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Abstract 
     Two kinds of second-order nonlinear ordinary differential equations (ODEs) appearing in 
mathematical physics and nonlinear mechanics are analyzed in this paper. The one concerns the Kidder 
equation in porous media and the second the gas pressure diffusion equation. Both these equations are 
strongly nonlinear including quadratic first order derivatives (damping terms). By a series of 
admissible functional transformations we reduce the prescribed equations to Abel’s equations of the 
second kind of the normal form that they do not admit exact analytic solutions in terms of known 
(tabulated) functions. According to a mathematical methodology recently developed concerning the 
construction of exact analytic solutions of the above class of Abel’s equations, we succeed in 
performing the exact analytic solutions of both Kidder’s and gas pressure diffusion equations. The 
boundary and initial data being used in the above constructions are in according with each specific 
problem under considerations.  
 
Keywords:  Exact analytic solutions; Nonlinear ODEs; Kidder’s equation; Gas pressure diffusion 
equation. 
 
1.  Introduction 
     The Kidder nonlinear ordinary differential equation (ODE) governs the problem of 
the unsteady flow of a gas through a semi-infinite porous medium [1, 2]. The origin of 
this equation is attractive, since it appears in the one dimensional problem obtained 
from the gas flow nonlinear partial differential equations. Until now, because of its 
strong nonlinearity (including quadratic first-order derivative damping term), only 
approximate or numerical solutions have been constructed under suitable boundary 
conditions. Furthermore, the equation itself consists a guideline for several relative 
problems appearing in the gas flow theory. In this paper using series of admissible 
functional transformations we reduce the Kidder nonlinear ODE to an equivalent Abel 
equation of the second kind of the normal form. It is well known [3, 4] that this class 
of equations do not admit exact analytic solutions in terms of known (tabulated) 
functions. Only very special types can be analytically solved in parametric form 
depending on the kind of its second free member [4].  
     A relative equation appearing in the theory of gas pressure problems is the one-
dimensional gas pressure diffusion equation [5]. We prove that this strongly nonlinear 
second-order ODE can be reduced to an equivalent generalized Emden-Fowler, or 
normal Emden-Fowler, or finally, to an Abel equation of the second kind of the 
normal form. Thus, according to the prescribed mathematical methodology, the 
construction of the exact analytic solution of this equation is obtained too.  
     The mathematical technique introduced is general and can be applied to a very 
large class of unsolvable (in terms of known tabulated functions) ODEs in nonlinear 
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mechanics and, generally, in mathematical physics (Blasius’ eq.; Emden’s eq.; 
Duffing’s eq.; Van der Pol’s eq.; Langmuir’s eq., etc.) 
 
 
2.  Preliminaries – Notation 
 
     The equation due to R. F. Kidder [1] is the following  
 
 1 2 0 , 0xx xay y xy a′′ ′− + = < <1  (2.1) 
 
and appears in the problem of the unsteady flow of a gas through a semi-infinite 
porous medium. Here the notation  2 2, ...x xxy dy dx y d y dx′ ′′= =  is used for total 
derivatives. The origin of the equation is attractive, since it appears in the one 
dimensional problem obtained from the gas flow nonlinear partial differential 
equation. The boundary conditions required by the physical problem are the 
following. 
 
 for     and for  . (2.2) 0 , (0) 1x y= =

0 ,

, ( ) 0x y→∞ ∞ →
 
A semi analytical solution of the equation leading to expressions including the 
probability integral was constructed by means of the power series technique (see Ref. 
[2], pp. 410-411).  
     A similar to the above problem was recently provided in Ref. [5] and concerns the 
nonlinear gas-pressure diffusion equation appearing in the formulation of gas flow 
problems, where the fluid compressibility must be taken into account. This relative 
nonlinear ODE is of the type  
 
 22 5xx x xyy y xy′′ ′ ′+ + =  (2.3) 
 
with the following boundary conditions: 
 

  (2.4) 
0 0

for  , 1 ,   and
for  0 , 0 1.

x y y
x x y

∞→∞ = =
= = < <

 
     In what follows we will prove that by a series of admissible functional 
transformations both Kidder’s equation (2.1) and the gas pressure diffusion equation 
(2.3) can be reduced to several well-known nonlinear ODEs of the generalized 
Emden-Fowler’s, or of the Emden-Fowler’s, or finally, of Abel’s types of equations. 
The prescribed equations do not admit exact analytic solutions in terms of known 
(tabulated) functions, since only very special cases of them can be analytically solved 
in parametric form (see Ref. [4], pp. 277-301; 241-250, and 29-55). 
 
