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Abstract

This paper is devoted to study some properties of an extension of the well-known frac-
tional Brownian motion to the multivariate case. Following recent works from Lavancier
et. al., we study the covariance structure of the multivariate fractional Gaussian noise. We
evaluate several parameters of the model that allow to control the correlation structure at
lag zero between all the components of the multivariate process. We particularly focus on
two cases for which we can relate characteristic parameters of the covariance function to
parameters of the stochastic representation of the processes. These cases are the causal
case, a direct multivariate generalization of Mandelbrot&Van Ness representation, and the
well-balanced case which adds to the previous case an anti-causal filtering of a Brownian
motion. The characterization of the covariance function is then used to study the multivari-
ate fractional Gaussian noise, defined as the increment process of the multivariate fractional
Brownian motion. We study the covariance structure as well as the spectral structure of this
multivariate stationary process. We exhibit the intriguing facts that two fractional Gaussian
noise may be long-range interdependent when only one is long-range dependent. We then
perform a wavelet analysis of the multivariate fractional Brownian motion, and show that
the wavelet analysis may destroy the long-range interdependence if the wavelet is properly
chosen.

1 Introduction

Long-range dependence or memory is the accepted term to design long-range correlations in
time series. It is defined as the non integrability of the correlation function due to a very slow
decay at infinite lags. This slow decay is usually modeled as a power law τα−1 with an exponent
α lower than one for long-range dependence. In the frequency domain, this corresponds to the
divergence of the power spectrum at small frequencies, again with a power law 1/fα. This type
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of behavior may lead to dramatic difficulties when it comes to estimate some parameters from
the long-range correlated data. Indeed, rates of convergence of usual estimates are much slower
than the usual 1/

√
N rate found for classical mixing processes. Furthermore, this property is

not rare at all and is found in many different fields.
In functional Magnetic Resonance Imaging (fMRI), measurements taken from one area of the

brain are well modeled by a long-range dependent Gaussian process [3]. In order to study the flow
of information using fMRI, neuroscientists have access to multiple correlated measurements. In
network traffic monitoring, several measurements can be performed such as IP packet or bytes,
and it is now well established that corresponding times series are long-range dependent [1].
Other examples may be found in economy, in biology, in physics, . . . Thus, there is a need to
develop models of multivariate long-range dependent processes. Models of discrete time series
have already been studied recently as generalization of FARIMA models [2, 20].

Here, we will concentrate on a continuous time model recently introduced in [10, 16] as a
generalization of fractional Brownian motion (fBm) to multivariate fractional Brownian motion
(mfBm). The definition given in [10] concerns a wide scope generalization of the fBm where
self-similarity becomes an operator self-similarity for the multivariate case. The authors estab-
lish stochastic integral representations of operator self-similar multivariate Gaussian processes
with stationary increments, and study some of their properties. Lavancier et al. in [16] con-
centrate on the covariance structure of multivariate processes that are jointly self-similar, and
possess stationary increments. Joint self-similarity can be viewed as a particular case of opera-
tor self-similarity when the operator is diagonal. In the particular case of Gaussian processes,
Lavancier and co-workers then link their general findings with the representations established by
Didier&Pipiras. Note that the work in these two papers have close connections with the work
of Stoev&Taqqu [18] which concerns stochastic integral representations of the fBm with a time
varying Hurst index.

The aim of the paper is to study further the multivariate fractional Brownian motion in the
case of joint self-similarity based on the moving-average stochastic integral representation of [10].
In this case, a mfBm is a zero mean Gaussian process, with stationary increments, almost surely
zero at time zero, that satisfies x(λt) = λHx(t) for all t ∈ R, all λ > 0, where H is a diagonal
matrix. In section 2 we will review some of its known properties. The process is evidently
parameterized by the matrix parameter H but also by two matrices A− and A+ that control
the correlation structure between the components of the process. The covariance structure is
known since the work of Lavancier et al. However, the covariance depends on the parameters
in such a way that it is difficult to generate sample paths with this covariance function. We
thus propose another parameterization of the covariance function in order to ease the synthesis
step of mfBm. This is done by linking the parameters (matrices A+, A−,H) to the correlation
between the components at times 1. Even if the choice is arbitrary, it allows to control directly
the correlation. Furthermore, we will not solve the problem for any matrices A+, A− but we
will study two cases called the causal case for which A− = 0 and the well-balanced case for
which A+ = A−. A discussion concerning a more general case will be provided in section 5. The
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parameterization we adopt is through the definition of a matrix A which needs to be positive-
semidefinite. We give a necessary condition for semidefinite-positivity which can be used to
invalidate the model. In section 3 we will concentrate on the increments of the mfBm. We
will evaluate the correlation structure as well as the spectral density matrix of the process. In
particular, we will exhibit long-range properties in the cross-correlation of different components
or equivalently divergence at the zero frequency in the cross-spectral densities. We will also
evaluate the coherence function between two components and relate it to the condition of non
negativity mentioned above. We will continue the analysis of the process by analysing it through
the lens of the wavelet transform. It is well-known now that fractality and long-range dependence
may be adequately taken into account by wavelets. Section 4 is devoted to this analysis where
we exhibit the ability of the wavelet analysis to reveal fractality (constant relative bandwidth
filter bank) and to destroy long-range dependence if the wavelet is correctly chosen (nullity of
the first moments). To conclude the paper, we will illustrate the process by depicting some
sample paths, by discussing some points concerning more general models and by giving some
ideas for further research.

2 Moving-average multivariate fractional Brownian motion

2.1 Model and properties

The fractional Brownian motion, as defined by Mandelbrot&Van Ness [17] is a causal linear
transform of a Wiener process, with a kernel that respects self-similarity and which is param-
eterized by the self-similarity index H ∈ (0, 1). This transform can be generalized in several
ways, including time-varying index and non causal integration [18], or operator self-similarity
[10]. Here, we concentrate on particular cases of the latter, and study the multivariate fractional
Brownian motion (mfBm) defined via an integration of the mixing of independent Wiener pro-
cesses. This comes after the work of Didier&Pipiras in [10] when we restrict the operators
involved to be diagonal matrices. Let x(t) of dimension p be defined as

x(t) =

∫
(kH(u, t)A+ + lH(u, t)A−)dW (u) (1)

where W is a vector of p independent standardized Wiener processes or Brownian motions, A+

and A− are p × p matrices of reals, H is a diagonal matrix of parameters Hj ∈ (0, 1),∀j =

1, . . . , p, kH(u, t) is a matrix of kernels that reads (t− u)
H−1/2
+ − (−u)H−1/2

+ and lH(u, t) reads

(u − t)
H−1/2
+ − (u)

H−1/2
+ . In this notation, (a)+ = max(a, 0) and tH is understood as the

exponential of a matrix exp(H log(t)). The terms −(±u)H−1/2
+ insure that the mfBm is almost

surely zero at time zero. As seen in the stochastic integral representation (1) of the mfBm,
x(t) is a multivariate non-stationary Gaussian process with stationary increments. Moreover,
the components of x(t) are correlated, and the structure of the correlation is inherited from the
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presence of the mixing matrices A+ and A−. The correlation structure is sufficient to completely
determine the process since it is Gaussian with zero mean (as a linear transform of a zero mean
Gaussian process).

2.2 Covariances and cross-covariances

The following analysis relies heavily on the paper of Lavancier et al., [16]. In this paper, the
authors exhibit the general structure of the covariance of a zero mean multivariate self-similar
process, that is a process that satisfies x(λt) = λHx(t) (in the sense of finite-dimensional dis-
tributions), where H is a diagonal matrix. As a particular case, the covariance of the mfBm is
evaluated directly from the integral representation of Didier&Pipiras [10].

