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ZENER INTERNAL DAMPING IN MODELING OF AXIALLY MOVING 
VISCOELASTIC BEAM WITH TIME-DEPENDENT TENSION 

 
K. Marynowski, T. Kapitaniak  

Technical University of Łódź, Department of Dynamics  
90 - 924 Łódź, ul Stefanowskiego 1/15, Poland 

 
Abstract 
Non-linear vibrations of axially moving beam with time-dependent tension are investigated in 
this paper. The beam material is modelled as three-parameter Zener element. The Galerkin 
method and the 4-th order Runge-Kutta method is used to solve the governing non-linear 
partial-differential equation. The effects of the transport speed, the tension perturbation 
amplitude and the internal damping on the dynamic behaviour of the system are numerically 
investigated. The Poincare maps and bifurcation diagrams are constructed to classify the 
vibrations. For small values of the transport speed and the amplitude of periodic perturbation 
the system is asymptotically stable with its response tending to zero. With the increase of 
parameters one can observe the coexistence of attractors. Regular and chaotic motion occur 
when the internal damping increases. 
 
Keywords: Axially moving beam; Internal damping; Dynamic analysis 

 
 
1.  Notation 

 
A  - cross-section area of the beam 
b - width of the beam 
c - axial transport speed 
cf - wave velocity 
E - Young modulus of the beam material 
g1, …, g7  - dimensionless coefficients 
h - thickness of the beam 
J - inertia moment of the beam cross section  
l - length of the beam 
M - bending moment 
N - perturbed axial stress 
P - tension force 
s - dimensionless axial transport speed 
t - time 
w - transverse displacement of the beam 
x, y - Cartesian co-ordinates 
z - dimensionless transverse displacement of the beam 
α  – dimensionless amplitude of axial force 
ε - strain component in x direction 
η - internal damping coefficient 
ν  − dimensionless displacement of the beam centre 
ρ - mass density of the beam 
σ - stress component in x direction 
Ω  - frequency of periodic perturbation  
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2. Introduction 
 

Band saw blades, magnetic types, paper webs, fibber textiles, transmission cables are 
some technological examples of axially moving continua. Generally, the axially moving 
continuum in the form of thin, flat rectangular shape material with small flexural stiffness is 
called a web. Webs are moving at high speed, for example, in paper production the paper 
webs are transported with longitudinal speeds of up to 3000 m/min. Above the critical speed 
one can expect various dynamical instabilities mainly of divergent and flutter type. On the 
other hand, one important problem in these systems is the occurrence of large transverse 
vibrations due to tension variations termed as parametric vibrations. Dynamic response and 
the stability associated with parametric vibrations are of primary concern in the dynamic 
investigations of these systems. To ensure that the operating system is under stable working 
conditions, a full analysis of its dynamics has to be performed. Complete knowledge of the 
dynamical behaviour allows the prediction and control of instabilities.    

Historically, one-dimensional string theory and beam theory were used in modelling the 
axially moving continua. For a review of the literature in this field up to the nineties of the 
previous century see papers by Wickert and Mote [1, 2]. 

In recent years, much attention has been paid to non-linear dynamical behaviour, 
especially bifurcations and chaos in axially moving beam-like systems. Pelicano and Zirilli 
[3] analyzed boundary layers and non-linear vibrations of an axially moving elastic beam with 
weak nonlinearities and vanishing flexural stiffness. Ravindra and Zhu [4] investigated 
pitchfork-type bifurcation and chaos of axially accelerating beam in the supercritical region of 
transport speed. Chakraborty et al [5] calculated non-linear complex modes of the axially 
moving beam by means of a combination method of a temporal harmonic balance and a 
spatial perturbation technique. Pelicano et al [6,7] investigated bifurcations and parametric 
resonances of a moving beam. It is worth to note that they have verified their results by 
experimental measurements. Öz et al [8] analyzed vibrations of an axially accelerating beam 
by using the direct method of multiple scale. In [9] Pelicano and Vestroni numerically studied 
bifurcations and chaos in moving beam with transverse load. 

