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Abstract

Data reduction techniques are now a vital part of numerical analysis and principal
component analysis is often used to identify important molecular features from a
set of descriptors. We now take a different approach and apply data reduction tech-
niques directly to protein structure. With this we can reduce the three-dimensional
structural data into two-dimensions while preserving the correct relationships. With
two-dimensional representations, structural comparisons between proteins are accel-
erated significantly. This means that protein-protein similarity comparisons are now
feasible on a large scale. We show how the approach can help to predict the function
of kinase structures according to the Hanks’ classification based on their structural
similarity to different kinase classes.
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1 Introduction

With recent advances in NMR spectroscopy and X-ray crystallography tech-
niques, a wide range of protein structures is now available. According to the
Protein Data Bank statistics [1] there are more then 40,000 known structures,
a number that increases by 150 every month [2]. Even more, the number of
kinase sequences in the protein database increased more than three fold in
the past decade [3]. However, the biological classification of these structures is
still a time consuming process and hence there is a great backlog of proteins
whose structures have been identified, but are not categorized with respect to
their function. Various protein classifications such as SCOP [4], CATH [2] and
Pfam [5] have been developed towards a better understanding of the struc-
tural and evolutionary relationships between proteins of known structure [4].
At the foundation of all these classification techniques resides the traditional
one-dimensional sequence alignment. Therefore little information can be de-
rived with respect to function prediction of unknown proteins. DALI [6], an
improved classification method, makes use of reduced dimensionality represen-
tations in order to compare various protein structures. The program is based
on a sensitive measure of geometrical similarity defined as a weighted sum
of similarities of intra-molecular distances [7]. To assess the similarity of two
structures the program evaluates equivalent residue pairs. The assignment of
equivalent residue pairs is a demanding problem and the scoring function is
subjective only to geometrical criteria [6], [7]. Consequently, an automated
tool to indicate an objective classification and make predictions about likely
functions, could save valuable time in this process. The premise underlying
this tool is that proteins with similar or even identical functions also have a
high structural similarity in three-dimensions. Our group had previously re-
ported [8] that a critical evaluation of structural similarity can be achieved
using reduced dimensionality representations of protein structure. Hence, by
calculating a reduced dimensionality map, namely a two-dimensional map, of
the protein of unknown function and comparing it to maps of known pro-
teins from different classes, it should be possible to predict function based
on the similarity scores. High similarity scores indicate likely classifications.
A full determination of the protein function can focus on those particular
classes rather than having to explore the entire functionality space. Similar
approaches that link structural similarity to protein classification and func-
tion, have been taken by the Thornton group. Jones and Thornton predicted
functional sites of proteins, such as enzyme active sites or DNA binding sites
using local similarities. With this, they acknowledged that the relationship be-
tween structure and function of a protein is not dependent on the overall fold
of the structure but can also relate to small functional sites [9], and discuss
different methods for the prediction of protein function from local structural
similarities. A different study, also by the Thornton group [10], links structural
similarity to CATH classifications. They investigated structural similarity for
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different sets of proteins within different EC classes. Furthermore they studied
31 superfamilies and found that structural diversity is great, sometimes even
extending into the catalytic domain. Functional variation occurs only when
proteins are distantly related and structurally significantly diverse. Protein
Kinases are enzymes that facilitate the transfer of a phosphate group from a
donor molecule to an amino acid residue of a protein. Most kinases are specific
to phosphorylation of a specific type of residue, but some kinases are known
to exhibit activity towards two amino acids. Protein kinases are involved in
a wide variety of pathways in nature and have been linked to some of the
major diseases; hence kinases have become the focus of pharmaceutical re-
search. Also, kinases structural data is becoming available at increasing rates
[3]. Classification of these new structures is a time consuming process and
many new structures that may be interesting pharmaceutical targets are still
waiting to be classified.

The first classification of kinases, introduced by Hanks [11], [12], divides the
eukaryotic protein kinase superfamily into four major groups of basic struc-
tural and functional properties: AGC, CaMK, CMGC and PTK. The classifi-
cation is based on the similarity in the sequence of the catalytic domain. The
AGC group contains nine subcategories which include the cyclin-nucleotide de-
pendent family (PKA and PKG), protein kinases C (PKC), the β-adrenergic
receptor kinases (βARK), the ribosomal S6 kinase family and other similar
kinases. The CaMK group can be divided up into three categories. It includes
kinases that are regulated by calcium and calmodulin, the Snf1/AMPK family
and other close relatives. The CMGC group has six subcategories and includes
amongst others cyclin dependent kinases (CDK), the MAP kinase family and
casein kinases. The PTK family groups together all tyrosine kinases, with a
total of 23 subcategories. A more recent classification was proposed by Nau-
mann and Matter, by means of target family landscape [13]. Their approach
made use of three-dimensional molecular interaction field analysis of the ligand
binding sites. The resulting classification lead to the identification of common
binding patterns and specific interaction sites for particular kinase subfamily.
The proposed method came in agreement with the original Hanks classifi-
cation, proving once more that its framework is still adequate to describe
all known kinases [3]. However the method used by Naumann and Matter
is experimentally demanding, chemodata being a high requirement to obtain
accurate results. Another classification was attempted by Cheek et al. [14].
They reorganized the kinases class in 12 groups based on fold and biochem-
ical similarity. The new classification does not rule out the original Hanks’
classification.