Let rjk(s, t) = E[xj(s)xk(t)] denote the cross-covariance of the components j and k of x.
For the sake of simplicity, let Bjk = B(Hj + .5,Hk + .5) where B(x, y) is the beta function.
Let σj, j = 1, . . . , p be positive numbers, and ρjk, j = 1, . . . , p, k > j be real numbers in [−1, 1].
Among all possible models based on (1), our objective is to concentrate ourselves on those
allowing us to parameterize the matrices A+ and A− only in terms of σj = E[xj(1)

2] and
σjσkρjk = E[xj(1)xk(1)] (for j, k = 1, . . . , p). From proposition 3.1 of Lavancier et al., [16], it
consists in finding A+ and A− such that

σjσkρjk =
Bjk

sin(π(Hj +Hk))
(Ajk +Akj) (2)

A = cos(πH)A+A
t
+ +A−A

t
− cos(πH)− sin(πH)A+A

t
− cos(πH)− cos(πH)A+A

t
− sin(πH)(3)

where cos(πH) and sin(πH) are diagonal matrices, with jth diagonal term defined as cos(πHj)
and sin(πHj), and where this equation is valid only if Hj + Hk 6= 1. In general, equation (3)
cannot be solved to determine explicitly A+ and A−. In this paper, we mainly focus on two
particular cases: the causal case where A− = 0 and the well-balanced case where A+ = A−. In
the causal case, the integral representation is a direct generalization of the integral representation
of Mandelbrot&Van Ness to the multivariate case. The well-balanced case by Stoev&Taqqu in
one dimension [18], corresponds to A+ = A−. More general cases will be discussed in section 5.
Note that in the well-balanced case, the existence of the integral representation is subjected to
the restriction Hi 6= 1/2,∀i = 1, . . . , p. This point is further discussed in section 2.3 below.

Theorem 2.1 of [16] states that two different cases have to be considered when evaluating
the covariance, namely Hj +Hk 6= 1 and Hj +Hk = 1. We will show here that these two cases
can be merged for the causal and the well-balanced mfBm. Before stating our first result let us
define the matrix A:

Causal case A− = 0:

Ajj =
σ2j sin(πHj)

Bjj
(4)
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Ajk =





σjσkρjk sin(π(Hj +Hk))

(cos(πHj) + cos(πHk))Bjk
if Hj +Hk 6= 1

2σjσkρjk
(sin(πHj) + sin(πHk))Bjk

if Hj +Hk = 1

(5)

Well-balanced case A− = A+:

Ajj =
σ2j sin(πHj)

2(1− sin(πHj))Bjj
(6)

Ajk =





σjσkρjk sin(π(Hj +Hk))

2( cos(πHj) + cos(πHk)− sin(π(Hj +Hk)))Bjk
if Hj +Hk 6= 1

σjσkρjk
( sin(πHj) + sin(πHk)− 2)Bjk

if Hj +Hk = 1

(7)

Note that the restriction that none Hurst parameters should be equal to 1/2 in the well-balanced-
case appears clearly in the matrix definition, since this case would lead to undefined entries. We
can then state the following proposition:

Proposition 1 if A is positive-semidefinite, the process x(t) defined by

x(t) =

∫
kH(u, t)A+dW (u) in the causal case (8)

x(t) =

∫
(kH(u, t) + lH(u, t))A+dW (u) in the well-balanced case (9)

where A+ is a square root of A, i.e. A = A+A
t
+, is a vector of p correlated fBm of parameters

Hj, j = 1 . . . , p and the parameterization of the matrix A is such that rjj(1, 1) = E[xj(1)
2] = σ2j

and rjk(1, 1) = E[xj(1)xk(1)] = σjσkρjk.

The proof of this proposition is immediate and is a direct use of theorem 2.1 and proposition
3.1 of [16] in the restricted cases considered here. Basically, the covariance is evaluated directly
from the integral representation. The diagonal form of the kernel allows an easy evaluation.
Note that the matrix A needs to be positive-semidefinite. This will be discussed later.

The covariance matrix of the process can then be parameterized as follows. We introduce
the function wjk(t) for t ∈ R, which is defined as

wjk(t) =

{
ckj(t)|t|Hj+Hk if j = k or j 6= k and Hj +Hk 6= 1
|t|+ fjkt log |t| if j 6= k and Hj +Hk = 1.

(10)
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where cjk(t) = cjk1R+(t) + ckj1R−(t) and where
Causal case A− = 0:

cjk =
2cos(πHj)

cos(πHj) + cos(πHk)
(11)

fjk =
2(Hk −Hj)

Bjk(sin(πHj) + sin(πHk))

=
2

π tan(πHj)
= − 2

π tan(πHk)
= −fkj. (12)

Well-balanced case A− = A+:

cjk = 1 (13)

fjk = 0. (14)

Equipped with these definitions, we state the following:

Proposition 2 For (j, k) ∈ {1, . . . , p}2 and (Hj ,Hk) ∈ (0, 1)2, the covariance between the jth
and the kth component of a mfBm reads

rjk(s, t) =
σjσkρjk

2

{
wkj(s) + wjk(t)− wjk(t− s)

}
. (15)

Once again, the proof of this result is a direct application of proposition 1 above and of
theorem 2.1 in [16]. Several comments can now be made from this result.

• For j = 1, . . . , p, the j-th component xj(t) of x(t) is a fractional Brownian motion, and we
recover from (15) the well-known form of the covariance of a scalar fBm

rjj(s, t) =
σ2j
2

{
|s|2Hj + |t|2Hj − |t− s|2Hj

}
.

where we have set ρjj = 1 of course.

• Then, note that Ajj can be obtained from Ajk when j = k and ρjj = 1. Note also that
when Hj = Hk, cjk(t) = cjk = 1. Thus, in this particular case, the cross-covariance
function is proportional to the cross-covariance function of a fBm with Hurst parameter
Hj.

• The limit of Ajk whenHj+Hk → 1 is equal to the definition of Ajk whenHj+Hk = 1. This
can be easily verified using elementary trigonometric identities. For example in the causal
case, omitting σ’s and ρ’s, Ajk can be written as sin(π(Hj +Hk)/2)/ cos(π(Hj −Hk)/2)
whereas Ajj writes 1/( sin(π(Hj +Hk)/2). cos(π(Hj −Hk)/2)). Thus Ajk for Hj +Hk = 1
could have been defined by continuity.
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• In the same spirit, the form of the covariance for Hj+Hk 6= 1 converges as Hj+Hk → 1 to
the form of the covariance obtained for Hj +Hk = 1. This is evident in the well-balanced
case since for Hj + Hk 6= 1, wjk(t) = |t|Hj+Hk and for Hj + Hk = 1, wjk(t) = |t|. For
the causal case, the proof of the assertion needs some more care. First it is easy to prove
that (Hj +Hk − 1)ckj(t) → fjkSign(t) when Hj +Hk → 1. For this expand cos(πHk) =
− cos(π(Hj +Hk − 1) − πHj) as cos(πHj) + π sin(πHj)(Hj +Hk − 1) + o(Hj +Hk − 1)
and remember that fjk = −fkj. Then, let α = Hj +Hk. Note that from eq. (11) we have
cjk(t) + ckj(t) = 2. Then,

2rij(s, t)

σjσkρjk
= cjk(s)|s|α−1 + ckj(t)|t|α−1 − ckj(t− s)|t− s|α−1

= (2− ckj(s))|s|+ ckj(t)|t| − ckj(t− s)|t− s|
+ (2− ckj(s))|s|α−1 − |s|) + ckj(t)|t|α−1 − |t|)− ckj(t− s)(|t− s|α−1 − |t− s|)

It is easy to show that (2 − ckj(s))|s| + ckj(t)|t| − ckj(t − s)|t − s| = |s| + |t| − |t − s|.
Moreover, ckj(t)(|t|α−1 − |t|) → fjkSign(t)|t| log |t| = fjkt log |t| which concludes the proof
of the assertion. Thus, the case Hj +Hk = 1 can be defined by continuity from the case
Hj +Hk 6= 1.

• In the well-balanced case A+ = A−, the covariance function takes the simple expression

rjk(s, t) =
σjσkρjk

2
(|s|Hj+Hk + |t|Hj+Hk − |t− s|Hj+Hk).

This result is due to the time reversibility ot the mfBm when A+ = A−, as observed by
Didier&Pipiras in [10]. Time reversibility is clearly observed in the integral representa-
tion (1) when A+ = A−, but this condition is absolutely not necessary to insure time
reversibility (see [10] for more details and a necessary and sufficient condition on the mix-
ing matrices). Note finally that in the case A− = 0, the process is not time reversible, and
this is reflected in the more complicated structure of the covariance function.

2.3 On the validity of the stochastic representation

Didier&Pipiras give conditions for the existence of the representation. For the diagonal operator
self-similarity considered here, the condition of existence of the time representation we use is
that Hi 6= 1/2,∀i = 1, . . . , p.