 
3.   The reduction procedure  
a)  Kidder’s equation  
     Consider the Kidder equation  



Acc
ep

te
d m

an
usc

rip
t 

 3

 0 0

1 2 0 , 0
for 0, 1, and for

,    0.

xx xay y xy a
x x y y

x y y∞

′′ ′− + = < <

= = = =
→∞ = =

1 ,

) ,

 (3.1) 

 
By the substitution  
 1 (ay z x− =  (3.2) 
 
Eq. (3.1) results in the following generalized Emden-Fowler equation  
 

 

{ }1 2

0 0

12 ; , , 1, ,
2

for  0 , 1 ,   and for
, 1.

xx xz xz z n m l

x x z z a
x z z

−

∞

1 ,⎧ ⎫′′ ′= − = −⎨ ⎬
⎩ ⎭

= = = = −
→∞ = =

 (3.3) 

 
Here, we utilize the triad notation { }, ,n m l  to denote the specific exponents of the 
reduced equation. 
     The - transformation F

 1 1: x
z

dzz dxdx x
dz

′ = = =
′

F  (3.4) 

 
reduces (3.3) into the alternative generalized Emden-Fowler equation  
 

 

( ) { }21 2

0

12 ; , , , 1,
2

for  1 , 0 ,   and for
1 , .

zz zx z x x n m l

z a x x
z z x

−

∞

2 ,⎧ ⎫′′ ′= = −⎨ ⎬
⎩ ⎭

= − = =
= = →∞

 (3.5) 

 
Since in this case we have 1 2 1 , 1 0  and  2 1n m l= − ≠ − = ≠ = ≠ , the coordinate 
transformations (see Ref. [4], p. 300) 
 
 ( ) ( )11 1 2: , ln

z zw z z t x x−+ ′ ′= = = =S 1 ,−  (3.6) 
 
transform Eq. (3.5) to the generalized Emden-Fowler equation for  with the 
parameters changed: 

( )w w t=

 

 
( ) { } { }31

0 0

8 ; , , 1,1, 3 ,

for  1 , 1 , and  for   1 , 1.
tt tw t w w n m l

z z a w w a z z w

−

∞

′′ ′= − = −

= = − = = − = = →
 (3.7) 

 
But, since ( )31 ,w t ww tt tt w t w w′ ′ ′′ ′′ ′= = − ,  Eq. (3.7) becomes of the Emden-Fowler type 

 { } { }18 ; , 1, 1wwt wt n m−′′ = = .−  (3.8) 
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When  the solution of the transformed equation (3.8) is obtained in the form of 
, the solution to the original equation (3.5) can be written in the 

following parametric form. By the first transformation of (3.6) we have  
( ) ( )t t w w w t= ⇒ =

 
 2 1 2 1 2 ,z zz w ww w w′ ′= ⇒ = ⇒ =  
 

while Eq. (3.5) can be rewritten as ( )1 2z z
x x z′′ = − . Also, the second of (3.6) 

permits us to write the last equation as 2 2z w zt x z t w t w x t 4w′ ′ ′ ′ ′= − = = ⇒ = − . 
Thus, the solution of Eq. (3.5) in parametric form results in  
 

 ( ) 12 1,
4 tz w x w − .′= = −  (3.9) 

 
As we can see from the classification tables, concerning classes of second order 
nonlinear ODEs of Ref. [4], pp. 278-281; 242, none of the above generalized Emden-
Fowler, or of the normal form Emden-Fowler equations (3.3), (3.5), (3.7) and (3.8) 
admits an exact analytic solution. 
     In what follows it will be shown that both Emden-Fowler equations of the normal 
form (3.8) and generalized Emden-Fowler equation (3.5) can be reduced to Abel 
equations of the second kind of the normal form respectively. This can be achieved 
using convenient admissible functional transformations. We distinguish the following 
two cases. 
 
