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Abstract 
 
The theory of heterogeneous catalysis in chemical reactors is employed to simulate laminar 

flow through tubes at large mass transfer Peclet numbers in which anchorage-dependent cells (i) 
adhere to a protein coating on the inner surface at r = Rwall, (ii) receive nutrients and oxygen from an 
aqueous medium via transverse diffusion toward the active wall, and (iii) proliferate in the presence of 
viscous shear at the cell/aqueous-medium interface.  This process is modeled as convective diffusion 
in cylindrical coordinates with chemical reaction at the boundary, where chemical reaction describes 
the rate of nutrient consumption.  The formalism of irreversible thermodynamics is employed to 
describe an unusual coupling between viscous shear, or velocity gradients at the cell/aqueous-
medium interface, and rates of nutrient consumption.  Linear transport laws in chemically reactive 
systems that obey Curie's theorem predict the existence of cross-phenomena between fluxes (i.e., 
scalar reaction rates) and driving forces (i.e., second-rank velocity gradient tensor) whose tensorial 
ranks differ by an even integer---in this case, two.  This methodology for stress-dependent chemical 
reactions yields an additional zeroth-order contribution, via the magnitude of the velocity gradient 
tensor, to heterogeneous kinetic rate expressions because nutrient consumption and cell proliferation 
are stress-sensitive.  Computer simulations of nutrient consumption suggest that bioreactor designs 
should consider stress-sensitive reactions when the shear-rate-based Damköhler number (i.e., 
defined for the first time in this study as the stress-dependent zeroth-order rate of nutrient 
consumption relative to the rate of nutrient diffusion toward active cells adhered to the tube wall) is 
greater than 10-20% of the stress-free Damköhler number.  Models of bioreactor performance are 
presented for simple 1st-order, simple 2nd-order, and complex chemical kinetic rate expressions, 
where the latter considers adsorption/desorption equilibria via the Fowler-Guggenheim modification of 
the Langmuir isotherm for cell-protein docking on active sites, accompanied by cell-cell attraction.  
Stress sensitivity is magnified in physically realistic cell-based tubular bioreactors with complex 
stress-free kinetic rate expressions relative to simulations with simple first- and second-order kinetics. 

 
Key words: Convective diffusion, bioreactor design, stress-dependent reactions, irreversible 

thermodynamics, Curie’s theorem, scalar cross-phenomena. 
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Introduction 
 
The thermodynamics of irreversible processes provides a fundamental approach to describe 

effects of viscous shear on rates of chemical reactions in stress-sensitive biosystems, such as 
anchorage-dependent cells attached to a protein layer on the inner wall of a tube.  Under isotropic 
conditions where the transport coefficients are scalars, flux-i is coupled to force-j if the tensorial ranks 
of flux-i and force-j are the same or if they differ by an even integer [1-3].  This classic theorem for 
flux-force relations is known as the Curie restriction in isotropic systems, proposed by P. Curie in 
1903, even though he may never have stated it or proved it [1].  As a consequence of Curie’s 
theorem in N-component systems, via the transport-phenomena-based rate of entropy production per 
volume of fluid, there are N first-rank tensorial fluxes that are coupled to N first-rank tensorial forces 
via linear laws [3].  Soret diffusion and Dufour conduction represent examples of these couplings 
between vector fluxes and driving forces in heat and mass transfer [4,5].  Curie’s theorem predicts 
that scalar rates of production of the mass of species i due to chemical reaction should be coupled to 
the velocity gradient tensor, but this coupling is typically discarded based on physical rather than 
mathematical arguments [2], even though experiments have not been designed to investigate this 
unusual coupling [1].  If Curie’s theorem is interpreted rigorously, then it becomes possible to 
describe quantitatively how velocity gradients at the cell/aqueous-medium interface influence the 
scalar rate of nutrient consumption (via the magnitude of the velocity gradient tensor), because there 
is a connection between nutrient consumption and anchorage-dependent (i.e., endothelial) cell 
proliferation, where the latter is stimulated by viscous shear [6].  This phenomenon is not simply 
described by larger nutrient flux toward the wall at higher shear rates via reduction in the mass 
transfer boundary layer thickness external to adsorbed cells on the tube wall, because convective 
enhancement of molecular fluxes is not considered in Curie's theorem [3].  The Curie theorem also 
suggests that molecular momentum flux should be coupled to chemical potential differences, but this 
coupling is not necessarily useful, due to the heterogeneous nature of nutrient consumption and cell 
proliferation on protein-coated surfaces where cells are attached.  There is no consumption of 
nutrients in the bulk aqueous solution.  However, chemical potential differences between species at 
the cell/aqueous-medium interface could provide a contribution to viscous shear stress at the tube 
wall that might affect laminar flow velocity profiles, but this coupling has not been considered in this 
contribution.  The next section outlines eleven assumptions of a biotubular reactor model for the 
consumption of nutrients by anchorage-dependent cells bound to protein-coated surfaces.  Then, 
non-equilibrium thermodynamics is employed to describe rates of nutrient consumption in biological 
systems that are stimulated by viscous shear at the tube wall. 
 

Theoretical Considerations 
 

Assumptions.  Continuous-flow heterogeneous tubular bioreactors with cylindrical cross-
section are described within the framework of the following assumptions. 
 
1) Fluid flow is steady, laminar, incompressible, and Newtonian.  In some cases, entrance effects 

might have a significant influence on mass transfer and overall performance of individual 
channels.  This problem is circumvented, and the steady flow assumption is realized in 
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practice, by passing the nutrient mixture through a tube with no cells adhered to the wall, prior 
to entering the bioreactor. 

 
2) The convective diffusion mass transfer equation is solved for pseudo-binary mixtures of 

nutrient A and product B. 
 
3) The diffusional flux of nutrients toward the cell/aqueous-solution interface is governed by Fick's 

law with a concentration-independent binary molecular diffusion coefficient.  Thermal (i.e., 
Soret), pressure, and forced diffusion are neglected relative to concentration diffusion. 

 
4) Nutrient diffusion via Fick’s law in the primary direction of flow (i.e., z-direction) is negligible 

compared to convective mass transfer.  This assumption for ideal tubular reactors is justified at 
large mass transfer Peclet numbers.  However, surface diffusion of cells [7] on protein-coated 
surfaces in the z-direction is influenced strongly by viscous shear. 

 
5) Mass transfer, nutrient consumption, and cell proliferation occur with minimal temperature 

changes (i.e., all processes occur at 370C).  Hence, physical properties of the aqueous mixture 
and the active surface, such as overall mass density, viscosity, ordinary molecular diffusion 
coefficients in the aqueous nutrient mixture and for cell mobility on protein-coated surfaces, 
kinetic rate constants for stress-free and stress-dependent rates of nutrient consumption, and 
the adsorption/desorption equilibrium constant for cell-protein binding do not vary throughout 
the reactor. 

 
6) The rate of nutrient consumption and cell proliferation contains stress-free and stress-

dependent contributions.  The mathematical form of this rate law is consistent with the 
principles of irreversible thermodynamics, subject to physiological constraints. 

