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ZENER INTERNAL DAMPING IN MODELING OF AXIALLY MOVING
VISCOELASTIC BEAM WITH TIME-DEPENDENT TENSION

K. Marynowski, T. Kapitaniak
Technical University of £6dz, Department of Dynamics
90 - 924 £.6dz, ul Stefanowskiego 1/15, Poland

Abstract

Non-linear vibrations of axially moving beam with time-dependent tension are investigated in
this paper. The beam material is modelled as three-parameter Zener element. The Galerkin
method and the 4-th order Runge-Kutta method is used to solve the governing non-linear
partial-differential equation. The effects of the transport speed, the tension perturbation
amplitude and the internal damping on the dynamic behaviour of the system are numerically
investigated. The Poincare maps and bifurcation diagrams are constructed to-classify the
vibrations. For small values of the transport speed and the amplitude of periodic perturbation
the system is asymptotically stable with its response tending to zero. With the increase of
parameters one can observe the coexistence of attractors. Regular and chaotic motion occur
when the internal damping increases.

Keywords: Axially moving beam; Internal damping; Dynamic analysis

1. Notation

A - cross-section area of the beam
- width of the beam
- axial transport speed
¢ - wave velocity
- Young modulus of the beam material
1. ... 07 - dimensionless coefficients
- thickness of the beam
- inertia moment of the beam cross section
- length of the beam
M - bending moment
N - perturbed axial stress
- tension force
- dimensionless axial transport speed
t -time
W - transverse displacement of the beam
X, y- Cartesian co-ordinates
z - dimensionless transverse displacement of the beam
— dimensionless amplitude of axial force
- strain component in X direction
- internal damping coefficient
—dimensionless displacement of the beam centre
- mass density of the beam
- stress component in X direction
- frequency of periodic perturbation
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2. Introduction

Band saw blades, magnetic types, paper webs, fibber textiles, transmission cables are
some technological examples of axially moving continua. Generally, the axially moving
continuum in the form of thin, flat rectangular shape material with small flexural stiffness is
called a web. Webs are moving at high speed, for example, in paper production the paper
webs are transported with longitudinal speeds of up to 3000 m/min. Above the critical speed
one can expect various dynamical instabilities mainly of divergent and flutter type. On the
other hand, one important problem in these systems is the occurrence of large transverse
vibrations due to tension variations termed as parametric vibrations. Dynamic response and
the stability associated with parametric vibrations are of primary concern in the dynamic
investigations of these systems. To ensure that the operating system is under stable working
conditions, a full analysis of its dynamics has to be performed. Complete knowledge of the
dynamical behaviour allows the prediction and control of instabilities.

Historically, one-dimensional string theory and beam theory were used in modelling the
axially moving continua. For a review of the literature in this field up to the nineties of the
previous century see papers by Wickert and Mote [1, 2].

In recent years, much attention has been paid to non-linear dynamical behaviour,
especially bifurcations and chaos in axially moving beam-like systems. Pelicano and Zirilli
[3] analyzed boundary layers and non-linear vibrations of an axially moving elastic beam with
weak nonlinearities and vanishing flexural stiffness. Ravindra.and Zhu [4] investigated
pitchfork-type bifurcation and chaos of axially accelerating beam in the supercritical region of
transport speed. Chakraborty et al [5] calculated non-linear complex modes of the axially
moving beam by means of a combination method of a temporal harmonic balance and a
spatial perturbation technique. Pelicano et al [6,7] investigated bifurcations and parametric
resonances of a moving beam. It is worth to note that they have verified their results by
experimental measurements. Oz et al [8] analyzed vibrations of an axially accelerating beam
by using the direct method of multiple scale. In [9] Pelicano and Vestroni numerically studied
bifurcations and chaos in moving beam with transverse load.