In the following we have investigated the application of reduced dimensional-
ity maps and protein similarity to suggest potential functions for kinase struc-
tures. Protein similarity calculations are computationally very expensive tasks.
For small molecules, it has been demonstrated that transferring a structure
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into a two-dimensional representation speeds up similarity evaluation [15]. We
have applied this approach to proteins and used two-dimensional represen-
tations of protein structures to determine their similarity. Two-dimensional
maps are generated using a novel algorithm and are related to the original
three-dimensional structure via their respective distance matrices. Similarity
between two proteins is then calculated introducing the concept of a distance
dependent similarity field. With these tools it is possible to distinguish be-
tween misfolded and correct structures at the level of protein family.

2 Materials and Methods

2.1 Mapping

The generation of the two-dimensional protein maps is based on the optimisa-
tion of distance matrices of two-dimensional coordinates via a Monte Carlo-like
technique so that the atom-atom distances in the 2D map are as close as possi-
ble to those in the experimental three-dimensional structure. As in the original
Monte Carlo approach [16], the algorithm samples the two-dimensional space
by generating random coordinates. Inter-residue distances are calculated and
serve as acceptance criteria determining if the generated coordinates will be
accepted or dismissed. A flowchart of the program structure is shown in Figure
1 and Figure 2 shows an example of the structural representations during the
different steps.

The generation of the two-dimensional protein maps can be divided into three
stages. The first step comprises the creation of a two-dimensional map by
projecting the original three-dimensional coordinates of the protein Cα into
a randomly chosen plane containing the z-axis. Due to the iterative nature of
the following stages, the choice of the projection plane does not influence the
final output.

The second step involves the optimization of the two-dimensional map by min-
imizing the differences between the distance matrices of the two-dimensional
Cα positions and the initial coordinates in three-dimensional space. This is an
iterative process that requires the calculation of the errors between the inter
amino acid distances in the two-dimensional map and the distances between
the respective amino acids in the original three-dimensional structure. This er-
ror is used as a seed for the optimisation of the distance matrices via a Monte
Carlo-like technique. The seed is used with a pseudo-random number genera-
tor (PRNG) to create new coordinates for each point on the two-dimensional
map. The PRNG function of the C standard library is statistically reliable
and previous studies recommend its use in Monte Carlo simulations [17].
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When new coordinates have been assigned to every point in the two-dimensional
map, a new set of errors between the distance matrices in two- and three-
dimensions are calculated. If they are all below a certain user defined threshold,
the distances between any two amino acids in the two-dimensional map are as
close as possible to the original distances in the three-dimensional structure
and a reduced dimensionality representation of the protein was successfully
obtained. It is worth mentioning that the new map does not retain any of the
original properties of the three-dimensional structure except for a very simi-
lar distance matrix. If the generated matrix fails to pass the error threshold,
step two is repeated. Step two is iterated a large number of times until the
generated map meets the cutoff criteria, or the maximum number of steps is
reached. If the later happens, no map is generated and the user must start a
new calculation, this time manually setting the value of the first random seed.

The third step consists of normalizing the generated map to the interval [-1,1].
Finally, a file is written with the new coordinates of each amino acid.
As in the original Monte Carlo procedure [16], there is no temperature de-
pendent selection criteria, as the generated two-dimensional maps are only
a model with no physical meaning and therefore are not dependent on the
Boltzmann distribution.

2.2 Similarity

In a previous paper [8] we established a new method for calculating protein
similarity using reduced dimensionality maps. The two-dimensionality map
retains from the original three-dimensional structure, the amino acid distance
matrix information (within certain errors as described in the previous section)
and quantifiable physico-chemical properties of the amino acids (polarity, hy-
drophobicity, side chain surface area, etc.) in form of the distance dependent
similarity field [8]. However, it has the advantage of a lower number of degrees
of freedom. The maps can be compared in a pointwise fashion requiring only
planar transformations such as: translation, rotation and reflection.

The concept of distance dependent amino acid similarity field (amino acidsim)
between two amino acids p and q was previously defined [8] as the product of
a similarity index dependent on the nature of the amino acids and a Gaussian
representation of the distance between them:

amino acidsim = simpq ·Gpq (1)

with

Gpq: single Gaussian representation for distance dependence,
simpq: similarity index of the pair of amino acids to be compared.
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The Gaussian representation of the distance has already been shown to be an
accurate representation of distance dependence of electrostatic potentials and
Carbo-Index based similarities [18]. As shown by Good et al., the single term
Gaussian can be represented by:

G = −0.9437 · e−0.0890·r2

(2)

with r the distance (Angstrom) between the two Cα of the amino acids to be
compared [18].