Case a:  The Emden-Fowler equation of the normal form (3.8).  
     Since the pair of indices { },n m  of this equation satisfies,  and 1 1m = − ≠

1 2 3 19m n= ≠ − − = − 5 , there exists an admissible functional transformation that can 
reduce it to an Abel equation of the second kind of the normal form  
(see Ref. [4], p. 250). To show this we introduce the new variables s and u such that  

( )xyy y f x′ − =

 

 
2 2
1 12 3 2: ,

1 1

n n
m m

w
n m ns w t u w wt

m m

+ +
− −+ + +⎛ ′= = ⎜− −⎝ ⎠

H ,t ⎞+ ⎟  (3.10) 

 
that is to say such that  

 3 2 3 2 3: 2 ,
2ws w t u w wt t− − ⎛ ′= − = −⎜

⎝ ⎠
H ,⎞⎟  (3.11) 

 
obtaining the following Abel equation 

 13 2
16suu u s s−′ − = − − .  (3.12) 

 
This Abel equation does not admit an exact analytic solution in parametric form (see 
Ref. [4], pp. 29-45).  
 
Case b:  The generalized Emden-Fowler equation (3.5).  
     The coordinate transformations 
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 1 2 2: , 2z
zs x u z x
x

−′= =P  (3.13) 

 
reduce the first of Eqs. (3.5) to the following Abel equation of the second kind 
 

 ( )2 2 12
2ss u s s u s u⎛ ⎞′− + = −⎜ ⎟

⎝ ⎠
,

,

 (3.14) 

which, by the substitution 

  (3.15) 
*

11u u s−= − +
 
performs the simplified Abel equation of the second kind  
 

 
* * *

2 2

1 3 1 1 52 2
2 2su u s u s

s s s
⎛ ⎞ ⎛′ = − + + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

.
2
⎞
⎟
⎠

 (3.16) 

 
Finally, the well-known substitution ([4], p. 46)  
 

 
*

2
2

32 22 ln
s

s ds s
s s

−
= =∫ 3+  (3.17) 

 
transforms (3.16), and thus (3.5), to the following Abel equation of the second kind of 
the normal form 
 

 ( )( )
( )*

* * *
2

3

1 4 1 2, ln
4 3s

s s
u u u s s

s s s
− −

′− = = +
−

.  (3.18) 

 
Eq. (3.18) does not admit an exact solution in terms of known (tabulated) functions 
([4], pp. 29-45). Both equations (3.12) and (3.18) are equivalent to the original Kidder 
equation (3.1) and their possible solutions constitute its intermediate integrals in the 
phase plane.  
 
b)  The gas pressure diffusion equation 
 
     To a similar to (3.5) generalized Emden-Fowler equation results also the nonlinear 
gas pressure diffusion equation (2.14). Indeed, the F - transformation (3.4)  
 

 1: x
y

y
x

′ =
′

F  (3.19) 

 
transforms (2.3) to the following nonlinear ODE 
 

  (3.20) 

2

0 0

2 5 0 ,

for   1 , ,   and  for 
0 1 , 0 .

yy y yyx x xx

y y x
y x x
∞

′′ ′ ′− − =

= = →∞
< < = =
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Introducing the additional coordinate transformation  
 
 2( ) ( ) , ( ) ,y y yy yx y n x x n x n nξ ξξ ÿyξξ ξ ξ ξ ξ ξ′ ′ ′ ′ ′′ ′ ′ ′′= = ⇒ = = +  (3.21) 
 
where n and ξ are to be determined, Eq. (3.20) becomes 
 
 ( )22 " 2 5y yy y yy n y n nnξξ ξ ξξ ξ ξ ξ′ ′′ ′′ ′ ′ ′ ′+ − − =2 2 0 .  (3.22) 
 
Specifying ( )yξ  such that 

 7 222 5 0 ( )
7yy yy yξ ξ ξ′′ ′− = ⇒ = ,y  (3.23) 

 
one extracts the following generalized Emden-Fowler equation for ( )n ξ  with 
convenient initial and boundary data:  
 

 