 
7) Monolayer cell proliferation on active sites at the tube wall is described by the Sipps isotherm 

[8]; 

ΘCell = KCell T( )ρCell r = Rwall( ){ }
1/λ

ΘVacant =
KCell T( )ρCell r = Rwall( ){ }

1/λ

1+ KCell T( )ρCell r = Rwall( ){ }
1/λ  (1) 

 

where ΘCell represents the fraction of these active sites occupied by cells, ΘVacant is the vacant 

site fraction, ρCell is the local cell surface density (i.e., mass of cells per unit area of protein-
coated surface), and KCell is the temperature-dependent adsorption-desorption (i.e., 
association) equilibrium constant with dimensions of length squared per mass.  Active sites are 
identified by favourable protein conformations within the aqueous layer at the tube wall that 
promote cell-protein docking.  The Sipps exponent on mass density in Equation (1) 
corresponds to the Hill coefficient.  The Hill equation for protein-ligand binding [9], which is 
mathematically similar to the Sipps isotherm in heterogeneous catalysis, describes the 
equilibrium fraction of active protein sites occupied by ligands (i.e., cells), and it reduces to the 

Langmuir isotherm when the Hill coefficient λ-1 is unity for non-cooperative binding.  Hill 
coefficients greater than unity correspond to cooperative protein-cell binding, where protein 
conformational changes occur after the first cell receptor docks to permit subsequent docking 
with greater affinity.  Within reasonable physiological limits, the 4th-order stress-free 
heterogeneous reaction rate for nutrient consumption and cell proliferation depends linearly on 
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(i) nutrient mass density at the wall, ρNutrient(r=Rwall), with dimensions of nutrient mass per 

volume of the aqueous phase, (ii) oxygen mass density at the wall, ρOxygen(r=Rwall), with 
dimensions of mass per volume of the aqueous phase, (iii) surface coverage fraction of cells 

on active sites, ΘCell, which is related to cell mass density via the Sipps isotherm, and (iv) 

vacant site fraction, ΘVacant, which is required for cells to consume nutrients aerobically and 
increase their mass density via chemisorption as a monolayer on protein-coated surfaces.  
Hence, the complex stress-free reaction rate, with dimensions of nutrient mass consumed per 
surface area per time, is; 
 

RSurfaceRx = kSurface ρNutrient{ }
r=Rwall

ρOxygen{ }
r=Rwall

ΘCellΘVacant

ΘCell + ΘVacant =1
 (2) 

 
The kinetic rate law is a mathematical expression that describes the rate of nutrient 
consumption at the cell/aqueous-solution interface.  The analog in heterogeneous catalysis is a 
dual-site chemical-reaction rate-controlling mechanism in which nutrients and dissolved oxygen 
from the aqueous medium are consumed by protein-bound cells such that nutrients and 
oxygen do not occupy active protein sites [3]. 
 

8) The Sipps isotherm, or the Hill equation, that describes fractional surface coverage by cells on 
active protein sites via protein-ligand docking contains sufficient flexibility to include the effects 
of cell binding energy and protein conformation on the adsorption/desorption equilibrium 
constant (i.e., association constant).  Larger exothermic binding energies (i.e., greater affinity) 
are consistent with an increase in the activation energy for desorption (i.e., same barrier 
energy but a deeper potential well in the adsorbed state), a decrease in the kinetic rate 
constant for desorption, an increase in the equilibrium constant for protein-ligand binding, and 
an increase in the equilibrium fraction of active protein sites that are occupied by cell receptors.  
Statistical thermodynamics is employed to describe the effect of protein conformation on the 
association equilibrium constant KCell in the Hill equation for protein-ligand interactions.  
Starting from the grand partition function Z for mixtures, a few important conformations (i.e., 
states) that proteins adopt (i.e., alpha-helix, beta-sheet, etc.) are simulated on a tetrahedral 
lattice using trans, gauche+, and gauche- projections for backbone bonds in an N-segment 
chain (i.e., N ≈ 7).  The energy of each single-chain conformation is approximated via pairwise 
intramolecular interactions between non-bonded segments that occupy adjacent lattice sites, 
because these nearest neighbor interactions on a lattice mimic van der Waals interactions in 
the continuum, whereas bonding interactions are quite different.  Flexibility to exclude a group 
of unfavourable states is incorporated into Z when proteins do not adopt the appropriate 
conformation for efficient docking, and the connection between KCell and Z is generated via the 
statement of chemical equilibrium with assistance from statistical thermodynamics for species 
chemical potentials.  This quantitative relation between KCell and Z reveals the following trend; 
the affinity between cells and proteins decreases when the protein conformation is not 
optimum.  The association equilibrium constant KCell decreases and approach zero as the 
protein conformation becomes less favourable until "docking" (i.e., protein-ligand binding) is no 
longer feasible. 
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9) Interactions between adsorbed cells on adjacent active sites are described by the Fowler-

Guggenheim modification [10] of the Sipps isotherm.  If Ω represents the cell-cell interaction 

energy (i.e., Ω<0 is attractive, Ω>0 is repulsive), ϕ = Ω/(kBoltzmannT), and kBoltzkmann is 
Boltzmann’s constant, then the fraction of active protein sites occupied by interacting cells is 
given by; 

 

ΘCell =
KCell T( ) ρCell[ ]

r=Rwall

exp −ϕΘCell( ){ }
1/λ

1+ KCell T( ) ρCell[ ]
r=Rwall

exp −ϕΘCell( ){ }
1/λ  (3) 

 

Cell-cell attraction and the formation of chemical bonds between receptors (i.e., Ω<0, ϕ<0) 

increases ΘCell at the same cell mass density [11].  Hence, stronger attraction between cells 
and stronger cell-protein binding energies increase cell fractional surface coverage, as 
illustrated in Figure#1. 
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Figure#1 
Effect of attractive cell-cell interactions on fractional surface coverage by cells bound to active protein sites, according to 
the Fowler-Guggenheim modification of the Sipps isotherm when the Hill coefficient is unity for non-cooperative 

adsorption.  The dimensionless cell-cell interaction (i.e., attractive) energy ϕ is provided in the legend.  Non-interacting 
cells adsorbed on adjacent active sites are described by the Langmuir isotherm (i.e., lowermost curve for non-cooperative 

cell-protein binding, ϕ=0).  Dimensionless cell mass density on the protein-coated surface at the tube wall is defined by 

Eq. (15), and the dimensionless adsorption/desorption (i.e., association) equilibrium constant is κ = 

0.5RwallKCellρNutrient,Bulk(z=0) = 5, as defined by Eq. (20). 
 
10) Surface diffusion [7] is invoked to describe cell mobility within the aqueous protein layer that 

coats a biodegradable polymer at the tube wall, where cell receptor diffusivities range from 10-

9-10-10 cm2/sec [22].  This phenomenon is required to develop relations between nutrient mass 
density at the cell/aqueous-solution interface and cell mass density on protein-coated surfaces.  
One invokes a balance between diffusion and reaction at the boundary (i.e., tube wall, 
stationary or rotating plate in rotational viscometers, etc.).  Nutrients diffuse toward the reactive 
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boundary and are consumed.  At steady state, this nutrient balance is connected to the rate of 
cell proliferation, followed by surface diffusion of cells away from the site of nutrient 
consumption.  If angular symmetry is reasonable, such that cell mass density in the aqueous 
protein coating at the tube wall is independent of the polar angle in cylindrical coordinates, then 
the desired relation between radial diffusion of nutrients within the mass transfer boundary 
layer and surface diffusion of adhered cells in the z-direction is given by; 

−
1

εNutrient

DNutrient

∂ρNutrient

∂r
 
 
 

 
 
 
r=Rwall

=
2DCell

εCellRwall

dρCell

dz

 
 
 

 
 
 

 (4) 

 