The similarity field of two proteins is then the sum of the amino acid similarity
fields:

sim =
l∑

p=1

m∑
q=1

simpqGpq (3)

with

p: index of amino acid in protein 1,
l: number of amino acids in protein 1,
q: index of amino acid in protein 2,
m: number of amino acids in protein 2,

and Gpq and simpq as previously described. To calculate the overall protein
similarity a normalization factor that accounts for the self-similarities of the
structures needs to be applied. This factor has the same form as the similarity
field, the only difference being that similarities are calculated between the
protein and itself:

selfsim =

√√√√√
 l∑

i=1

l∑
j=1

simp1
ij ·G

p1
ij

 ·

 m∑
i=1

m∑
j=1

simp2
ij ·G

p2
ij

 (4)

with

Gp1
ij : single Gaussian representation for distance dependence for protein 1,

Gp2
ij : single Gaussian representation for distance dependence for protein 2,

simp1
ij : similarity index of the pair of the amino acids i and j to be compared

from protein 1,
simp2

ij : similarity index of the pair of the amino acids i and j to be compared
from protein 2,

and the symbols have the same meaning as in equation 3.

Hence the formula to calculate the similarity between two protein structures
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is the sum of all amino acid similarities divided by a normalization factor:

proteinsim =
sim

selfsim

=

l∑
p=1

m∑
q=1

simpqGpq√√√√√
 l∑

i=1

l∑
j=1

simp1
ij ·G

p1
ij

 ·

 m∑
i=1

m∑
j=1

simp2
ij ·G

p2
ij


(5)

with symbols having the same meaning as previously described.

The similarity index simpq can be chosen to account for different properties of
the protein, and thus place emphasis on different topological features during
similarity comparisons. We have previously tested a range of different proper-
ties for this [8]. In the following we have tried a different approach by using
actual three dimensional similarities of the amino acids based on the Hodgkin
index calculated by the ASP module in the Tsar computational package [19]
as well as other quantifiable properties like structural similarity[20] and hy-
drophobicity pattern [21]. ASP is a software to calculate the similarity between
two molecules originally developed by Burt and Richards [19]. The similarity
index representing the nature of the amino acids was calculated as the Hodgkin
similarity index [22] between the two amino acid residues. The Hodgkin in-
dex was initially developed starting from the Carbo Index [23], and accounts
for the sign and magnitude of a property X of amino acids. In the present
case, the Hodgkin similarity index was computed based on the electrostatic
potential of amino acids:

HodgkinAB =

2
N∑

i=1

XiAXiB

N∑
i=1

(XiA)2 ·
N∑

i=1

(XiB)2

(6)

with

XiA: intensity of property X of amino acid i of protein A,
XiB: intensity of property X of amino acid i of protein B,
N: total number of amino acids in protein A, respectively B.

To calculate the similarity of two proteins, the two-dimensional maps of the
proteins are first aligned to the origin. The position of the origin of each map
is described by three coordinates x, y ∈ [-1,1] and φ ∈ 0-360◦. In order to cover
the entire sample space in a fast, statistically reliable way a new Monte Carlo
algorithm is used which offers considerable increases in the speed of the align-
ment. At each step the similarity of the two proteins is calculated by summing
the single amino acid similarities using the equation and similarity indices de-
scribed above. The initial random seed is then calculated as the difference in
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the similarity scores between the previous step and the current step. The seed
is used to generate new values for x, y and φ, therefore affording a new position
of one map with respect to the other. The similarity calculation is repeated
1600 times (iteration cutoff set manually). At every step, the similarity score
is retained only if it is larger then the previous one. At the end of the 1600
cycles a new map is created by reflection of the first one against one of the
axes. The iteration is rerun for the new map. Finally, the best similarity score
is returned. The score value ranges between 0 (no similarity) and 1 (identity).
A more detailed description of the mapping process and map comparison can
be found in Albrecht et al. [8].

Structure files for the selected proteins were downloaded from the RCSB Pro-
tein Data Bank [1]. They were then converted into two-dimensional maps
using a Monte Carlo mapping procedure. The similarity between the proteins
was calculated based on the similarity field method described in the previous
section. The assays were performed using various similarity indices and de-
scriptors of various amino acids properties. In order to assess the validity of
the presented method, several tests were carried out. Hanks classification of
kinases was used as standard. Four representative sets of proteins were cho-
sen corresponding to the four kinase classes described by Hanks [11,24]. Only
protein with associated three-dimensional structural information were con-
sidered. Most of the structures in the database did not contain information
as to whether they represent active or inactive conformations and hence the
dataset are composed of a mixture of active and inactive structures as well as
a majority of unknown conformations. Owing to the resolution of the mapping
code this should not have a major influence on the results, as the granularity
was chosen to disregard minor structural changes as shown previously for the
NMR ensemble [8]. It should however be noted that a dataset of just active
or inactive structures would have been preferable and could lead to improved
results and better discrimination.

Test were performed in duplicate. For the purpose of this paper, only one set
of results will be shown. Model classes containing 11 proteins each, were con-
structed corresponding to the four major Hanks kinase classes: AGC, CAMK,
CMGC and PTK. A full account of the structures used to construct the test
classes is given in Appendix (Tables 5, 6, 7 and 8). For each assay two test
set proteins were selected (Table 1). Each set contained one single structure
from each of the different Hanks’ classes. The test classes do not contain the
structures included in the test sets. All the proteins in the test sets were com-
pared to all the proteins in each test class. Proteins scoring higher then a
class cut off value are most likely to belong to that group. Class similarity
cut off scores were calculated as the average similarity within the same class
of proteins (Table 4). In this way it is possible to predict to which class, the
query protein is most likely to belong to.
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In order to asses the validity of our method, average similarity scores on
the global comparison, “all against all” proteins, were also calculated using
common multiple protein comparison algorithms like sequence alignment [25],
Mammoth [26] and TMalign [27]. ‘All against all” comparison of the proteins
was performed using reduced dimensionality representations of the proteins,
having as similarity index the hydrophobicity pattern, structural similarity
and side chain similarity of amino acids. The amino acid similarity matrices
are given in the Appendix (Tables 9, 10 and 11).