The other important problem one can meet in considering the axially moving web is how
to model the web material. In the above research on non-linear problems the axially moving
materials were assumed to-be elastic. The damping effects were neglected or modeled as a
simple viscous damping [2]. However, paper webs, new plastics and composite materials
webs, which are used in industry, need more realistic theological models. Fung at al. [10]
seems to be the first discussing the transverse non-linear free vibrations of an axially moving
viscoelastic string subjected to constant initial stress. Zhang and Zu [11, 12] investigated
nonlinear free and forced vibrations of parametrically excited moving viscoelastic belts.
Dynamic stability of an axially moving beam-type system with uniform initial tension have
been investigated by using two different rheologic models: two-parameters Kelvin-Voigt and
four-parameters Burgers models in our paper [14]. The regular and chaotic vibrations of an
axially moving viscoelastic beam subjected to tension variation were studied numerically in
[15]. Recently, Yang and Chen [16] investigated bifurcations and chaos of an accelerating
viscoelastic beam with geometric nonlinearity. In this paper the viscoelastic beam material
was constituted by one-dimensional Kelvin-Voigt rheologic model. Two-dimensional
rheological element in modeling of axially moving viscoelastic web has been proposed by one
of co-authors in 2006 [17].

The equations of motion of the axially moving viscoelastic beam with time-dependent
tension have been derived in this paper. The three-parameter Zener rheological element has
been used to model the beam material. From the partial differential equation that governs the
transverse vibrations of the system the fourth order Galerkin truncated system is determined.



The effects of the transport speed, the tension perturbation amplitude and the internal
damping on the dynamic behaviour of the system were numerically investigated. The
Poincare maps and bifurcation diagrams were constructed to classify the vibrations.

The paper is organized as follows. In Sec. 3 basing on the beam theory, we derive the
equations of motion of the axially moving beam with three-parameter Zener rheological
model of internal damping. In Section 3 we give full mathematical model of the axially
moving beam as well. In Sec. 4 we discuss the results of our numerical investigations. The
conclusions are presented in Sec. 5.

3. Equations of motion

A viscoelastic axially moving beam of the length | is considered. The beam moves at axial
velocity €. The geometry of the system and the co-ordinates are shown in Fig. 1.
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Fig. 1. Axially moving beam Fig.2. Zener rheologic model

The problem of transverse oscillations of the axially moving continua in a state of uniform
initial stress was investigated [13]. The results of the earlier studies give the following
equation of motion in the y direction

pACW, — 20w, —c W, )+ M, +(NW,), =0, (1)
The nonlinear strain component in X direction is related to the displacement w by
g(x,t)= ;fo(x,t). ()

The tension P is characterized as a periodic perturbation on the steady-state tension
P =P, + P, cos(Qt), 3)

where: P, — initial axial force, P; — amplitude of axial force.
The one-dimensional constitutive equation of a differential type material obeys the relation

'c=Eg, 4)
where: I' and E are differential operators defined as
R d’ P d’
r=Ya-—; =Z=Yb—- Q)
JZ? " dt’ ; Ldt’

The model of internal damping introduced by Zener is shown in Fig.2. For this three-
parameter viscoelastic model of material the differential constitutive equation is

ao, +a,0=b¢e +be, (6)
where: a =7 ; a,=E,; b =(E, +E,)n; b, =EE,. @)
The bending moment M is given

M=—(E+E)Jw, -Jnpw,. 8)

where: E, E; — Young modules of the Zener model (Fig.2).
Taking into account Eq.(8) the governing equation (1) has the following form



J (El + E2) WXXXX + Jn WXXXXt -
pPA ' pA
To obtain mathematical description of the viscoelastic beam model one should multiply

Eq. (9) with operator I'. Using Eq. (2), (3) and taking into account the dimensionless
parameters

Z:W; g":— _iz A’O Cif E
C, \j I\/ (10)
0] QI\/ﬁ C, = /

one reCelVeS
z,. +3sz.. +(3 s’ —1-acos(w7)) Z.. + (s’ —1-acos(w1))s Z.. +

2
w, + 2CW’xt +CowW,, +

IA(N w,),=0- )

