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F.J. Ramı́rez

PII: S0301-4622(07)00292-X
DOI: doi: 10.1016/j.bpc.2007.12.003
Reference: BIOCHE 5053

To appear in: Biophysical Chemistry

Received date: 24 October 2007
Revised date: 12 December 2007
Accepted date: 13 December 2007

Please cite this article as: S. Sánchez-Carrasco, J.G. Delcros, A.A. Moya-Garćıa, F.
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 Abstract 

 

 

 We report a spectroscopic and theoretical study of the interaction between double-

stranded oligonucleotides containing either adenine-thymine or guanine-cytosine alternating 

sequences and N1-(Acridin-9-ylcarbonyl)-1,5,9,14,18-pentazaoctadecane, or ASC, which is 

formed by the covalent bonding of spermine and 9-amidoacridine moieties via a trimethylene 

chain. Solutions containing the oligonucleotides and the conjugate at different molar ratios 

were studied using complementary spectroscopic techniques, including electronic absorption, 

fluorescence emission, circular dichroism, and Raman spectroscopy. The spectroscopical 

properties of ASC at both the vibrational and the electronic levels were described by means of 

ab initio quantum-chemical calculations on 9-amidoacridine, used as a model compound. 

Molecular dynamics calculations, based on the QM/MM methodology, were also performed 

using previously docked structures of two oligonucleotide-ASC complexes containing the A-

T and the G-C sequence. Our data, taken all together, allowed us to demonstrate that 

conjugation of spermine to acridine modulates and gives additional properties to the 

interaction of the latter with DNA. As the ASC molecule has a high affinity by the polyamine 

transport system, these results are promising for their application in the development of new 

anti-tumor drugs. 
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Introduction 

 

Acridine is an heteroaromatic molecule able to intercalate into DNA [1]. This 

structural property confers antitumour capabilities to acridine and its derivatives [2], since 

DNA is the main target in anticancer drug design [3-4]. Intercalation of a planar system 

between DNA base pairs can induce structural alterations in such a way that cell proliferation 

is blocked [5-6]. A usual mechanism to explain this fact is related to the DNA-binding 

enzymes which have essential roles in reactions directly involved in cell proliferation, such as 

topoisomerases and telomerases [7-8]. The DNA-intercalator complexes prevent, in most 

cases, DNA recognition by these enzymes, thus disrupting the whole process. 

It is known that one of the main problems of anti-tumour therapies is the secondary 

effects caused by the action of cytotoxic drugs on healthy cells. Most of the promising drugs 

preserve cytotoxic activity, although they have tumour cells as their main target. In the case of 

intercalators, this selectivity can be acquired by attaching an aliphatic side chain [4,9]. These 

chemical substituents can also provide both cell-specificities and new contributions to DNA 

binding, as they can establish additional interactions with intra-cellular reactive sites. As a 

consequence, changes can appear in the thermodynamic parameters of binding and in useful 

biochemical properties, such as uptake systems or sequence selectivity. This strategy is being 

currently tested by functionalizing the acridine molecule [2]. Acridine based anti-tumour 

drugs have been developed and studied [10-11], as amsacrine or asulacrine, which present 

excellent activity against some cases of leukaemia [12]. Acridine derivatives recently 

synthesized have been proven to stabilize G-quadruplex structures in telomeres, inhibiting 

telomerase action [13]. 

The biogenic polyamines are organic polycations essential for cell proliferation [14]. 

Tumour cells uptake biogenic polyamines in greater amounts than do healthy cells [15-16], 

thus making them suitable candidates for the improving the anti-cancer action of intercalators 
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like acridine. Three important features have been recently proven for a series of acridine-

polyamine covalent conjugates [17-21]: i) they present higher affinities for DNA than 

acridine; ii) they preserve the topoisomerase II inhibitory activity of acridine and, iii) they are 

recognized by the polyamine transport system. Acridine-polyamine conjugates are, therefore, 

promising chemical systems for the development of more efficient anti-tumour drugs. 

Nevertheless, this task requires a deeper knowledge of the structure and binding properties of 

these molecules [3], which enhances the role of physico-chemical tools in developing anti-

cancer drugs and in understanding their structure-activity relationships. 