2 7
2 7 2 7 2

2 7

0 0

1 7 2" , ; ,
2 2 7

2 7for  ,  ,  and  for   =0 , 0< <1. 
7 2

n A nn A y

n n n

ξξ ξξ ξ

ξ ξ ξ

−
−

∞

⎛ ⎞′′ ′= = =⎜ ⎟
⎝ ⎠

⎛ ⎞→ ∞ = = = ⎜ ⎟
⎝ ⎠

 (3.24) 

 
     An alternative form of (3.24) can be obtained by the already introduced F - 
transformation. In fact, setting 

 1:
n

nξ ,
ξ

′ =
′

F  (3.25) 

 
we reduced (3.24) into the alternative generalized Emden-Fowler equation: 
 

 

2 7
2 7

2 7

0 0

1 7, ;
2 2

2 7for  , , and  for  0 , 0 1.
7 2

nn nAn A

n n n

ξ ξ ξ

ξ ξ ξ

−
−

∞

⎛ ⎞′′ ′= = ⎜ ⎟
⎝ ⎠

⎛ ⎞= = →∞ = = < <⎜ ⎟
⎝ ⎠

 (3.26) 

Furthermore in equation (3.24) the exponents n, m and l of the variables ξ, n and nξ′ , 

respectively follow the values: 2 1 , 1 0
7

n m= − ≠ − = ≠  and 2 1l = ≠ . Thus the 

transformation [4, p. 300]  
 
 ( )11 5 7 1: ( ) , ,

lnw t t n nξ ξξ ξ
−+ −′ ′= = = =S  (3.27) 

 
transform (3.24) to the generalized Emden-Fowler equation  
 

 1 2 5 3 49,
25tt tw Bt w w B A−′′ ′= ,=  (3.28) 
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which by way of the -transformation, can be written to the Emden-Fowler equation 
of the normal form 

F

 2 5 1 49,
25wwt Bw t B A−′′ = − = ,  (3.29) 

 
with convenient boundary and initial data. 
     When the solution of the transformed equation (3.29) is obtained in the form 

, the solution of the original equation (3.24) can be written in the 
parametric form  

( ) ( )t t w w w t= ⇔ =

 

 ( ) 17 5 5, ;
7tw n k w k

A
ξ −′= = = − .  (3.30) 

 
     In the next Section, according to the mathematical methodology recently 
developed in Refs.[6, 7], we will provide the exact analytic solution of the Kidder 
equation (2.1). Exactly the same mathematical technique follows the gas pressure 
diffusion equation (2.14).  
 
 
4. Exact analytic solution of the Kidder equation 
 
     Consider the general Abel equation of the second kind of the normal form  
 
 ( ) ,suu u f s′ − =  (4.1) 
 
where ( )f s  is an arbitrary smooth function. In the present case (Eq. (3.12)),  ( )f s  is 
specified by the expression 

 1 3( ) ; , 2 .
16

f s As Bs A B−= + = − = −  (4.2) 

 
It was recently proved [5, 6] that the Abel equation (4.1) admits an exact analytic 
solution in terms of known (tabulated) functions. Summarizing the results of the 
above reference, we write the solution of the Abel equation (3.12) as follows:  
 

 

( )

( )
( )

( )
( )

1

1

1

* *
2

1
3*

1( ) 2
3( ) ,
2

2 21 1( ) ,
42 3 2 ( )
3

sin cos cos 4 cos
14 2
4

s

N s s C
u s

G As Bs
u N s

s C N s

A A
G As Bs

A
;

ξ ξ ξ ξ ξ ξ

ξ

−

−

⎡ ⎤+ +⎢ ⎥⎣ ⎦=

⎡ ⎤+ +⎡ ⎤ ⎣ ⎦′ = + +⎢ ⎥ ⎡ ⎤⎣ ⎦ + +⎢ ⎥⎣ ⎦
⎡ ⎤ ⎛ ⎞+ + +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎡ ⎤+ + = −⎣ ⎦ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (4.3) 
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( )
*

0

1
1

1

sin 1ci ln cosine integral

1ln 2 ;
2

0.5772156649015325... Euler's constant
integration constant .

tA dt
t

s C d dx
s C

C

ξ
ξ ξ

ξ ξ

−
= = + + =

= + ⇒ =
+

= =
=

∫Â

Â

 

 
The function ( )N s  is given as in the following three cases: 
 
Case a:  Q<0  (p<0) 
 