3 Results and Discussion

Similarity calculations performed on test structures from four different Hanks
classes, using as scoring index, the Hodgkin index (Figure 3) structural sim-
ilarity of the amino acids (Figure 4) and amino acid hydrophobicity (Figure
5), showed good discrimination between the classes. Looking at the results of
test proteins depicted in Figures 3, 4 and 5, it can be observed that for each
class, the test set protein corresponding rightfully to that family, presents
the highest similarity score and can be correctly classified. Depending on the
scoring index used, some classes present a better discrimination than others,
highlighting the fact that the amino acid properties contribute with differ-
ent weight towards protein similarity. In the present case, using the Hodgkin
index as the scoring matrix, the test protein from the AGC class, showed a
higher similarity score with respect to CAMK proteins rather than AGC pro-
teins. In the same manner, CMGC test proteins showed a stronger similarity
with respect to AGC and CAMK protein classes, when compared on the basis
of structural similarity or amino acid hydrophobicity pattern. Also, from the
figures it can be observed that in all cases, both sets of test proteins gave com-
parable results, supporting the reproducibility and viability of the described
method.

Figures 6, 7 and 8 presents the results of the similarity assay for each individual
protein from the test set with respect to each class. From the graphs it can
be observed that the test structures, most of the time, scored highest, in the
class they rightfully belong to. This indicates a correct classification. The
property scoring matrix plays an essential role in tuning the classification.
Comparing the proteins on the basis of the amino acid structural similarity or
hydrophobicity pattern, the test proteins from AGC, CAMK score above the
GCMC class threshold. This would indicate either that structural similarity
and hydrophobicity index of amino acids contribute to a lower extent in the
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class differentiation or that the particular proteins chosen for this test present a
high similarity with respect to the hydrophobic pattern and three-dimensional
structural features. Further analysis must be performed in order to obtain a
better understanding.

To get a more quantitative assessment of this method the average similarities
for each of the four Hanks’ classes and the average similarity of all proteins
considered across all four classes were calculated (Table 2). The average sim-
ilarity within the four different classes is increased compared to the average
similarity of all proteins, and this allows for the correct classification of struc-
tures. Figure 9 illustrates the similarities of all structures used within the four
Hanks’ classes. Again it can be seen that in general the similarity within the
Hanks’ classes is higher than between different classes. High similarities be-
tween structures from different classes are still possible but usually they are
exceptions.

The enrichment factor for the prediction based on similarity over a random
choice was calculated (Table 3). The enrichment factor is defined as the ratio
of the probability for the correct class over the random choice probability. As
there are four different classes, there is a 25% chance of picking the correct class
on a random choice basis. The prediction probabilities based on the similarity
scores for the different classes per test structure were also computed, so that
the sum of all probabilities of one test structure across all classes adds up
to 100%. Not only were the correct classes always predicted with the highest
similarities, but enrichment of up to 150% can be observed depending on the
structure considered.

The present method was compared to other known protein comparison tech-
niques. The results are presented as heat maps and dendograms in Figures 10
11 and 12. In the same line using amino acid structural similarity matrix, the
proteins were compared using their two-dimensional maps. Results are shown
in Figure 13. The heat maps and dendograms were constructed using R [28].
Based on sequence alignment, the phylogenetic tree of the 44 protein set was
constructed. It can be clearly seen that the phylogenetic relationship is not
always preserved between proteins of the same class.
All methods seems to correctly classify the AGC group, indicating a strong
functional and structural relationship between proteins belonging to this class.
The divergence observed in clustering the other proteins can be explained
by lateral similarities between proteins from different classes. On average,
the three-dimensional structural classification methods out-rule the sequence
alignment. The reduced dimensionality similarity method classified the pro-
teins correctly, giving results similar to the one obtained using the three-
dimensional techniques, compares well with all the other three-dimensional
techniques. The advantage that the described method possess is the flexibility
in choosing the similarity parameters.
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4 Conclusions