In this work, we used electronic (absorption, fluorescence, circular dichroism) and 

vibrational (Raman) spectroscopies to investigate the interaction with DNA of a conjugate 

molecule formed by acridine and spermine bound by means of a trimethylene-amide group 

(hereafter ASC), Fig. 1. The affinity of spermine to the DNA major groove has been 

evidenced by different experimental and theoretical studies [22-24]. Here, we will discuss the 

influence of spermine conjugation on the intercalation of acridine into DNA chains. For the 

DNA models, we have chosen the 16-mer oligonucleotides ds(dG-dC)8 and ds(dA-dT)8. 

Comparison between results from these two sequences allowed us to investigate the sequence 

selectivity in the DNA binding of this compound, as observed for other acridine derivatives 

with applied interest [25]. Ultraviolet-visible (UV-vis) absorption, emision fluorescence, 

circular dichroism (CD) and Fourier transform (FT) Raman spectra of solutions containing 

these oligonucleotides and ASC, at different molar ratios, were recorded. Thermal 

denaturation experiments in the absence and in the presence of the conjugate were performed 

on genomic DNA and poly(dA-dT).  

In order to support the experimental results, density functional theory (DFT) 

calculations, using ab initio methodology at the 6-31G** level and simulating the solute-

solvent electrostatic interactions by means of the polarizable continuum model (PCM), were 

performed on the molecule 9-(N-methylamide)-acridine, as a model compound. These 
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calculations provided us a reliable assignment of the electronic and vibrational transitions of 

the acridine-spermine conjugate in aqueous solution. Molecular dynamics (MD) calculations 

of the interaction between the conjugate and both oligonucleotide sequences were also 

performed on the basis of a hybrid quantum mechanics/molecular mechanics  (QM/MM) 

approach. This methodology allows the conjugate to always be described as a quantum 

system, while the oligonucleotides are treated with a classical MM force field. The optimized 

conjugate-oligonucleotide structures for both sequences were validated by the experimental 

data. 

 

 Experimental 

 

Materials. Details about the synthesis of N1-(Acridin-9-ylcarbonyl)-1,5,9,14,18-

pentazaoctadecane, hereafter referred to as the acridine-spermine conjugate or ASC, are given 

elsewhere [26]. The single-stranded 16-mer oligonucleotides ss(dG-dC)8 and ss(dA-dT)8, 

calf-thymus genomic DNA and poly-ds(dA-dT) were synthesized by Sigma Chemical Co. 

Double-stranded oligonucleotides, ds(dG-dC)8 and ds(dA-dT)8, were obtained and tested as 

previously reported [27-28]. To keep conditions close to the physiological environment, 10 

mM TRIS buffer, 100 mM sodium chloride, was always used as the solvent. Final pH was 

adjusted to the physiological value (7.5) by using aqueous hydrochloric acid. Stock solutions 

of 120 mM (in phosphate) oligonucleotides were stored at 4 oC until ready for use in the 

experiments. Solutions for different experiments were prepared by dilution of these stock 

solutions up to the suitable concentration. 

Spectral measurements.  UV-vis absorption spectra were recorded in an Agilent 8453 

UV-visible spectrophotometer supplied with a diode array detector. The oligonucleotide-

conjugate interaction was studied by observing the behavior of the conjugate absorption 

bands in the visible region, where they are free from oligonucleotide absorption, while 
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increasing the oligonucleotide concentration, either ds(dG-dC)8 or ds(dA-dT)8. The following 

general procedure was used: an initial spectrum of a 2 µM ASC solution was recorded; then, 

5 1-µl aliquots of an oligonucleotide solution of 40 mM (in phosphate) were sequentially 

added to increase the concentration until reaching a final titration point of 120 µM without an 

appreciable change in the total volume; a new spectrum was recorded after each addition. The 

entire protocol was repeated at least twice for each oligonucleotide, in order to confirm the 

results. All spectra were recorded at least 10 minutes after oligonucleotide addition, although 

the complex was always formed within a few seconds. To improve the separation of peaks 

and shoulders in overlapping absorption bands, a Fourier self deconvolution procedure was 

performed using a standard Gaussian line-broadening function (deconvolution factor 276; 

suppression factor 0.2). These parameters allowed suitable resolution of the acridine 

absorptions in the visible region between 300 and 450 nm. 

 Thermal denaturing studies were performed in a variable temperature cell Specac P/N 

2100 equipped with a Copper-Constanton thermocouple for temperature monitoring purposes. 