 

(1)

(2) (3)

3

( ) 2 cos ,
3 3

( ) 2 cos , ( ) 2 cos ;
3 3 3 3

cos , 0 ;

2
3

p aN s

p a p aN s N s

qa a
p

π π

π

= −

− +
= − − = − −

= − < <
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (4.4) 

 
Case b:  Q > 0 
 
 

 3 3( )
2 2
q qN s Q Q= − + + − −  (4.5) 

 
Case c:  Q = 0 
 
 

 (1) (2) (3)3( ) 2 , ( ) ( )
2 2
qN s N s N s= − = = − −3

q  (4.6) 

 
where:  

 
2

3 2 31 1 a 2 1( ) ( ) ( ) , ( ) , ( ) a a ,
27 4 3 27 3

Q s p s q s p s b q s b c= + = − + = − +  (4.7) 

 
and 

  

( ) ( )
( )
( )

( )

1
1

1

1

1

3 2 4 ( ) 4
a 4 ,

2

4 ( ) 8
.

2

s C G s As Bs
b

s C

G s As Bs
c

s C

−

−

+ + + +
= − =

+

+ +
= −

+

,
 (4.8) 
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The subsidiary function  is determined by the second of Eqs. (4.3). ( )G s
     The already constructed analytic solutions defined by equations (4.3) to (4.8) 
constitute the intermediate integral (the solution in the phase plane) of the original 
Kidder equation (2.1). To show this one follows the inverse course through the 
already introduced admissible functional transformations. Thus, by the transformation 
(3.11), that reduces the Emden-Fowler equation (3.8) to the Abel equation of the 
normal form (3.12), we have the system of equations (3.11). This system, by means of 
Eqs. (4.3) to (4.8), can be equivalent written in the form: 
 

 

1 2
1

3 2
2

1 2

( ) ,

( ) ;
3 1( ) , ( ) ,
4 2

ww t f s

w t f s

f s u s f s s

−

−

′ =

=

= + = −

 (4.9) 

 
where the expression  is given by Eq. (4.3). Dividing the two first of (4.9) 
between them and using the second of them, we obtain the equivalent functional 
relations:  

( )u u s=

 

 
1 2

1

3 2
2

( ) ,

( ) .
wt w f s

t w f s

′ =

=
 (4.10) 

 
The second of these expressions furnishes 
 

 3 2 1 2 3 2 1 2
2 2 2

3 ,
2 2s 2

3
ss sdt f w ds f w dw t w f w f w′ ′ ′= + ⇒ = + ′  (4.11) 

 
by means of which we estimate 
 

 

1 2 1 2 3 2 1 2
1 1 2 2

2

1 2

3
2

2
.

2 3

x

x

s
w s w s s s

s

s

tt t s w f t f w w w f w f w
w

f
w w

f f

′
′ ′ ′ ′ ′ ′ ′= = = ⇒ = = + ⇒

′

′
′ =

−

 (4.12) 

Integrating we extract 
 

 2
2

1 2

2
exp ,

2 3
x

f
w C ds

f f

′⎛ ⎞
= −⎜ −⎝ ⎠

∫ ⎟  (4.13) 

 
or, according to (4.9) we extract also 
 

 2 exp ,
2 3

dsw C
u s

⎛= −⎜ +⎝ ⎠∫
⎞
⎟  (4.14) 

 
where  is the solution of the Abel equation (3.12) given by one of the expressions 
(4.4) to (4.6), and  is a second constant of integration.  

( )u s

2C
     Summarizing, we list the following results: 
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(i) Transformation  (Eqs. (3.11)): H
 

 

2

3 2
2 2

1 2
1 2

exp ,
2 3

1 exp ,
2 2 3

1 3 exp ;
4 2w

t

dsw C
u s

dst w f sC
u s

dst w f u s C
w u

⎛ ⎞= −⎜ ⎟+⎝ ⎠
⎛ ⎞= = − −⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛′ = = = + −⎜ ⎟ ⎜′ +⎝ ⎠ ⎝

∫

∫

∫ 3s
⎞
⎟
⎠

 (4.15) 

 
(ii) Transformation  (Eqs. (3.7)): F
 
 

