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Destabilization paradox

due to breaking the Hamiltonian and reversible symmetry ∗

Oleg N. Kirillov
†

Abstract

Stability of a linear autonomous non-conservative system in the presence of potential, gyroscopic, dis-

sipative, and non-conservative positional forces is studied. The cases when the non-conservative system is

close to a gyroscopic system or to a circulatory one, are examined. It is known that marginal stability of

gyroscopic and circulatory systems can be destroyed or improved up to asymptotic stability due to action

of small non-conservative positional and velocity-dependent forces. The present paper shows that in both

cases the boundary of the asymptotic stability domain of the perturbed system possesses singularities such

as “Dihedral angle” and “Whitney umbrella” that govern stabilization and destabilization. In case of two

degrees of freedom, approximations of the stability boundary near the singularities are found in terms of

the invariants of matrices of the system. As an example, the asymptotic stability domain of the modified

Maxwell-Bloch equations is investigated with an application to the stability problems of gyroscopic systems

with stationary and rotating damping.

Keywords: non-conservative system, dissipation-induced instabilities, destabilization paradox

Submitted to: Int. J. of Nonlin. Mechs.

1 Introduction

Consider an autonomous non-conservative system described by a linear differential equation of second order

ẍ + (ΩG + δD)ẋ + (K + νN)x = 0, (1)

where dot denotes time differentiation, x ∈ R
m, and real matrix K = KT corresponds to potential forces.

Real matrices D = DT , G = −GT , and N = −NT are related to dissipative (damping), gyroscopic, and non-

conservative positional (circulatory) forces with magnitudes controlled by scaling factors δ, Ω, and ν respectively.
∗Dedicated to the memory of Karl Popp.
†Dynamics group, Department of Mechanical Engineering, Technical University of Darmstadt, Hochschulstr. 1, 64289 Darm-

stadt, Germany (e-mail: kirillov@dyn.tu-darmstadt.de, Tel: +49 6151 16 6828, Fax: +49 6151 16 4125) and Institute of Mechanics,

Moscow State Lomonosov University, Michurinskii pr. 1, 119192 Moscow, Russia (e-mail: kirillov@imec.msu.ru).
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General non-conservative system (1) has two important limiting cases corresponding to circulatory and

gyroscopic systems. A circulatory system is obtained from (1) by neglecting velocity-dependent forces

ẍ + (K + νN)x = 0, (2)

while a gyroscopic one has no damping and non-conservative positional forces

ẍ + ΩGẋ + Kx = 0. (3)

Circulatory and gyroscopic systems (2) and (3) possess fundamental symmetries that are easily seen after

transformation of equation (1) to the Cauchy form ẏ = Ay with

A =

⎛
⎝ − 1

2ΩG I
1
2δΩDG + 1

4Ω2G2 − K − νN − δD− 1
2ΩG

⎞
⎠ , y =

⎛
⎝ x

ẋ + 1
2ΩGx

⎞
⎠ , (4)

where I is the identity matrix.

Indeed, in the absence of damping and gyroscopic forces (δ = Ω = 0) the matrix A changes as RAR = −A

due to a coordinate transformation with the matrix

R = R−1 =

⎛
⎝ I 0

0 −I

⎞
⎠ . (5)

This means that the matrix A has a reversible symmetry, and equation (2) describes a reversible dynamical

system [1, 2]. Due to this property,

det(A − λI) = det(R(A− λI)R) = det(A + λI), (6)

and the eigenvalues of circulatory system (2) appear in pairs (−λ, λ). Consequently, the equilibrium of a

circulatory system is either unstable or all its eigenvalues lie on the imaginary axis of the complex plane

implying marginal stability if they are semi-simple.

Without damping and non-conservative positional forces (δ = ν = 0) the matrix A possesses the Hamiltonian

symmetry JAJ = AT , where J is a unit symplectic matrix [3]

J = −J−1 =

⎛
⎝ 0 I

−I 0

⎞
⎠ . (7)

As a consequence,

det(A − λI) = det(J(A − λI)J) = det(AT + λI) = det(A + λI), (8)

which implies that if λ is an eigenvalue of A then so is −λ, similarly to the reversible case. Therefore, gyroscopic

system (3) can be only marginally stable with its spectrum belonging to the imaginary axis of the complex plane.

In the presence of all the four forces the Hamiltonian and reversible symmetries are broken and the marginal

stability is generally destroyed. Instead, system (1) can be asymptotically stable if its characteristic polynomial

P (λ) = det(Iλ2 + (ΩG + δD)λ + K + νN), (9)
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satisfies the criterion of Routh and Hurwitz. The most interesting for many applications is the situation

when system (1) is close either to circulatory system (2) with δ, Ω � ν (imperfect reversible system) or to

gyroscopic system (3) with δ, ν � Ω (imperfect Hamiltonian system). Furthermore, the effect of small damping

and gyroscopic forces on the stability of circulatory systems as well as the effect of small damping and non-

conservative positional forces on the stability of gyroscopic systems are regarded as paradoxical, since the

stability properties are extremely sensitive to the choice of the perturbation, and the balance of forces resulting

in the asymptotic stability is not evident [4–46]. This characterization sounds even more justified if to take into

account the connection of the destabilization paradox with the physical paradoxes such as “tippe top inversion”

and “rising egg phenomenon” [34, 35, 42, 45].

Historically, the destabilization paradox appeared first in a study of a gyroscopic system with dissipation by

Thomson and Tait, who found that the dissipative perturbation destroys the gyroscopic stabilization so that the

system is neither marginally nor asymptotically stable [4]. The terminology dissipation-induced instabilities has

its roots in that classical work [20, 45]. A similar effect of non-conservative positional forces on the stability of

gyroscopic systems has been established almost a hundred years later by Lakhadanov and Karapetyan [11, 12].

These ideas have been extensively developed, e.g., in the works [10, 18–21, 23, 34, 35, 42–46].

A more sophisticated form of the destabilization paradox has been discovered by Ziegler on the example of

a double pendulum loaded by a follower force with the damping non-uniformly distributed among the natural

modes [7]. Without dissipation, the Ziegler pendulum is a circulatory system and it is marginally stable for the

loads non-exceeding some critical value. Small dissipation makes the pendulum either unstable or asymptotically

stable with the critical load, which can be significantly lower than that of the undamped system. This is caused

by the singular nature of the new critical load, which is a non-differentiable at the origin function of the damping

parameters, having no limit when the damping coefficients uniformly tend to zero [8, 9, 26]. Numerous other

aspects of the destabilization paradox by small velocity-dependent forces in circulatory systems, including more

general settings and non-linear effects, have been investigated, e.g., in [8, 13–15, 17, 24–32, 36–41].

The destabilization paradox in Ziegler’s form has been revealed recently by Crandall in his study of a gyro-

scopic pendulum with stationary and rotating damping [22]. Contrary to the Ziegler pendulum, the undamped

gyropendulum is a gyroscopic system that is marginally stable when its spin exceeds a critical value. Stationary

damping corresponding to dissipative velocity-dependent force destroys the gyroscopic stabilization in accor-

dance with the theorem of Thomson and Tait [4]. However, the Crandall gyropendulum with stationary and

rotating damping, where the latter is related to non-conservative positional force, can be asymptotically stable

for the rotation rates exceeding considerably the critical spin of the undamped system.

The growing number of other physical and mechanical examples demonstrating the destabilization paradox

due to an interplay of non-conservative effects, requires a unified treatment of this phenomenon taking into

account all types of forces presented in equation (1), as reported recently by Krechetnikov and Marsden [45].

The goal of the present paper is to find and analyze the domain of asymptotic stability of system (1) in the

space of the parameters δ, Ω, and ν with special attention to imperfect reversible and Hamiltonian cases.