Data were always acquired after thermal equilibrium was reached, which was automatically 

checked by the acquisition software. Thermal analysis for poly-ds(dG-dC) was not achieved 

because it does not melt within the range of available temperatures. The melting temperature 

(Tm) was determined over the A260 versus the temperature curves, using the first derivative 

method. Fluorescence spectra were measured in a Photon Technology International (PTI) 

spectrofluorimeter. Two kind of experiments were performed for each oligonucleotide. 

Firstly, the influence of conjugate addition on oligonucleotide-bound ethidium fluorescence 

was studied. Secondly and separately, the behaviour of the fluorescence emission of ASC in 

the presence of the oligonucleotides at different molar ratios was studied. In this case, 

successive fluorescence spectra were recorded following the same titration procedure 

described previously for the absorption spectra. As previously seen in the corresponding 
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excitation fluorescence spectra, maximal quantum yields were achieved using radiation at 471 

nm for ethidium and at 360 nm for ASC. Electronic CD spectra were recorded in a JASCO J-

810 spectropolarimeter. Standard quartz cells of 1 or 10 mm path length were used for 

conjugate concentrations higher or lower than 100 µM, respectively, in order to avoid the 

detector’s overload of the detector. Buffer corrections were applied immediately after 

recording the spectra. The spectra were expressed in terms of molar ellipticity of the 

oligonucleotide, which was calculated from the equation [Θ] = Θ /cl [29]. In this equation Θ 

is the ellipticity, c is the oligonucleotide molar concentration, and l is the cell pathlength in 

cm. 

FT-Raman spectra of the oligonucleotides, ASC and their complexes were recorded at 

room temperature (20 oC) by means of a Bruker Equinox 55 spectrometer supplied with a 

Raman module. Spectra were obtained at a resolution better than 2 cm-1, using excitation 

radiation wavenumber at 1064 nm from a Nd-YAG laser working at 500 mW. Samples were 

analysed using a sapphire cell suitable for low volumes of liquid samples. The Raman spectra 

were recorded using the general procedure previously reported elsewhere [27-28]. To discuss 

the Raman peaks, the following selection criteria were adopted: i) peaks must appear with the 

same wavenumber and intensity in the spectra of independent samples; ii) peaks must exhibit 

an intensity clearly higher than the experimental noise level; and iii) peaks should be 

previously reported and assigned in the literature. Spectral treatment was performed using the 

Bruker OPUS  spectroscopic software. All the Raman spectra were normalized to the 

sapphire band at 750 cm-1. 

Theoretical calculations. The GAUSSIAN’03 package of programs [30] was used for 

DFT quantum chemical calculations. We used the hybrid functional B3PW91 [31-32], which 

has been successfully proven to accurately reproduce structural and spectroscopic features of 

biological molecules [33-35]. To simulate an aqueous environment, a PCM was employed 
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[36-37].This model places the solute molecule into a size-adapted cavity formed from 

interlocking atom-centered van der Waals spheres, while the solvent is assimilated into a 

continuum characterized by its dielectric constant (78.7 for water). 

Spectroscopic features were computed on the optimized molecular structure, which 

was obtained by allowing all the geometric parameters to vary independently. Electronic 

excitation energies were obtained by using time-dependent (TD) formalism [38-39]. 

Quadratic force constants were calculated from the analytical second derivatives of the 

molecular energy with respect to the cartesian coordinates, in the geometry of minimal 

energy. Raman intensities were calculated by numerical differentiation of dipole derivatives 

with respect to the electric field. The theoretical Raman spectrum was obtained from the 

calculated vibrational wavenumbers and the Raman intensities. Every Raman band was 

represented by a Gaussian function of 20 cm-1 half-height width. 

We used the split-valence 6-31G** basis set [40-41], which includes six s-type and 

three p-type polarization functions, for structural optimization, contour surfaces and time-

dependent calculations. Force field, vibrational wavenumbers, Raman intensities and normal 

coordinates were computed using the 3-21G* basis set, with only s-type polarization 

functions, over the 6-31G** optimized geometry. The use of polarization functions is 

necessary in order to correctly describe the solute-solvent interactions, because they allow for 

a suitable charge distribution adapted to the presence of an external electric field, such as a 

polar environment. 