 
1

21 exp ;
3 2 3
4

t
w

C dw
t uu s

− ⎛′ = = ⎜′ +⎛ ⎞ ⎝ ⎠+⎜ ⎟
⎝ ⎠

∫
s

s
⎞
⎟  (4.16) 

 
(iii) Transformation  (Eqs. (3.6) and (3.9)): S
 
 

 

2 2
2

1 1 1
2

1

2

exp 2 ,
2 3

1 2 exp ,
2 3

1 3 exp 4;
4 4 2 3

z

t

dsz w C
u s

dsx s C
t u s

dsx w u s C
u s

− − −

−

⎛ ⎞= = −⎜ ⎟+⎝ ⎠
⎛ ⎞′ = = − −⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛ ⎞′= − = − +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

∫

∫

∫

 (4.17) 

 
 
(iv) Transformation (3.2) – Final solution: 
 
 

 

2
2

1
1

2

1

2

1 1 1 exp 2 ,
2 3

3 exp 4 ;
4 2 3

( ) solution of the Abel equation (3.12) including 
  one constant of integration  ;
second indegration costant ;

=

z dsy C
a a u s

dsx u s C
u s

u u s
C

C
s

−
−

− ⎡ ⎤⎛ ⎞= = − −⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

= =

=

∫

∫

 parameter .

 (4.18) 

 
     The final results for the gas pressure diffusion equation (2.3), that correspond to 
the final solution (4.18) concerning the Kidder equation (2.1), are the following: 
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2 72 7

1

2

7 exp ,
2

7 1 6exp exp ,
5 7

dsy
u

ds dsx ds C
su u u

−

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫

∫ ∫ ∫ +

 (4.19) 

 
where  is the solution of the Abel equation ( )u u s=
 
 1

suu u As Bs−′ − = +  (4.20) 
with 

 
2 76 1 7,

49 2 2
A B

−
⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

.  (4.21) 

 
     We underline that because of the various types that the function ( )N s  admits 
(formulae (4.4) to (4.6)), it is possible that the solutions of both Kidder’s and gas 
pressure diffusion equations are not unique inside a main interval ; in other 
words, they can be divided into several branches of solutions valid separately inside 
convenient consecutive subintervals. In this case matching of the corresponding 
solutions must be performed in all values of the main interval that solutions change. 
In what follows, using the results of previous sections, we provide a solution 
technique concerning the boundary value problem of the Kidder equation. 

0[ , ]Fs s

 
 
5.  Boundary value problem – Solution technique  
 
     The boundary conditions and the solution technique that follows concern the 
Kidder equation (2.1). Similar procedure one also follows for the gas pressure 
diffusion equation (2.3).  
     The boundary conditions of the problem under consideration have been already 
prescribed in Section 2, that is: 
 

  (5.1) 0 0for  0 , 1 , and
for  0 .
x x y y

x y y∞

= = = =
→∞ = =

According to the substitution (3.2) the above boundary data become  
 

  (5.2) 0 0for  0 , 1 ,   and for
, 1 ,

x x z z a
x x z z∞ ∞

= = = = −
= = ∞ = =

while according to the formulae (3.9) become also 
 

 
0

0 0

0
0

for  1 , 1 ;
1 ,   and for 1 ,

4
11; 0 .

4

t

t

z z a w w a

w
x

w w w
x∞∞
∞

= = − = = −

′ = − = ∞ = =

′= = = − =

z z  (5.3) 
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The first set of Eqs. (5.3) will be used for the evaluation of the intermediate integral in 
the phase plane, while the second set for the calculation of the final solution in the 
physical plane. 
     Thus, combining the first set of the boundary data (5.3) together with the 
coordinate transformations (3.11), we extract  
 

 
( )

( ) ( )0

0 03 2

0 0
0 03 2 3 2

2 ,
1

1 3 3 .
2 31 2 1t

s t
a

w tu t
wa a

= −
−

⎛ ⎞
= − = − ⇒⎜ ⎟⎜ ⎟′− −⎝ ⎠

0
0

4us =

 (5.4) 

 
     Consequently, the Abel equation (4.2) and the solution (4.3) result in the following 
four equations: 
 

 

( )

( )

( )