The other important problem one can meet in considering the axially moving web is how 
to model the web material. In the above research on non-linear problems the axially moving 
materials were assumed to be elastic. The damping effects were neglected or modeled as a 
simple viscous damping [2]. However, paper webs, new plastics and composite materials 
webs, which are used in industry, need more realistic rheological models. Fung at al. [10] 
seems to be the first discussing the transverse non-linear free vibrations of an axially moving 
viscoelastic string subjected to constant initial stress. Zhang and Zu [11, 12] investigated 
nonlinear free and forced vibrations of parametrically excited moving viscoelastic belts. 
Dynamic stability of an axially moving beam-type system with uniform initial tension have 
been investigated by using two different rheologic models: two-parameters Kelvin-Voigt and 
four-parameters Burgers models in our paper [14]. The regular and chaotic vibrations of an 
axially moving viscoelastic beam subjected to tension variation were studied numerically in 
[15]. Recently, Yang and Chen [16] investigated bifurcations and chaos of an  accelerating 
viscoelastic beam with geometric nonlinearity. In this paper the viscoelastic beam material 
was constituted by one-dimensional Kelvin-Voigt rheologic model. Two-dimensional 
rheological element in modeling of axially moving viscoelastic web has been proposed by one 
of co-authors in 2006 [17]. 

The equations of motion of the axially moving viscoelastic beam with time-dependent 
tension have been derived in this paper. The three-parameter Zener rheological element has 
been used to model the beam material. From the partial differential equation that governs the 
transverse vibrations of the system the fourth order Galerkin truncated system is determined. 
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The effects of the transport speed, the tension perturbation amplitude and the internal 
damping on the dynamic behaviour of the system were numerically investigated. The 
Poincare maps and bifurcation diagrams were constructed to classify the vibrations. 

The paper is organized as follows. In Sec. 3 basing on the beam theory, we derive the 
equations of motion of the axially moving beam with three-parameter Zener rheological 
model of internal damping. In Section 3 we give full mathematical model of the axially 
moving beam as well.  In Sec. 4 we discuss the results of our numerical investigations. The 
conclusions are presented in Sec. 5. 

 
 

3. Equations of motion 
 

A viscoelastic axially moving beam of the length l is considered. The beam moves at axial 
velocity c. The geometry of the system and the co-ordinates are shown in Fig. 1. 

 
 
 
 
 
 
 

Fig. 1. Axially moving beam                   Fig.2. Zener rheologic model 
 

The problem of transverse oscillations of the axially moving continua in a state of uniform 
initial stress was investigated [13]. The results of the earlier studies give the following 
equation of motion in the y direction  

0)()2( ,,,,
2

,, =++−−− xxxxxxxttt wNMwcwcwAρ ,    (1) 
The nonlinear strain component in x direction is related to the displacement w by  
 ),(

2
1),( 2

, txwtx x=ε .         (2) 

The tension P is characterized as a periodic perturbation on the steady-state tension 
)(cos10 tPPP Ω+= ,         (3) 

where: Po – initial axial force, P1 – amplitude of axial force. 
The one-dimensional constitutive equation of a differential type material obeys the relation 
 Γ σ = Ξ ε,          (4) 
where: Γ and Ξ are differential operators defined as 
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The model of internal damping introduced by Zener is shown in Fig.2. For this three-
parameter viscoelastic model of material the differential constitutive equation is 