Docking calculations were performed using the GRAMM (Global Range Molecular 

Matching) v1.03 program [42]. This is a fast Fourier transform based method that works from 

the atomic coordinates of the two interacting systems, without requiring any additional 

information about the binding sites. The structure of the complex is achieved after a 

systematic six-dimensional grid search through the relative molecular rotations and 

translations. Atomic coordinates of the ASC and the oligonucleotides were obtained in 
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different ways. The ASC geometry of minimal energy was obtained using the GAUSSIAN’03 

package at the same level of calculation previously described, although not including solvent 

effects. Atomic coordinates for the oligonucleotides were obtained from standard structural 

parameters for nucleic acids using the HyperChem program [43]. 

The two better-scored intercalated ASC-oligonucleotide structures, one for each 

sequence, were used as starting points of a deeper theoretical study based on QM/MM hybrid 

methodology. Once the initial interaction was defined, the complete system was placed in a 

68 x 47 x 42 Å side box of water molecules, from which molecules overlapping with ASC or 

the oligonucleotides were removed. The simulation box also contained sodium ions to 

compensate for the negative charges of the ASC-oligonucleotide complex, resulting in a 

electrically neutral system hydrated with 1284 water molecules. The full system was 

described using a hybrid QM/MM Hamiltonian. The ASC molecule was the quantum sub-

system, being treated using the semiempirical Hamiltonian AM1 [44]; the oligonucleotides, 

water molecules and sodium ions were the classical sub-system, being treated at a MM level. 

To describe the oligonucleotide sequences, we used the CHARMM force field as developed 

by MacKerell et al. [45-46], whereas we used a flexible TIP3P potential for water molecules 

[47]. Sodium ions and van der Waals parameters of the ASC molecule were also taken from 

the CHARMM force field [48]. 

Once the material model was defined, we were ready to study the behaviour of the two 

ASC-oligonucoleotide models. A detailed theoretical protocol has been included as 

Supplementary Material. All calculations were made with the CHARM31 program [48]. We 

employed periodic boundary conditions and a switched cut-off radius of 10 Å for all types of 

interactions. The bond lengths of all hydrogen atoms of the classical sub-system were kept 

constrained to their equilibrium lengths using the SHAKE algorithm [49]. MD simulations 

were carried out using the leap-frog [50] integration algorithm with a time step of 1 fs.  
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 Results and Discussion  

 

Results obtained from the spectral measurements 

 

The spectrum of ASC in the absence of oligonucleotides is shown in Fig. 2. It exhibits 

two band systems: a very strong absorption in the UV region, centred at 251 nm (which has a 

second component observed as a shoulder at a higher energy), and a more complex system in 

the visible region with a maximum at 360 nm. Fourier self-deconvolution enabled us to 

obtain the main components of this broad band, which were measured at 345, 375 and 388 

nm. This medium-intensity multiplet presents the advantage of being free of the 

oligonucleotide absorptions which appear at lower wavelengths. This region, therefore, is 

suitable for monitoring the conjugate-oligonucleotide interaction. In order to provide a 

supported assignment of these bands, we carried out a theoretical prediction of the electronic 

excitation energies. Taking into account that the electronic absorption in the visible region 

should correspond to π→π* and n→π* transitions [51-52], TD calculations were carried out 

on the 9-(N-methyl-amide)-acridine molecule. The results concerning the calculated energies 

of the electronic transitions and their assignments in terms of the frontier molecular orbitals 

are available as Supplementary Material. The calculated wavelengths fit well to the 

experimental values, and the assignments indicate that the band system between 300 and 400 

nm observed in the ASC electronic absorption spectrum involves a partial charge transfer 

from the amide group to the acridine ring. 

We have displayed in Fig. 3 (Panel 1) the effect of the oligonucleotide addition in the 

electronic spectrum of ASC between 300 and 400 nm. A table containing the relevant 

wavelength changes has been included as Supplementary Material. Both figures show strong 

hypochromism and a red-shift of the absorption maxima of ASC when increasing the 

oligonucleotide concentration. The titration with ds(dA-dT)8 also shows an isosbestic point at 
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393 nm, which was not observed for ds(dG-dC)8. On the other hand, 73% and 65% of the 

final hypochromism of the 360 nm band were measured in the first titration step for ds(dA-

dT)8 and ds(dG-dC)8, respectively, that is to say, at an ASC:oligonucleotide molar ratio of 

3:1. The Fig. 3 (Panel 2) also shows the behaviour of the electronic spectra of the 

oligonucleotides near 260 nm. In the two cases, the absorption bands increase during the 

titration. However, the 262 nm band of ds(dA-dT)8 shifted from 252 to 257 nm in the 

presence of ASC, while the 257 nm band of ds(dG-dC)8 remained unshifted at 252 nm during 

the course of the titration. 