Viscous shear stress τrz at the cell/aqueous-solution interface influences cell motility along the 
surface in the direction of bulk flow.  In general, nutrients exhibit 3-dimensional diffusion and 
cells diffuse in two coordinate directions within the protein coating on the inner wall of the tube.  
The dimensionality of the diffusion process is embedded in the number of independent spatial 
variables required to construct the Laplacian of mass density in the convective diffusion 
equation [i.e., see Eqs. (11) & (12)], where all diffusivities have dimensions of length2/time 
[21,22].  Reasonable approximations (i.e., PeMT>>1 and angular symmetry) suggest that 
nutrients diffuse primarily in the radial direction and viscous shear influences cell motility on the 
surface in the z-direction.  Nutrient molecular flux on the left side of Equation (4) has 
dimensions of mass per area-time, because this surface-related process occurs everywhere 

within the aqueous medium and ρNutrient is a volumetric mass density.  The appropriate use of 

cell surface density ρCell in Fick’s first law on the right side of Equation (4) requires an 
additional factor (i.e., the active-surface-area-to-volume ratio = 2/Rwall) because surface 

diffusional mass flux that incorporates ρCell in Fick’s law yields dimensions of mass per length-

time.  Using 2nd-order-correct backward differences for both derivatives, except for dρCell/dz at 

the reactor inlet, the previous relation provides an expression for ρCell at the current axial 
position z; 
 

2

Rwall

3ρCell z( )− 4ρCell z − ∆z( )+ ρCell z − 2∆z( ){ }=

εCellDNutrient∆z
εNutrientDCell∆r

−3ρNutrient r = Rwall , z( )+ 4ρNutrient r = Rwall − ∆r, z( )− ρNutrient r = Rwall − 2∆r, z( ){ }
 (5) 

 

where εCell/εNutrient (i.e., ≈ 20-40%) represents the ratio of cell mass produced relative to nutrient 
mass depleted during nutrient consumption and cell proliferation, considering inefficiencies in 
nutrient consumption and use of a fraction of this energy generated by consumption to support 
cell motility in the protein-coated layer at the tube wall.  If there are no nutrient gradients in 
aqueous media, then nutrient transport toward adhered cells will not occur, these cells would 
subsequently die (not immediately), and cell movement would cease.  There might be a time 
lag between these processes, but there should be a connection between nutrient transport via 
diffusion toward the active surface and subsequent cell movement via surface diffusion.  A 
recent development [12] mentions inconsistencies between surface diffusion of cells and the 
assumption of adsorption/desorption equilibrium for fractional coverage of active protein sites 
due to cell-protein docking, as described by the isotherm in Assumption#9.  It might be 
possible to circumvent this potential inconsistency by replacing the total cell surface mass 

density ρCell in the aqueous protein layer with the surface density of unbound cells (i.e., 
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ρCellΘVacant) to quantify surface diffusion via Fick’s law, because free cells have significantly 
more mobility than those that are chemisorbed.  However, according to Assumption#7, 
anchorage-dependent cells only consume nutrients when they are docked on conformationally-
favourable (i.e., active) protein sites, so reaction/diffusion stoichiometry at the tube wall 
rigorously applies to bound cells, not free cells. 

 
11) There exists a relation between nutrient and oxygen diffusional mass fluxes toward cells 

adhered on active protein sites at the tube wall, according to the cascade of physiological 
reactions that occur.  Typically, stoichiometric relations among reactants occur volumetrically 
throughout the system.  However, the heterogeneous nature of this bioreactor design restricts 
the applicability of stoichiometry between nutrients and oxygen to the active wall at r=Rwall, 
where consumption occurs.  The same type of stoichiometry applies rigorously to reactants 
and products in porous catalytic pellets, but the homogeneity assumption that neglects the 
internal structure of the catalyst allows one to apply stoichiometry volumetrically [3].  At the 
well-defined cell/aqueous-medium boundary (i.e., r=Rwall), the appropriate relation between 
diffusional mass fluxes, with dimensions of mass per area-time is; 

 

1

εNutrient

DNutrient

∂ρNutrient

∂r
 
 
 

 
 
 
r=Rwall

=
1

εOxygen

DOxygen

∂ρOxygen

∂r

 
 
 

 
 
 r=Rwall

 (6) 

 
Since each side of Equation (6) depends on axial position z, integration from the reactor inlet at 
z=0 to any position downstream at the wall yields the following mass density of oxygen which 
is required for quantitative evaluation of the rate of nutrient consumption; 
 

ρOxygen r = Rwall , z( )= ρOxygen,Inlet z = 0( )−
εOxygenDNutrient

εNutrientDOxygen

ρNutrient,Inlet z = 0( )− ρNutrient r = Rwall , z( ){ }    (7) 

 
Ordinary molecular diffusion coefficients for nutrients and oxygen in the aqueous medium scale 

inversely with the square-root of molecular weight [13], εOxygen/εNutrient (i.e., ≈ 2-4%) represents 
the ratio of oxygen mass depleted relative to nutrient mass depleted during nutrient 
consumption, and within reasonable physiological limits, the inlet mass density of dissolved 
oxygen is approximately 5-7% of the inlet nutrient mass density. 

 

Mathematically correct form of the coupling between scalar reaction rates and 
the velocity gradient tensor 

 
It is necessary to address the correct quantitative construction of reaction rates, or rates of 

nutrient consumption and cell proliferation, affected by viscous shear stress at the cell/aqueous-
medium interface.  Mathematical inconsistencies must be avoided if scalars and second-rank tensors 
are coupled.  Curie's theorem suggests that couplings exist between fluxes and forces whose 
tensorial ranks differ by 2, where these fluxes and forces are identified by terms in the transport-
phenomena-based rate of entropy generation per unit volume of fluid [3].  Several possibilities exist to 
construct mathematically consistent rate expressions.  The scalar reaction rate is coupled linearly to 
scalar chemical potentials, also known as the affinity [2] (i.e., diagonal contribution), and the velocity 

gradient tensor ∇v (i.e., off-diagonal contribution).  If the corresponding coupling coefficients are 
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scalars, as expected for isotropic systems, then one should employ a scalar invariant of the velocity 

gradient tensor because these invariants of ∇v are independent of the choice of the coordinate 

system used to express this tensor [13].  If ∇v is denoted by g, then 2 other tensors are defined by g2 
= g•g and g3 = g•{ g•g} = g•g2.  Three independent scalar invariants of the velocity gradient tensor are 
constructed by taking the trace of g, g2, and g3, based on summing the diagonal elements of these 
second-rank tensors [13].  In terms of all 9 elements of the velocity gradient tensor {gij}, these three 
independent scalar invariants, as well as two others [13], are defined by Equation (8).  Only the first of 

these five scalar invariants of the velocity gradient tensor is linear in elements of ∇v, but shear 

components are not considered in Trace{g} and ∇•v vanishes for incompressible flow.  Hence, for 
stress-sensitive nutrient consumption in biological systems that exhibit incompressibility, it might be 
necessary to identify one of the other non-vanishing invariants in Equation (8) and take its square root 
or cube root to obtain a useful expression that is linear in gij.  However, all of the other possible 
invariants of the velocity gradient tensor, which are non-zero for generalized incompressible flow, 
vanish for simple one-dimensional shear flow in which there is only one non-zero element of the 
velocity gradient tensor. 