Below we show that the boundary of the asymptotic stability domain of a circulatory system perturbed by
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small dissipative and gyroscopic forces as well as that of a gyroscopic system perturbed by weak dissipative

and non-conservative positional forces possesses singularities such as “Dihedral angle” and “Whitney umbrella”

governing stabilization and destabilization. In case of two degrees of freedom, we find approximations of the

stability boundary near the singularities and obtain explicit estimates of the critical parameters in terms of

the invariants of matrices of the system. This allows us to get a unified picture of the domain of asymptotic

stability that clarifies a role of various forces in the destabilization paradox and helps with an establishment of

connections with previously known results. As an example, we investigate the asymptotic stability domain of

the modified Maxwell-Bloch equations with an application to the stability problems of gyroscopic systems with

stationary and rotating damping.

2 A circulatory system with small velocity-dependent forces

We begin the study of stability of system (1) with imperfect reversible case (δ, Ω � ν). In spite of the fact that

the similar problem has been investigated recently by means of the perturbation theory of multiple eigenvalues

for systems with any degrees of freedom and for distributed systems [31, 32, 36–41], we restrict our subsequent

considerations to m = 2 degrees of freedom. This allows us to catch significant details remaining valid in the

general case, and to solve the problem almost exactly, providing a reference necessary for the improvement of

the approximation techniques based on the analysis of eigenvalues. The system (1) with two degrees of freedom

has also an independent interest because it contains actual low-dimensional models of dynamical systems such

as disk brakes, space tethers, and spinning tops [20, 22, 23, 29, 30, 34, 35, 42, 44, 45].

2.1 Stability of a circulatory system

Stability of system (1) is determined by its characteristic polynomial (9), which in case of two degrees of freedom

has a convenient form provided by the Leverrier-Barnett algorithm [47]

P (λ, δ, ν, Ω) = λ4 + δtrDλ3 + (trK + δ2 detD + Ω2)λ2 + (δ(trKtrD− trKD) + 2Ων)λ + detK + ν2, (10)

where without loss of generality we assume that the matrices G and N are equal to the 2 × 2 unit symplectic

matrix.

In the absence of damping and gyroscopic forces (δ = Ω = 0) the system (1) is circulatory, and the

characteristic polynomial (10) has four roots −λ+, −λ−, λ−, and λ+, where

λ± =

√
−1

2
trK ± 1

2

√
(trK)2 − 4(detK + ν2). (11)

Depending on the properties of the real symmetric matrix K and the magnitude ν of the non-conservative

positional force, the eigenvalues (11) can be real, complex or purely imaginary implying instability or marginal

stability in accordance with the following statement.

Proposition 1. If trK > 0 and detK ≤ 0, circulatory system (2) with two degrees of freedom is stable

for νd
2 < ν2 < νf

2, unstable by divergence for ν2 ≤ νd
2, and unstable by flutter for ν2 ≥ νf

2, where the critical
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Figure 1: Stability diagrams and trajectories of the eigenvalues for the increasing parameter ν > 0 drawn for

the circulatory system (2) with trK > 0 and detK < 0 (a) and trK > 0 and detK > 0 (b).

values νd and νf are

0 ≤ √− detK =: νd ≤ νf :=
1
2

√
(trK)2 − 4 detK. (12)

If trK > 0 and detK > 0, the circulatory system is stable for ν2 < νf
2 and unstable by flutter for ν2 ≥ νf

2.

If trK ≤ 0, the system is unstable.

The proof is a simple consequence of formula (11), reversible symmetry, and the fact that time dependence

of solutions of equation (2) is given by exp(λt) for simple eigenvalues λ, with an additional—polynomial in

t—prefactor (secular terms) in case of multiple eigenvalues with the Jordan block. The solutions monotonously

grow for positive real λ implying static instability (divergence), oscillate with an increasing amplitude for

complex λ with positive real part (flutter), and remain bounded when λ is semi-simple and purely imaginary

(stability). It is interesting to note that for a matrix K having two equal eigenvalues, the circulatory system

(2) is unstable because νf = 0, which is the statement of the Merkin theorem for circulatory systems with two

degrees of freedom [10, 45].

Stability diagrams and motion of eigenvalues in the complex plane for ν increasing from zero are presented

in Fig. 1. When trK > 0 and detK < 0 there are two real and two purely imaginary eigenvalues at ν = 0, and

the system is statically unstable, see Fig. 1(a). With the increase of ν both the imaginary and real eigenvalues

are moving to the origin, until at ν = νd the real pair merges and originates a double zero eigenvalue with the

Jordan block. At ν = νd the system is unstable because of the linear time dependence of a solution corresponding

to λ = 0. The further increase of ν yields splitting of the double zero eigenvalue into two purely imaginary

eigenvalues. The imaginary eigenvalues of the same sign are then moving towards each other until at ν = νf

they originate a pair of double eigenvalues ±iωf with the Jordan block, where

ωf =

√
1
2
trK. (13)

At ν = νf the system is unstable by flutter due to secular terms in its solutions. For ν > νf the flutter instability
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is caused by two of the four complex eigenvalues lying on the branches of a hyperbolic curve

Imλ2 − Reλ2 = ω2
f . (14)

The critical values νd and νf of the magnitude of the non-conservative positional force, constitute the bound-

aries between the divergence and stability domains and between the stability and flutter domains respectively.

For trK > 0 and detK = 0 the divergence domain shrinks to a point νd = 0 and for trK > 0 and detK > 0

there exist only stability and flutter domains as shown in Fig. 1(b). Obviously, the described picture is the same

for negative ν with ν = −νd and ν = −νf indicating the boundaries of the divergence and flutter domains.

2.2 The influence of small damping and gyroscopic forces on the stability of a

circulatory system

The one-dimensional domain of marginal stability of circulatory system (2) given by Proposition 1 is blowing

up into a three-dimensional domain of asymptotic stability of system (1) in the space of the parameters δ, Ω,

and ν. To find the domain of asymptotic stability we apply the criterion of Routh and Hurwitz in the form of

Liénard and Chipart to the characteristic polynomial (10)

δtrD > 0 (15)

trK + δ2 detD + Ω2 > 0 (16)

detK + ν2 > 0 (17)

Q(δ, Ω, ν) > 0 (18)

where

Q := δtrD(trK+δ2 detD+Ω2)(δ(trKtrD− trKD)+2Ων)− (δtrD)2(detK+ν2)− (δ(trKtrD− trKD)+2Ων)2

(19)

Despite the explicit form, inequalities (15)–(18) do not possess an obvious interpretation. An alternative way

is to use the qualitative theory of Arnold and then a perturbative approach utilizing smallness of parameters δ

and Ω. For this purpose we remind that the stability problem for initial system (1) is equivalent to a stability

problem for the first-order system, with the real 2m × 2m matrix A defined by expression (4).

As it has been established by Arnold [3], the boundary of the asymptotic stability domain of a multiparameter

family of real matrices is not a smooth surface. Generically it possesses singularities corresponding to multiple

eigenvalues with zero real part. In particular, for real matrices depending on three parameters, two different

pairs of simple purely imaginary eigenvalues originate a singularity of the stability boundary, which is shaped

as a dihedral angle in the parameter space Fig. 2(a). A double zero eigenvalue with the Jordan block and a

pair of simple purely imaginary eigenvalues are responsible for the appearance of a trihedral angle Fig. 2(b). A

pair of double purely imaginary eigenvalues with the Jordan block corresponds to the singularity deadlock of

an edge, which is a half of the Whitney umbrella surface [3], see Fig. 2(c).
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Figure 2: Singularities dihedral angle (a), trihedral angle (b), and deadlock of an edge (or a half of the Whitney

umbrella (c)) of the boundary of the asymptotic stability domain of a real three parameter matrix family.

Considering the asymptotic stability domain of system (1) in the space of the parameters δ, ν and Ω we know

that the ν-axis is related to the unperturbed circulatory system (2). The parts of this axis belonging to the

stability domain of system (2) and corresponding to two different pairs of simple purely imaginary eigenvalues,

form edges of the dihedral angles on the surfaces that bound the asymptotic stability domain of system (1). At

the points ±νf of the ν-axis, corresponding to the stability-flutter boundary of system (2) there exists a pair

of double purely imaginary eigenvalues with the Jordan block. Qualitatively, the asymptotic stability domain

of system (1) in the space (δ, ν, Ω) near the ν-axis looks like a dihedral angle which becomes more acute while

approaching the points ±νf . At these points the angle shrinks forming the deadlock of an edge. In case when the

stability domain of the unperturbed circulatory system has a common boundary with the divergence domain,

as shown in Fig. 1(a), the boundary of the asymptotic stability domain of the perturbed system (1) possesses

the trihedral angle singularity at ν = ±νd.