Melting curves and first derivatives for calf-thymus DNA and poly-ds(dA-dT) are 

shown in Fig. 4. The curves for DNA in the presence of ASC exhibit two transitions 

associated with the melting process, namely, at 79.7 and 88.3 oC, which appear respectively at 

temperatures 7.6 and 16.2 oC higher than the melting point of the DNA alone (72.1 oC using 

our experimental settings). In the case of poly-ds(dA-dT), a third  transition was observed at 

76.6 oC, together with two close melting transitions, one at 57 oC and a second at a higher 

temperature. 

Fig. 5 (Panel 1) shows lowering of the fluorescence emission band of oligonucleotide-

bound ethidium with increasing concentrations of ASC for ds(dG-dC)8 and ds(dA-dT)8. 

However, in the presence of ds(dA-dT)8 the intensity reduction is proportional to the increase 

in the ASC concentration over the whole range of concentrations studied, while the ethidium 

fluorescence spectra in the presence of ds(dG-dC)8 exhibited a strong quenching (more than 

50%) during the first titration step, while further ASC additions induced smaller changes The 

emission spectra of ASC alone and in the presence of increasing amounts of the 

oligonucleotides are displayed in Fig. 5 (Panel 2), which shows how the addition of 

oligonucleotides gives rise to a dramatic reduction in the fluorescence intensity of ASC, 

together with changes to the spectral profiles. The fluorescence quenching was similar over 

the range of the ASC:ds(dA-dT)8 molar ratios analysed. However, the first addition of ds(dG-
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dC)8 only induced a 53.4% intensity reduction with respect to the emission of ASC alone, the 

relative quenching values for the following steps being 83.7%, 91.5% and 94.1%. 

CD spectra of ds(dG-dC)8 and ds(dA-dT)8 alone and in the presence of ASC are 

shown in Fig. 6. The presence of ASC at concentrations lower than 100 µM in the solution of 

ds(dA-dT)8  induced several changes in the CD spectrum of this sequence. The positive band 

at 271 nm shifted upwards to 275 nm; the negative band at 250 nm was enhanced in the 

solutions at 10 and 25 µM of ASC, being measured at 254 and 253 nm, respectively. The 

positive band at 219 nm changed to a weak negative feature at 215 nm for the solutions at an 

ASC concentration of 10 µM. The addition of ASC to the solution of ds(dG-dC)8 gave rise to 

a biphasic CD signal with a positive band at 262 nm and a negative band at 247 nm. The 

oligonucleotide positive feature at 285 nm remained unchanged, while the negative band at 

253 nm apparently disappeared or was hidden behind the new CD signals. When the ASC 

concentration reached 250 µM, the CD spectra of the  two oligonucleotides exhibited a strong 

intensity increase as the main feature. 

The Raman spectra of aqueous solutions containing the oligonucleotides alone and in 

the presence of either 3 and 10 mM of ASC are shown in Fig. 7. Wavenumbers for the more 

relevant bands and their assignments are summarized in Tables 1 and 2, which correspond to 

ds(dA-dT)8 and ds(dG-dC)8, respectively. Under our experimental settings, the solutions of 

ds(dA-dT)8 were transparent and presented a relatively high fluidity. The assignments of the 

oligonucleotide Raman bands are based on vibrational studies reported for the polymer, and 

they have been widely discussed elsewhere [27-28]. The assignments of the ASC bands have 

been based on a force field and the same normal coordinate calculations for the molecule as 

the electronic structure calculations, using DFT methodology at the 6-31G** level. A set of 

the obtained theoretical vibrational data has been included as Supplementary Material. 
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 Analysis and discussion of the spectral results. 