εεσσ 0,10,1 bbaa tt +=+ ,        (6) 
where: 210211201 ;)(;; EEbEEbEaa =+=== ηη .     (7) 
The bending moment M is given 

 xxtxx wJwJEEM ,,21 )( η−+−= .        (8) 
where: E1, E2 – Young modules of the Zener model (Fig.2). 
Taking into account Eq.(8) the governing equation (1) has the following form 

 c  E1,E2,J,A,ρ,η w(x,t) 

 y 

 x P P 

 l 

ηE1 

x 

E2
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To obtain mathematical description of the viscoelastic beam model one should multiply 
Eq. (9) with operator Γ. Using Eq. (2), (3) and taking into account the dimensionless 
parameters  
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one receives 
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where:  
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The boundary conditions: 
0),1(),0(;0),1(),0( ,, ==== ττττ ξξξξ zzzz      (13) 

The problems represented by Eq.(11) together with boundary conditions (13) have been 
solved using the Galerkin method. The following finite series representation of the 
dimensionless transverse displacement has been assumed  

)()(sin),(
1

τξπτξ i

n

i
qiz ∑

=
= ,        (14) 

where qi(τ) is the generalized displacement. 
The 4-term finite series representation of the dimensionless transverse displacement of the 

beam has been taken in numerical investigations. The even order truncations are receivable 
because the gyroscopic coupling in the mathematical model is taken into consideration. 
Substituting Eq.(14) into Eq.(11) and using the orthogonality condition one determines the set 
of ordinary differential equations. For n = 4 the equations are shown in the Appendix (Eq. 
A.1). To analyze the dynamic behaviour of the considered system the set of ordinary 
differential equations has been integrated. 

 
 

4. Numerical results  
 

Poincare maps and bifurcation diagrams are modern techniques used to analyse non-linear 
systems. These maps are the convenient tools to identify the dynamic behaviour especially 
chaos. In bifurcations diagrams dynamical behaviour may be viewed globally over a range of 
parameters values and compared simultaneously with various types of motions.  
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In this paper the Poincare maps and bifurcation diagrams have been determined for the 
non-dimensional displacement of the centre of the moving beam in the following form 

)()(),
2
1( 31 iTqiTqiTv −=         (15) 

where T = 2π /ω ;  i = 1, 2, 3 …  
Numerical investigations have been carried out for the beam model of the steel web. 

Parameters data: length l = 1m, width b = 0.2 m, thickness h = 0.0015 m, mass density ρ = 
7800 kg/m3, Young's modulus along x: Ex = 0.2 1012 N/m2, initial stress N0 = 2500 N/m. It is 
worth to note that in the previous investigations with two-parameter Kelvin-Voigt and four 
parameter Burgers rheological models of material the same numerical data of the steel web 
have been taken into account [14, 15]. 

The fourth order Runge-Kutta method was used to integrate ordinary differential 
equations and analyze the dynamic behaviour of the system. The bifurcations diagrams are 
presented by varying the dimensionless parameters: transport speed s, amplitude of the 
tension periodic perturbation α, and the internal damping coefficient g5, while the 
dimensionless frequency of the periodic perturbation ω and  the non-dimensional stiffness of 
the beam g4 are kept constant at ω = 1 and g4 = 0.025, respectively. At each set of parameters 
the first 2000 points of the Poincare map have been discarded in order to exclude the transient 
vibration and the displacement of the next 100 points have been plotted on the bifurcation 
diagrams. 
 
4.1. Linearized system 
 

The stability and instability regions of the linearized system (A.1) in the form of the 
stability boundaries map in the internal damping - transport speed area are shown in Fig. 3. 
The boundaries have been calculated for three amplitude values of the tension periodic 
perturbation (α = 0, α = 0.25, α = 0.5). The analysis of the linearized system predicts 
exponentially growing oscillations in supercritical region of transport speed. The critical value 
of the transport speed increases with the increase of damping coefficient g5. 