 

Trace g{ }= gii
i

∑ = ∇•v

Trace g•g{ }=Trace g2{ }= gij
i, j

∑ g ji

Trace g• g•g[ ]{ }=Trace g3{ }= gij
i, j,k

∑ g jkgki

1

2
Trace g{ }( )2 −Trace g2{ }[ ]

1

6
Trace g{ }( )3 − 3 Trace g{ }( )Trace g2{ }( )+ 2Trace g3{ }[ ]= determinant of g

(8) 

 
Another possibility is to construct the magnitude of the velocity gradient tensor, defined by the 
square-root of the double dot product of the velocity gradient tensor with the transpose of the velocity 
gradient tensor [13]; 
 

Magnitude of the velocity gradient tensor;  ∇v =
1

2
∇v{ }: ∇v{ }T

=
1

2
gij

2

i, j

∑    (9) 

 
Reactive mixing in flame combustion was simulated using the square-root of the magnitude of the 
rate-of-strain tensor [14].  The factor of 0.5 under the square-root guarantees that the magnitude of a 
symmetric 2nd-rank tensor reduces to its only independent off-diagonal element when all other 

elements vanish.  However, one must recognize that ∇v is not a symmetric 2nd-rank tensor.  Fitts [1] 
suggested that the correct form of the linear off-diagonal coupling between scalar reaction rates and 
the velocity gradient tensor should contain a double-dot product of a second-rank “rate-coefficient 
tensor” with the velocity gradient tensor.  In other words, if forces and fluxes have tensorial ranks that 
differ by an even integer n, then the coupling coefficient that relates these fluxes to their conjugate 
forces should be a tensor of rank n [1].  This approach requires several scalar rate coefficients, 

unless the shear flow is extremely simple with one non-zero element in ∇v, such that only one non-
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zero element is required in the 2nd-rank rate-coefficient tensor.  For one-dimensional tube flow, the 
same functional form of the off-diagonal flux-force relation between reaction rates and viscous shear 

is obtained by employing (i) a scalar Onsager off-diagonal coupling coefficient γ and the magnitude of 
the velocity gradient tensor, or (ii) the double-dot product of a second-rank rate-coefficient tensor with 
the velocity gradient tensor.  Only one off-diagonal coupling coefficient is required, due to the 
simplicity of the shear flow.  It should be emphasized that when homogeneous chemical reactions 

occur volumetrically throughout the system, all nonzero scalar elements of ∇v contribute to stress-
sensitive consumption of reactants within a representative volume element via scalar cross-
phenomena in the thermodynamics of irreversible processes, as described in the next section.  
However, cells bind to favourable protein conformations in the aqueous coating on the inner wall of a 
tube, and nutrient consumption is a surface-related process.  Consequently, it is only necessary to 

consider those components of ∇v that cells experience across the active surface at r=Rwall.  If 
necessary, the magnitude of the velocity gradient tensor at the tube wall is modified to reflect this 
fundamental difference between the effects of stress on homogeneous volumetric reactions vs. 
heterogeneous surface reactions. 

 
Linear law for stress-dependent rates of nutrient consumption 

 
If one focuses on fluxes and driving forces that appear as products in the rate of entropy 

generation per unit volume, from the transport-phenomena-based equation of change for fluid entropy 
[3], then Curie’s theorem suggests that the scalar flux –rA in binary mixtures, better known as the rate 
of consumption of nutrients with dimensions of nutrient mass per surface area per time, possibly due 
to several chemical reactions, should depend linearly on both scalar and 2nd-rank tensor driving 
forces.  For pseudo-binary systems that are not far removed from equilibrium, the appropriate linear 
law that satisfies Curie’s restriction is written in the following form; 
 

−rA = -υAj( )
j Rx's

∑ Rj,SurfaceRx = ξA1

1

T
ϕ A +ξA2

1

T

1

2
∇v{ }: ∇v{ }T

ϕ A =
µA

MWA

−
µB

MWB

Onsager coupling coefficients;  ξA1 and ξA2

ξA1 = αT ;ξA2 = γT
Generalized kinetic rate law for stress - enhanced cell proliferation on active surfaces

RSurfaceRx ⇒
υAj=−1

1 chemical
reaction

α
µA

MWA

−
µB

MWB

 
 
 

 
 
 

+γ
1

2
gij

2

i, j

∑

gij = ∇v{ }
ij-element in the 3x3 velocity gradient matrix evaluated at r=Rwall

 (10) 

 
Linear approximations in the thermodynamics of irreversible processes that adequately describe 
transport phenomena under most experimental conditions are not very satisfactory for chemical 
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reactions [2].  In general, large deviations from linear behaviour are observed for chemical reactions.  
Nonlinearity can be introduced in the reaction rate expression by focusing on the diagonal 
contribution due to stress-free chemical kinetics, not the contribution from viscous stress.  Hence, the 
diagonal (i.e., scalar) contribution to the previous kinetic rate expression [i.e., Eq. (10)], based on 
differences between chemical potentials (i.e., the affinity), is modified by a complex stress-free 
nonlinear rate law that represents a subset of the Hougen-Watson models for heterogeneous 
catalysis [3] and biochemical reactions.  The linear cross-term should be appropriate under low-shear 
conditions in the laminar or creeping flow regimes.  Specific nutrient/cell combinations are 
characterized by the kinetic rate constant in the numerator of the stress-free rate law and the 

Onsager off-diagonal coupling coefficient γ.  Adsorption of cells on specific substrates is described by 
the adsorption/desorption equilibrium constant that appears in (i) the stress-free rate law based on 
the Sipps or Langmuir isotherm for chemisorption and (ii) the stress-free Damköhler number defined 
below [see Eqs. (19) & (20)].  It should be emphasized that the linear laws of irreversible 
thermodynamics do not support the inclusion of shear-rate dependence in the stress-free kinetic rate 

constant (i.e., ξA1 or α) for nutrient consumption in stress-sensitive systems.  This is analogous to the 
fact that temperature-dependent diffusivities in Fick’s first law (i.e., concentration diffusion) are not 
adequate to describe thermal diffusion, because an additional term that contains the gradient of 
temperature is required for coupled heat and mass transfer [4,5]. 
 

The Onsager off-diagonal coupling coefficient (ξA2 or γ) that connects reaction rates to viscous 
stress must contain sufficient flexibility to distinguish between stress-enhanced and stress-hindered 

situations.  This is accomplished by using an empirical relation between ξA2 or γ and Poisson’s ratio υ, 
which is consistent with the general trend that favours enhanced catalytic activity when the distance 
between individual metal atoms increases on “stretched” surfaces.  For example, when NO adsorbs 
on ruthenium, dissociation occurs preferentially at edge dislocations [15,16].  Rates of dissociative 
adsorption can be several orders of magnitude higher in the vicinity of these defects.  This effect is 
supported by scanning tunneling microscope images that reveal a higher concentration of 
chemisorbed nitrogen near defects on the ruthenium surface.  The connection between Poisson’s 
ratio and stress-enhanced vs. stress-hindered chemical reactions contains some elements of 
generality.  Poisson’s ratio is less than or equal to 0.5 for all materials, indicative of either volume 
increase or no volume change, respectively, in response to tensile stress.  There are practical 
examples where tensile stress stimulates the growth of muscle cells [17], compressive stress 
stimulates the growth of bone cells [18,19], and shear accelerates the proliferation of endothelial cells 
[6].  These effects can be summarized by the change in system volume due to tension, compression, 

or shear, via the contribution from Poisson’s ratio (i.e., 1-2υ), except when systems are truly 

incompressible such that υ = 1/2.   
 