In the following, we improve the qualitative picture combining the direct analysis of the stability conditions

(15)–(18) with a perturbation technique in the vicinity of the singularities located on the ν-axis. We find exact

first-order approximations of the asymptotic stability domain, obtain an estimate of the critical value of the

parameter ν as a function of δ and Ω, and show that this expression is reduced to a canonical equation of the

surface with the Whitney umbrella singularity.

Note that the function Q(δ, ν, Ω) defined by equation (19) is a quadratic polynomial with respect to ν.

Solving the quadratic equation we write the stability condition (18) in the form

(ν − ν−
cr)(ν − ν+

cr) < 0, (20)

where

ν±
cr(δ, Ω) =

Ωb ±√
Ω2b2 + ac

a
δ, (21)
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and

a(δ, Ω) = 4Ω2 + δ2(trD)2

b(δ, Ω) = Ω2trD− trKtrD + 2trKD + δ2trDdetD

c(δ, Ω) = (trKtrD − trKD)(trKD + δ2trDdetD + Ω2trD) − detK(trD)2. (22)

Analyzing conditions of asymptotic stability (15)–(17) and (20), we observe that the first two of them restrict

the region of variation of parameters δ and Ω either to a half-plane δtrD > 0, if detD ≥ 0, or to a space between

the line δ = 0 and one of the branches of a hyperbola | detD| δ2 −Ω2 = 2ω2
f , if detD < 0. Provided that δ and

Ω belong to the described domain, the asymptotic stability of system (1) is determined by inequalities (17) and

(20), which impose limits on the variation of ν.

As it follows from condition (17), for detK ≤ 0 the divergence domain splits the domain of asymptotic

stability into two non-intersecting parts, bounded by the planes ν = ±νd and by the surfaces ν = ν±
cr(δ, Ω).

In comparison with the unperturbed system, the divergence boundary does not change because it is given by

the same critical values ±νd which are independent from δ and Ω. For detK > 0 inequality (17) is fulfilled,

and in accordance with the condition (20) the asymptotic stability domain is contained between the surfaces

ν = ν+
cr(δ, Ω) and ν = ν−

cr(δ, Ω).

The functions ν±
cr(δ, Ω) defined by expressions (21) are singular at the origin due to vanishing denominator.

Assuming Ω = βδ and calculating a limit of these functions when δ tends to zero, we obtain

ν±
0 (β) := lim

δ→0
ν±

cr = νf
4ββ∗ ± trD

√
(trD)2 + 4(β2 − β2∗)

(trD)2 + 4β2
, (23)

where

β∗ :=
tr(K− ω2

fI)D
2νf

. (24)

The limits ν±
0 (β) are real-valued functions of β if the radicand in expression (23) is non-negative.

Proposition 2. Let λ1(D) and λ2(D) be eigenvalues of D. Then,

|β∗| ≤ |λ1(D) − λ2(D)|
2

. (25)

If D is semi-definite (detD ≥ 0) or indefinite with

0 > detD ≥ − (k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

, (26)

then

|β∗| ≤ |trD|
2

, (27)

and the limits ν±
0 (β) are continuous real-valued functions of β. Otherwise, there exists an interval of disconti-

nuity β2 < β2
∗ − (trD)2/4.
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Figure 3: The functions ν+
0 (β) (bold lines) and ν−

0 (β) (fine lines), and their bifurcation when D is changing.

Proof. With the use of the definition of β∗ (24), a series of transformations

β2
∗ − (trD)2

4
=

1
4ν2

f

(
(k11 − k22)(d11 − d22)

2
+ 2k12d12

)2

− (d11 + d22)2

4
((k11 − k22)2 + 4k2

12)
4ν2

f

= − detD − (k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

(28)

yields the expression

β2
∗ =

(λ1(D) − λ2(D))2

4
− (k12(d22 − d11) − d12(k22 − k11))2

4ν2
f

. (29)

For real β∗, formula (29) implies inequality (25). The remaining part of the proposition follows from (28). �
To get an impression of the behavior of the functions ν±

0 (β), we calculate and plot them, normalized by νf ,

for the following positive-definite matrix K and indefinite matrix D = Di, where i = 1, 2, 3

K =

⎛
⎝ 27 3

3 5

⎞
⎠ , D1 =

⎛
⎝ 6 3

3 1

⎞
⎠ , D2 =

⎛
⎝ 7 4

3

√
130 − 11

4
3

√
130 − 11 1

⎞
⎠ , D3 =

⎛
⎝ 7 5

5 1

⎞
⎠ . (30)

The graphs of the functions ν±
0 (β) bifurcate with a change of detD. Indeed, since D1 satisfies the strict

inequality (26), the limits are continuous functions with separated graphs, as shown in Fig. 3(a). Expression

(26) is an equality for the matrix D2. Consequently, the functions ν±
0 (β) are continuous, with their graphs

touching each other at the origin, Fig. 3(b). For the matrix D3, condition (26) is not fulfilled, and the functions

are discontinuous. Their graphs, however, are joint together, forming continuous curves, see Fig. 3(c).

Except for a strongly pronounced bifurcation pattern, Fig. 3 shows that the calculated ν±
0 (β) are bounded

functions of β, not exceeding the critical values ±νf of the unperturbed circulatory system.

Proposition 3.

|ν±
0 (β)| ≤ |ν±

0 (±β∗)| = νf . (31)

Proof. Let us observe that μ±
0 := ν±

0 /νf are roots of the quadratic equation

ν2
faβμ2 − 2δΩb0νfμ − δ2c0 = 0, (32)

9
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where

δ2aβ := a(δ, βδ) = δ2(4β2 + (trD)2),

b0 := b(0, 0) = 4νfβ∗,

c0 := c(0, 0) = ν2
f ((trD)2 − 4β2

∗). (33)

According to the Schur criterion [48] all the roots μ of equation (32) are inside the closed unit disk, if

δ2c0 + ν2
faβ = (trD)2 + 4(β2 − β2

∗) + (trD)2 ≥ 0,

2δΩνfb0 + ν2
faβ − δ2c0 = (β + β∗)2 ≥ 0,

−2δΩνfb0 + ν2
faβ − δ2c0 = (β − β∗)2 ≥ 0. (34)

The first of conditions (34) is satisfied for real ν±
0 , implying |μ±

0 (β)| ≤ 1 with |μ+
0 (β∗)| = |μ−

0 (−β∗)| = 1. �
Therefore, the magnitude of the non-conservative positional force at the onset of flutter for system (1)

with vanishingly small dissipative and gyroscopic forces, does not exceed that of the circulatory system (2),

demonstrating a jump in the critical load which is characteristic of the destabilization paradox in Ziegler’s form.

Another characteristic feature of this destabilization paradox is an abrupt change of the critical frequency

of the onset of flutter due to an infinitesimally small damping [8, 13]. This phenomenon is especially important

in the problems of acoustics of friction, such as disk brake squeal suppression [29, 30, 41, 44]. An explicit and

exact expression for the critical frequency follows directly from the characteristic polynomial (10)

ωcr(δ, Ω, ν) = ±ωf

√
1 + 2

νβ − νfβ∗
ω2

f trD

= ±ωf ± νf (β − β∗) + β∗(ν − νf )
trD

+ o (β − β∗, ν − νf ) , (35)

being in agreement with the results of the works [13, 39, 40].