   
 

0

0,00002

0,00004

0,00006

0,00008

0,0001

0,7 0,702 0,704 0,706 0,708 0,71 0,712 0,714  
 
Fig. 3. Stability boundaries of the linearized system (A.1) 
 
 

4.2. Non-linear system 
 
At first, the parametrically unexcited non-linear system was investigated (α = 0). To show 

the dynamic behaviour of the beam the bifurcation diagram of the dimensionless displacement 
v given by Eq. (15), the Poincare maps, the phase portrait and time history for g5 

α = 0 α = 0.5

scr0.5 scr0.25scr0 

s 

g5 

 S t a b i l i t y 
    r e g i o n 

α = 0.25
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 = 1.778 × 10-4 are presented in Fig. 4, Fig. 5 and Fig. 6, respectively. The dimensionless 
transport speed s has been used as the bifurcation parameter. To obtain the Poincare maps in 
this parametrically unexcited case the dimensionless fundamental natural frequency ω0 = 3.5 
has been taken into consideration. In Fig. 4 one can observe supercritical Hopf-type 
bifurcation at the transport speed s = scr = 0.71.  It is worth to note that in the previous case of 
the Burger rheological model of the beam material, the transport speed s = 0.7 has been 
identified as the critical transport speed for the considered damping coefficient value [14].  

Though the analysis of the linearized system predicts exponentially growing oscillations 
for s > scr, non-linear damped oscillations which tend to the stable limit cycle motion occur 
(region 1 in Fig. 4). The Poincare map in Fig.5a and the phase portrait and time history in Fig. 
6 show the dynamic behaviour of the non-linear system in this region of transport speed for 
the initial conditions close zero.  

 
 

0 0.5 1
20

10

0

10

20

 
 
Fig. 4. Bifurcation diagram; g5 = 1.778 × 10-4, ω0 = 3.5, α = 0 

 
 
 
 
a)                  
 

b)      0.5 0 0.5

1
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    100 0 100
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Fig. 5. The Poincare maps: g5 = 1.778 × 10-4, α = 0, ω0 = 3.5; (a) s = 1.0; (b) s = 1.25 
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a)                

 b)  0.5 0 0.5
1
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  0 200 400 600 800 1000
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      Fig.6. The phase portrait (a) and time history(b) of the solution of (A.1); s = 1, g5 = 1.778 × 10-4, α = 0 
 

If the transport speed is increased further at sb = 1.13 the second bifurcation occurs. At the 
transport speeds above the bifurcation point (region 2 in Fig. 4), the parametrically unexcited 
non-linear system exhibits global motion between two centre points. The Poincare map in Fig. 
4 and the phase portrait in Fig. 7 show the dynamic behaviour of the non-linear system in this 
region of transport speed  It is worth to note that in the previous case of the Kelvin-Voigt 
rheological model of the beam material, the transport speed s = 1.12 has been identified as the 
critical transport velocity when the pitchfork type bifurcation occurs [15]. In the considered 
case of Zener rheological model above this transport speed one can observe the coexistence of 
attractors. 

 

       1 0.5 0 0.5 1

0.5

0

0.5

〈 〉
  

Fig. 7. The phase portrait of the solution of (A.1); s = 1.15, g5 =10-3,α = 0, ω0 = 3.5 
 

 
Next, the non-linear parametrically excited system was investigated. The bifurcations 

diagram of the dimensionless displacement v versus the dimensionless transport speed s for 
the specific amplitude value of the tension periodic perturbation α = 0.25 and the internal 
damping coefficient g5 = 1.778 ×10-4 is shown in Fig. 8. In this case, the system is 
asymptotically stable with its response tending to zero for s < 0.71. At the transport speed s = 
0.71 the zero critical point loses its stability and quasi-periodic motion occurs. Fig.9 shows 
the Poincare map of the system behaviour in this region of transport speed. If the transport 
speed is increased further (s = 0.85) the second Hopf bifurcation occurs and chaotic motion 
appears (Fig. 10). As a result of the Hopf bifurcation we can observe that regular tori (Fig.9) 
becomes a strange attractor of fractal structure. At s = 1.05 the inverse Hopf bifurcation can 

τ 

ν 

ν 

ν  

ν 

ν  
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be observed and the period-2 motion occurs in the region s = 1.05 ÷ 1.12. Then two points 
represent two periodic orbits in bifurcation diagram. At s = 1.12 the explosive bifurcation 
occurs and the large quasi-periodic motion appears. 