The primary objective of this research contribution is to develop stress-dependent kinetic rate 
expressions for bioreactor design that are consistent with Curie’s restriction in the thermodynamics of 
irreversible processes.  Parametric studies based on computer simulations allow one to identify a 
critical shear-rate-based Damköhler number that is approximately (i) 10-20% of the stress-free 
Damköhler number for simple nth-order kinetics (i.e., n=1,2) and (ii) 1% of the stress-free Damköhler 
number for complex cell-based kinetics.  In addition to the form of the kinetic rate law that is coupled 
to the laminar flow Newtonian velocity gradient at the cell/aqueous-medium interface, correct 
predictions of nutrient consumption in tubular bioreactors with anchorage-dependent cells at the wall 
must consider Onsager-Curie scalar coupling between reaction rates and the magnitude of the 
velocity gradient tensor when the shear-rate-based Damköhler number exceeds its critical value.  
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Physically realistic simulations can be compared with experimental data to extract true kinetic rate 
constants and off-diagonal coupling coefficients for nutrient consumption.  This methodology is useful 
to design similar bioreactors with different geometries when diffusional limitations are not severe, 
such that nutrient consumption is governed primarily by kinetics instead of rates of diffusion toward 
the active sites. 

 
Mass Transfer Equation 

 
Bioreactor performance is established by calculating the mass density of nutrients from a 

steady state microscopic mass balance that accounts for axial convection and transverse diffusion.  
Chemical reaction occurs only at the interface between adhered cells and the nutrient solution.  
Hence, nutrient consumption appears in the boundary conditions, but not in the mass balance that 
applies volumetrically throughout the homogeneous flow channel [3].  The generalized steady state 
mass transfer equation for convective diffusion is written in vector form; 

 

v•∇ρNutrient = DNutrient∇•∇ρNutrient      (11) 

 

where v is the mass-average velocity of the aqueous nutrient mixture, ρNutrient is the nutrient mass 
density, and DNutrient is a concentration-independent molecular diffusion coefficient of nutrients in 
aqueous solution.  In cylindrical coordinates, nutrient mass density in aqueous media obeys the 
following partial differential equation at large mass transfer Peclet numbers when axial diffusion is 
negligible compared to axial convection; 
 

vz (r)
∂ρNutrient

∂z
= DNutrient

1

r

∂
∂r

r
∂ρNutrient

∂r
 
 
 

 
 
  (12) 

 
Boundary conditions.  It is mathematically feasible to account for nutrient consumption near 

the well-defined cell/aqueous-medium interface in straight channels with circular cross-section [3].  A 
qualitative description of the boundary conditions is based on a steady state mass balance over a 
differential surface element.  Since convective transport vanishes and viscous shear achieves a 
maximum at the cell/aqueous-medium interface [13], the rate of nutrient transport toward the surface 
via molecular mass transfer is balanced by the rate of nutrient consumption that contains stress-free 
and stress-dependent contributions, stimulating anchorage-dependent cell proliferation.  The 
mathematical description of this boundary condition is; 
 

−DNutrient

∂ρNutrient

∂r
 
 
 

 
 
 
r=Rwall

= kcell,Surface ρNutrient{ }
r=Rwall

ρOxygen{ }
r=Rwall

ΘCellΘVacant +γ
1

2
gij

2

i, j

∑  (13) 

 

Both processes have dimensions of nutrient mass per area per time, and the Onsager coefficient γ 
has dimensions of nutrient mass per area of active protein sites that exhibit the appropriate 
conformation for cell-protein binding.  For one dimensional laminar flow through tubes, the only non-

zero element of the velocity gradient tensor that cells experience at the tube wall is; grz = {∂vz/∂r}r=Rwall 
= -4<vz>Average/Rwall.  Symmetry, or zero-flux, is invoked along the centerline of the tube. 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Stress-enhanced cell proliferation 
Biophysical Chemistry, revised March 2008                 

12 

Zeroth-order rates of chemical reaction and modified boundary conditions at the active 
surface.  The stress-dependent contribution to the rate of nutrient consumption in the boundary 
condition at the tube wall can be classified as a zeroth-order reaction because it does not exhibit 
explicit dependence on the mass density of any species.  However, this term must be neglected when 
nutrients are not available for immediate consumption by anchorage-dependent cells due to extreme 
diffusion-limited conditions in the aqueous medium.  In other words, zeroth-order rate laws must 
vanish in the absence of reactants, even though the simple mathematical expression for the rate law 
reduces to the same temperature-dependent “constant” for any nutrient mass density [3].  This 
conceptual problem with the mathematical form of zeroth-order chemical reactions can be 

circumvented with assistance from Dirac delta functions, δ{ρNutrient(r=Rwall)}, which assume a value of 
unity when nutrients vanish at the active sites, and zero otherwise.  The modified version of the 
diffusion/reaction boundary condition at the tube wall [i.e., Eq. (14), below] “turns off” the stress-
dependent contribution to nutrient consumption when reaction is sufficiently faster than radial diffusion 
at large Damköhler numbers and nutrients do not exist at the active surface; 
 

−DNutrient

∂ρNutrient

∂r
 
 
 

 
 
 
r=Rwall

= kcell,Surface ρNutrient{ }
r=Rwall

ρOxygen{ }
r=Rwall

ΘCellΘVacant +γ 1−δ ρNutrient r = Rwall( ){ }[ ] 1

2
gij

2

i, j

∑  

 
Use of the Dirac delta function in the modified boundary condition essentially terminates nutrient 
consumption when nutrients are completely consumed and they cannot reach the active surface due 
to extreme diffusional resistance in the mass transfer boundary layer.  Three additional factors that 
contain Dirac delta functions should be included in the zeroth-order stress-dependent term of 
Equation (14) to account for the absence of (i) cells and vacant sites on the active surface, and (ii) 
oxygen within the cells, after a reasonable time lag when cells can no longer proliferate anaerobically.  
These effects are included in the dimensionless form of the previous reaction/diffusion boundary 
condition for complex cell-based kinetics [see Eq. (19)].  Computations that exclude delta-functions in 
the stress-dependent contribution to nutrient consumption are vulnerable to the prediction of 
unrealistic negative species concentrations at the active boundary. 

 
Dimensionless equations for viscous flow in tubes with stress-dependent rates 

of nutrient consumption at the wall 
 

Dimensionless variables and parameters for nth-order irreversible chemical kinetics; 
These design equations include convection, transverse diffusion, and simple nth-order surface-based 
chemical reaction that depends on nutrient mass density at the tube wall.  The problem description 
contains three important dimensionless parameters; (i) the mass transfer Peclet number, PeMT (i.e., 
rate of convective mass transfer divided by rate of molecular mass transfer), (ii) the ordinary 

Damköhler number, β0,nth-order, for stress-free heterogeneous chemical reactions (i.e., stress-free 

reaction rate divided by rate of molecular mass transfer), and (iii) the Damköhler number βStress for 
stress-dependent heterogeneous chemical reactions at the cell/aqueous-medium boundary (i.e., 
stress-dependent rate of reaction divided by the rate of nutrient diffusion toward adhered cells).  A 
factor of Rwall/2 in the dimensional scaling factor for cell mass density represents the volume-to-
surface ratio of the tubular reactor.  It is required because nutrient mass density is volumetric within 
the aqueous medium, whereas cell mass density is a surface-related concentration within the 
aqueous protein coating on the tube wall.  Notice that the mass transfer Peclet number and the 
stress-dependent Damköhler number in Equation (15) are not completely independent, due to the fact 
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that each one contains the average fluid velocity.  Even though PeMT and βStress can be the focus of 
systematic parametric simulations, independently, the analogous experimental studies are extremely 
challenging because <vz>Average appears in both dimensionless numbers.  If the tube radius Rwall is 
chosen to dimensionalize the radial r and axial z position variables, then; 
 