0

0

1 1
0 0 0 0 0

0
0 0 1

* *
2

0 0 0 0 0 0 0 0
0

0 3*
0

0 0

*
0

0 1 0 0

0 0 0

0

4 31 ,
3 4

41 1 2 ,
2 3 3

sin cos cos 4 cos
8 6 14 ;

3 4 4

4ln 2 , ci ,
3

4 32 2
3 41

4
3

s

s

A Bu u As Bs u u

uu N C

A A A
Au BG

u
A

u C A

A BG u u
u

N

ξ ξ ξ ξ ξ ξ

ξ

ξ ξ

− −

−

′ − = + = +

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎡ ⎤ ⎛+ + +⎜ ⎟⎢ ⎥⎛ ⎞ ⎣ ⎦ ⎝+ + =⎜ ⎟
⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

= + =

+ +
′ =

+

⎞
⎠

1

0
0 1

1 1 ,
2 2 3

N
s C

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎛ ⎞⎝ ⎠⎣ ⎦ + +⎜ ⎟+ ⎝ ⎠

 (5.5) 

 
where 0N  is the value of ( )N s  at 0s s= , and  is the value of the subsidiary 
function  included in Eqs. (4.7), which is to be determined. 

0G
( )G s

     The set of the four equations (5.5) include five unknowns 
00 0 0, , ,  and su u N G C′ 1 . 

Thus, one more equation is needed for the estimation of the above five unknowns. 
This equation can be derived by means of the coordinate transformations (3.11). 
Indeed, by way of (3.11) and (3.8) we evaluate  
 

 
( )

( )

15 2 3 2

15 2 7 2 3 2

, 3 2

2 2 .
4

t

t

t ,s t t
t

t t

uu s w t w w
s

u w t w t w w w

−− −

−− − −

′ ⎡ ⎤′ ′ ′= = − −⎢ ⎥⎣ ⎦′

⎡ ⎤′ ′= + −⎢ ⎥⎣ ⎦

w′

′
 (5.6) 

 
Thus, since ( ) ( )

0

3 2 3 2
0 0 0; 1 ; 1 / 2 2 1tw w a t a s a u′ = ∞ = − = − − = − − 0 / 3 , we 

extract 
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( ) ( )

( )
0

0

0

1 25 2 3 2
00 0 0

1 2
5 2 7 2

00 0 0 0

12 1 1 13 2 .9 9 4 1
4

t
s

t

a au w t wu
s a uw t w t

− −

−
− −

′ − − − u⎡ ⎤+ ⎣ ⎦′ = = − =
′ ⎡ ⎤+ −+ ⎣ ⎦

 (5.7) 

 
Equations (5.5) and (5.7) constitute a nonlinear (transcendental) system by the 
solution of which one estimates 

00 0 0, , ,  and su u N G C′ 1 in terms of the initial 

parameters. Therefore, since 0N  is known, the discriminant  defined in (4.7) is 
also known, fact that permits us to define the type of the solution 

( )Q s

0 ( )N s  valid inside 
the first subinterval  of the main interval . At the unknown point 

, where the solution probably changes, we provide the following equations (the 
upper index in the parenthesis denotes the corresponding subinterval 

):  

0 1[ , ]s s 0[ , ]Fs s

1 2( , ]s s

( ) ; 0,1, 2, ...i i =
 
(i)  Common solution 
 

 ( ) (
1 1

(1) (1) (0)
1 1 1 1

1 12
3 3s sN s C N s C⎛ ⎞ ⎛ ⎞+ + = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
)(0)2  (5.8) 

 
(ii)  Common derivative 
 

 
( )

( )
( )

( )
1 1

1 1

(1) 1 (0) 1
1 1 1 1(1) (0)

(1) (1) (0) (0)
1 1 1 1 1 1

2 21 1
4 43 32 2
3 3

s s
s s

G As Bs G As Bs
N N

s C N s C N

− −+ + + +⎛ ⎞ ⎛ ⎞+ + = + +⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛⎝ ⎠ ⎝ ⎠+ + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞+ ⎟
⎠

 (5.9) 

 
 
 
 
 
(iii)  Validity of the third of Eqs. (5.5) 
 

( ) ( )

( )

1 11 1 1 1 1 1
1

11

1 1 1

(1) (1)* *
(1) (1) (1) 2 (1) (1) (1)