However, in the causal case, this condition can be relaxed since representation given in eq.
(8) is valid. Consider Bc,il(t) =

∫
kHi

(u, t)dWl(u). Since H is diagonal, the kernel matrix kH
is also diagonal and the process may be written x(t) =

∑p
l=1A+,ilBc,il(t). What happens to

Bc,il(t) when Hi → 1/2? The kernel kHi
(t, u) converges to 1R+(t−u)−1R+(−u) = 1[0,t](u), the

indicator function of the interval [0, t]. Thus, since Wl(0) = 0 almost surely, Bil(t) =Wl(t) is a
standard Wiener process.
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In the well-balanced case, the previous analysis leads to a problem. If we introduce Bac,il(t) =∫
lHi

(u, t)dWl(u), then x(t) =
∑p

l=1A+,il(Bc,il(t) + Bac,il(t)). The kernel lHi
(t, u) converges to

1R+(u− t)−1R+(u) = −1[0,t](u). Thus, Bac,il(t) converges to −Wl(t), and thus x(t) = 0 almost
surely. We recover this fact by evaluating the variance of the well-balanced process (involved in
eq. (6)) which is equal to zero.

In all other cases, A+,ilBc,il(t)+A−,ilBac,il(t) converges to (A+,il−A−,il)Wl(t) as Hi → 1/2,
and if the ith line of A+ is not equal to the ith line of A− then x(t) is well-defined.

However, it may be shown (see [10]) that for Hi = 1/2 the following stochastic representation
holds for xi(t)

xi(t) =

p∑

l=1

∫ (
(1R+(t− u)− 1R+(−u))A+,il + log

( |t− u|
|u|

)
A−,il

)
dWl(u)

This however introduces more special cases and we prefer to assume that Hi 6= 1/2,∀i = 1, . . . , p.

2.4 Semidefinite-positivity of A

The aim of this section is to examine the semidefinite-positivity condition of the matrix A defined
by equation (5) in the causal case and by equation (7) in the well-balanced case. This condition
is the main limitation of this model. Indeed, if the matrix A is not positive-semidefinite, it
cannot be factorized into A+A

t
+.

The first comment to be made is the fact that if H1 = . . . = Hp = H̃, then A is positive-

semidefinite. Indeed, it is easily verified that A = c(H̃)×R(1, 1) where c(H̃) = sin(πH̃)/B(H̃ +
.5, H̃+ .5) in the causal case, and c(H̃) = sin(πH̃)/(2(1−sin(πH̃))B(H̃+ .5, H̃+ .5)) in the well-
balanced case. R(1, 1) is the covariance matrix of the mfBm at times (1,1). Hence, as the product
between a positive constant and a positive-semidefinite matrix, A is positive-semidefinite. In
this particular case, there is no limitation in the model: we can choose H̃ ∈ (0, 1) whatever
ρjk ∈ [−1, 1] for all j, k.

In the general case, we could not find necessary and sufficient conditions to insure that A
is positive-semidefinite. However, we establish the following necessary condition. Let g(Hj ,Hk)
be defined as

Causal case A− = 0:

g(Hj ,Hk) = Γ(Hj +Hk + 1)
sin
(
π
2 (Hj +Hk)

)

cos
(
π
2 (Hj −Hk)

) . (16)

Well-balanced case A− = A+:

g(Hj ,Hk) = Γ(Hj +Hk + 1) sin
(π
2
(Hj +Hk)

)
(17)
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Proposition 3 If A defined by equations (5) or (7) is positive-semidefinite, then

ρ2jk
g(Hj ,Hk)

2

g(Hj ,Hj)g(Hk,Hk)
≤ 1,∀j 6= k (18)

Proof. Let ztjk = (0, 0, ..., zj , 0, . . . , 0, zk, 0, . . . , 0) be a vector whose all elements are zero

except the jth and the kth. Since A is nonnegative, ztjkAzjk ≥ 0. Let B the 2× 2 submatrix of
A corresponding to the elements at the intersection of the jth and kth lines with the jth and
kth columns. Then ztjkAzjk = (zjzk)B(zjzk)

t ≥ 0. Thus B is non negative and its determinant
is positive. In the causal case, this determinant is given by

σ2jσ
2
k

sin(πHj) sin(πHk)

BjjBkk
− σ2jσ

2
kρ

2
jk

sin(π(Hj +Hk))
2

(cos(πHj) + cos(πHk))B
2
jk

Factorize the positive quantity σ2jσ
2
k
sin(πHj) sin(πHk)

BjjBkk
, use B(x, y) = Γ(x)Γ(y)/Γ(x + y) and ele-

mentary trigonometric identities to get the result. The same of kind of simple calculations and
noting the identity (1 − sinx)(1 − sin y) = (cos((x − y)/2) − sin((x + y)/2))2 give the result in
the well-balanced case. Since j, k, zj , zk are arbitrary, this ends the proof.

Even if this condition is only a necessary one, it gives a useful condition to be fulfilled by the
parameters. Indeed, if the condition is violated we are ensured that the model is not defined.

For the 2 dimensional case, the condition is obviously necessary and sufficient. From (18),
the condition depends only on Hj,Hk and ρ = ρjk. A plot is feasible to determine the range
of possible parameters, see Fig. 1. For the causal and the well-balanced cases, we observe that
the higher |Hj −Hk| (resp. the lower), the lower the maximal possible correlation ρ (resp. the
higher).

3 Increments of the multivariate fractional Brownian motion

This section aims at exploring the covariance structure and the spectral density matrix of the
increments of size δ of the multivariate fractional Brownian motion. Let ∆δx(t) = x(t+δ)−x(t)
denote the increments of the multivariate fractional Brownian motion of size δ and let ∆δxj(t)
be its jth component.

3.1 Covariances and cross-covariances

Let γjk(h, δ) = E[∆δxj(t)∆δxk(t+ h)] denote the cross-covariance of the increments of size δ of
the components j and k. Expanding the expectation and using the covariance (15), we deduce
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Figure 1: Maximal values of the absolute possible correlation parameter |ρ12| ensuring that the matrix
A is positive-semidefinite, in terms of H1 and H2.

that γjk(h, δ) is given by

γjk(h, δ) =
σjσkρjk

2

(
wjk(h− δ) − 2wjk(h) + wjk(h+ δ)

)
. (19)

We reproduce the definition, eq. (10), of wjk for convenience

wjk(t) =

{
ckj(t)|t|Hj+Hk if j = k or j 6= k and Hj +Hk 6= 1
|t|+ fjkt log |t| if j 6= k and Hj +Hk = 1.

The first comment is that the result confirms that the increment process is a multivariate
stationary random process. Stationarity is in the strict sense since the process is Gaussian.

In the well-balanced cased (cjk = 1 and fjk = 0), we observe that for all Hj,Hk 6= 1/2,

γjk(h, δ) =
σjσkρjk

2

(
|h− δ|Hj+Hk − 2|h|Hj+Hk + |h+ δ|Hj+Hk

)
. (20)

Thefore, in this case, γjk(h, δ) is proportional to the covariance of a fractional gaussian noise
with Hurst parameter (Hj +Hk)/2. In particular, it is a symmetric function with respect to h.

The causal case is different from the well-balanced case since, when Hj + Hk 6= 1, ckj =
2cos(πHk)/(cos(πHj) + cos(πHk)) 6= cjk. Note that when Hk = 1/2, we observe (since ckj = 0)
that γjk(h, δ) = 0 for h ≥ δ > 0. Let us also observe that, the case Hj = Hk = 1/2 leading to
fjk = 0 makes γjk(h, δ) proportional to the covariance of the increments of size δ of a Brownian
motion. We now turn to the analysis of some of the properties of the covariance of the increments.
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3.1.1 Long-memory type properties of the cross-covariance

For two functions f and g, we denote by f ∼ g when lim f(h)/g(h) = 1, as |h| → +∞.

Proposition 4 As |h| → +∞, we have for any δ > 0

γjk(h, δ) ∼
σjσkρjk

2
δ2|h|Hj+Hk−2 × τjk(h), (21)

where

τjk(h) =





ckj(h)(Hj +Hk)(Hj +Hk − 1) if j = k and Hj 6= 1/2
or j 6= k and Hj +Hk 6= 1

fjk × Sign(h) if Hj +Hk = 1 and Hj 6= 1/2.

The cases j = k and Hj = 1/2 and j 6= k and Hj = Hk = 1/2 are omitted since they
correspond to the covariance of the increments of a Brownian motion and therefore in these
cases, γjk(h, δ) = 0 for |h| ≥ δ.

In Section 2.2, we mentioned that ckj(h)(Hj +Hk − 1) ∼ fjkSign(h) as Hj +Hk → 1, which
makes the second case the limit of the first one.
Proof. Define B(h) := wjk(h − δ) − 2wjk(h) + wjk(h + δ). Without loss of generality, let us
choose h such that |h| ≥ δ. For the first case, let α = Hj +Hk. In this case, it is sufficient to
note that ckj(h) = ckj(h+ δ) = ckj(h− δ) and

B(h) = ckj(h)|h|α
((

1− δ

h

)α
− 2 +

(
1 +

δ

h

)α)
∼ ckj(h)|h|αα(α− 1)δ2h−2.