It is remarkable that the limits ν±
0 (β) of the critical values of the circulatory parameter ν±

cr(δ, Ω), which are

complicated functions of δ and Ω, depend only on the ratio β = Ω/δ, defining the direction of approaching zero

in the plane (δ, Ω). Along the directions β = β∗ and β = −β∗, the limits coincide with the critical flutter loads

of the unperturbed circulatory system (2) in such a way that ν+
0 (β∗) = νf and ν−

0 (−β∗) = −νf . Power series

expansions of the functions ν±
0 (β) around β = ±β∗ (with the radius of convergence not exceeding |trD|/2) give

simple estimates of the jumps in the critical load

νf − ν+
0 (β) = νf

2
(trD)2

(β − β∗)2 + o((β − β∗)2),

νf + ν−
0 (β) = νf

2
(trD)2

(β + β∗)2 + o((β + β∗)2). (36)

If we leave only second order terms in expressions (36) and then substitute β = Ω/δ, we get equations of

the form Z = X2/Y 2, which is canonical for the singular surface known as the Whitney umbrella [3]. These

equations give simple approximations of the boundary of the asymptotic stability domain of system (1) in the

vicinity of the points (0, 0,±νf) in the space of the parameters (δ, Ω, ν), and confirm the qualitative picture

following from the Arnold theory [3].
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A more general way of investigation of the stability boundary near singularities is based on the perturbation

theory for eigenvalues [8, 14, 16–18, 20–22, 24, 25, 27, 31, 32, 36–41]. For a fixed ν a simple root λ = iω(ν) of

the characteristic polynomial P (λ, δ, Ω, ν), calculated at δ = Ω = 0, is expanded into the Taylor series

λ(δ, Ω, ν) − iω(ν) = −δ
∂δP (ν)
∂λP (ν)

− Ω
∂ΩP (ν)
∂λP (ν)

+ o(δ, Ω). (37)

It is evident, that equation Re(λ(δ, Ω, ν)) = 0 defines a curve in the plane (δ, Ω), which contributes to the

boundary of the asymptotic stability domain, corresponding to some constant value of the parameter ν. A

linear approximation to this curve in the vicinity of the origin is given by the expression

Re (δ∂δP (ν) + Ω∂ΩP (ν)) = 0, (38)

which for the polynomial (10) reads as

δ
(
2νfβ∗ +

(
ω2(ν) − ω2

f

)
trD

) − 2Ων = 0. (39)

Equations (38), (39) give correct linear approximation of the boundary of the asymptotic stability domain,

if the functions ω(ν) are known exactly, as it is in our case, where equations (11)–(13) yield

ω2(ν) = ω2
f ±

√
ν2

f − ν2. (40)

Substituting (40) into (39), we obtain

Ω =
νf

ν

[
β∗ ± trD

2

√
1 − ν2

ν2
f

]
δ, (41)

which is simply formula (23) inverted with respect to β = Ω/δ.

In general, for systems with m ≥ 2 degrees of freedom, explicit analytical expressions like (40) cannot be

found. Instead, numerical data can be used [13], or, alternatively, power series expansions of ω(ν) in the vicinity

of ν = νf , which in case of a double eigenvalue are given by the Newton-Puiseux series [27, 31]

ω(ν) = ωf ±
√

2
∂νP

∂2
λλP

(ν − νf ) + O ((ν − νf )) . (42)

As a payment for the generality of the approach, equation (39) and expression (42), evaluated for polynomial

(10), give only approximations (36) of formula (23). Such approximations for general finite-dimensional and

distributed imperfect reversible systems were obtained in [31, 36, 38–41].

Being based on the linear approximation (41), we study an asymptotic behavior of the stability domain in

the vicinity of the origin in the plane (δ, Ω) for various ν. This give us better understanding of the shape of the

stability domain in the space of the parameters δ, Ω, and ν.

For our purpose it is enough to consider only the case when trK > 0 and detK > 0, so that −νf < ν < νf ,

because for detK ≤ 0 the region ν2 < ν2
d ≤ ν2

f is unstable and should be excluded.

For ν2 < ν2
f , the radicand in expression (41) is real and nonzero, so that in the first approximation, the

domain of asymptotic stability is contained in the angle between two lines intersecting at the origin, as depicted
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Figure 4: For various ν, bold lines show linear approximations to the boundary of the asymptotic stability

domain (white) of system (1) in the vicinity of the origin in the plane (δ, Ω), when trK > 0 and detK > 0, and

condition (26) is fulfilled (upper row) or fails (lower row).

in Fig. 4 (central column). When ν approaches the critical values ±νf , the angle becomes more acute until at

ν = νf or ν = −νf it degenerates to a single line Ω = δβ∗ or Ω = −δβ∗ respectively. For β∗ �= 0 these lines

are not parallel to each other, and due to inequality (25) they never stay vertical, see Fig. 4 (right column).

However, the degeneration can be lifted already in the second approximation

Ω = ±δβ∗ ± ωf trD
√

detD + β2∗
2νf

δ2 + O(δ3). (43)

If the radicand is positive, equation (43) defines two curves touching each other at the origin, in such a way

that the domain of asymptotic stability has a cuspidal form, as shown in Fig. 4 by dashed lines. Inside the cusp

the critical value of the circulatory parameter ν of the imperfect reversible system (1) is not less than that of

the circulatory system (2). One can conclude, that an accurate choice of the small velocity-dependent forces

can enlarge the stability range for ν.

The evolution of the domain of asymptotic stability, when ν goes from ±νf to zero, depends on the properties

of the matrix D and is governed by inequality (26). In case when the inequality is fulfilled, we have |2β∗| ≤ trD,

and the angle between two lines (41) is getting wider, tending to π for ν → 0, as shown in Fig. 4 (upper left).

Otherwise, the angle reaches a maximum for some ν2 < ν2
f and then shrinks to a single line δ = 0 at ν = 0,

Fig. 4 (lower left). We note that these degenerations differ from that occurred when ν → ±νf , because they

do not depend on the order of approximation. Indeed, at ν = 0 the Ω-axis corresponds to a marginally stable

gyroscopic system, and thus it forms an edge of the dihedral angle singularity of the boundary of the domain
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Figure 5: Blowing the stability domain of circulatory system (2) up to the domain of asymptotic stability of

system (1) with the singularities Whitney umbrella, dihedral angle, and trihedral angle when trK > 0, detK > 0

and condition (26) is fulfilled (a) or fails (b), and when trK > 0 and detK < 0 (c).

of asymptotic stability.

Since the linear approximation to the asymptotic stability domain does not contain the Ω-axis at any ν �= 0,

small gyroscopic forces cannot stabilize a circulatory system in the absence of damping forces (δ = 0), which

is in agreement with theorems of Lakhadanov and Karapetyan [11, 12]. Another interesting interpretation of

Fig. 4 is that a conservative system with K > 0 can be made asymptotically stable by small gyroscopic and

damping forces with semi-definite or indefinite matrix D, satisfying condition (26). For indefinite matrices D

violating inequality (26), the asymptotic stability can be reached only in the presence of gyroscopic, damping,

and circulatory forces.

Combining our analytical results with the qualitative picture based on the singularity theory, we conclude

that there are three typical configurations of the surfaces ν = ν±
cr(δ, Ω) and thus three typical configurations of

the asymptotic stability domain of system (1) in the vicinity of the ν-axis. The parts of the surfaces ν = ν±
cr(δ, Ω)

bounding the domain of asymptotic stability, belong to the half-space δtrD > 0, as depicted in Fig. 5.

The first configuration corresponds to a positive-definite matrix K and to a semi-definite or indefinite matrix

D, which satisfies condition (26). We see that addition of small damping and gyroscopic forces blows the stability

interval of a circulatory system ν2 < ν2
f up to a three-dimensional region bounded by a surface with singularities,

Fig. 5(a). The stability interval of a circulatory system itself becomes an edge of a dihedral angle, formed due

to intersection of two smooth surfaces. At ν = 0 the angle of the intersection reaches its maximum (π), creating

another edge along the Ω-axis. While approaching the points ±νf , the angle becomes more acute and ends up

with the deadlock of an edge, which is a part of the Whitney umbrella singularity, Fig. 5(a).