2
+0,Z,.+ 29,s Z, + gl(s —l—acos(a)r))zﬁ +0,2,...+0,Z,.... +

(11)
T 00 e T 05 Lz T 955 Z _5 92 -9, S(szfzé +Z Z«féé) N
(225 ele ™ 5 é«ff) 0,
where:
E.l (E, +E,))JE, (E,+E))J E,J P
glzi;g2=73;g3= 2 .2 + 2 2,a=7,
nc, pAnlc; pAl“c; ~ pAl-c P (12)
_(E+E)I. 7y _EEh _(E.+EQ)h2

4 pAIQC? sgs_pAPCf:ga_ 7
The boundary conditions:
2(0,7)=2z(L,7)=0; z.0,7)=z,.(,7)=0 (13)

The problems represented by Eq.(11) together with boundary conditions (13) have been
solved using the Galerkin method. The following finite series representation of the
dimensionless transverse displacement has been assumed

2(€,7) = z sin(iz¢) g, (¢) (14)

where Qi(7) is the generalized displacement.

The 4-term finite series representation of the dimensionless transverse displacement of the
beam has been taken in numerical investigations. The even order truncations are receivable
because the gyroscopic coupling in the mathematical model is taken into consideration.
Substituting Eq.(14) into Eq.(11) and using the orthogonality condition one determines the set
of ordinary differential equations. For n = 4 the equations are shown in the Appendix (Eq.
A.1). To analyze the dynamic behaviour of the considered system the set of ordinary
differential equations has been integrated.

pnlc; pl’c;

4. Numerical results

Poincare maps and bifurcation diagrams are modern techniques used to analyse non-linear
systems. These maps are the convenient tools to identify the dynamic behaviour especially
chaos. In bifurcations diagrams dynamical behaviour may be viewed globally over a range of
parameters values and compared simultaneously with various types of motions.



In this paper the Poincare maps and bifurcation diagrams have been determined for the
non-dimensional displacement of the centre of the moving beam in the following form

v(%, iT) = q,(T) 0, (iT) (15)

where T=27xlw; 1=1,2,3 ...

Numerical investigations have been carried out for the beam model of the steel web.
Parameters data: length | = 1m, width b = 0.2 m, thickness h = 0.0015 m, mass density p =
7800 kg/m’, Young's modulus along x: E, = 0.2 10> N/m?, initial stress No= 2500 N/m. It is
worth to note that in the previous investigations with two-parameter Kelvin-Voigt and four
parameter Burgers rheological models of material the same numerical data of the steel web
have been taken into account [14, 15].

The fourth order Runge-Kutta method was used to integrate ordinary differential
equations and analyze the dynamic behaviour of the system. The bifurcations diagrams are
presented by varying the dimensionless parameters: transport speed S, amplitude of the
tension periodic perturbation ¢, and the internal damping coefficient @s, while the
dimensionless frequency of the periodic perturbation @ and the non-dimensional stiffness of
the beam g4 are kept constant at @ = 1 and g4 = 0.025, respectively. At each set of parameters
the first 2000 points of the Poincare map have been discarded in order to exclude the transient
vibration and the displacement of the next 100 points have been plotted on the bifurcation
diagrams.