Radial independent variable;  r = ηRwall

Axial independent variable;  z = ζRwall

Nutrient mass density;  ρNutrient = ρNutrient,Bulk z = 0( )ΨNutrient

Oxygen mass density;  ρOxygen = ρNutrient,Bulk z = 0( )ΨOxygen

Cell mass density;  ρCell =
1

2
RwallρNutrient ,Bulk z = 0( )ΨCell

Mass transfer Peclet number;  PeMT =
vz Average

Rwall

DNutrient

Stress - free Damkohler number n th − order( );  β0,nth −order
=
kn,SurfaceRwall ρNutrient,Bulk z = 0( ){ }

n−1

DNutrient

Stress - dependent Damkohler number;  βStress =
2 2γ vz Average

DNutrientρNutrient,Bulk z = 0( )

  (15) 

 
Dimensionless mass transfer equation.  In the laminar flow regime at large mass transfer 

Peclet numbers, the partial differential equation with variable coefficients that must be solved for 
dimensionless nutrient mass density is; 

 

2PeMT 1−η2{ }∂ΨNutrient

∂ζ
=
1

η
∂

∂η
η

∂ΨNutrient

∂η

 
 
 

 
 
 

=
∂2ΨNutrient

∂η2
+
1

η
∂ΨNutrient

∂η    (16) 

 

The axial derivative (i.e., with respect to z, or ζ) is written using first-order correct finite differences, 
whereas both radial derivatives on the right side of Equation (16) are implicit at the new axial position 
using second-order correct finite-difference analogs. 
 

The "starting" profile via simplified analysis of the reaction/diffusion boundary 
condition at the tube wall.  Numerical solution of the mass transfer equation for nutrient mass 

density begins at an extremely small nonzero value of z = zstart, not at the inlet where ρNutrient(r,z=0) = 

ρNutrient,Inlet [i.e., ΨNutrient(η=1,ζ=0) = 1] for all radial positions in the circular flow cross-section.  This is 

achieved by solving for dimensionless nutrient mass density at the wall, ΨNutrient(η=1,ζstart), via finite 
difference analysis of the reaction/diffusion boundary condition when nutrient mass density at all other 
radial positions assumes its inlet value of unity.  For simple nth-order rates of stress-free nutrient 
consumption, one writes; 

 

∂ΨNutrient

∂η

 
 
 

 
 
 η=1,ζstart

≈
ΨNutrient η =1,ζstart( )− ΨNutrient η =1− ∆η,ζstart( )

∆η
= −β

0,n th −order
ΨNutrient

n η =1,ζstart( )− βStress   (17) 
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The general philosophy behind this approach is that one should begin the numerical algorithm with 
assistance from an analytical solution that exhibits significant concentration gradients normal to the 
active wall [3], so that cells are fed by transverse diffusion. 
 

Dimensionless boundary conditions.  Both types of Damköhler numbers appear in the 
reaction/diffusion boundary condition at the tube wall where cells bind to active protein sites.  For 
simple nth-order stress-free kinetics that depend only on nutrient mass density at the cell/aqueous-
medium interface, the appropriate boundary conditions are; 

 

ΨNutrient =1@ζ = ζstart ,0 ≤ η <1

∂ΨNutrient

∂η

 
 
 

 
 
 η=0

= 0

−
∂ΨNutrient

∂η

 
 
 

 
 
 η=1

= β
0,n th −order

ΨNutrient

n η =1,ζ( )+ 1−δ ΨNutrient η =1,ζ( ){ }[ ]βStress

 (18) 

 
Modified equations for nutrient consumption and cell proliferation at the tube wall.  It is 

necessary to modify the stress-free Damköhler number and the reaction/diffusion boundary condition 
at r=Rwall when the physiological aspects of heterogeneous nutrient consumption and subsequent cell 
proliferation are included in this bioreactor model.  All of the other equations remain unchanged, but a 
few additional parameters are required to characterize the inlet conditions at z=0, diffusivity ratios, 
association equilibrium constant for cell-protein interactions, and the cell-cell energy of attraction 
when receptors on adjacent protein sites form chemical bonds.  As presented in Assumption#7, if the 
rate of aerobic nutrient consumption by cells adhered to active protein sites at the tube wall is; 

 

RSurfaceRx = kcell,Surface ρNutrient{ }
r=Rwall

ρOxygen{ }
r=Rwall

ΘCellΘVacant  (2) 

 
with dimensions of nutrient mass per area-time, then the dimensionless diffusion/reaction boundary 

condition at r=Rwall, dimensionless kinetic rate law R*Nutrient, stress-free Damköhler number β0,Cells, and 

nutrient/cell diffusion coefficient ratio δ are given by Equation (19), below.  Four Dirac delta functions 
exclude the stress-sensitive zeroth-order reaction rate from the boundary condition at the active wall 
when nutrients and oxygen do not exist within cells under extreme diffusion-limited conditions.  These 
delta functions stipulate that cells and vacant cites must be present when aerobic proliferation is 
stimulated by shear stress. 
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−
∂ΨNutrient

∂η

 
 
 

 
 
 η=1

= β0,CellsRNutrient

∗ η =1,ζ( )

+ 1−δ ΨNutrient η =1,ζ( ){ }[ ]1−δ ΨOxygen η =1,ζ( ){ }[ ]1−δ ΘCell{ }[ ]1−δ ΘVacant{ }[ ]βStress

RNutrient

∗ η =1,ζ( )=
ΨNutrient η =1,ζ( )ΨOxygen η =1,ζ( ) ΨCell η =1,ζ( )exp −ϕΘCell( ){ }

1

λ

1+ κ Association T( )ΨCell η =1,ζ( )exp −ϕΘCell( ){ }
1

λ
 

 
 

 

 
 

2

β0,Cells =
kcell,Surface T( ) κ Association T( ){ }

1

λ RwallρNutrient,Bulk z = 0( )
DNutrient

δ =
DNutrient

DCell

 (19) 

 

The dimensionless temperature-dependent association equilibrium constant κAssociation(T) that 
characterizes cell-protein interactions is; 
 

κ Association T( )=
1

2
RwallKCell T( )ρNutrient,Bulk z = 0( ) (20) 

 
The Criterion for Optimal Bioreactor Performance 

 
The most effective bioreactor design depletes nutrients and proliferates cells most rapidly at a 

given axial position z.  This comparison among nutrient mass density profiles must be performed at 
identical stress-free and stress-dependent Damköhler numbers, which measure the rate of nutrient 
consumption relative to the rate of nutrient diffusion toward the wall.  The optimal conditions 
correspond to the smallest bulk nutrient mass density at position z, averaged over the entire cross-
sectional area (i.e., SCross-Section) of the tubular reactor.  The velocity-weighted bulk nutrient mass 
density is defined as follows; 

 

ρNutrient,Bulk (z)=
vz (r)ρNutrient(r, z)dS

SCross−Section
∫∫

vz Average
SCross−Section

= 4 ρNutrient η, z( ) 1−η2{ }
η=0

1

∫ ηdη  (21) 

 

Computer Simulations 
 

Effect of the shear-rate-based Damköhler number on nutrient consumption for first-
order and second-order irreversible heterogeneous surface reactions.  Bulk nutrient mass 
density profiles as a function of tubular reactor length were generated at constant values of the mass 

transfer Peclet number (i.e, PeMT = 50) and stress-free Damköhler number (i.e., β0,nth-order = 1).  For 
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stress-free 1st-order irreversible chemical kinetics, this combination of PeMT and β0,1st-order corresponds 
to a mass-average fluid velocity that is 50-fold larger than the stress-free kinetic rate constant (i.e., 
reaction-velocity constant) for heterogeneous nutrient consumption.  When the length-to-diameter 
ratio of the tubular configuration is LPFR/{2Rwall} = 10 on the right side of the graphs below, this 

corresponds to a residence time τResidence that is 80% of the characteristic time constant ω for 

chemical reaction, where τResidence and ω (i.e., for simple nth-order nutrient consumption) are defined 
as; 