Changing the matrix D in such a way that it approaches the threshold of condition (26), we deform the

asymptotic stability domain. Two smooth parts of the stability boundary corresponding to negative and positive

ν are going towards each other until they touch, when D is at the threshold. After D violates condition (26) this

temporary glued configuration collapses into two pockets of asymptotic stability, as shown in Fig. 5(b). Each

of the two pockets has a deadlock of an edge as well as two edges which meet at the origin. This complicated
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geometry is responsible for the difficulties of stabilization by damping forces with indefinite matrix D.

The third configuration corresponds to an indefinite matrix K with trK > 0 and detK < 0, Fig. 5(c). In

this case the condition ν2 > ν2
d divides the domain of asymptotic stability into two parts, corresponding to

positive and negative ν. The intervals of ν-axis form edges of dihedral angles which end up with the deadlocks

at ν = ±νf and with the trihedral angles at ν = ±νd, Fig. 5(c). Qualitatively, this configuration does not

depend on the properties of the matrix D.

We see that the asymptotic stability domain of the non-conservative system (1) naturally incorporates not

only the interval of marginal stability of circulatory system (2) but also that of gyroscopic system (3) in such a

manner that they serve as singularities of its boundary. The imperfect reversible system is therefore intimately

related with the imperfect Hamiltonian one, whose domain of asymptotic stability we study in the next section.

3 A gyroscopic system with weak damping and circulatory forces

In 1879 Thomson and Tait showed that a statically unstable potential system, which has been stabilized by

gyroscopic forces could be destabilized by the introduction of small damping [4]. Later it has been observed

that many statically unstable gyropendulums enjoy robust stability at high speeds [22]. Since the idea that

damping is completely absent in a real system could not be accepted, it has been understood that the nature of

damping itself may be different from that assumed in the stationary damping model. In 1933 Smith introduced

a concept of rotating damping and showed on a planar model of a flexible rotor, that the critical angular velocity

depends on the ratio of the coefficients of stationary and rotating damping [6, 22]. Contrary to the stationary

damping, which is a velocity-dependent force, the rotating one is also proportional to the displacements by a

non-conservative way and thus contributes not only to the matrix D in equation (1), but to the matrix N as

well. This leads to a problem of perturbation of conservative gyroscopic system (3) by weak dissipative and

non-conservative positional forces, attracted recently new attention [19, 22, 23, 34, 35, 42, 44, 45, 46].

3.1 Stability of a conservative gyroscopic system

First we consider stability of gyroscopic system (3). In the absence of dissipative and circulatory forces (δ =

ν = 0), the characteristic polynomial (10) has four roots ±λ±, where

λ± =

√
−1

2
(trK + Ω2) ± 1

2

√
(trK + Ω2)2 − 4 detK. (44)

Analysis of these eigenvalues yields the following result.

Proposition 4. If detK > 0 and trK < 0, gyroscopic system (3) with two degrees of freedom is unstable

by divergence for Ω2 < Ω−
0

2
, unstable by flutter for Ω−

0

2 ≤ Ω2 ≤ Ω+
0

2
, and stable for Ω+

0

2
< Ω2, where the

critical values Ω−
0 and Ω+

0 are

0 ≤
√
−trK− 2

√
detK =: Ω−

0 ≤ Ω+
0 :=

√
−trK + 2

√
detK. (45)

If detK > 0 and trK > 0, the gyroscopic system is stable for any Ω.

If detK ≤ 0, the system is unstable.
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Figure 6: Stability diagram for the conservative gyroscopic system with trK < 0 and detK > 0 (left) and the

corresponding trajectories of the eigenvalues in the complex plane for the increasing parameter Ω > 0 (right).

We note that the last two statements are simply the theorems of Routh [5] and Thomson and Tait [4]

respectively. The remaining part of the proposition follows from equation (44), represented in the form

λ± =

√
−1

2

(
Ω2 − 1

2

(
Ω−

0

2
+ Ω+

0

2
))

± 1
2

√(
Ω2 − Ω−

0

2
) (

Ω2 − Ω+
0

2
)
. (46)

Indeed, at Ω = 0 there are in general four real roots ±λ± = ±(Ω+
0 ± Ω−

0 )/2 and system (3) is statically

unstable. With the increase of Ω2 the distance λ+ − λ− between the two roots of the same sign is getting

smaller. The roots are moving towards each other until they merge at Ω2 = Ω−
0

2
with the origination of a pair

of double real eigenvalues ±ω0 with the Jordan blocks, where

ω0 =
1
2

√
Ω+

0

2 − Ω−
0

2
= 4

√
detK > 0. (47)

Further increase of Ω2 yields splitting of ±ω0 to two couples of complex conjugate eigenvalues lying on the circle

Reλ2 + Imλ2 = ω2
0 . (48)

The complex eigenvalues move along the circle until at Ω2 = Ω+
0

2
they reach the imaginary axis and originate

a complex-conjugate pair of double purely imaginary eigenvalues ±iω0. For Ω2 > Ω+
0

2
the double eigenvalues

split into four simple purely imaginary eigenvalues which do not leave the imaginary axis, Fig. 6.

Thus, the system (3) with K < 0 is statically unstable for Ω ∈ (−Ω−
0 , Ω−

0 ), it is dynamically unstable for

Ω ∈ [−Ω+
0 ,−Ω−

0 ]∪ [Ω−
0 , Ω+

0 ], and it is stable (gyroscopic stabilization) for Ω ∈ (−∞,−Ω+
0 )∪(Ω+

0 ,∞), see Fig. 6.

The values of the gyroscopic parameter ±Ω−
0 define the boundary between the divergence and flutter domains

while the values ±Ω+
0 originate the flutter-stability boundary.

3.2 The influence of small damping and non-conservative positional forces

on the stability of a gyroscopic system

Let us establish a relationship between the one-dimensional stability domain of gyroscopic system (3) given by

Proposition 4, and the domain of asymptotic stability of imperfect Hamiltonian system (1) defined in the space
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Figure 7: For various Ω, bold lines show linear approximations to the boundary of the asymptotic stability

domain (white) of system (1) in the vicinity of the origin in the plane (δ, ν), when trK > 0 and detK > 0, and

condition (26) is fulfilled (upper row) or fails (lower row).

of the parameters δ, ν, and Ω by conditions (15)–(17) and (20).

Observing that inequality (17) is fulfilled for detK > 0 and inequality (15) simply restricts the region of

variation of δ to the half-plane δtrD > 0, we focus our analysis on conditions (16) and (20).

Let us consider the asymptotic stability domain in the plane of the parameters δ and ν in the vicinity of the

origin, assuming that Ω �= 0 is fixed. Taking into account the structure of coefficients (22) and leaving the linear

terms with respect to δ in the Taylor expansions of the functions ν±
cr(δ, Ω), we get the equations determining a

linear approximation to the stability boundary

ν =
trKD− trKtrD− trDλ2±(Ω)

2Ω
δ

=
2trKD + trD(Ω2 − trK) ± trD

√
(Ω2 + trK)2 − 4 detK

4Ω
δ, (49)

where the eigenvalues λ±(Ω) are given by formula (44).

For detK > 0 and trK > 0 the gyroscopic system is stable at any Ω. Consequently, the coefficients λ2
±(Ω)

are always real, and equations (49) define in general two lines intersecting at the origin, Fig. 7. Since trK > 0,

inequality (16) is satisfied for detD ≥ 0, and it gives an upper bound of δ2 for detD < 0. Thus, according to

conditions (15) and (20), a linear approximation to the domain of asymptotic stability near the origin in the

plane (δ, ν), is an angle between two lines (49), as shown in Fig. 7. With the change of Ω the size of the angle

is varying and moreover, the stability domain rotates as a whole about the origin.