 

 The aforementioned spectral data support the following conclusions: 

1. The acridine moieties of ASC can intercalate between adjacent base pairs of 

oligonucleotide sequences. The first evidence of this conclusion is found in the 

hypochromism and red-shift observed by UV-vis absorption spectroscopy, Fig. 3. ASC 

is also able to displace ethidium from its intercalation sites in oligonucleotides, as 

shown in the Fig. 5. The observed splitting of the phosphodioxy stretching band in the 

Raman spectra of both ds(dA-dT)8 and ds(dG-dC)8 are also a consequence of the 

structural re-organization of the double helix upon acridine intercalation. 

2. One 16-mer double-stranded chain can host more that one ASC molecule by 

intercalation. This fact is evidenced by comparing the intensity reduction of the ASC 

electronic absorption band in the initial steps of the titrations, that is to say, when an 

excess of conjugate is present. Thus, we measured 73% and 65% of the final 

hypochromism for ds(dA-dT)8 and ds(dG-dC)8, respectively, in the first oligonucleotide 

addition, which corresponds to an oligonucleotide:ASC molar ratio of 1:3. A similar 

behaviour was observed in the fluorescence spectra showed in the Fig. 5, thus 

supporting this assertion. 

3. The isosbestic point at 393 nm observed in Fig. 3 indicates the existence of a 

conformational equilibrium between bonded and free ASC molecules during the 

titration with ds(dA-dT)8. The thermal denaturing curves, Fig. 4, exhibit structured 

profiles for both poly-ds(dA-dT) and calf-thymus DNA. These profiles are explained as 

the result of at least two melting processes [53-54]. The first of them would be a partial 

opening of the helix near the occupied sites, accompanied by a redistribution of the 

bound ligands to allow the helix to melt in larger loops. In a second process, the ligands 

are removed from the helix before complete melting. However, it has been theoretically 
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demonstrated that multiphasic melting profiles is not an evidence cooperative binding 

[54]. On the other hand, the observed increases of the melting points indicates 

stabili zation of the duplexes, which is an usual characteristic of groove interaction. 

4. Evidence of the interaction of the spermine tails with the double-helix grooves was 

found in the very intense bands measured in the CD spectra of the oligonucleotides at 

ASC concentrations of 250 µM. These intensity increase are distinctive of cholesteric 

liquid-crystal structures named Ψ-DNA [55-59]. They are highly ordered structures 

which give rise to long-range interactions between the base pairs and, as a consequence, 

strong increases of the oligonucleotide CD bands [60-61]. 

5. The interactions of ASC with ds(dA-dT)8 and ds(dG-dC)8 exhibited different 

spectroscopic features, which can indicate base selectivity. The main features which 

support this point are the following: 

i) The melting curves of poly-ds(dA-dT) and DNA behave differently with the 

presence of ASC.  

ii)  The UV-absorption titrations of ASC exhibit differences with respect of the base 

sequence (hypochromism, behaviour of the main oligonucleotide absorption band, 

presence of isosbestic points). 

iii)  ASC is able to remove more efficiently ethidium from ds(dG-dC)8 than from 

ds(dA-dT)8. 

iv) The quenching of the fluorescence of ASC when adding ds(dA-dT)8 is noticeably 

different to that observed for ds(dG-dC)8. 

v) The CD spectra of ds(dG-dC)8 in the presence of ASC exhibit a biphasic signal 

which has been  assigned to the acridine moieties placed in a chiral environment 

(the intercalation sites). This phenomenon was not observed for ds(dA-dT)8. 
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The Raman spectra, Fig. 7, allowed us to extend the structural details known so far on 

the ASC-oligonucleotide complexes. The measured wavenumber shifts for the ds(dA-dT)8 

Raman bands at 1248 and 729 cm-1 could be due to the interaction of the spermine side chain 

with reactive sites of the bases of the oligonucleotide grooves. This hypothesis is also 

supported by the most intense ASC Raman band, measured at 1418 cm-1, which has been 

assigned to a methylene bending vibration of the side chain, ν(CH2), scissoring. It appeared at 

1416 cm-1 in the Raman spectrum of the ds(dA-dT)8 solution, 3 mM in ASC. The ds(dA-dT)8 

band at 1577 cm-1 was measured at 1580 cm-1 at 10 mM ASC. This band involved relevant 

contributions from both the C(6)-NH2 bending vibration (major groove) and aromatic 

stretching modes in which the N(3) atom (minor groove) presents a significant vibrational 

amplitude [62]. Interaction with adenine was also supported by the ds(dA-dT)8 band at 1341 

cm-1, which has been assigned to a stretching vibration of the purine moieties [63-64]. It also 

shifted upwards by adding 10 mM ASC, similar to the 1577 cm-1 band. Upshifting of a 

stretching vibration is evidence of stronger bonds, which are often accompanied by 

downshifting of the related bending modes [65]. Here, this fact was observed for the purine 

bending vibration at 729 cm-1, which is considered to be an adenine marker band [63,66] 

being measured at 727 cm-1 in the presence of 10 mM ASC. 