4.1. Linearized system

The stability and instability regions of the linearized system (A.1) in the form of the
stability boundaries map in the internal damping - transport speed area are shown in Fig. 3.
The boundaries have been calculated for three amplitude values of the tension periodic
perturbation (a¢ = 0, ¢ = 0.25, a = 0.5). The analysis of the linearized system predicts
exponentially growing oscillations in supercritical region of transport speed. The critical value
of the transport speed increases with the increase of damping coefficient gs.

gs Scr0 Scr0.25 Scr0.5

0,0001 / /
0,00008 / /

000006 {Stability / /
000004 LLegion

0,00002 -

0 a=0 a=q.25 a=0.5 S
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Fig. 3. Stability boundaries of the linearized system (A.1)

4.2. Non-linear system

At first, the parametrically unexcited non-linear system was investigated (a = 0). To show
the dynamic behaviour of the beam the bifurcation diagram of the dimensionless displacement
v given by Eq. (15), the Poincare maps, the phase portrait and time history for gs



=1.778 x 10™* are presented in Fig. 4, Fig. 5 and Fig. 6, respectively. The dimensionless
transport speed S has been used as the bifurcation parameter. To obtain the Poincare maps in
this parametrically unexcited case the dimensionless fundamental natural frequency ay = 3.5
has been taken into consideration. In Fig. 4 one can observe supercritical Hopf-type
bifurcation at the transport speed S = S.;= 0.71. It is worth to note that in the previous case of
the Burger rheological model of the beam material, the transport speed s = 0.7 has been
identified as the critical transport speed for the considered damping coefficient value [14].

Though the analysis of the linearized system predicts exponentially growing oscillations
for s > s, non-linear damped oscillations which tend to the stable limit cycle motion occur
(region 1 in Fig. 4). The Poincare map in Fig.5a and the phase portrait and time history in Fig.
6 show the dynamic behaviour of the non-linear system in this region of transport speed for
the initial conditions close zero.
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Fig. 4. Bifurcation diagram; gs = 1.778 x 10% ay=3.5, =0
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Fig. 5. The Poincare maps: gs = 1;778 x 10*, =0, @ =3.5; (a)s=1.0; (b) s=1.25
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Fig.6. The phase portrait (a) and time history(b) of the solution of (A.1); s=1,gs = 1.778 x 10*, =0

If the transport speed is increased further at S, = 1.13 the second bifurcation occurs. At the
transport speeds above the bifurcation point (region 2 in Fig. 4), the parametrically unexcited
non-linear system exhibits global motion between two centre points. The Poincare map in Fig.
4 and the phase portrait in Fig. 7 show the dynamic behaviour of the non-linear system in this
region of transport speed It is worth to note that'in the previous case of the Kelvin-Voigt
rheological model of the beam material, the transport speed S = 1.12 has been identified as the
critical transport velocity when the pitchfork type bifurcation occurs [15]. In the considered
case of Zener rheological model above this transport speed one can observe the coexistence of
attractors.

0.5

v

-1 ~0.5 0 0.5 1

Fig. 7. The phase portrait of the solution of (A.1); s=1.15, gs =10%,0=0, @ =3.5

Next, the non-linear parametrically excited system was investigated. The bifurcations
diagram of the dimensionless displacement v versus the dimensionless transport speed s for
the specific amplitude value of the tension periodic perturbation & = 0.25 and the internal
damping coefficient gs = 1.778 x10™ is shown in Fig. 8. In this case, the system is
asymptotically stable with its response tending to zero for s < 0.71. At the transport speed s =
0.71 the zero critical point loses its stability and quasi-periodic motion occurs. Fig.9 shows
the Poincare map of the system behaviour in this region of transport speed. If the transport
speed is increased further (s = 0.85) the second Hopf bifurcation occurs and chaotic motion
appears (Fig. 10). As a result of the Hopf bifurcation we can observe that regular tori (Fig.9)
becomes a strange attractor of fractal structure. At s = 1.05 the inverse Hopf bifurcation can



be observed and the period-2 motion occurs in the region s = 1.05 + 1.12. Then two points
represent two periodic orbits in bifurcation diagram. At s = 1.12 the explosive bifurcation

occurs and the large quasi-periodic motion appears.
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Fig. 8. Bifurcation diagram of the non-linear system (A.1) for gs = 1.778 x 10*, &=0.25
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Fig. 9. The Poincare map, gs = 1.778 x10™, ¢=0.25,s=0.75.
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Fig. 10. The Poincare map; gs = 1.778 x10*, a=0.25,5=0.93