 

0 0.2 0.4 0.6 0.8 1 1.2

1

0

1

〈 〉
 

      Fig. 8. Bifurcation diagram of the non-linear system (A.1) for g5 = 1.778 × 10-4, α = 0.25 
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1
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Fig. 9. The Poincare map, g5 = 1.778 ×10-4, α = 0.25, s = 0.75. 

1 0.5 0 0.5 1

1
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Fig. 10. The Poincare map; g5 = 1.778 ×10-4, α = 0.25, s = 0.93 

 
The bifurcations diagram of the displacement v versus the transport speed s for larger 

value of parametric excitation α = 0.5 is shown in Fig. 11. In this case at s = 0.72 the 
equilibrium loses its stability and quasi-periodic motion occurs. Fig. 12 shows the phase 
portrait and time history of the non-linear system motion in this region of transport speed for 
the initial conditions close zero. At the supercritical transport speeds periodic motion regions 
are interrupted by short chaotic motion until at  s = 1.15 explosive bifurcation occurs and the 
chaotic motion appears (Fig. 11). 
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      Fig. 11. Bifurcation diagram of the non-linear system (A.1) for g5 = 1.778 × 10-4, α = 0.5 
 
          a) 

           b) 1.5 1 0.5 0 0.5 1 1.5
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1
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Fig. 12. The phase portrait (a) and the time history (b) of the solution of the non-linear system (A.1);  
s = 0.76, α = 0.5, g5 = 1.778×10-4 
 
 

The bifurcation plot of the dimensionless displacement v given by Eq. (15) against the 
non-dimensional internal damping coefficient g5 for α = 0.25 and various axial speeds s = 
0.75, s = 0.875 and s = 1.0 are shown in Fig.13, 14 and 15, respectively. At  s = 0.75 for small 
values of internal damping (g5 < 1.1×10-3) the quasi-periodic motion occurs, (previous Fig. 9 
shows the Poincare map of the system behaviour in this region). With the increase of internal 
damping at g5 = 1.1×10-3 the inverse Hopf-type bifurcation occurs and finally the system is 
asymptotically stable with its response tending to zero (Fig.13). 
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      Fig. 13. Bifurcation diagram of the non-linear system (A.1) for s = 0.75, α = 0.25 
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      Fig. 14. Bifurcation diagram of the non-linear system (A.1) for s = 0.875, α = 0.25 
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 Fig. 15. Bifurcation diagram of the non-linear system (A.1) for s = 1.0, α = 0.25 
 
 
With the increase of the dimensionless transport speed at s = 0.875 the quasi-periodic 

region is interrupted by periodic motion (Fig.14). At s = 1.0 for small values of internal 
damping (g5 < 1.1×10-3) the period-2 motion appears and next for larger values of the 
dimensionless internal damping coefficient, the quasi-periodic and chaotic motion occur. The 
Poincare map in Fig.16 shows the strange attractor created in the bifurcation which takes 
places at the internal damping g5 = 3.804×10-3. Then the small quasi-periodic attractor 
presented in Fig. 9 transforms in larger attractor shown in Fig. 17.   
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Fig.16. The Poincare map; s = 1.0, α = 0.25, g5 = 3.804×10-3 
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Fig.17. The Poincare map; s = 1.0, α = 0.25, g5 = 7.111×10-3 
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Next the dimensionless amplitude of the tension periodic perturbation α has been used as 
the bifurcation parameter. For small values of these bifurcation parameter and small values of 
transport speed the system is stable with its response tending to zero. The bifurcation diagram 
in Fig. 18 shows the Poincare maps of the dimensionless displacement v against the 
perturbation amplitude α for greater transport speed value  s = 0.75 and g5 = 1.778×10-4. For 
lower α values (α < 0.62) the quasi-periodic motion occurs. Previous Fig. 9 shows the 
Poincare map of the system behaviour in this region of the tension amplitude value. With the 
increase of the tension at α = 0.62 the quasi-periodic attractor bifurcates into the period-6 
attractor, at α = 0.78 into the period-4 attractor and finally at α = 0.8 into the period-2 
attractor (Fig. 18). For greater axial velocity s = 1.0 the bifurcation diagram in Fig.19 and the 
Poincare maps in Figs. 20 and 21 show the quasi-periodic and chaotic motions of the axially 
moving viscoelastic beam. 