For the second case, for |h| ≥ δ, the expression of B(h) reduces to

B(h) = fjk

(
(h+ δ) log

(
1 +

δ

h

)
+ (h− δ) log

(
1− δ

h

))
.

Using the expansion of log(1± x) as x→ 0, we obtain B(h) ∼ fjkδ
2h−1 = fjkδ

2|h|−1 × Sign(h),
which is the expected result.

At this point several interesting remarks may be done. First, setting j = k and ρjj = 1
allows us to recover the well-known asymptotic behavior for the covariance of a monovariate
fGn σ2jHj(2Hj − 1)δ2|h|2Hj−2 (see [17]). When Hj +Hk = 1 but Hj 6= 1/2, the increments of
size δ are long-range interdependent since their cross-covariance is not summable. Note that in
this case one fGn is long-range dependent and the other is necessarily not. When Hj +Hk 6= 1,
the same conclusion may be drawn. If the two fGn are long-range dependent (Hj > 1/2 and
Hk > 1/2), then necessarily they are long-range interdependent. Interestingly, two fGn can be
long-range inderdependent when only one is long-range dependent.
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3.1.2 Behavior of γjk(., δ) for large h

Let h ≥ δ and ρjk ≥ 0. When Hj +Hk 6= 1

γjk(h, δ) = σjσkρjkckj × γ̃Hj+Hk
2

(h, δ),

where γ̃H(h, δ) is the covariance function of a fGn (with size δ) with Hurst parameter H and
with variance 1. Recall that for h ≥ δ, γ̃H(·, δ) is a negative and increasing (resp. positive
and decreasing) function when H < 1/2 (resp. H > 1/2). This corresponds to the behavior of
γjk(., δ) in the well-balanced case since ckj = 1. In the causal case, we may derive the following
statement (by studying the sign of ckj) illustrated by Fig. 2:

For h ≥ δ, γjk(h, δ)





is negative and increasing when Hk < 1/2
is positive and decreasing when Hk > 1/2
equals zero when Hk = 1/2.

Let us underline that the study of the function (h− δ) log(h− δ)− 2h log(h) + (h+ δ) log(h+ δ)
leads to the same conclusion when Hj +Hk = 1.

3.2 Spectral density and cross-spectral density

In all the following, the convention adopted for the Fourier transform FT (f(t)) of a function f is
F (ω) =

∫
f(t) exp(−iωt)dt. Depending on the context, and this will be detailed, the transform

will be understood in the L1, L2 or even in the generalized function sense. The inverse transform
reads f(t) = 1/(2π)

∫
F (ω) exp(iωt)dω.

Even if for some values of Hj +Hk, the covariance γjk(h, δ) may be in L1 or L2, it is not the
case for all values, and thus we evaluate the spectral density matrix in the generalized function
(distribution) sense (see e.g. [14]).

Proposition 5 (i) The Fourier transform of γjk(h, δ), denoted by Sjk(ω, δ) is given for all j, k
and for all Hj,Hk by

Sjk(ω, δ) = σjσkρjk
1− cos(ωδ)

|ω|Hj+Hk+1
Γ(Hj +Hk + 1)× ζjk(ω)

ζjk(ω) =

{
−ckje−iSign(ω)

π
2
(Hj+Hk+1) − cjke

iSign(ω)π
2
(Hj+Hk+1) if j = k or j 6= k,Hj +Hk 6= 1

2− iπfjkSign(ω) if j 6= k and Hj +Hk = 1.
(22)

In the causal and well-balanced cases, this reduces for all Hj,Hk to:
Causal case A− = 0:

Sjk(ω, δ) = 2σjσkρjk g(Hj ,Hk)
1− cos(ωδ)

|ω|Hj+Hk+1
e−iSign(ω)

π
2
(Hk−Hj). (23)
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Figure 2: Examples of cross-covariance functions for the causal case for different parameters Hj , Hk.
Without loss of generality, the parameters σj , σk and ρjk are fixed to 1. In the well-balanced, from
(20), the top left (resp. right) plot corresponds to the covariance for all the values of Hj , Hk such that
Hj +Hk = 0.2 (resp. 0.8). The top middle one has no sense in the well-balanced case since Hj and Hk

must be different of 1/2.
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Well-balanced case A− = A+:

Sjk(ω, δ) = 2σjσkρjk g(Hj ,Hk)
1− cos(ωδ)

|ω|Hj+Hk+1
, (24)

where the function g is defined by (16) and (17).
(ii) For any fixed δ, we have for both cases, as ω → 0

|Sjk(ω, δ)| ∼ σjσkρjk g(Hj ,Hk) δ
2 |ω|1−Hj−Hk . (25)

(iii) Moreover, the coherence function between the two components j and k satisfies:

Cjk(ω, δ) :=
|Sjk(ω, δ)|2

Sjj(ω, δ)Skk(ω, δ)
= ρ2jk ×

g(Hj ,Hk)
2

g(Hj ,Hj)g(Hk,Hk)
. (26)

Equations (23) and (24) are easily derived from (22) using elementary algebra and the
definitions of cjk and fjk. Before turning to the proof, let us give some remarks concerning
theses results:

• Unlike the covariance γjk(h, δ), note that the expression of Sjk(ω, δ) is unchanged when
j 6= k and Hj +Hk = 1. For example in the causal case, it reduces to

2σjσkρjk
sin (πHj)

1− cos(ωδ)

|ω|2
eiSign(ω)π(Hj−

1

2
).

• When j = k or when Hj = Hk, we recover the standard real spectral density function
of a fGn. Actually, in the well-balanced case, ∀j, k, Sjk(ω, δ) corresponds to the spectral

density function of a fGn with Hurst parameter
Hj+Hk

2 .

• The analysis of the local behavior in a neighborhood of zero of the cross-spectral density
(25) leads to the same remarks as the ones done in Section 3.1.1 concerning long-memory
type properties.

• Finally, let us underline the fact that the coherence function is independent of the fre-
quency. Furthermore, we recover the necessary condition of proposition 3. Indeed, the
coherence must be lower than one, a condition satisfied if

ρ2jk ×
g(Hj ,Hk)

2

g(Hj ,Hj)g(Hk,Hk)
≤ 1

14



Proof. We only concentrate on the cross-spectra since (25) and (26) are then easily derived.
We denote by FT (·) the Fourier transform in the generalized function sense (see [14]). From (10),

Sjk(ω, δ) := FT (γjk(h, δ))

=
σjσjρjk

2
(FT (wjk(h− δ)) − 2FT (wjk(h)) + FT (wjk(h+ δ)))

=
σjσjρjk

2
(2 cos(ωδ) − 2)FT (wjk(h)). (27)

Let us now split the proof into the two different cases.
Case 1. j = k or j 6= k and Hj +Hk 6= 1.

Let α = Hj +Hk. For x ∈ R, consider the following generalized functions

xα+ = xα1R+(x) and xα− = (−x)α1R−(x).

From the definition of ckj(h), the Fourier transform of wjk(h) = ckj(h)|h|α writes FT (ckj(h)|h|α) =
ckjFT (h

α
+) + cjkFT (h

α
−). The Fourier transforms of hα± exist in the generalized function sense

(see [14]) and read

FT (hα+) = Γ(α+ 1)
{
ω−α−1
+ e−i

π
2
(α+1) + ω−α−1

− ei
π
2
(α+1)

}
(28)

FT (hα−) = Γ(α+ 1)
{
ω−α−1
+ ei

π
2
(α+1) + ω−α−1

− e−i
π
2
(α+1)

}
(29)

or alternatively

FT (hα+) = Γ(α+ 1)e−iSign(ω)
π
2
(α+1) |ω|−α−1

FT (hα−) = Γ(α+ 1)eiSign(ω)
π
2
(α+1) |ω|−α−1 .

Therefore, we obtain

FT (ckj(h)|h|α) = Γ(α+ 1) |ω|−α−1
(
ckje

−iSign(ω)π
2
(α+1) + cjke

iSign(ω)π
2
(α+1)

)
,

which, combined with (27), leads to the result.
Case 2. j 6= k and Hj +Hk = 1.