With an abundance of proteins whose structures have been identified, but
whose functions has yet to be characterized, a method to predict or at least
indicate potential classifications and functions would be a valuable tool. The
presented work makes use of protein similarity to predict classifications of
protein structures. Similarity was based on two-dimensional protein maps as
this offers a great increase in the speed of the calculations. We have shown
that in principle the classification of unknown structures via similarity of their
reduced dimensionality maps is feasible. The obvious potential pitfall of the
method lies within the protein datasets used as representative groups for a
protein family or class. Firstly, these sets should include a sufficient number
of proteins. However, in classes and families that are of most interest there are
usually only a limited number of structures available. If the dataset that is
available to represent a class is small, over-expressing certain features, or bias
towards structures, becomes a real issue. Even if a larger number of structures
are available, care must always be taken that the selected set is representative
of all possible protein constructs within the set to be examined. In the present
work relatively small representative sets composed of a careful selection of
different structures from different kinase classes was used. These small sets
are already sufficient to give a good indication of the protein function. Even
though results may not always be absolute and the top scores may not always
reliably classify a structure, the overall results usually provide a very good
starting point for experimental classification, as indications are provided for
potential classifications and the field is sufficiently reduced. In almost all cases
we managed to predict protein classes correctly. Only in a very few instances
were results for two classes almost identical with a slight preference for the in-
correct class. More basic function predictions on a higher level of the protein
classification trees are a lot easier, not only due to the availability of more
representative sets, but also because similarity between different branches is
usually lower than similarity within a specific classification. We have concen-
trated only on kinases, which are already a small subset of all possible pro-
teins, however even within this group we still find a good distinction between
structures from different classes. The technique presented in this paper comes
as an improvement of the existing classification procedures. The method is
fast and simple to implement. The complicated proteins are reduced to two-
dimensional map. The resulting maps bare no physical connotation in the way
that they do not retain the Cα backbone. However, each point on the map is
characterized by the physico-chemical properties of its amino acid analogue.
Comparison of the protein is reduced to a map comparison. Also, depend-
ing on the similarity parameters used, the comparison can account for various
properties like shape, hydrophobic/hydrophilic nature, polarity, conformation,
folding angles preference. With the small time requirements for this method,
it can aid to experimental classification of proteins as highly likely classes can

11



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

be identified very quickly. The main advantage of using the presented method
would be that it can account for different physico-chemical properties of amino
acids as well as three-dimensional structural information preserved in the dis-
tance matrix. It therefore offers a more reliable and unbiased differentiation
between proteins. Still there remained few question unanswered, like what is
the sensitivity of the method at comparing enantiomer like structures. Pilot
tests performed on D– and L–monellins showed that two distinguishable maps
can be obtained. A parameter that would translate the protein orientation to
its bidimensional representation would help improve the discrimination. Work
on this subject is in progress and results will be announced in a future paper.
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Figure 1. Flowchart of algorithm for the two-dimensional mapping of protein struc-
tures. An initial projection generates starting coordinates, which are subsequently
optimized using a Monte Carlo algorithm.

Figure 2. Snapshots during the generation of a Monte Carlo two-dimensional map.
The three-dimensional coordinates are extracted from the original three-dimensional
structures and use to generate initial two-dimensional starting coordinates via a
projection. These two-dimensional coordinates are then optimised using a Monte
Carlo algorithm so that the two-dimensional distance matrix converges to the initial
three-dimensional matrix to give the final two-dimensional map.

Figure 3. Average similarity score of test structures of each class with all four
different classes using Hodgkin similarity index. The different colours account for
the different test set (green - test set 1, blue - test set 2).

Figure 4. Average similarity score of test structures of each class with all four
different classes using structural similarity of the amino acid as the similarity index.
The different colours account for the different test set (yellow - test set 1, red - test
set 2).

Figure 5. Average similarity score of test structures of each class with all four
different classes using the amino acid hydrophobicity pattern as the similarity index.
The different colours account for the different test set (red - test set 1, blue - test
set 2).

Figure 6. Scores of proteins form test set 1 in the four different classes. Similari-
ties were calculated using Hodgkin similarity of amino acid residues as similarity
index. The average similarity of each test structure is represented by a column. The
structures used for the datasets are listed in Tables 5 - 8.

Figure 7. Scores of proteins from test set 1 in the four different classes. Similarities
were calculated using structural similarity of the amino acid residues as the similar-
ity index. The average similarity of each test structure is represented by a column.
The average similarity within each class is indicated by a line. The structures used
for the datasets are listed in Tables 5 - 8.
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Figure 8. Scores of proteins from test set 1 in the four different classes. Similar-
ities were calculated using hydrophobicity pattern of the amino acid residues as
the similarity index. The average similarity of each test structure is represented
by a column. The average similarity within each class is indicated by a line. The
structures used for the datasets are listed in Tables 5 - 8.

Figure 9. Similarities matrix for all structures across the four different Hanks classes.
The numbers in the boxes indicate the average similarity between structures from
the two relevant classes. In general higher similarities are observed within one class,
but occasional high similarities can occur between structures from different Hanks
classes.

Figure 10. Heat map and dendrogram classification of test set protein kinases using
Clustal-X [25]. Colour code: zero similarity - black, identity - white.

Figure 11. Heat map and dendrogram classification of test set protein kinases using
Mammoth-multiple [26]. Colour code: zero similarity - black, identity - white.

Figure 12. Heat map and dendrogram classification of test set protein kinases using
TM-align [27]. Colour code: zero similarity - black, identity - white.

Figure 13. Heat map and dendrogram classification of test set protein kinases using
structural similarity of amino acids as scoring matrix. Colour code: zero similarity
- black, identity - white.

Class Test set1 Test set2

AGC 1ATP 1JLU

CAMK 1P38 1A9U

CMGC 1E1V 1B38

PTK 1IR3 1GAG
Table 1
Table of selected test structures for the different kinase classes. Both sets of these
test structures were compared to their own and the all other different classes.
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Class Average similarity in class

AGC 34%

CAMK 38%

CMGC 45%

PTK 43%
Table 2
Table of average similarities in the different Hanks’ classes and of all proteins con-
sidered across the different classes. The increase in average similarities within the
different classes as compared to the average across all classes is significant enough
to allow for the classification of structures.