(0) 1
1 1

3(1) (1)*1 1 (1)

(1)*
(1) (1) (1)

1 1

sin cos cos 4 cos4 1 ;
2 4

ci cosine integral ,  ln 2

s ss s s s s s
s

ss

s s s

A AG As Bs

s C
A

A s C

ξ ξ ξ ξ ξ ξ

ξ

ξ ξ

−

⎡ ⎤ ⎛
+ + +⎜ ⎟⎢ ⎥+ + ⎣ ⎦ ⎝=

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

= = = +

⎞

⎠

 (5.10) 

 
(iv)  Validity of the Cardan equation 
 
 

1 1 1 1

3(1) (1) (1) (1) 0 ,s s s sN p N q+ + =  (5.11) 

where 
1 1

(1) (1) (1), ,
1s sN p qs  are calculated through Eqs. (4.4) to (4.7). 

The nonlinear (transcendental) system of Eqs. (5.8) to (5.11) enables us to estimate 

1 1

(1) (1) (1)
1, ,  and s ss N G C1  in terms of the initial parameters as well as of the known 
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parameters 
1 1

(0) (0) (0)
1,  and s sN G C . Thus, at the point , where the solution 

probably changes, and for the consecutive subinterval ,  
1 2( , )s s

1 2( , ]s s
1

(1)
sQ  given in Eqs. 

(4.7) is known. This, enables us to define the type of the solution valid inside  
(Eqs. (4.4) to (4.6)). 

1 2( , ]s s

     The prescribed analysis demands successive solutions of nonlinear 
(transcendental) systems which are must be satisfied for each of the above mentioned 
consecutive subintervals 1( , ]i is s + , where the solution of the problem under 
consideration (in the phase plane) probably changes according to the formulae (4.4) to 
(4.6). From now on, the solution in the physical plane is obtained through the 
formulae (4.18).  
 
 
6.  Discussion and conclusions 
 
     By a series of admissible functional transformations we reduce the nonlinear 
porous media and gas pressure diffusion ODEs to Abel’s equations of the second kind 
of the normal form. These equations do not admit exact analytic solutions in terms of 
known (tabulated) functions. This unsolvability is due to the fact that only very 
special forms of this kind of equation can be solved in parametric form [4]. Our goal 
is the development of the construction of exact analytic solutions of the above 
equations based on a mathematical technique leading to the derivation of exact 
analytic solutions of the Abel equation of the second kind of the normal form (see 
Refs. [6], [7]).  
     The reduction procedure introduced in the paper and the constructed solutions are 
very general, and can be applied to a large number of nonlinear ODEs in 
mathematical physics and nonlinear mechanics including the Van der Pol nonlinear 
oscillator, the Blasius equation in fluids [7], the Langmuir equation in current flow, 
etc.  
     For verification of the above contentions, we shall examine briefly one of the 
prescribed equations and compare its solution methodology with the already 
developed solutions procedure. 
     The Van der Pol free nonlinear oscillator [2] is governed by the following 
nonlinear ODE 
  (6.1) ( )21 0 ;xx xy y y y xε′′ ′− − + = −∞ < < +∞

 
where ε  is a real positive parameter. By the substitution  
 
 ( )x xx y xy y y y yω ω ω′ ′′ ′ ′= ⇒ = = ω′

.

 (6.2) 
 
Eq. (6.1) is reduced to the following Abel equation of the second kind: 
 
  (6.3) ( )21 0 ,y y y yωω ε ω′ − − + = −∞ < < ∞

 
Introducing the coordinate transformations 

 
3

( ) ( ) ,
3
yy s s yω ω ε= = − ε  (6.4) 
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we obtain the Abel equation of the second kind of the normal form 
 

  31 3, 3 0; 0; ,
1s

y y y s s x
y

ωω ω ε
ε ε

′ − = − − + = > −∞ < < ∞ −∞ < < ∞
−

 (6.5) 

 
Eqs. (6.5) are of the Abel normal form and they are similar to the Kidder and the gas 
pressure diffusion equations with different right-hand sides. With a set of similar or 
boundary initial conditions as in the before mentioned cases, the mathematical 
methodology for the exact analytic solutions of the above equations follows step by 
step that prescribed in Sections 3 and 4. 
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