0 0.2 0.4 0.6 0.8 1

1

0

1

 
      Fig.18. Bifurcation diagram of the non-linear system (A.1) for s = 0.75, g5 = 1.778×10-4 
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      Fig.19. Bifurcation diagram of the non-linear system (A.1) for s = 1, g5 = 1.778×10-4 
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Fig.20. The Poincare map; s = 1.0, α = 0.1, g5 = 1.778×10-4 
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Fig.21. The Poincare map; s = 1.0, α = 0.56, g5 = 1.778×10-4 
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5.  Conclusions 
 

The dynamic investigations of the axially moving viscoelastic beam with time-dependent 
tension are carried out in this paper. The beam model material as the Zener reological element 
is considered. The general form of the differential equation of transverse oscillations of the 
considered system is derived together with the differential constitutive low for the rheological 
model. The Galerkin method is applied to simplify the governing non-linear partial-
differential equation into fourth order truncated system defined by the set of ordinary 
differential equations. 

The fourth order Runge-Kutta method was used to integrate ordinary differential 
equations and analyze the dynamic behaviour of the system. The Poincare maps have been 
constructed to classify the vibrations. The bifurcations diagrams are obtained by varying the 
transport speed, the amplitude of the tension periodic perturbation and the internal damping 
coefficient, while the frequency of the periodic perturbation and the stiffness of the beam are 
kept constant. 

The numerical investigations have been carried out for the beam model of the steal web. 
The same numerical data of the web have been taken into consideration like in the previous 
investigations with two-parameter Kelvin-Voigt and four-parameter Burgers rheological 
models of material. The critical transport speed of the non-linear, parametrically excited 
viscoelastic beam with the Zener model of material is equal to the one with the Burgers model 
of material and significantly  smaller than the one with the Kelvin-Voigt model. 

In the case when the transport speed was taken as the bifurcation parameter the system is 
asymptotically stable with its response tending to zero for s < 0.71. At the transport speed s = 
0.71 the zero critical point loses its stability and quasi-periodic motion occurs. For greater 
axial velocity the quasi-periodic, periodic and chaotic motions occurs. The axial transport 
speed, when the explosive bifurcation of investigated system occurs, is equal to the critical 
transport velocity of the previous model with the Kelvin-Voigt rheological model of the beam 
material, when the pitchfork type bifurcation occurs. 

When the internal damping coefficient is taken as the bifurcation parameter for small 
values of internal damping the quasi-periodic motion occurs. With the increase of the 
transport speed in this region of the internal damping, the quasi-periodic region is interrupted 
by periodic motion. When the transport speed increases at first the small quasi-periodic 
attractor transforms into larger quasi-periodic attractor and finally into the chaotic attractor. 

When the amplitude of periodic perturbation has been taken as the bifurcation parameter 
one can observe the dynamic behaviour typical for non-linear systems which are determined 
in multi-dimensional phase space. For small values of these bifurcation parameter and small 
values of the transport speed the system is stable with its response tending to zero. With the 
increase of the bifurcation parameters the chaotic motion and regular motion alternately 
appear. It means that the appearance of the hiperchaotic attractor is possible in these ranges of 
bifurcation parameters.  
 
 
Appendix 

The set of ordinary differential equations of the viscoelastic beam model with the Zener 
model of material (n = 4): 
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