The bifurcations diagram of the displacement v versus the transport speed S for larger
value of parametric excitation o = 0.5 is shown in Fig. 11. In this case at S = 0.72 the
equilibrium loses its stability and quasi-periodic motion occurs. Fig. 12 shows the phase
portrait and time history of the non-linear system motion in this region of transport speed for
the initial conditions close zero. At the supercritical transport speeds periodic motion regions
are interrupted by short chaotic motion until at s = 1.15 explosive bifurcation occurs and the

chaotic motion appears (Fig. 11).
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Fig. 11. Bifurcation diagram of the non-linear system (A.1) for g5 = 1.778 x 104, 2=0.5
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Fig. 12. The phase portrait (a) and the time history (b) of the solution of the non-linear system (A.1);
s=0.76, =0.5,gs = 1.778x10™

The bifurcation plot of the dimensionless displacement v given by Eq. (15) against the
non-dimensional internal damping coefficient gs for & = 0.25 and various axial speeds S =
0.75,s=0.875 and s = 1.0 are shown in Fig.13, 14 and 15, respectively. At s =0.75 for small
values of internal damping (gs < 1.1x107) the quasi-periodic motion occurs, (previous Fig. 9
shows the Poincare map of the system behaviour in this region). With the increase of internal
damping at gs = 1.1x10 the inverse Hopf-type bifurcation occurs and finally the system is
asymptotically stable with its response tending to zero (Fig.13).
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Fig. 13. Bifurcation diagram of the non-linear system (A.1) for s = 0.75, &= 0.25
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Fig. 15. Bifurcation diagram of the non-linear system (A.1) fors= 1.0, = 0.25

With the increase of the dimensionless transport speed at s = 0.875 the quasi-periodic
region is interrupted by periodic motion (Fig.14). At s = 1.0 for small values of internal
damping (gs < 1.1x107) the period-2 motion appears and next for larger values of the
dimensionless internal damping coefficient, the quasi-periodic and chaotic motion occur. The
Poincare map in Fig.16 shows the strange attractor created in the bifurcation which takes
places at the internal damping gs = 3.804x107. Then the small quasi-periodic attractor
presented in Fig. 9 transforms in larger attractor shown in Fig. 17.
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Fig.16. The Poincare map; s = 1.0, «=0.25,gs = 3.804x107
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Next the dimensionless amplitude of the tension periodic perturbation « has been used as
the bifurcation parameter. For small values of these bifurcation parameter and small values of
transport speed the system is stable with its response tending to zero. The bifurcation diagram
in Fig. 18 shows the Poincare maps of the dimensionless displacement vV against the
perturbation amplitude o for greater transport speed value s =0.75 and gs = 1.778x10™*. For
lower a values (a < 0.62) the quasi-periodic motion occurs. Previous Fig. 9 shows the
Poincare map of the system behaviour in this region of the tension amplitude value. With the
increase of the tension at o = 0.62 the quasi-periodic attractor bifurcates into the period-6
attractor, at & = 0.78 into the period-4 attractor and finally at & = 0.8 into the period-2
attractor (Fig. 18). For greater axial velocity s = 1.0 the bifurcation diagram in Fig.19 and the
Poincare maps in Figs. 20 and 21 show the quasi-periodic and chaotic motions of the axially
moving viscoelastic beam.
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Fig.18. Bifurcation diagram of the non-linear system (A.1) for s=0.75, gs = 1.778x10™*
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Fig.19. Bifurcation diagram of the non-linear system (A.1) for s =1, gs = 1.778x10™*
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5. Conclusions

The dynamic investigations of the axially moving viscoelastic beam with time-dependent
tension are carried out in this paper. The beam model material as the Zener reological element
is considered. The general form of the differential equation of transverse oscillations of the
considered system is derived together with the differential constitutive low for the rheological
model. The Galerkin method is applied to simplify the governing non-linear partial-
differential equation into fourth order truncated system defined by the set of ordinary
differential equations.