 

τResidence =
LPFR

vz Average

;  ω =
Rwall

2kn,Surface ρNutrient ,Bulk z = 0( ){ }
n−1  (22) 

 

Hence, reasonable nutrient consumption is predicted in Figure#2 when LPFR/Rwall = 20 and τResidence = 

0.80ω, but less nutrient consumption is predicted for stress-free 2nd-order irreversible kinetics in 
Figure#3 relative to stress-free 1st-order kinetics in Figure#2.  This occurs because only event must 
occur, based on the presence of nutrients at the tube wall, for stress-free consumption via 1st-order 
kinetics, whereas two events must occur simultaneously for stress-free consumption via 2nd-order 
kinetics. 
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of the Stress-Free Damkohler #

 
Figure#2 
Dimensionless bulk nutrient mass density profiles in tubular bioreactors at various shear-rate-based Damköhler numbers 
for 1

st
-order irreversible nutrient consumption.  The stress% legend should be interpreted as the ratio of the shear-rate-

based Damköhler number to the stress-free Damköhler number.  Parameters: dimensionless step size in the radial 

direction, ∆η = 0.010; dimensionless step size in the axial direction, ∆ζ = 0.128. 

 
Even though the critical Damköhler number is reported rather subjectively in Figure#2, bulk nutrient 
mass density profiles seem to be outside of the range of experimental uncertainty when the shear-
rate-based Damköhler number is approximately 20% of the stress-free Damköhler number.  A similar 
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conclusion is obtained for simple 2nd-order kinetics in Figure#3 when the balance between radial 
diffusion and chemical reaction at the tube wall yields a nonlinear algebraic relation that must be 
solved together with the linear equations that are generated by finite-difference analysis of the 
convective diffusion mass transfer equation.  Except for reaction order n, all other dimensionless 
parametric values are identical in Figures 2 and 3. 
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Figure#3 
Dimensionless bulk nutrient mass density profiles in tubular bioreactors at various shear-rate-based Damköhler numbers 
for simple 2

nd
-order irreversible nutrient consumption that depends only on nutrient concentration at the active tube wall.  

The stress% legend should be interpreted as the ratio of the shear-rate-based Damköhler number to the stress-free 

Damköhler number.  Parameters: dimensionless step size in the radial direction, ∆η = 0.010; dimensionless step size in 

the axial direction, ∆ζ = 0.128. 

 
Parametric sensitivity for complex cell-based rates of nutrient consumption.  These 

simulations require the declaration of several dimensionless parameters, due to the complexity of the 
kinetic rate law that describes nutrient consumption.  It was necessary to increase the ratio of the 
stress-free Damköhler number relative to the mass transfer Peclet number from 2% in Figures 2 and 
3 to 50% in Figure#4, to achieve reasonable conversion of nutrients when the length-to-diameter ratio 
of the tubular configuration is LPFR/{2Rwall} = 10 on the right side of the graph, below.  Bulk nutrient 
mass density profiles in Figure#4 suggest that the system is much more sensitive to viscous shear at 
the cell/aqueous-medium interface when nutrient consumption is modelled as a cascade of four 
sequential events, as described above in Assumption#7.  Recent studies of fluid flow in and around 3-
dimensional scaffolds, with average velocities between 10-3 cm/s and 10-2 cm/s that correspond to 
maximum wall shear stresses on the order of 3 x 10-2 Pa, describe extensive proliferation of 
osteoblast-like cells [20]. 
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Figure#4 
Dimensionless bulk nutrient mass density profiles in tubular bioreactors at various shear-rate-based Damköhler numbers 
for complex rates of nutrient consumption.  The stress% legend should be interpreted as the ratio of the shear-rate-based 
Damköhler number to the stress-free Damköhler number.  The critical shear-rate-based Damköhler number in these 
simulations is at least one order of magnitude smaller, relative to those for simple n

th
-order kinetics (i.e., n = 1,2).  

Dimensionless parameters: step size in the radial direction, ∆η = 0.010; step size in the axial direction, ∆ζ = 0.128; Hill 

coefficient, 1/γ = 1; association equilibrium constant for cell-protein docking, κ = 0.50; cell-cell attractive interaction energy, 

ϕ = -0.50; nutrient molecular weight = 300 daltons; nutrient-cell diffusivity ratio, δ = DNutrient/DCell = 3; 

inlet mass ratio of oxygen to nutrients, ρOxygen(z=0)/ρNutrient(z=0) = 0.07 (i.e., 7%); 
mass ratio of cells seeded on the tube wall at z=0 to nutrients in the inlet stream, 

2ρCell(z=0)/{RwallρNutrient(z=0)} = 0.10 (i.e., 10%); 
ratio of mass of oxygen consumed to mass of nutrients consumed by cells adhered on protein-coated surface, 

εOxygen/εNutrient = 0.04 (i.e., 4%); 
ratio of mass of cells produced to mass of nutrients consumed by cells adhered on protein-coated surface, 

εCell/εNutrient = 0.25 (i.e., 25%); 

 
Self-consistent check of the numerical solutions via the "quasi-macroscopic" mass 

balance.  It is not unreasonable to suspect that truncation errors in the numerical approximation of 
1st- and 2nd-derivatives might accumulate in the computational scheme used to integrate the 
convective diffusion mass transfer equation with diffusion and reaction at the boundary.  In the 
absence of exact analytical solutions, particularly for complex cell-based kinetics, the following 
internal self-consistent approach was employed to verify accuracy of the numerical results.  The 
steady state microscopic mass transfer equation for heterogeneous tubular bioreactors is integrated 

over a differential control volume (i.e., dV=2πrdrdz, 0≤r≤Rwall) that is expanded to include the entire 
cross-sectional area for flow.  Volume integrals are converted to surface integrals via Gauss’ law, 

where the appropriate differential surface elements are (i) 2πrdr (i.e., 0≤r≤Rwall) for convective 

transport of nutrients in the z-direction, and (ii) 2πrdz for radial diffusion toward the tube wall.  
Diffusional flux of nutrients at the tube wall is replaced by the consumption rate RSurfaceRx at r=Rwall via 
the diffusion/reaction boundary condition to obtain the following quasi-macroscopic nutrient balance; 
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vz Average
πRwall

2 ρNutrient ,Bulk z + dz( )− ρNutrient ,Bulk z( ){ }= −RSurfaceRx r = Rwall , z( )2πRwalldz  (23) 

 
Since the control volume dV and the corresponding surface elements that surround dV remain 
differentially thick in the z-direction, one obtains an ordinary differential equation that describes how 
bulk nutrient mass density, defined by Equation (21), changes with axial coordinate z, or 

dimensionless axial coordinate ζ.  The analogous equations, presented below in dimensional and 
dimensionless form, are applicable for incompressible fluids with constant physical properties at high 
mass transfer Peclet numbers, such that axial diffusion is negligible relative to convective transport of 
nutrients in the primary flow direction [3]; 

 

vz Average
πRwall

2 −
dρNutrient,Bulk

dz

 
 
 

 
 
 

= 2πRwallRSurfaceRx r = Rwall , z( )

−
dΨNutrient,Bulk

dζ
=

2

PeMT

β0,CellsRNutrient

∗ η =1,ζ( )+ βStress{ }
 (24) 

 
Finite-difference solutions of the convective diffusion mass transfer equation with diffusion and 

reaction at the boundary yield a discrete local nutrient mass density profile, ρNutrient(r,z), that is (i) 

evaluated at r=Rwall (i.e., η=1) to predict rates of nutrient consumption by anchorage-dependent cells 
attached to a protein-coated layer at the tube wall, and (ii) integrated over the cross-section of the 

flow channel to obtain the velocity-weighted bulk nutrient mass density, ρNutrient,Bulk(z).  Then, 

ρNutrient,Bulk is differentiated numerically with respect to axial coordinate z to obtain the quantity on the 
left side of Equation (24).  All finite-difference solutions presented in this investigation exhibit internal 
self-consistency and satisfy the quasi-macroscopic mass balance to within 0.05%, via the ratio of the 
left-side to the right-side of Equation (24). 
 

