 1 (50) where 2 2 1 2 1 k / Pl , k / k k , m / m m = λ = = .
Linearization of eqs. (50) after setting . (57)

ϕ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ϕ ϕ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θ θ = Θ
The static buckling (divergence) equation is equal to

0 k k ) k k k 3 k 2 ( ) k 2 k 2 ( 2 1 2 1 2 1 2 2 1 3 = - λ + + + λ + + - λ , (58) 
whose roots are real and positive, since (i=1,2,3) are the eigenvalues of the positive definite matrix (i.e. obtained from eq. ( 57)

for c λ ) 0 ( V = λ ) 0 = λ
. Moreover, one can show that the case of a double root of eq. ( 58) is excluded.

2-DOF model

For a degenerate Hopf bifurcation, associated with a positive semi-definite matrix C, using eqs ( 20) and ( 21) for n=2, we get

11 22 2 1 c / c r / r - = = r . (59) 
Application of eq. ( 36) due to eqs (52) gives

( ) (
)

1 1 1 m 1 1 1 k + λ - + - = + + - λ - + r r r r , (60) 
from which we obtain the degenerate Hopf bifurcation load

H λ = λ , i.e. , (61) 2 
) m k ( ) 2 k m ( ) 1 m ( 2 H 2 - - + + + = λ - - r r r r
where m and k are positive quantities, while r may be positive or negative. Note that if , the critical load exhibits a discontinuity (varying from to 0 1 m For a generic Hopf bifurcation, associated with a given indefinite matrix C, according to the exact analysis, one can obtain H λ and by solving the system of eqs. (30). 

2 = - -r r H λ ∞ + ∞ -).
M M V V M M V V + + = + + = µ r r r r , (63) 
which leads to eq. ( 60) and then to eq. ( 61). The ratio r is obtained from eq. (39), i.e. 

=

. The values of are higher than (asymptote). It is worth noticing that a discontinuity in the flutter load versus mass was first observed in a continuous damped cantilever model carrying concentrated (attached) masses [START_REF] Kounadis | Stability of Elastically Restrained Timoshenko Cantilevers with attached masses subjected to Follower Forces[END_REF], [START_REF] Kounadis | On the Discontinuity of the Flutter Load for Various Types of Cantilevers[END_REF]]. 

Conclusions

The conditions under which symmetric weakly damped systems under potential loading may exhibit Hopf bifurcations, discontinuities of flutter loads and other phenomena, are thoroughly discussed. The most important findings are the following:

1. A solution methodology for establishing necessary and sufficient conditions for degenerate and generic Hopf bifurcations as well as double zero eigenvalue bifurcations is presented.

2. Besides this exact analysis an efficient and readily employable technique suitable for multi-degree of freedom systems with negligibly small damping, is comprehensively established. 
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 1 drastically the behavior even of a conservative system. This shows the importance of inclusion of damping for the precise modeling of a system. Thus, previous widely accepted results referring to undamped systems (e.g. jump phenomena) should eventually be reconsidered. This work, being an extension of a very recent study of the author (2006), presents a new very simple and efficient approach for establishing degenerate and generic Hopf bifurcations based on necessary and sufficient conditions. To this end, the effect of damping on the Jacobian eigenvalues in connection with the influence of the loading λ, concentrated mass and stiffness (j=1,…,n) parameters (multi-parameter system) is thoroughly discussed using 2-DOF and 3-DOF models. The case of a positive semi-definite or indefinite damping matrix C will be studied in connection with a positive definite, positive semi-definite or indefinite stiffness matrix V (λ). In this respect, the individual and coupling effect of the non-uniform mass and stiffness distribution is fully assessed. Discontinuity (jump) phenomena in the critical dynamic loading may occur at a certain mass distribution.

  zero one has to use Orlando's formula which expresses the determinant in terms of the roots

  function of the concentrated masses and stiffnesses (j=1,…,n) which can be represented by the external parameters

λ 1 λ = λ c 1 λ

 11 increases gradually from zero, at least a pair of complex conjugate eigenvalues follows in the ρ -complex plane the path shown in Fig.1abecoming a double negative eigenvalue at a certain 0 λ = λ slightly smaller than due to the vanishing of the discriminant of eq. (11)the discriminant becomes positive related to two unequal negative eigenvalues moving in opposite directions in the real axis. At c one of these eigenvalues vanishes, becoming positive and increasing for , yielding static (divergence) instability, while the other (negative) eigenvalue decreases algebraically.

C

  one can determine by means of the 2 nd of eqs[START_REF] Gantmacher | The Theory of Matrices[END_REF] the components (j=1,…, n-1) of r as function of the component . Introducing )

  is positive semi-definiteIt can readily be shown that if C is a positive semi-definite matrix the dynamic bifurcation is a degenerate Hopf bifurcation since the transversality condition is violated (Fig.