Structure Random choice probability Prediction probability Enrichment factor

AGC1 25% 30% 119%

CAMK1 25% 37% 147%

CMGC1 25% 38% 151%

PTK1 25% 34% 135%

AGC2 25% 30% 119%

CAMK2 25% 36% 146%

CMGC2 25% 38% 152%

PTK2 25% 34% 134%

Table 3
Table of probabilities for the correct classification of test structures. As there are
four different classes the random choice offers a 1 in 4 chance of picking the right
class. The prediction based on similarity greatly improves this probability.

Kinase Cut off scores

Hodgking index Structural similarity of amino acids Hydrophobicity pattern

AGC 0.387 0.949 0.975

CAMK 0.482 0.937 0.956

CMGC 0.438 0.820 0.878

PTK 0.425 0.852 0.926

Table 4
Average class similarity cut off scores.
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PDB ID Resolution active/inactive

1APM 2.00 unknown

1ATP 2.20 active

1BKX 2.60 unknown

1CDK 2.00 unknown

1CTP 2.90 unknown

1FMO 2.20 unknown

1BX6 2.10 unknown

1JBP 2.20 unknown

1JLU 2.25 unknown

1O6K 1.70 unknown

1O6L 1.60 unknown
Table 5
Structures included in the AGC dataset.
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PDB ID Resolution active/inactive

1A06 2.50 inactive

1A9U 2.50 unknown

1BL6 2.50 unknown

1BL7 2.50 unknown

1BMK 2.40 unknown

1DI9 2.60 unknown

1IA8 1.70 unknown

1IAN 2.00 unknown

1JNK 2.30 inactive

1KV1 2.50 unknown

1P38 2.10 unknown
Table 6
Structures included in the CAMK dataset.

PDB ID Resolution active/inactive

1AQ1 2.00 unknown

1B17 1.70 unknown

1B38 2.00 unknown

1B39 2.10 unknown

1E1V 1.95 unknown

1E1X 1.85 unknown

1ERK 2.30 unknown

1FVT 2.20 unknown

1GNG 2.60 unknown

1JAM 2.18 unknown

1LR4 2.00 unknown
Table 7
Structures included in the CMGC dataset.
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PDB ID Resolution active/inactive

1FGI 2.50 unknown

1GAG 2.70 unknown

1GJO 2.40 unknown

1HOW 2.10 active

1I44 2.40 unknown

1IR3 1.90 inactive

1IRK 2.10 unknown

1KSW 2.80 unknown

1M14 2.60 active

1M17 2.60 unknown

2SRC 1.50 unknown
Table 8
Structures included in the PTK dataset.

21



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1.00 0.80 0.80 0.50 0.50 0.10 0.60 0.50 0.50 0.10 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.80 0.50

0.80 1.00 0.80 0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.80 0.50 0.50 0.50 0.50 0.50 0.80 0.50

0.80 0.80 1.00 0.50 0.50 0.10 0.60 0.50 0.50 0.10 0.10 0.50 0.80 0.50 0.50 0.50 0.50 0.50 0.80 0.50

0.50 0.50 0.50 1.00 0.60 0.50 0.50 0.50 0.60 0.60 0.50 0.50 0.50 0.10 0.10 0.60 0.10 0.10 0.50 0.80

0.50 0.50 0.50 0.60 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.50 0.30 0.30 0.50 0.30 0.30 0.50 0.60

0.10 0.50 0.10 0.50 0.50 1.00 0.50 0.50 0.50 0.80 0.80 0.50 0.10 0.50 0.50 0.50 0.50 0.50 0.10 0.50

0.60 0.60 0.60 0.50 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.50

0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.30 0.30 0.80 0.30 0.30 0.50 0.50

0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.50 1.00 0.50 0.50 0.60 0.50 0.30 0.30 0.80 0.30 0.30 0.50 0.60

0.10 0.50 0.10 0.60 0.50 0.80 0.50 0.50 0.50 1.00 0.80 0.50 0.10 0.50 0.50 0.80 0.50 0.50 0.10 0.50

0.10 0.50 0.10 0.50 0.50 0.80 0.50 0.50 0.50 0.80 1.00 0.50 0.10 0.50 0.50 0.50 0.10 0.50 0.80 0.50

0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.60 0.50 0.50 1.00 0.50 0.10 0.10 0.60 0.10 0.10 0.50 0.80

0.50 0.80 0.80 0.50 0.50 0.10 0.50 0.50 0.50 0.10 0.10 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.80 0.50

0.50 0.50 0.50 0.10 0.30 0.50 0.50 0.30 0.30 0.50 0.50 0.10 0.50 1.00 0.30 0.50 0.50 0.80 0.50 0.10

0.50 0.50 0.50 0.10 0.30 0.50 0.50 0.30 0.30 0.50 0.50 0.10 0.50 0.30 1.00 0.30 0.80 0.80 0.50 0.10