When Ω → ∞, the size of the angle defined by equations (20) and (49) tends to π/2 in such a way that the

16



Acc
ep

te
d m

an
usc

rip
t 

stability domain fits one of the four quadrants of the parameter plane, as shown in Fig. 7 (right column). To

study the shape of the stability domain at Ω → 0 we note that

|2trKD − trKtrD| − |trD|
√

(trK)2 − 4 detK ≤ 0, (50)

if D satisfies condition (26). Consequently, the angle between the lines (49) tends to π, Fig. 7 (upper left). In

this case the domain of asymptotic stability spreads over two quadrants and contains the δ-axis. Otherwise,

the left side of inequality (50) is positive and at Ω → 0 the angle tends to zero, Fig. 7 (lower left). In these

conditions the stability domain always belongs to one quadrant and does not contain δ-axis. The latter means

that in the absence of non-conservative positional forces, gyroscopic system (3) with K > 0 cannot be made

asymptotically stable by damping forces with indefinite matrix D violating inequality (26), which is also visible

in the three-dimensional picture of Fig. 5(b).

The domain of asymptotic stability of imperfect Hamiltonian system (1) with K > 0 and D satisfying

inequality (26), in the space of the three parameters δ, ν, and Ω has the form of a dihedral angle with the Ω-axis

as its edge, as shown in Fig. 5(a). With the increase in |Ω|, the section of the domain by the plane Ω = const is

getting more narrow and is rotating about the origin so that the points of the parameter plane (δ, ν) that where

stable at lower |Ω| can lose their stability for the higher absolute values of the gyroscopic parameter. This

geometry of the stability domain describes the mechanism of gyroscopic destabilization of a statically stable

conservative system in the presence of damping and non-conservative positional forces.

To study the case when K < 0 we use expressions (45), (46), and (47), and write equations (49) in the form

ν =
Ω+

0

Ω

[
γ∗ +

trD
4

√
Ω2

Ω+
0

2 − 1
(√

Ω2 − Ω+
0

2 ±
√

Ω2 − Ω−
0

2
)]

δ, (51)

where

γ∗ :=
tr[K + (Ω+

0

2 − ω2
0)I]D

2Ω+
0

. (52)

Proposition 5. Let λ1(D) and λ2(D) be eigenvalues of D. Then,

|γ∗| ≤ Ω+
0

|λ1(D) + λ2(D)|
4

+ Ω−
0

|λ1(D) − λ2(D)|
4

. (53)

Proof. Indeed, using the Cauchy-Schwarz inequality, after a series of transformations we obtain

|γ∗| ≤ Ω+
0

|trD|
4

+
tr(K − trK

2 I)(D − trD
2 I)

2Ω+
0

≤ Ω+
0

|trD|
4

+
|λ1(K) − λ2(K)||λ1(D) − λ2(D)|

4Ω+
0

. (54)

Taking into account that |λ1(K) − λ2(K)| = Ω−
0 Ω+

0 , we get inequality (53). �
Analyzing expression (51) we find that it is real-valued when Ω2 ≥ Ω+

0

2
or Ω2 ≤ Ω−

0

2
. For sufficiently small

|δ| the first inequality implies stability condition (16), whereas the last inequality contradicts it. Consequently,

the domain of asymptotic stability is determined by the inequalities (15) and (20), and its linear approximation

in the vicinity of the origin in the (δ, ν)-plane has the form of an angle with the boundaries given by equations

(51). For Ω tending to infinity the angle expands to π/2, whereas for Ω = Ω+
0 or Ω = −Ω+

0 it degenerates to a
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Figure 8: For various Ω, bold lines show linear approximations to the boundary of the asymptotic stability

domain (white) of system (1) in the vicinity of the origin in the plane (δ, ν), when trK < 0 and detK > 0.

single line ν = δγ∗ or ν = −δγ∗ respectively. For γ∗ �= 0 these lines are not parallel to each other, and due to

inequality (54) they never stay vertical, see Fig. 8 (left). This degeneration can, however, be removed already

in the second-order approximation

ν = ±δγ∗ ± trD
√

ω2
0 detD− γ2∗
2Ω+

0

δ2 + O(δ3). (55)

If the radicand in equations (55) is positive, they describe two smooth curves touching each other at the origin

in such a way that the stability domain has a form of a cusp, shown by dashed lines in Fig. 8 (left).

Therefore, gyroscopic stabilization of statically unstable conservative system with K < 0 can be improved

up to asymptotic stability by small damping and circulatory forces, if their magnitudes are in the narrow region

with the boundaries depending on Ω. The lower desirable absolute value of the critical gyroscopic parameter

Ωcr(δ, ν) the poorer choice of the appropriate combinations of damping and circulatory forces.

The new critical value of the gyroscopic parameter Ωcr(δ, ν) can deviate significantly from that of the

conservative gyroscopic system. To estimate it, we consider the formula (51) in the vicinity of the points

(0, 0,±Ω+
0 , ) in the parameter space. Leaving only the terms, which are constant or proportional to

√
Ω ± Ω+

0

in both the numerator and denominator and assuming ν = γδ, we write the equations separately for positive

and negative Ω

Ω+
cr(γ) = Ω+

0 + Ω+
0

2
(ω0trD)2

(γ − γ∗)2 + o((γ − γ∗)2), (56)

Ω−
cr(γ) = −Ω+

0 − Ω+
0

2
(ω0trD)2

(γ + γ∗)2 + o((γ + γ∗)2). (57)

It is remarkable that equations (56) and (57) have the form Z = X2/Y 2, canonical for the Whitney umbrella.

The domain of asymptotic stability of an imperfect Hamiltonian system (1) with K < 0 is shown in Fig. 9(a).

The parts of the Ω-axis, which correspond to the stability domain of the unperturbed gyroscopic system, form

an edge of the dihedral angle singularity of the stability boundary. The angle becomes more acute near the

points ±Ω+
0 , at which it degenerates with the origination of the deadlock of an edge singularity. Qualitatively,

the domain of asymptotic stability given by inequalities (15) and (20) consists of two pockets of two Whitney

umbrellas, selected by the condition δtrD > 0. Equations (51) are a linear approximation to the stability
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Figure 9: Blowing the domain of gyroscopic stabilization of a statically unstable conservative system with K < 0

up to the domain of asymptotic stability with the Whitney umbrella singularities (a). The limits of the critical

gyroscopic parameter Ω±
cr as functions of γ = ν/δ (b).

boundary in the vicinity of the Ω-axis. Moreover, they describe in an implicit form a limit of the critical

gyroscopic parameter Ωcr(δ, γδ) when δ tends to zero, as a function of the ratio γ = ν/δ, Fig. 9(b).

As it follows form the expressions (51), (56), and (57), most of the directions γ give the limit value |Ω±
cr(γ)| >

Ω+
0 with an exception for γ = γ∗ and γ = −γ∗, so that Ω+

cr(γ∗) = Ω+
0 and Ω−

cr(−γ∗) = −Ω+
0 . This means that

the critical value of the gyroscopic parameter Ω generally jumps up for infinitely small δ and ν, which is

characteristic of the destabilization paradox in the Ziegler form. This effect illustrates high sensitivity of the

critical parameters at the onset of flutter to small imperfections (an important example is the behavior of

the critical angular velocity of a rotating disk of the squealing automotive brake [44]). As it is seen from the

expression following from the characteristic polynomial (10)

ωcr(δ, Ω, ν) = ±ω0

√
1 + 2

Ωγ − Ω+
0 γ∗

ω2
0trD

= ±ω0 ± Ω+
0 (γ − γ∗) + γ∗(Ω − Ω+

0 )
trD

+ o
(
γ − γ∗, Ω − Ω+

0

)
, (58)

the critical frequency of flutter also demonstrates an abrupt change due to the non-Hamiltonian perturbations

of a gyroscopic system.

Therefore, in the presence of small damping and non-conservative positional forces, gyroscopic forces can both

destabilize a statically stable conservative system (gyroscopic destabilization) and stabilize a statically unstable

conservative system (gyroscopic stabilization). The first effect is essentially related with the dihedral angle

singularity of the stability boundary, whereas the second one is governed by the Whitney umbrella singularity.