The fourth order Runge-Kutta method was used to integrate ordinary differential
equations and analyze the dynamic behaviour of the system. The Poincare maps have been
constructed to classify the vibrations. The bifurcations diagrams are obtained by varying the
transport speed, the amplitude of the tension periodic perturbation and the internal damping
coefficient, while the frequency of the periodic perturbation and the stiffness of the beam are
kept constant.

The numerical investigations have been carried out for the beam model of the steal web.
The same numerical data of the web have been taken into consideration like in the previous
investigations with two-parameter Kelvin-Voigt and four-parameter Burgers rheological
models of material. The critical transport speed of the non-linear, parametrically excited
viscoelastic beam with the Zener model of material is equal to the one with the Burgers model
of material and significantly smaller than the one with the Kelvin-Voigt model.

In the case when the transport speed was taken as the bifurcation parameter the system is
asymptotically stable with its response tending to zero for s < (.71. At the transport speed S =
0.71 the zero critical point loses its stability and quasi-periodic motion occurs. For greater
axial velocity the quasi-periodic, periodic and chaotic motions occurs. The axial transport
speed, when the explosive bifurcation of investigated system occurs, is equal to the critical
transport velocity of the previous model with the Kelvin-Voigt rheological model of the beam
material, when the pitchfork type bifurcation occurs.

When the internal damping coefficient is taken as the bifurcation parameter for small
values of internal damping the quasi-periodic motion occurs. With the increase of the
transport speed in this region of the internal damping, the quasi-periodic region is interrupted
by periodic motion. When the transport speed increases at first the small quasi-periodic
attractor transforms into larger quasi-periodic attractor and finally into the chaotic attractor.

When the amplitude of periodic perturbation has been taken as the bifurcation parameter
one can observe the dynamic behaviour typical for non-linear systems which are determined
in multi-dimensional phase space. For small values of these bifurcation parameter and small
values of the transport speed the system is stable with its response tending to zero. With the
increase of the bifurcation parameters the chaotic motion and regular motion alternately
appear. It means that the appearance of the hiperchaotic attractor is possible in these ranges of
bifurcation parameters.

Appendix
The set of ordinary differential equations of the viscoelastic beam model with the Zener
model of material (n = 4):

12



g,=—(9,+ g5ﬂ4)q, +8sq, + ((3s2 —1—-acos (an’));r2 - g37z4)c'|1
+((16/3)9,+(128/3)gs7*)sq, + (9,(s> =1 —acos(wr)) 7° — g,7*)q, +
+(=(32/3)z°s(s’ —1—acos(wr)) + (128/3) g,z *s)q, +
+(=(256/15)7°s(s* =1 —acos(w7)) + (4096 /15) g, z*s)q, +
+((32/15)9,5 + (4096 /15) g,z *s)q, + (16/5)st, =39, #*((1/8)q;, +q,q; +
+(9/4)0,0; +(3/8)07q; +(3/2)9;0; + 2,9, 9, + 4,9 +60,9,9,) —
-29,7*((3/8)a7G, +(3/8)q/d; +(3/4)q,0, 4, +(3/2)0;d, +309,9, G, +
+20,0, 4, + 956, +(9/4)a:d, +(9/2)q,0; G; + 24,4, G, + 26,9, , + 20,0, G, +
+60,0, G, + 60,9, G, + 60,0, 4, +80,q, G, +40,G,)+ 29,7 ((144/7)q,q,0, +
+(7936/315)02q, + (20086528 / 266805) 0,07 + (4432 /55)q2q, +

+(96256/2145)q)
(A1)
4, =-8sd, — (g, +169,7)4, +(72/5)sd, — ((16/3)9, +(8/3)g.7")sq, +