We have to concentrate on the Fourier transform of |h| + fjkh log |h|. For α > −1, the
Fourier transform of |h|α equals FT (|h|α) = −2Γ(α + 1) sin(πα/2)|ω|−α−1. Now, let us notice
that FT (|h|α log |h|) = FT ( ddα |h|α) = d

dαFT (|h|α). Setting α = 0 in this last equation and the
explicit derivation of FT (|h|α) (with respect to α) leads to FT (log |h|) = −π|ω|−1. In order
to get FT (h log |h|), we just have to note that FT (h log |h|) = −1

i × d
dωFT (log |h|), leading to

FT (h log |h|) = iπSign(ω)|ω|−2. We finally obtain

FT (|h|+ fjkh log |h|) = |ω|−2 (−2 + iπfjkSign(ω))

Combined with (27), the last equation leads to (22).
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4 Wavelet Analysis

The use of wavelet analysis in the understanding of the monovariate fractional Brownian motion,
and more generally for the study of fractal signals, goes back to the early works of Flandrin
[12, 13], Tewfik [19], Wornell [22] to cite some but a few. It is now well accepted that wavelet
analysis is the adequate analysis to extract information properly from fractal or multifractal
signals. Several causes for this fact can be put forward, such as the adequation between 1/f -like
spectral densities of fractal signals and the constant relative bandwith filter bank underlying the
wavelet analysis, ability to “kill” long-range dependence if the wavelet is correctly chosen.

The aim of this section is thus to analyse the multivariate fractional Brownian motion through
the lens of the wavelet transform. We use the continuous wavelet transform here, but a similar
analysis could be performed in the multiresolution framework using orthonormal wavelet bases.
We will consider complex valued wavelets, not necessarily in the Hardy class, not necessarily
with compact support. The hypothesis we impose on the wavelets will be detailed when needed.

4.1 Definition and stationarity

Let ψ be a complex wavelet function, let a > 0 and b ∈ R and consider ψab(.) = a−1/2ψ((.−b)/a).
Let

dja,b :=
〈
xj

∣∣∣ψab
〉
L2

=

∫

R

xj(t)ψab(t)dt (30)

the wavelet transform of the jth component of a multivariate fractional Brownian motion. ψ
denotes the complex conjugate of ψ. In this section, we assume that conditions [C1] and [C2(2)]
are satisfied, where:

[C1] Admissibility condition: ψ(t) ∈ L2 and |ψ̂(ω)|2/|ω| ∈ L1, where ψ̂ is the Fourier
transform of ψ.

[C2(K)] tmψ(t) ∈ L1 for m = 0, 1, . . . ,K.

Condition [C1] ensures that ψ̂(0) = 0 and that
∫
R
ψ(t)dt = 0. We note, as [15], that under

condition [C2(1)], the integral (30) is well-defined as a sample path integral and is a second-order
random variable. This follows, since under [C2(1)] we have

∫
R
|s|H |ψab(s)|ds < +∞,∀H ∈ (0, 1).

The aim of this section is to focus on the correlation between the wavelet transforms (at
different scales and different times) of two components j and k of the multivariate fractional
Brownian motion. The wavelet transform is a random field. It is clearly zero mean and Gaussian.
We have for a1, a2 > 0 and b1, b2 ∈ R

E[dja1,b1d
k
a2,b2

] =

∫

R2

rjk(t1, t2)ψa1b1(t1)ψa2b2(t2)dt1dt2.
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Under [C1], and from (10) the last expression reduces to

E[dja1,b1d
k
a2,b2

] = −σjσkρjk
2

∫

R2

wjk(t2 − t1)ψa1b1(t1)ψa2b2(t2)dt1dt2.

Let Γψ(v) :=
∫
R
ψa1b1(u)ψa2b2(u + v)du be the correlation function between the two wavelets

ψa1,b1 and ψa2,b2 . Then we have

E[dja1,b1d
k
a2,b2

] = −σjσkρjk
2

∫

R

wjk(v)Γψ(v)dv. (31)

Note that [C2(2)] implies that for all the values of Hj and Hk,
∫
R
|wjk(v)| |Γψ(v)| dv < +∞.

With two changes of variables, this may also be rewritten as

E[dja1,b1d
k
a2,b2

] = −σjσkρjk
2

√
a1a2 ×

∫

R2

wjk(a2t2 − a1t1 + b2 − b1)ψ(t1)ψ(t2)dt1dt2. (32)

If we interpret for fixed parameters a1 and a2, the quantity E[dja2,b2d
k
a2,b2

] as the cross-correlation
between two signals, we observe that it depends only on the difference between the times at
which it is evaluated (i.e. b2 − b1). With the fact that the wavelet transform is a zero mean
and Gaussian field, we conclude that dja1,. and dka2,. are jointly stationary signals. This is of
course because the wavelet transform reveals the stationary increments property hidden in the
fractional Brownian motion. The wavelet transform can be seen as a generalized derivative.

4.2 Self-similarity type property of the cross-wavelet transform

The variance of the wavelet transforms at similar scales for the fractional Brownian motion with
Hurst parameter H exhibits some self-similarity. Indeed, it is proved in [12] for example that
for all b

V ar(dja,b) = a2H+1 ×
(
−σ

2

2

∫

R2

|t2 − t1|2Hψ(t1)ψ(t2)dt1dt2
)
.

We note here that the same behavior holds for the cross-wavelet variance.

Proposition 6 Under the assumptions [C1] and [C2(2)], let b1 = b2 = b and fix a1 = a2 = a >
0. Then,

E[dja,bd
k
a,b] =

σjσkρjk
2

zjk a
Hj+Hk+1 (33)

Corr[dja,b, d
k
a,b] = ρjk ×

zjk√
zjjzkk

,

where zjk := −
∫
R2 wjk(t2 − t1)ψ(t1)ψ(t2)dt1dt2.
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Proof. Consider Equation (32). When Hj + Hk 6= 1, it suffices to note that for a > 0,
ckj(av) = ckj(v) and therefore wjk(av) = aHj+Hkwjk(v). Now, when Hj + Hk = 1, the result
comes from Condition [C1] ensuring that

∫
R2 fjk × (t2 − t1) log(a)ψ(t1)ψ(t2)dt1dt2 = 0.

Let us observe that the instantaneous cross-wavelet correlation is independent of the scale.
This is the generalization of the fact that the coherence does not depend on the frequency.

4.3 Cross-correlation structure of the wavelet transform of the mfBm

For fixed scales, a1, a2, we now specify the behavior of the cross-wavelet covariance (or corre-
lation) as |b2 − b1| → +∞. In particular, our aim is to exhibit the influence of the number of
vanishing moments of the wavelet function on the asymptotic cross-wavelet covariance. Such a
result needs the following assumption:

[C3] The wavelet function has M ≥ 1 vanishing moments that is
∫

R

tmψ(t)dt = 0 for m = 0, . . . ,M − 1 and

∫

R

tMψ(t)dt 6= 0.

We may now derive our result obtained as |h| = |b2 − b1| → +∞.

Proposition 7 Under the assumptions [C1], [C2(2M+1)] and [C3], then as |h| → +∞, we
have

E[dja1,bd
k
a2,b+h

] ∼ −σjσkρjk
2

κ(ψ,M)|h|Hj+Hk−2M τ̃jk(h)

where κ(ψ,M) :=
(2M
M

)
(a1a2)

M
∣∣∫ tMψ(t)dt

∣∣2 and

τ̃jk(h) =





ckj(h)
(Hj+Hk

2M

)
if j = k and Hj 6= 1/2
or j 6= k and Hj +Hk 6= 1

fjk×Sign(h)
2M(2M−1) if Hj +Hk = 1 and Hj 6= 1/2.

Remark 1 As for Proposition 4, we notice that the second case is the limit of the first one as
Hj+Hk → 1. Moreover, let us underline the importance of the number of vanishing moments for
the wavelet. Similarly to the fractional Brownian motion, Proposition 7 asserts that the higher
M , the less correlated the wavelet transforms of the components j and k of the multivariate
fractional Brownian motion. This has many implications. In particular, this suggests that
estimating the instantaneous cross-wavelet correlation at a scale a may be efficiently done by
using the empirical correlation since at scale a, dja,b and d

k
a,b+h are not too much correlated if M

is large.

The proof of this result is postponed until Appendix 6.
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4.4 Cross-spectral density of the wavelet transform of the mfBm

In the case of fBm, the expression of the spectral density of the wavelet transform was provided
by [12] and [13]. A rigorous proof of the existence of this spectral density in the L1 sense
was obtained by [15]. On the basis of this work, our ambition is, to provide the cross-spectral
density between wavelet transforms (at different scales) of components j and k of the multivariate
fractional Brownian motion.