In the next section we demonstrate how these singularities appear in the mechanical systems described by the

modified Maxwell-Bloch equations [20, 22, 34, 42, 45].
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Figure 10: Two configurations of the asymptotic stability domain of the modified Maxwell-Bloch equations for

κ > 0 (a) and κ < 0 (b) corresponding to gyroscopic destabilization and gyroscopic stabilization respectively.

4 The modified Maxwell-Bloch equations and its applications

The modified Maxwell-Bloch equations are the normal form for rotationally symmetric, planar dynamical sys-

tems [20, 34, 42]. They are a particular case of equation (1) for m = 2, D = I, and K = κI, and thus can be

written as a single differential equation with the complex coefficients

ẍ + iΩẋ + δẋ + iνx + κx = 0, x = x1 − ix2, (59)

where parameter κ corresponds to potential forces. This simple equation is important in studying some problems

of gyrodynamics, such as tippe top inversion and the rising egg phenomena [22, 34, 42, 45].

According to stability conditions (15)–(19) the zero solution of the modified Maxwell-Bloch equations is

asymptotically stable if

δ > 0, Ω >
ν

δ
− δ

ν
κ, (60)

which also agrees with the Bilharz criterion applied to the complex polynomial λ2 + (δ + iΩ)λ + κ + iν [48].

Since the matrices D and K cannot be indefinite, then according to the results of the previous section the

asymptotic stability domain of equation (59) has one of the two typical configurations, shown in Fig. 10. For

κ > 0 the domain of asymptotic stability is a dihedral angle with the Ω-axis serving as its edge, Fig. 10(a). The

sections of the domain by the planes Ω = const are contained in the angle-shaped regions with the boundaries

ν =
Ω ±√

Ω2 + 4κ

2
δ. (61)

The domain shown in Fig. 10(a) is a particular case of that depicted in Fig. 5(a). According to the Merkin

theorem [10], for K = κI the interval of stability of a circulatory system [−νf , νf ] shown in Fig. 5(a) shrinks

to a point so that at Ω = 0 the angle is bounded by the lines ν = ±δ
√

κ and thus it is less than π. The

domain of asymptotic stability is twisting around the Ω-axis in such a manner that it always remains in the

half-space δ > 0, Fig. 10(a). Consequently, the system stable at Ω = 0 can become unstable at greater Ω, as
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Figure 11: The Crandall gyropendulum and its domain of asymptotic stability.

shown in Fig. 10(a) by the dashed line. The larger magnitudes of circulatory forces, the lower |Ω| at the onset

of instability.

When κ > 0 is decreasing, the hypersurfaces forming the dihedral angle move towards each other. At κ = 0

they are temporarily glued along the line ν = 0 and for κ < 0 a new configuration is born, Fig. 10(b). The

new domain of asymptotic stability consists of two non-intersecting parts given by the pockets of two Whitney

umbrellas. The absolute values of the gyroscopic parameter Ω in the stability domain are always not less than

Ω+
0 = 2

√−κ. As a consequence, the system unstable at Ω = 0 can become asymptotically stable at greater Ω,

as shown in Fig. 10(b) by the dashed line.

4.1 The Crandall gyropendulum

The Crandall gyropendulum is an axisymmetric rigid body pivoted at a point O on the axis as shown in Fig. 11.

When the axial spin γ is absent, the upright position is statically unstable. When γ is nonzero the body becomes

a gyroscopic pendulum. Its primary parameters are its mass m, the distance L between the mass center and

the pivot point, the axial moment of inertia Ia, and the diametral moment of inertia Id about the pivot point;

the gravity acceleration is denoted by g [22].

It is assumed that a drag force proportional to the linear velocity of the center of mass of the gyropendulum

acts at the center of mass to oppose that velocity (stationary damping with the coefficient bs). Additionally,

it is assumed that a rigid sphere concentric with the pendulum tip O, is attached to the pendulum and rubs

against a fixed rub plate. The gyropendulum is supported frictionlessly at O, while a viscous friction force acts

between the larger sphere and the rub plate, being responsible for the rotating damping with the coefficient

br. The linearized equations of motion for the gyropendulum in the vicinity of the vertical equilibrium position

derived in [22] have the form (59) with the coefficients

δ = σ + ρ, Ω = ηγ, κ = −α2, ν = ργ, (62)
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where the dimensionless parameters of the system are given by the expressions

η =
Ia

Id
, σ =

bs

Id
, ρ =

br

Id
, α2 =

mgL

Id
. (63)

The parameter η is responsible for the shape of the gyropendulum: for η < 1 the pendulum is a rod-like, and

for η > 1 it is a disk-like. The parameters σ and ρ correspond to the stationary and rotating damping, α is the

non-spinning pendulum frequency.

According to the expressions (60) and (62), the asymptotic stability domain of the Crandall gyropendulum

is given by the conditions

γ > γ+
cr(ρ, σ), γ < γ−

cr(ρ, σ), σ + ρ > 0, (64)

where the critical values of the spin γ as a function of the two damping parameters are

γ±
cr(ρ, σ) = ± (σ + ρ)α√

−ρ2 + ρ2η + ρησ
. (65)

Equations (65) describe two surfaces in the space of the parameters (ρ, σ, γ). Both surfaces have a singularity

Whitney umbrella at the points (0, 0,±γ+
0 ), where γ+

0 = 2
√−κ/η = 2α/η is the critical spin of the undamped

system (σ = ρ = 0). The surface γ+
cr(ρ, σ) is shown in Fig. 11 for α = 1 and η = 2. The inequality σ + ρ > 0

selects the stable pocket of the Whitney umbrella. As it follows form the expressions (65), Ω+
cr ≥ Ω+

0 and

Ω−
cr ≤ −Ω+

0 . The critical loads coincide only for the specific ratios of the coefficients of the stationary and

rotating damping
bs

br
=

σ

ρ
=

2 − η

η
=

Ω+
0

ω0
− 1, (66)

where ω0 = α is the critical frequency of the undamped pendulum [22].

4.2 Rising egg

When one spins sufficiently fast a hard-boiled egg with its long axis horizontal, the egg rises from the horizontal

state to a vertical state as shown in Fig. 12. This effect caused by the combined action of the dissipative,

gyroscopic, and non-conservative positional forces is known as the rising egg phenomenon [42].

In [42] the egg of mass M is modelled by a prolate spheroid surface with its equatorial radius less than

the polar radius R, so that their ratio α < 1. The mass distribution is assumed to be symmetric, that is the

center of mass coincides with the geometric center, the moments of inertia about the two principal axes in

the equatorial plane are equal to I, and the moment of inertia about the axis of symmetry is Ik. The gravity

acceleration is denoted by g. It is assumed that the surface frictional force exerted on the body at the contact

point is proportional with the coefficient c to the velocity of the contact point on the rigid body relative to the

center of mass [42].

With the dimensionless inertia ratio σ, Froude number Fr, mass μ, and friction factor η

σ =
Ik

I
, Fr =

γ2R

g
, μ =

MR2

I
, η =

cR2

Iγ
, (67)
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Figure 12: The rising egg and the domain of asymptotic stability of its risen state.

the equations of motion linearized about the risen state with the spin rate γ are in the form of the modified

Maxwell-Bloch equations (59) with the coefficients

δ = η, Ω = −α, κ = μ
α2 − 1

Fr
, ν =

α3η

σ
. (68)

Since α < 1, the coefficient κ < 0 and in the absence of dissipation (η = ν = 0), the gyroscopic system is

stable for Ω2 > −4κ, which is equivalent to the inequality

Fr > Fr0 =
4μ(1 − α2)

α2
. (69)

When dissipative and circulatory forces are acting, then, according to conditions (60) and expressions (68) the

risen state is asymptotically stable if η > 0 and

Fr > Frcr = Fr0
α2η2

4ν(αη − ν)
≥ Fr0. (70)

At the given α and μ the critical Froude number of the damped system Frcr is a function of the damping

coefficient η and inertia ratio σ. However, due to the relation ν = α3η/σ we consider it as a function of the

magnitudes of damping and circulatory forces Frcr = Frcr(η, ν).