Unusual characteristics of this bioreactor analysis.  There are several aspects of this 
investigation that deviate significantly from the traditional design of ordinary chemical reactors.  (1) 
Kinetic rate expressions that describe nutrient consumption are modified for stress-sensitive 
reactions, based on the formalism of non-equilibrium thermodynamics.  (2) Stress-sensitive zeroth-
order contributions to the rate of nutrient consumption are quenched via Dirac delta functions when 
cells are starved of either nutrients or oxygen due to extreme diffusion-controlled conditions within the 
mass transfer boundary layer adjacent to the aqueous protein coating on the tube wall.  (3) The 
adsorption isotherm for monolayer cell binding to protein-coated surfaces, based on cell mass density 
in the vicinity of the active surface rather than in the mass transfer boundary layer or in the bulk 
aqueous medium, is modified to account for attraction between cells on adjacent protein sites and the 
formation of chemical bonds between receptors.  (4) Surface diffusion of cells within the aqueous 
protein coating on the tube wall, strongly influenced by viscous shear in the primary flow direction, is 
invoked to relate cell mass density on the surface to nutrient mass density in the mass-transfer 
boundary layer adjacent to the tube wall.  (5) The complete problem description is developed in terms 
of mass density, not molar density, because cell physiology and the cascade of events that describe 
nutrient consumption are treated rather simplistically. 

 
Conclusions 
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Theoretical analysis and computer simulations for heterogeneous bioreactors are described 

from the viewpoint of nutrient consumption in laminar tube flow.  Simple 1st- and 2nd-order stress-free 
kinetics require either one or two events to occur simultaneously, based on the presence of nutrients, 
for consumption to spawn proliferation.  Under these conditions, stress-sensitive ratios of 
consumption rate to diffusion rate should be on the order of 10-20% of the analogous stress-free ratio 
before bioreactor designs must consider mechano-sensitive zeroth-order terms in the overall rate of 
nutrient consumption.  Complex cell-based rates of nutrient consumption require a cascade of events 
to occur.  The simplistic model described in this study includes at least 4 events in the stress-free 
consumption rate, where each event reduces the magnitude of the rate expression.  Consequently, 
stress-sensitive ratios of consumption rate to diffusion rate on the order of 1% of the stress-free ratio 
have a significant effect on nutrient consumption in more realistic tubular bioreactor simulations.  The 
critical shear-rate-based Damköhler number for zeroth-order stress-sensitive reactions is an order of 
magnitude smaller in bioreactors with complex cell-based rates of nutrient consumption relative to 
bioreactors with simple 1st- or 2nd-order stress-free kinetics. 
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Nomenclature 

 
DCell surface diffusion coefficient for cells on protein-coated surfaces; length2/time 
DNutrient ordinary molecular diffusion coefficient of nutrients in aqueous mixtures; length2 per time 
DOxygen ordinary molecular diffusion coefficient of dissolved oxygen in aqueous mixtures; length2 

per time 

g velocity gradient tensor (i.e., ∇∇∇∇v) 
gij ij-element of the velocity gradient tensor, evaluated at r=Rwall, which is not symmetric 
kn,Surface kinetic rate constant for stress-free heterogeneous rate of nutrient consumption via simple 

nth-order reaction that depends only on nutrient mass density at the wall; {volume/mass}n-

1•length/time 
kcell,Surface kinetic rate constant for stress-free heterogeneous rate of nutrient consumption based on 

complex cell-based kinetics; {volume/mass}•length/time 
Kcell adsorption/desorption (i.e., association) equilibrium constant; cm2/gram 
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MWi molecular weight of species i 
PeMT mass transfer Peclet number 
r independent radial variable, measured transverse to the flow direction 

∆r step size in the radial direction, between grid points 
RSurfaceRx stress-free heterogeneous rate of nutrient consumption; mass per area-time 
Rwall radius of the biotubular reactor 
T absolute temperature 
v velocity vector 

∇∇∇∇v velocity gradient tensor 

{∇∇∇∇v}T transpose of the velocity gradient tensor 
vz z-component of the local fluid velocity vector 
<vz>Average cross-section averaged z-component of the velocity vector 
z independent spatial variable measured in the primary flow (i.e., axial) direction 

∆z step size in the axial direction, between grid points 
zstart value of z where the numerical simulations begin 
Z grand partition function for protein conformations in mixtures 
 
Greek symbols 

∇∇∇∇ gradient operator 

β0,nth-Order stress-free Damköhler number for nutrient consumption by nth-order kinetics 

β0,Cells stress-free Damköhler number for nutrients comption by complex cell-based kinetics 

βStress stress-dependent Damköhler number for nutrient consumption by zeroth-order kinetics 

δ nutrient/cell diffusivity ratio, with a factor of 2/Rwall for dimensional consisency 

εCell/εNutrient ratio of cell mass produced relative to nutrient mass depleted during nutrient 
consumption and cell proliferation 

εOxygen/εNutrient ratio of oxygen mass depleted relative to nutrient mass depleted during nutrient 
consumption 

ϕ dimensionless cell-cell interaction energy in the Fowler-Guggenheim modification of the 
Sipps isotherm 

ϕA affinity of species A in binary mixtures; chemical potential difference 

κ dimensionless association equilibrium constant for cell-protein docking 

λ exponent in the Sipps isotherm; inverse of the Hill coefficient; λ=1 for non-cooperative 

cell-protein binding; 0<λ<1 for positive cooperativity; λ>1 for negative cooperativity. 

µi chemical potential of species i 

η dimensionless spatial coordinate in the radial direction, r/Rwall 

υ Poisson’s ratio which describes the extent of lateral contraction upon extension 

ΨCell dimensionless mass density of cells on protein-coated surfaces 

ΨNutrient dimensionless mass density of nutrients in aqueous solution 

ΨNutrient,Bulk dimensionless bulk mass density of nutrients in aqueous solution 

ΨOxygen dimensionless mass density of dissolved oxygen in aqueous solution 

ρCell mass density of cells on protein-coated surfaces; grams/cm2 

ρNutrient mass density of nutrients in aqueous solution; grams/cm3 

ρNutrient,Bulk(z=0)  bulk velocity-weighted area-averaged inlet mass density of nutrients 

ρOxygen mass density of dissolved oxygen in aqueous solution; grams/cm3 

τResidence average residence time, z/<vz>Average 

ΘCell fractional coverage by anchorage-dependent cells on protein-coated surfaces 
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ΘVacant fraction of sites on protein-coated surfaces that are not occupied by cells 

ω characteristic time constant for nth-order irreversible chemical reaction 

Ω cell-cell interaction energy in the Fowler-Guggenheim modification of the Sipps isotherm 

ξA1 Onsager diagonal coefficient (i.e., αT) that couples the affinity (i.e., ϕA) to the rate of 
nutrient consumption 

ξA2 Onsager off-diagonal coefficient (i.e., γT) that couples the magnitude of the velocity 
gradient tensor to the rate of nutrient consumption 

ζ dimensionless independent spatial variable measured in the primary flow direction, 
z/Rwall 
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