2 µ

 2 Writing eq. (25) analytically and solving each of the resulting equations with respect to we find and (22) furnish n equations from which we can determine λ and (n-1) from the parameters. In this solution we are looking for the minimum positive value of λ which must be less than . For instance, if n=2 we can determine in addition to 1

  an indefinite matrix the quadratic form Cr r Τ depending on the values of 0 ν ≠ may be negative or positive. Hence, it may also vanish for a certain (where κ=1,2,…,2n) depending on the value of λ for given values of the parameters .

  eq. (13), after setting ν=0, eqs (14) and (

Τ

  Introducing the expression of y from relation (33) into the 1 st of eqs (36) we obtain

  . (36) constitute a nonlinear algebraic system with respect to and λ which can be solved numerically. The lowest positive value of is the dynamic instability critical load at which a dynamic bifurcation occurs before divergence.This dynamic bifurcation is a generic Hopf bifurcation since the sufficient condition related to the transversality condition is satisfied, namely 0 1c). Indeed, due to the 1 st of eqs[START_REF] Laneville | Wind-Induced Ovalling Oscillations of Cylindrical Shells: Critical Onset Velocity and Mode Prediction[END_REF] it follows that ν=0 which yields 0 Cr r Τ = . Thus, one has to show For a given matrix C the quadratic form Cr, r Τ corresponding to a critical condition (since iµ ρ ± = ), is a real polynomial of 2 nd degree with respect to the loading λ for known values of the parameters κ η (κ=1,…, 2n). If the derivative of this polynomial with respect to λ is zero, then at H λ λ =

  If this case in which the determinant of the damping matrix C is negative but negligibly small and ,we may consider that 0 Cr ≠ Cr r Τ =0 in eq. (28) can be approximately satisfied by a real vector, the previous case of a positive semi-definite matrix C, where 0 C = . Namely, we may assume that at a certain there

  furnish a nonlinear system of two equations with unknowns λ and which can be solved numerically provided that the matrix C and all parameters

1 λ 1 λ

 11 the entire interval of values k>0, eq. (54) yields 0 ≤ c <1. The case of equal roots is excluded. The variation of the static buckling load versus k is shown in Fig. 3. c The equations of motion for the perfect 3-DOF model, shown in Fig. 2b, are obtained from Kounadis (1997 ) after setting

λ(For the above 2 -λ

 2 for given r the above extreme values of may occur for various combinations of values of the parameters m and k. H It is worth noticing that the discontinuity in the flutter load H λ (being independent of the stiffness ratio k) occurs at . Namely, for a given damping ratio r violation of the transversality sufficient condition for a degenerate Hopf bifurcation).From eq. (26) we obtain DOF model with k=1, m=10 and a positive semi-definite matrix C with respect to m>0 for k=1 is shown in Fig.4a.

1 = > 5 .

 15 equation yielding a discontinuity in the flutter load H λ , i.e., is still valid. For the above 2-DOF model with k=1 and m=10 related to an indefinite matrix C ]. On the basis of the approximate analysis we obtain using eq. (64) r = -0.190179743 and thereafter through eq. (Fig.4b. Fig.5ashows the Hopf bifurcation load versus mass ratio m ( 068 for various values of stiffness ratio k . The small circle in each k-curve corresponds to the ) This corresponds to a dynamic bifurcation associated with a coupled divergence-flutter instability. This double zero eigenvalue dynamic bifurcation is called an Arnold-Bogdanof dynamic bifurcation[START_REF] Kounadis | Hamiltonian Weakly Damped Autonomous Systems Exhibiting Periodic Attractors[END_REF]]. Below the small circle we have H λ < for each value of k. Clearly, both and increase with the increase of k. Fig.5bshows Hopf bifurcations loads

Fig. 6

 6 Fig. 6 shows the phase-plane portrait 2 θ vs corresponding to the above generic bifurcation with k=10, m=46.838455646 and Note that the (absolutely) maximum amplitude of

3 . 5 . 6 .

 356 Fig. 1aFig.1b

  Fig. 1cFig.1d

Fig. 1e

  Fig. 1e

  Fig.5a. Hopf bifurcation load

A c c e p t e d m a n u s c r i p tFig. 5b .

 5b Fig.5b. Hopf bifurcation load

Table 1

 1 

	gives values of c ( 1 ) λ ≡ H λ , of H λ <	c ( 1 ) λ	and of	H	smaller than	c ( 1 ) λ
	for various values of the stiffness and mass ratio k and m respectively, together with the
	corresponding amplitudes	) 1 τ ( θ	of the stable limit cycles. Note that	) 1 τ ( θ	increases with the
	increase of k and m.					
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