0.50 0.50 0.50 0.60 0.50 0.50 0.50 0.80 0.80 0.80 0.50 0.60 0.50 0.50 0.30 1.00 0.30 0.30 0.50 0.60

0.50 0.50 0.50 0.10 0.30 0.50 0.50 0.30 0.30 0.50 0.10 0.10 0.50 0.50 0.80 0.30 1.00 0.80 0.50 0.10

0.50 0.50 0.50 0.10 0.30 0.50 0.50 0.30 0.30 0.50 0.50 0.10 0.50 0.80 0.80 0.30 0.80 1.00 0.50 0.10

0.80 0.80 0.80 0.50 0.50 0.10 0.60 0.50 0.50 0.10 0.80 0.50 0.80 0.50 0.50 0.50 0.50 0.50 1.00 0.50

0.50 0.50 0.50 0.80 0.60 0.50 0.50 0.50 0.60 0.50 0.50 0.80 0.50 0.10 0.10 0.60 0.10 0.10 0.50 1.00

Table 9 Amino acid Hodgkin index matrix. Amino acid order: ARNDCQEGHILKMFPSTWYV.
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1.00 0.11 -0.31 0.07 -0.38 0.36 0.74 -0.41 -0.20 -0.26 0.54 0.60 0.43 -0.19 0.11 -0.40 -0.63 -0.11 -0.63 -0.25

0.11 1.00 -0.12 -0.08 -0.20 0.10 0.11 -0.21 0.19 0.06 0.03 0.21 -0.09 0.20 -0.21 -0.13 -0.12 0.03 -0.01 -0.04

-0.31 -0.12 1.00 0.35 0.04 -0.16 -0.27 0.40 0.04 -0.07 -0.24 -0.22 -0.13 -0.12 -0.10 0.06 0.01 -0.24 0.05 -0.16

0.07 -0.08 0.35 1.00 -0.10 0.13 0.09 0.08 0.00 -0.29 0.01 0.14 -0.08 -0.35 0.01 0.03 -0.19 -0.22 -0.22 -0.25

-0.38 -0.20 0.04 -0.10 1.00 -0.16 -0.36 0.13 -0.01 -0.16 -0.29 -0.31 -0.29 -0.07 0.14 0.35 0.15 -0.02 0.29 -0.10

0.36 0.10 -0.16 0.13 -0.16 1.00 0.42 -0.32 0.12 -0.15 0.35 0.23 0.22 -0.26 -0.18 -0.22 -0.22 -0.18 -0.32 -0.04

0.74 0.11 -0.27 0.09 -0.36 0.42 1.00 -0.46 -0.14 -0.13 0.62 0.58 0.38 -0.27 0.07 -0.43 -0.54 -0.12 -0.62 -0.09

-0.41 -0.21 0.40 0.08 0.13 -0.32 -0.46 1.00 0.09 -0.24 -0.56 -0.38 -0.30 -0.05 0.09 0.28 0.11 -0.11 0.20 -0.25

-0.20 0.19 0.04 0.00 -0.01 0.12 -0.14 0.09 1.00 0.00 -0.13 -0.26 -0.06 0.20 -0.34 -0.02 0.09 -0.02 0.14 -0.13

-0.26 0.06 -0.07 -0.29 -0.16 -0.15 -0.13 -0.24 0.00 1.00 0.27 -0.18 0.18 0.32 -0.55 -0.37 0.32 0.04 0.15 0.72

0.54 0.03 -0.24 0.01 -0.29 0.35 0.62 -0.56 -0.13 0.27 1.00 0.36 0.47 -0.08 -0.26 -0.66 -0.36 -0.15 -0.48 0.25

0.60 0.21 -0.22 0.14 -0.31 0.23 0.58 -0.38 -0.26 -0.18 0.36 1.00 0.09 -0.18 0.04 -0.21 -0.38 0.02 -0.48 -0.16

0.43 -0.09 -0.13 -0.08 -0.29 0.22 0.38 -0.30 -0.06 0.18 0.47 0.09 1.00 -0.01 -0.32 -0.53 -0.35 -0.19 -0.33 0.11

-0.19 0.20 -0.12 -0.35 -0.07 -0.26 -0.27 -0.05 0.20 0.32 -0.08 -0.18 -0.01 1.00 -0.31 -0.13 0.21 0.18 0.29 0.16

0.11 -0.21 -0.10 0.01 0.14 -0.18 0.07 0.09 -0.34 -0.55 -0.26 0.04 -0.32 -0.31 1.00 0.35 -0.21 -0.02 -0.15 -0.44

-0.40 -0.13 0.06 0.03 0.35 -0.22 -0.43 0.28 -0.02 -0.37 -0.66 -0.21 -0.53 -0.13 0.35 1.00 0.36 0.07 0.36 -0.27

-0.63 -0.12 0.01 -0.19 0.15 -0.22 -0.54 0.11 0.09 0.32 -0.36 -0.38 -0.35 0.21 -0.21 0.36 1.00 0.12 0.52 0.38

-0.11 0.03 -0.24 -0.22 -0.02 -0.18 -0.12 -0.11 -0.02 0.04 -0.15 0.02 -0.19 0.18 -0.02 0.07 0.12 1.00 0.11 -0.02