Proposition 8 Under Assumptions [C1], [C2(M)] and [C3] (with M ≥ 2), we derive the fol-
lowing assertions.
(i) The cross-spectral density of the wavelet transforms of two components j and k, that is the

Fourier transform of the function E[dja1,b1d
k
a2,b2

] (in terms of b2 − b1) exists and is given by

S̃jk(ω) =
σjσkρjk

2

Γ(Hj +Hk + 1)

|ω|Hj+Hk+1

√
a1a2 ψ̂(−a1ω)ψ̂(−a2ω)× ζjk(ω) (34)

where ζjk(ω) is defined by equation (22). In the causal and well-balanced cases, this reduces for
all Hj,Hk to:
Causal case A− = 0:

S̃jk(ω) :=
σjσkρjkg(Hj ,Hk)

|ω|Hj+Hk+1

√
a1a2 e

−iSign(ω)π
2
(Hk−Hj)ψ̂(−a1ω)ψ̂(−a2ω) (35)

Well-balanced case A− = A+:

S̃jk(ω) :=
σjσkρjkg(Hj ,Hk)

|ω|Hj+Hk+1

√
a1a2 ψ̂(−a1ω)ψ̂(−a2ω) (36)

where the function g is defined by (16) and (17).
(ii) We have for both cases, as ω → 0

∣∣∣S̃jk(ω)
∣∣∣ ∼ σjσkρjkg(Hj ,Hk)(a1a2)

M+1/2|ψ̂(M)(0)|2|ω|2M−1−α.

(iii) Moreover, the coherence function between the two components j and k satisfies:

C̃jk(ω) :=

∣∣∣S̃jk(ω)
∣∣∣
2

S̃jj(ω)S̃kk(ω)
= ρ2jk ×

g(Hj ,Hk)
2

g(Hj ,Hj)g(Hk,Hk)

ψ̂(−a1ω)ψ̂(−a2ω)
ψ̂(−a1ω)ψ̂(−a2ω)

. (37)

Similarly as proposition 5, equations (35) and (36) are obtained from (34) and using elementary
algebra. The proof of this proposition is rejected in the appendices, see section 7. Note that the
interpretation of the coherence in this case is difficult. It is complex valued, a property which is
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not natural for a coherence. This comes from the fact that the quantities S̃jj(ω) are not power
spectral densities but cross-spectral densities (cross-spectral density between two different scales
of the wavelet transform of one signal). Thus, to interpret correctly the coherence, we should
look at one scale only, in which case we recover the coherence evaluated in the usual spectral
domain. And this result is logical since the usual coherence is independent of the frequency.

5 Discussion

To conclude the paper, we make some comments on synthesis, on a more general case and we
give some ideas for future works.

5.0.1 On synthesis

The synthesis of monovariate fractional Brownian motion has found an elegant and efficient
solution through the use of Wood&Chan method of simulation of Gaussian processes [21]. The
method relies on the embedding of the correlation matrix of N regularly spaced samples of a
fractional Gaussian noise into a larger circulant matrix. As a circulant matrix, the diagonal-
ization is easy since it relies on the discrete Fourier transform. Furthermore, using the fast
Fourier transform, it can be implemented in a very efficient way. Wood&Chan have generalized
their technique for synthesizing multivariate Gaussian homogeneous random fields [5]. As a
particular case, the simulation of multivariate Gaussian stationary signals can be performed.
We have implemented their algorithm to generate the fractional Brownian motion, either in the
well-balanced case and in the causal case. We show in figure (3) some examples of sample paths
that may be generated using this algorithm. The parameters have been chosen not only to insure
that proposition 3 is satisfied, but also to insure that the simulation provided by Chan&Wood
is exact (see [5] and [8] for more details on the exactness of the simulation). The complexity of
the algorithm dramatically increases with the number of samples needed and with the number
of dimension required. This drawback may lead to the use of simpler but non exact simulation
techniques, relying for example on the spectral matrix (see e.g. [6]).

5.1 A more general in-between case

When examining equations (2) and (3) we observe that the two cases we have studied leads to
an easy solution. A more general case also leads to an easy solution. This case generalizes the
causal and well-balanced cases and is obtained when matrices A+ and A− are proportional. If
we write A− = κA+, we recover evidently the causal case when κ = 0 and the well-balanced
case when κ = 1. This case can be treated in the same spirit as the two others, and if we define

20



Figure 3: Examples of sample paths of length n = 1000 normalized causal (top) and well-
balanced (bottom) multivariate fractional Brownian motion with p = 20 components. The Hurst
parameters are equally spaced in [0.3, 0.4] (left), [0.8, 0.9] (middle) and [0.4, 0.8] (right). The
correlation parameters are all set to 0.7 (left, middle) and 0.3 (right). Note that the existence
condition discussed in Proposition 3 is satisfied for these different choices of parameters. For
convenience, the sample paths of the left column have been decentered.
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matrix A = (Ajk) for j, k = 1 . . . , p by

Ajk =





σjσkρjk sin(π(Hj +Hk))

Bjk

(
( cos(πHj) + cos(πHk))(1 + κ2)− 2κ sin(π(Hj +Hk))

) if Hj +Hk 6= 1

2σjσkρjk

Bjk

(
( sin(πHj) + sin(πHk))(1 + κ2)− 4κ

) if Hj +Hk = 1

Ajj =
σ2j sin(πHj)

Bjj(1 + κ2 − 2κ sin(πHj))

we will end up with the same parameterization of the covariance. From the expression of Ajj we
can show that the model leads to σjj = 0 if and only if Hj = 1/2 and κ = 1. We thus recover the
condition of existence in the well-balanced case. For this general case, there is another problem
which appears for example if Hj +Hk 6= 1. We observe that the denominator of Ajk may cancel
whenever

κ =
sin (π2 (Hj +Hk))±

√
− cos(πHj) cos(πHk)

cos (π2 (Hj −Hk))

Of course this occurs if and only if the two cosine in the square root are of opposite sign,
implying that Hj and Hk are not simultaneously in the same intervals [0, 1/2), (1/2, 1]. If there
is a value κ(Hj ,Hk) that cancelled the denominator of Ajk, then ρjk = 0, and we cannot use
the correlation at times 1 to normalize correctly the process. Anorther choice has to be done,
such as E[xj(1)xk(−1)].

5.2 Some future works

A first step in the future work is to adopt another more natural parameterization of the covari-
ance function, in which function wjk(t) writes ρjk+Sign(t)ηjk, where ρjk has the same meaning
of the correlation at times 1, and where ηjk is an antisymmetric parameter, linked to ρjk. This
parameterization should lead to a more easy study of the condition of existence of the covariance
function.

A next step in our work will be to tackle the problem of inferring the Hurst parameters
from the observation of a sample path of either the multivariate fractional Brownian motion or
the fractional Gaussian noise. The main question to answer concerns the comparison between p
estimators designed for monovariate fBm (or fGn) and a multivariate estimator to be defined.

6 Appendix: Proof of Proposition 7

Proof.
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Case 1. j = k and Hj 6= 1/2 or j 6= k and Hj +Hk 6= 1.

Let Dh := {(t1, t2) ∈ R
2 : |a2t2 − a1t1| < |h|

2 }, α := Hj +Hk and let us write E[dja,bd
k
a,b+h] =

−σjσkρjk
2

√
a1a2 × T with

T :=

∫

R2

ckj(a2t2 − a1t1 + h)|a2t2 − a1t1 + h|αψ(t1)ψ(t2)dt1dt2 = T1 + T2,

and where T1 (resp. T2) corresponds to the integral on Dh (resp. R
2 \Dh). Let us first prove

that |h|2M−αT2 → 0 as |h| → +∞. We have (since 2M − α > 0 and since |ckj(h)| ≤ c∨ :=
max(|cjk|, |ckj |) for all h)

|h|2M−α|T2| ≤ 22M−αc∨
∫

R2\Dh

(a2t2 − a1t1)
2M

∣∣∣∣1 +
h

a2t2 − a1t1

∣∣∣∣
α

|ψ(t1)||ψ(t2)|dt1dt2

≤ 22M−α3αc∨
∫

R2\Dh

(a2t2 − a1t1)
2M |ψ(t1)||ψ(t2)|dt1dt2.

The result is then obtained by using assumption [C2(2M)] and the dominated convergence
theorem. Now, within the domain Dh, one may use the series expansion of (1+x)α (for |x| < 1).