+(4(3s° —1—acos(wr)) 7’ —169, 7*)q, +((48/5) g, +
+(1944/5)g.7*)sd, +((8/3)7° (s> —1—arcos (wr)) —(8/3)g,7*)sq, +
+(49,7° (s> —1—acos(wr)) - 16 9, 7*)q, +((1944/5)g, 7" —
—(216/5)7* (s> - 1-acos(w7)))sq, -39, #*(9/9, +20; +90,q; +
+30,9,0, +9,9, +640,9,9, +169,9, +99;0,)-29, 7" (39,0, G, +
+30,9,4, + 6494, +209,9,4, + 9/, +3d, 9,4, +20,0,4, +180, q,q, +
+0/¢, +90,d, +69,9,4, +60,0,9, +60,9,4, +180,9,4, + 99,9, +
+160;4, +329,0,4,)+29, 7's((4/15)q, + (22356 /385)q; +
+(784/15) 02, +(976/105) 0,07 +(508/35)q,q> +(468/35)q’q, +
+(3776/63)0,0,0, + (81728 /3465)q,q> + (107712 /605)q,0,4, +
+(1219616 /4095)q,q°)
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q,=—(g, +819.7")¢, — (72/5)s6, + (9(3s* =1 —acos(w7))z* —819,7")q, —
—((48/5)g,+(384/5)g.7*)sq, +(99,(s’ —1—acos(wr))z’ —81g9,7*)q, +
+((96/5)7°s(s* —=1—acos(w7)) — (384/5)9.7*s)q, + (—(768/7)x’s(s’ —1—
—acos(w7))+(12288/7)g,7*s)q, +((96/7)g,s + (12288/7) 9.7 *s)q, +
+(144/7)s4, -39, 7" ((81/8)q; + (1/8)q; +(9/4)q; q, + 69,0,q, + (3/2)q,q; +
+180,0, 9, +3609,0; +90,4,) - 29, 7' ((9/2)q,0,6,+ 69,0,4, + (3/8)¢/d, +
+30,0,6, +(9/4)9/q, +64,0,4, + 60,0,4, +180,0,4, +(3/2)0,q, +360,q; +
+180,9,9, +184,0,4, +184,0,d, + 720,q,4, + 90,4, + (243/8)0,q,) +
+29,7's(—(192/45)q; +(72/35)q/q, + (79872 /315)q; + (1072/35)q/q, +
+(5328/105),q,0, + (52992/385)q7q, + (2016/33)q,0,q, + (19224 /385)0,q° +

+ (119664 /455)q.q, + (18176/455)q,q;)
(A.1 cont.)
q,=—(16/5)st, — (g, +2569.7")4, — (144/7)st], - ((32/15)g, +

+(16/15)g.7*)sq, + (16(3s* —1— acos(w7)) > =256 9, 7°)q, =
—((96/7)9, +(3888/7)g.7*)sq, + ((16/15)7°s(s* —1 —excos(w7)) —
—(16/15)g,7's)q, + 169,77 (s> —1—acos(wr)) —256 9,7 ")q, +
+(—(3888/7)g, 7" +(432/7)n’(s* —1— acos (@7)))sq, —
-39,7'(q/0, +320;+90,0; +49,9, +64,0,0,+164;9, +909,9; +
+360;9,)-29, 7" (69,9,d,+60,0,d, +909;d, +809,0,4, +40q, +
+64, d,q, +20,0,4, +180, 0,6, +0,4, +960,4, +320,0,d, +
+720,9,6, +160.q, +360:9,)+29, 7's[—(104/105)q, -
—(21384/455) ¢ — (10656 /385) 020, + (3424/315)q,q’ +
+(36792/495)0,0° +(88/105)q’q, + (24846976 / 266805),0,4, +
+(178304/2145)q,2 + (70016/273) 00,0, + (36928 /315)0,07)
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