-0.63 -0.01 0.05 -0.22 0.29 -0.32 -0.62 0.20 0.14 0.15 -0.48 -0.48 -0.33 0.29 -0.15 0.36 0.52 0.11 1.00 0.17

-0.25 -0.04 -0.16 -0.25 -0.10 -0.04 -0.09 -0.25 -0.13 0.72 0.25 -0.16 0.11 0.16 -0.44 -0.27 0.38 -0.02 0.17 1.00

Table 10 Amino acid structural similarity index matrix. Amino acid order: ARNDCQEGHILKMFPSTWYV [20].
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1.00 -0.07 -0.14 -0.08 0.04 -0.01 0.08 0.11 -0.11 -0.10 0.20 -0.07 0.15 -0.25 -0.07 0.14 0.11 -0.25 -0.36 0.06

-0.07 1.00 0.12 -0.01 -0.20 0.57 0.34 -0.11 0.13 -0.29 -0.20 0.47 -0.17 -0.31 -0.17 -0.16 -0.32 -0.03 -0.03 -0.29

-0.14 0.12 1.00 0.56 -0.14 0.20 0.13 0.22 0.32 -0.37 -0.39 0.22 -0.11 -0.33 0.05 0.14 0.13 -0.39 -0.27 -0.46

-0.08 -0.01 0.56 1.00 -0.24 0.19 0.37 0.11 0.22 -0.54 -0.55 0.18 -0.25 -0.40 0.09 0.22 0.23 -0.41 -0.34 -0.48

0.04 -0.20 -0.14 -0.24 1.00 -0.29 -0.51 0.25 0.18 0.26 0.23 -0.43 0.10 0.30 0.02 0.10 0.14 0.18 0.21 0.33

-0.01 0.57 0.20 0.19 -0.29 1.00 0.51 -0.13 0.05 -0.43 -0.30 0.52 -0.18 -0.44 -0.03 -0.06 -0.15 -0.17 -0.28 -0.38

0.08 0.34 0.13 0.37 -0.51 0.51 1.00 -0.23 -0.19 -0.51 -0.45 0.54 -0.14 -0.50 -0.11 -0.17 -0.27 -0.22 -0.32 -0.44

0.11 -0.11 0.22 0.11 0.25 -0.13 -0.23 1.00 0.18 -0.22 -0.14 -0.23 -0.01 -0.09 0.25 0.29 -0.02 -0.08 -0.24 -0.12

-0.11 0.13 0.32 0.22 0.18 0.05 -0.19 0.18 1.00 -0.14 -0.12 -0.09 -0.19 -0.06 0.05 0.14 0.08 -0.11 0.08 -0.18

-0.10 -0.29 -0.37 -0.54 0.26 -0.43 -0.51 -0.22 -0.14 1.00 0.60 -0.40 0.36 0.60 -0.19 -0.27 0.00 0.36 0.43 0.70

0.20 -0.20 -0.39 -0.55 0.23 -0.30 -0.45 -0.14 -0.12 0.60 1.00 -0.34 0.38 0.44 -0.20 -0.19 -0.04 0.22 0.17 0.49

-0.07 0.47 0.22 0.18 -0.43 0.52 0.54 -0.23 -0.09 -0.40 -0.34 1.00 -0.16 -0.41 -0.17 -0.24 -0.24 -0.22 -0.20 -0.36

0.15 -0.17 -0.11 -0.25 0.10 -0.18 -0.14 -0.01 -0.19 0.36 0.38 -0.16 1.00 0.22 -0.17 -0.17 -0.02 0.16 0.07 0.23

-0.25 -0.31 -0.33 -0.40 0.30 -0.44 -0.50 -0.09 -0.06 0.60 0.44 -0.41 0.22 1.00 -0.12 -0.01 0.02 0.41 0.54 0.47

-0.07 -0.17 0.05 0.09 0.02 -0.03 -0.11 0.25 0.05 -0.19 -0.20 -0.17 -0.17 -0.12 1.00 0.27 0.20 -0.13 -0.23 -0.17

0.14 -0.16 0.14 0.22 0.10 -0.06 -0.17 0.29 0.14 -0.27 -0.19 -0.24 -0.17 -0.01 0.27 1.00 0.45 -0.17 -0.21 -0.18

0.11 -0.32 0.13 0.23 0.14 -0.15 -0.27 -0.02 0.08 0.00 -0.04 -0.24 -0.02 0.02 0.20 0.45 1.00 -0.12 -0.14 0.07

-0.25 -0.03 -0.39 -0.41 0.18 -0.17 -0.22 -0.08 -0.11 0.36 0.22 -0.22 0.16 0.41 -0.13 -0.17 -0.12 1.00 0.43 0.29

-0.36 -0.03 -0.27 -0.34 0.21 -0.28 -0.32 -0.24 0.08 0.43 0.17 -0.20 0.07 0.54 -0.23 -0.21 -0.14 0.43 1.00 0.31

0.06 -0.29 -0.46 -0.48 0.33 -0.38 -0.44 -0.12 -0.18 0.70 0.49 -0.36 0.23 0.47 -0.17 -0.18 0.07 0.29 0.31 1.00

Table 11 Amino acid hyrophobicity index matrix. Amino acid order: ARNDCQEGHILKMFPSTWYV [21].
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