T1 = |h|α
∫

Dh

ckj(a2t2 − a1t1 + h)

(
1 +

a2t2 − a1t1
h

)α
ψ(t1)ψ(t2)dt1dt2

= |h|αckj(h)
∫

Dh


∑

ℓ≥0

(
α

ℓ

)(
a2t2 − a1t1

h

)ℓ

ψ(t1)ψ(t2)dt1dt2,

where
(
α
ℓ

)
denotes the binomial coefficient (α)(α − 1) . . . (α − ℓ + 1)/ℓ!. Decompose T1 into

three terms (denoted by T ′
1, T

′
2 and T ′

3) corresponding to the 2M first terms of the series, the
(2M + 1)th (ℓ = 2M) and the remainder terms. Then,

T ′
1 = |h|αckj(h)

2M−1∑

ℓ=0

h−ℓ
(
α

ℓ

)∫

Dh

(a2t2 − a1t1)
ℓ ψ(t1)ψ(t2)dt1dt2.

Under Assumption [C3], ψ has M vanishing moments and therefore the previous expression
reduces to

T ′
1 = −|h|αckj(h)

2M−1∑

ℓ=0

h−ℓ
(
α

ℓ

)∫

R2\Dh

(a2t2 − a1t1)
ℓ ψ(t1)ψ(t2)dt1dt2.

Now,

|h|2M−α|T ′
1| ≤ c∨

2M−1∑

ℓ=0

∣∣∣∣
(
α

ℓ

)∣∣∣∣
∫

R2\Dh

22M−ℓ (a2t2 − a1t1)
2M |ψ(t1)||ψ(t2)|dt1dt2.
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Assumption [C2(2M)] and the dominated convergence theorem may be combined to prove that
|h|2M−αT ′

1 → 0 as |h| → +∞. The term T ′
2 is defined as

T ′
2 := |h|α−2M ckj(h)

(
α

2M

)∫

Dh

(a2t2 − a1t1)
2M ψ(t1)ψ(t2)dt1dt2.

As previously, as |h| → +∞ we obtain

|h|2M−αT ′
2

ckj(h)
→

(
α

2M

)∫

R2

(a2t2 − a1t1)
2M ψ(t1)ψ(t2)dt1dt2

=

(
α

2M

)(
2M

M

)
(a1a2)

M

∣∣∣∣
∫
tMψ(t)dt

∣∣∣∣
2

=

(
α

2M

)
κ(ψ,M).

Since T = T1 + T2 = T ′
1 + T ′

2 + T ′
3 + T2, the proof will be completed if we manage to prove that

|h|2M−αT ′
3 → 0. Let us write

|h|2M−αT ′
3 = h2Mckj(h)

∫

Dh

∑

ℓ≥2M+1

(
α

ℓ

)(
a2t2 − a1t1

h

)ℓ
ψ(t1)ψ(t2)dt1dt2

=
ckj(h)

h

∫

Dh

(a2t2 − a1t1)
2M+1


∑

ℓ≥0

(
α

ℓ+ 2M + 1

)(
a2t2 − a1t1

h

)ℓ

ψ(t1)ψ(t2)dt1dt2.

The binomial coefficient appearing in the last equation satisfies, with ℓ′ = ℓ+ 2M + 1

∣∣∣
(
α

ℓ′

)∣∣∣ =
|α(α − 1) · · · (α− ℓ′ + 1)|

ℓ′!

≤ 2(2 − α) · · · (ℓ′ − 1− α)

ℓ′!
since α ≤ 2

≤ 2(ℓ′ − 1)!

ℓ′!
=

2

ℓ′
≤ 2

ℓ

Recall that in Dh we have |a2t2 − a1t1|/|h| ≤ 1/2. The series in the previous integral then
satisfies

∣∣∣
∑

ℓ≥0

(
α

ℓ+ 2M + 1

)(
a2t2 − a1t1

h

)ℓ ∣∣∣ ≤
∣∣∣
(

α

2M + 1

)∣∣∣+
∑

ℓ≥1

∣∣∣∣
(

α

ℓ+ 2M + 1

)∣∣∣∣
∣∣∣∣
a2t2 − a1t1

h

∣∣∣∣
ℓ

≤ 2

2M + 1
+
∑

ℓ≥1

2

ℓ
2−ℓ

=
2

2M + 1
+ 2 log(2) =: CM
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Thus we obtain

|h|2M−α|T ′
3| ≤ CMc∨

|h|

∫

R2

|a2t2 − a1t1|2M+1|ψ(t1)||ψ(t2)|dt1dt2

Since by Assumption [C2(2M+1)], t2M+1ψ(t) ∈ L1, we have |h|2M−α|T ′
3| = O(h−1), whence the

result.
Case 2. Hj +Hk = 1 and Hj 6= 1/2.
We take the same notation as previously. We first note that, under [C1], the term T can be

rewritten as

T =

∫

R2

|a2t2 − a1t1 + h|+ fjk(a2t2 − a1t1 + h) log

∣∣∣∣1 +
a2t2 − a1t1

h

∣∣∣∣ψ(t1)ψ(t2)dt1dt2.

We decompose T in T1 + T2 (as done in case 1). The proof that |h|2M−1T2 → 0 as |h| → +∞
follows similar arguments as in the case 1 and is therefore omitted. Now, the term T1 can be
rewritten as

T1 = |h|
∫

Dh

(
1 +

a2t2 − a1t1
h

)
ψ(t1)ψ(t2)dt1dt2

+fjkh

∫

Dh

(
1 +

a2t2 − a1t1
h

)
log

(
1 +

a2t2 − a1t1
h

)
ψ(t1)ψ(t2)dt1dt2.

Denote by T̃1 and T̃2 these two integrals. Assumption [C1] leads to

T̃1 = −|h|
∫

R2\Dh

(
1 +

a2t2 − a1t1
h

)
ψ(t1)ψ(t2)dt1dt2.

Then, we assert that

|h|2M−1|T̃1| ≤ |h|2M−1

∫

R2\Dh

∣∣∣a2t2 − a1t1

∣∣∣
∣∣∣1 + a2t2 − a1t1

h

∣∣∣|ψ(t1)||ψ(t2)|dt1dt2

≤ 22M−13

∫

R2\Dh

(
a2t2 − a1t1

)2M
|ψ(t1)||ψ(t2)|dt1dt2 → 0

as |h| → +∞. For the term T̃2, we may use the series expansion of log(1 + x) (for |x| < 1). We
omit the details and leave the reader to prove that as |h| → +∞

T̃2 ∼ fjkh

∫

R2

(
1 +

a2t2 − a1t1
h

)(
(−1)2M

2M − 1

(
a2t2 − a1t1

h

)2M−1

(−1)2M+1

2M

(
a2t2 − a1t1

h

)2M
)
ψ(t1)ψ(t2)dt1dt2

∼ h1−2M × fjk
2M(2M − 1)

(
2M

M

)
(a1a2)

M

∣∣∣∣
∫
tMψ(t)dt

∣∣∣∣
2

.
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Hence, T ∼ |h|1−2M × fjk×Sign(h)
2M(2M−1) κ(ψ,M).

In this proof, Fubini’s theorem and interchanges of integrals and (in)finite sums are widely
used. All of these are justified by the absolute convergence of the different series related to the
expansions of (1 + x)−α or log(1 + x) for |x| < 1 and Assumption [C2(2M+1)].

7 Proof of Proposition 8

Before proving the proposition itself, we need to generalize a formula due to Von Bahr and Essen
[4]. In 1965, they have obtained the following representation theorem for |v|α for α ∈ (0, 2):

|v|α =
Γ(α+ 1) sin(πα/2)

π

∫

R

1− cos(ωv)

|ω|α+1
dω. (38)

The following lemma provides a similar representation for vα+ and vα−.

Lemma 9 For any α ∈ (0, 2), α 6= 1, we have

vα+ =
Γ(α+ 1)

2π

∫

R

sin
(
πα2
)
(1− cos(ωv)) + cos

(
πα2
)
Sign(ω) (sin(ωv) − g(ωv))

|ω|α+1
dω

=
Γ(α+ 1)

2π

∫

R

Re
(
eiSign(ω)

π
2
(α+1)

(
e−iωv − 1 + ig(ωv)

))

|ω|α+1
dω

and

vα− =
Γ(α+ 1)

2π

∫

R

sin
(
πα2
)
(1− cos(ωv))− cos

(
πα2
)
Sign(ω) (sin(ωv) − g(ωv))

|ω|α+1
dω

=
Γ(α+ 1)

2π

∫

R

Re
(
e−iSign(ω)

π
2
(α+1)

(
e−iωv − 1 + ig(ωv)

))

|ω|α+1
dω

where the function g equals zero when α ∈ (0, 1) and is the identity function when α ∈ (1, 2).