The asymptotic stability domain of the risen state in the space of the parameters η, ν, and Fr is shown in

Fig. 12 for μ = 1 and α = 1/2. It has typical singular form implying that Frcr ≥ Fr0, where the equality is

attained only for ν = ηα/2, which is equivalent to σ = 2α2.

4.3 Tippe top

The most common geometric form of tippe top is a cylindrical stem attached to a truncated ball [34, 35]. On a

flat surface, the tippe top rests stably with its stem up (non-inverted state). However, spun fast enough on its

blunt end, the tippe top inverts, and spins on its stem (inverted state) [34].

In [34] the tippe top is modelled as a ball of radius R and mass M on a fixed plane, see Fig. 13 (left). The

mass distribution of the ball is inhomogeneous, but symmetric about an axis through the ball’s geometric center.

Thus, the ball’s center of mass is located on the axis of symmetry, but at a distance eR from the geometric
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Figure 13: The tippe top (left) and the domains of asymptotic stability of its non-inverted (center) and inverted

(right) states.

center, where e, |e| ≤ 1 is the center of mass offset. If in the non-inverted state the center of mass is above the

geometric center, then e > 0; if below, e < 0. The moment of inertia about the axis of symmetry is denoted

by Ik. The inertias about the two other principal axes attached to the center of the ball are equal to I. The

gravity acceleration is g. It is assumed that the surface frictional force at the contact point is proportional with

the coefficient c to the velocity of the contact point on the rigid body relative to the center of mass [34].

The equations of motion linearized about the non-inverted state with the spin rate γ are in the form of the

modified Maxwell-Bloch equations (59) with the coefficients

δ = − (1 + e)2η
−1 + e2μ

, Ω =
σ

−1 + e2μ
, κ =

Fr−1eμ

−1 + e2μ
, ν =

η(1 + e)
−1 + e2μ

, (71)

where the dimensionless inertia ratio σ, Froude number Fr, mass μ, and friction coefficient η are

σ =
Ik

I
, Fr =

γ2R

g
, μ =

MR2

I
, η =

cR2

Iγ
. (72)

Linearization about the inverted state yields the modified Maxwell-Bloch equations (59) with the coefficients

δ = − (1 − e)2η
−1 + e2μ

, Ω =
σ(1 + e − 2μe2)

(1 − e)(−1 + e2μ)
, κ =

−Fr−1eμ

−1 + e2μ
, ν =

η(1 + e)
−1 + e2μ

. (73)

Since the eccentricity |e| < 1 we restrict our subsequent considerations to the case 1 − e2μ > 0. Then, in

the absence of dissipation (η = 0), the non-inverted state with e < 0, is stable for all Froude numbers because

κ > 0. When damping forces are acting, then according to stability conditions (60) the domain of asymptotic

stability of the non-inverted state is a dihedral angle in the space of parameters δ, ν, and Fr, as shown at the

central picture in Fig. 13 for μ = 1, e = −1/5, and σ = 1/2. The boundaries of the stability domain are given

by the expressions

ν =
1
2

Fr σ ± √
(Frσ)2 + 4eμFr (−1 + e2μ)

Fr (−1 + e2μ)
δ. (74)

Since e < 0 and 1− e2μ > 0, the radicand in expressions (74) is always positive and for every Fr they define two

lines intersecting at the origin, see Fig. 13. The angle between the lines is getting smaller with the increase in

Fr. That means that statically stable non-inverted state becomes unstable for sufficiently large Froude number

Fr >
δ2eμ

ν(−σδ + ν(−1 + e2μ))
. (75)
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As it has been shown in [34] there exists a heteroclinic connection between the non-inverted and inverted

states of tippe top. Thus, the non-inverted state which has lost its stability, can be transferred to the inverted

state. In the absence of dissipation the inverted state is stable for Ω2 > −4κ, which is equivalent to the

inequality

Fr > Fr0 :=
4μe(1 − e)2(−1 + μe2)

σ2(1 + e − 2μe2)2
. (76)

We note that Fr0 > 0 because e < 0 and 1 − e2μ > 0. If the damping is taken into account then according to

stability conditions (60) the inverted state is asymptotically stable for δ > 0 and

Fr > Frcr := Fr0
δ2σ2(1 + e − 2μe2)2

4ν(1 − e)(−1 + μe2)(σδ(1 + e − 2μe2) + ν(1 − μe2)(1 − e))
≥ Fr0, (77)

where the equality is attained only at

ν =
(

σ

2(1 − μe2)
− σ

1 − e

)
δ. (78)

The domain of asymptotic stability of the inverted state is shown in the right picture of Fig. 13 for μ = 1,

e = −1/5, and σ = 1/2. It has a recognisable form of the half of the Whitney umbrella.

Conclusions

For a general linear mechanical system with two degrees of freedom the effect of small damping and non-

conservative positional forces on the stability of a gyroscopic system as well as the effect of small gyroscopic

and damping forces on the stability of a circulatory system has been studied.

It was found that the stability boundary of both the imperfect Hamiltonian system and the imperfect

reversible one possesses singularities such as Whitney umbrella, and dihedral and trihedral angles. Dihedral angle

singularity is responsible for the loss of stability by a gyroscopic system, which is statically stable in the absence

of gyroscopic forces, due to action of the small damping and circulatory forces. Whitney umbrella singularity

is the reason for the destabilization paradox appearing both in the circulatory systems with weak velocity-

dependent forces and in the gyroscopically stabilized but statically unstable conservative systems perturbed by

small damping and circulatory forces. The Crandall gyropendulum, rising egg, and tippe top, considered as

mechanical examples, confirm the conclusions of the theory.

As it has been noted by Sevryuk [2] there is a very close similarity between the behavior of solutions of

reversible systems and that of Hamiltonian ones. The destabilization paradox due to breaking the Hamiltonian

and reversible symmetry remarkably reveals both the similarity and difference between the two types of systems.
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[7] H. Ziegler, Die Stabilitätskriterien der Elastomechanik. Ingenieur-Archiv. 20, 49–56 (1952).

[8] V.V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability. Pergamon, Oxford (1963).

[9] G. Herrmann and I.C. Jong, On the destabilizing effect of damping in nonconservative elastic systems.

ASME J. of Appl. Mechs. 32(3), 592–597 (1965).

[10] D.R. Merkin, Introduction to the Theory of Stability. Springer, Berlin (1997).

[11] V.M. Lakhadanov, On the stabilization of potential systems. Prikl. Mat. Mekh. 39(1), 53-58 (1975).

[12] A.V. Karapetyan, On the stability of nonconservative systems. Vestn. MGU. Ser. Mat. Mekh. 4, 109-113

(1975).

[13] I.P. Andreichikov and V.I. Yudovich, The stability of visco-elastic rods. Izv. Acad. Nauk SSSR. MTT. 1,

150–154 (1975).

[14] N.V. Banichuk, A.S. Bratus, A.D. Myshkis, Stabilizing and destabilizing effects in nonconservative systems.

PMM U.S.S.R. 53(2), 158–164 (1989).

[15] A.P. Seyranian, Destabilization paradox in stability problems of non-conservative systems. Advances in

Mechanics. 13(2), 89–124 (1990).

[16] R.S. MacKay, Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation.

Phys. Lett. A 155, 266–268 (1991).

[17] A.N. Kounadis, On the paradox of the destabilizing effect of damping in nonconservative systems. Intern.

J. of Nonl. Mechs. 27, 597–609 (1992).

26



Acc
ep

te
d m

an
usc

rip
t 

[18] G. Haller, Gyroscopic stability and its loss in systems with two essential coordinates. Intern. J. of Nonl.

Mechs. 27, 113–127 (1992).

[19] V.F. Zhuravlev, Nutational vibrations of a free gyroscope. Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela 6,

13–16 (1992).

[20] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, T.S. Ratiu, Dissipation induced instabilities. Annales de

l’Institut Henri Poincaré. 11(1), 37–90 (1994).
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