The second expressions for vα+ and vα− are derived from the first one with elementary algebra.
Proof. Let us first observe that

vα+ =
1

2
(|v|α + Sign(v)|v|α) and vα− =

1

2
(|v|α − Sign(v)|v|α) .

Therefore, the proof consists in giving a representation of Sign(v)|v|α. Let α ∈ (0, 1), then from
(38) and properties of the function Γ

1

α+ 1
|v|α+1 =

Γ(α+ 1)

π
cos(πα/2)

∫

R

1− cos(ωv)

|ω|α+2
dω.
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Since
∫
R
|ω|−α−1| sin(ωv)| < +∞ for α ∈ (0, 1), we can differentiate this integral with respect to

v to obtain

Sign(v)|v|α =
Γ(α+ 1)

π
cos(πα/2)

∫

R

Sign(ω) sin(ωv)

|ω|α+1
dω. (39)

When α ∈ (1, 2), then from (38) and properties of the function Γ

α|v|α−1 =
Γ(α+ 1)

π
(− cos(πα/2))

∫

R

1− cos(ωv)

|ω|α dω.

Since
∫
R
|ω|−α−1| sin(ωv) − ωv|dω < +∞ for α ∈ (1, 2), we can take the primitive of the last

equation to get

Sign(v)|v|α =
Γ(α+ 1)

π
cos(πα/2)

∫

R

sin(ωv)/ω − v

|ω|α dω

=
Γ(α+ 1)

π
cos(πα/2)

∫

R

Sign(ω)(sin(ωv)− ωv)

|ω|α+1
dω,

which ends the proof.
Let α ∈ (0, 1), then by differentiating (39) with respect to α and taking the limit as α→ 1−,

we may obtain

Sign(h)|h| log |h| = h log |h| = lim
α→1−

−1

2

∫

R

Sign(ω) sin(ωv)

|ω|α+1
dω. (40)

We now turn to the proof of proposition 8.

Proof. (i) We recall that under [C1] and [C2(2)], Equation (31) holds, that is E[dja1,b1d
k
a2,b2

] =

−σjσkρjk
2 T with T :=

∫
R
wjk(v)Γψ(v)dv. Furthermore, note that the Fourier transforms of ψa,b

and Γψ(v) exist and are equal respectively to
√
aψ̂(aω)e−iωb and to

√
a1a2ψ̂(−a1ω)ψ̂(−a2ω)e−iω(b2−b1)

which leads to

q(ω) :=

∫

R

Γψ(v)e
−iωvdv =

√
a1a2ψ̂(a1ω)ψ̂(a2ω)e

−iω(b2−b1). (41)

Now, let us split the proof into two cases.
Case 1. j = k or j 6= k and Hj +Hk 6= 1.

When j = k, at this step, the authors of [15] have used the representation of |v|α obtained
by [4]. We obtained a similar representation for the function vα+ and vα− for α ∈ (0, 2) and α 6= 1
in lemma 9. For any α, let us set S(ω) := Sign(ω)π2 (α + 1). We have by Fubini’s theorem and
under Assumption [C2(2M)] (with M ≥ 2).

T =
Γ(α+ 1)

2π

∫

R

|ω|−α−1

∫

R

(ckj
2

(
eiS(ω)e−iωv + e−iS(ω)eiωv

)
Γψ(v)
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+
cjk
2

(
e−iS(ω)e−iωv + eiS(ω)eiωv

)
Γψ(v)

)
dvdω

=
Γ(α+ 1)

2π

∫

R

|ω|−α−1
(ckj

2

(
eiS(ω)q(ω) + e−iS(ω)q(−ω)

)

+
cjk
2

(
e−iS(ω)q(ω) + eiS(ω)q(−ω)

))
dω

=
Γ(α+ 1)

2π

∫

R

|ω|−α−1
(
ckje

iS(ω) + cjke
−iS(ω)

)
q(ω)dω. (42)

Note that the condition M ≥ 2 is required for α > 1. For α < 1, M ≥ 1 is a sufficient condition.
These conditions allow us to show that the contributions

∫
(1− ig(ωv)) exp(±iS(ω))Γψ(v)dv in

this calculation are equal to zero.
Making the change of variable ω ↔ −ω in the integral in (42) and using (41), we obtain

T = Γ(α+ 1)
√
a1a2

1

2π

∫

R

|ω|−α−1
(
ckje

−iS(ω) + cjke
iS(ω)

)
ψ̂(−a1ω)ψ̂(−a2ω)eiω(b2−b1)dω.

and therefore, reminding that ζjk(ω) := −ckje−iS(ω) − cjke
iS(ω), we have

E[dja1,b1d
k
a2,b2

] =
σjσkρjk

2

√
a1a2

1

2π

∫

R

|ω|−α−1ζjk(ω)ψ̂(−a1ω)ψ̂(−a2ω)︸ ︷︷ ︸
=:P (ω)

eiω(b2−b1)dω.

By using Bochner’s Theorem, the proof will be done, if one proves that the function P (ω) is
integrable. Let us prove this last assertion. Under [C2(M)], tkψ(t) ∈ L1 for k = 0, . . . ,M .
Therefore, ψ̂ is a M times continuous and differentiable function. Using a Taylor expansion

ψ̂(ω) =

M−1∑

k=0

ωkψ̂(k)(ω) + ωM ψ̂(M)(ω̃) = ωM ψ̂(M)(ω̃), with ω̃ ∈ [0 ∧ ω, 0 ∨ ω],

under [C2(M)]. And since ψ(M) is continuous at zero, ψ̂(ω) ∼ ωM ψ̂(M)(0) as ω → 0. Then as
ω → 0:

P (ω) ∼ ζjk(ω)|ω|2M−1−α(a1a2)
M |ψ̂(M)(0)|2. (43)

As a consequence, for M ≥ 2, P is continuous at zero and limω→0± P (ω) = 0. Therefore for
ε > 0, P is integrable on the interval [−ε, ε] as a continuous function on this interval. Finally
(recall that c∨ := max(|cjk|, |ckj |)),

∫

|ω|≥ε
|P (ω)| ≤ 2c∨(a1a2)

α+1
(∫

|ω|≥a1ε

|ψ̂(ω)|2
|ω|α+1

dω
)1/2( ∫

|ω|≥a2ε

|ψ̂(ω)|2
|ω|α+1

dω
)1/2

≤ (a1a2)

ε2α

∫

R

|ψ̂(ω)|2
|ω| dω < +∞
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under [C1]. Hence, P (ω) ∈ L1 and Bochner’s Theorem may be applied.
Case 2. j 6= k and Hj +Hk = 1.

We start with the representation of v log |v| given by (40).

wjk(v) = |v|+ fjkv log |v| = lim
α→1−

|v|α + fjkv log |v|

= lim
α→1−

1

2π

∫

R

2(1− cos(ωv))− πfjkSign(ω) sin(ωv)

|ω|α+1
dω.

Now, we derive the computation of the term T :=
∫
R
wjk(v)Γψ(−v)dv, similarly as the previous

case. Using dominated convergence theorem and Fubini’s Theorem,

T =
1

2π

∫

R

(
lim
α→1−

∫

R

2(1 − cos(ωv)) − πfjkSign(ω) sin(ωv)

|ω|α+1
dω

)
Γψ(v)dv

=
1

2π
lim
α→1−

∫

R

(∫

R

2(1 − cos(ωv)) − πfjkSign(ω) sin(ωv)

|ω|α+1
Γψ(v)dv

)
dω

=
1

2π
lim
α→1−

∫

R

2− iπfkjSign(ω)

|ω|α+1
q(ω)dω

=
1

2π
lim
α→1−

∫

R

|ω|−α−1 (2− iπfkjSign(ω)) ψ̂(a1ω)ψ̂(a2ω)e
−iω(b2−b1)dω.

From (43), |ω|−α−1ψ̂(a1ω)ψ̂(a2ω) is an integrable function for all α ∈ (0, 2). Therefore, the
integral and the limit may be interchanged. Making the change of variable ω ↔ −ω we obtain

T =
√
a1a2

1

2π

∫

R

2− iπfjkSign(ω)

ω2
ψ̂(−a1ω)ψ̂(−a2ω)eiω(b2−b1)dω.

and Bochner’s Theorem can be applied.
(ii) is derived from (43).
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