Interaction of the spermine tail of ASC with the nucleotide bases of ds(dG-dC)8 was 

supported by the measured shifts in the oligonucleotide bands at 1317 cm-1 (guanine), 1219 

cm-1 (cytosine) and 1177 cm-1 (guanine, cytosine) [27,67]. Similar to the ds(dA-dT)8 

solutions, the δ(CH2) band at 1418 cm-1 shifted to 1416 cm-1, while the acridine vibrations 

measured at 1308 and 1221 cm-1 downshifted by 5 and 4 cm-1, respectively. On the other 

hand, the amide III band at 1379 cm-1 exhibited the opposite behaviour of that observed with 

ds(dA-dT)8, which indicates that the amide group of the intercalated ASC molecules interacts 

differently in these two sequences. Fig. 7 (Panel 2) shows that a significant intensity reduction 
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of the Raman intensities of both ds(dG-dC)8 and ASC is observed when increasing the ASC 

concentration to 10 mM. This fact indicates that these molecules are no longer in solution, but 

a solid phase has appeared as a consequence of the interaction between these two 

polyelectrolytes. It has been demonstrated that DNA collapse is observed in concentrated 

DNA solutions (millimolar) regardless of the DNA length [68-70]. Raspaud et al. [68] found 

an empirical relationship to calculate the minimal counterion concentration required to induce 

DNA collapse, Cion = [CDNA]0,77±0.03, which was in good agreement with the theoretical 

predictions. At 60 mM oligonucleotide (in phosphate) this equation predicts a minimal cation 

concentration between 26.5 and 20.7 mM. Taking into account that ASC is a polycation with 

a molecular charge near +4 at our experimental settings, this threshold was clearly surpassed 

at 10 mM ASC concentration (equivalent to almost 40 mM in positive charges), while at 3 

mM, the cation concentration (near 12 mM) is still insufficient. The same authors predicted 

that, upon cation-induced precipitation of DNA or oligonucleotides, polycations are all 

present in the solid phase, while monovalent cations remain partially in solution. This 

prediction agrees with the absence of a significant ASC Raman signal at 10 mM ASC upon 

oligonucleotide precipitation. However, this phenomenon was not observed for the ds(dA-

dT)8 sequence, supporting that cation-induced precipitation of DNA and other nucleotide 

chains cannot be exclusively explained on the basis of charge neutralization, but a significant 

degree of structural specificity is involved [68,71-74]. 

 

 Molecular dynamics  calculations. 

 

 As aforementioned, we performed MD calculations on the basis of a hybrid QM/MM 

approach in order to find interactional theoretical models in agreement with previous 

experimental results. Since there is a large conformational flexibility of oligonucleotides, MD 

simulations are often dependent on the starting structure [75]. In order to build suitable ASC-
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oligonucleotide starting models, the Protein Data Bank (PDB) [76] provided us with 

geometric parameters of a drug-intercalated 12-mer double-stranded oligonucleotide. Then, 

we removed the drug and we substituted the nucleic bases one-to-one to build the two 

alternating purine-pyrimidine double-stranded sequences, ds(dA-dT)6 and ds(dG-dC)6, which 

maintaining the original inter-base hole able to host a planar molecule. The ASC structure 

was optimized using DFT/6-31G** gas-phase methodology. 

 High-resolution rigid-body docking calculations were performed for the two ASC-

oligonucleotide systems. Up to 1000 matches, using a grid step of 1.7 Å, was scored for each 

sequence. After removing the matches based on end-chain interactions, the best scored 

structures for both sequences presented the acridine ring intercalated into the double helix, as 

can be seen in Fig. 8. On the other hand, the calculated interactional energy for the best 

scored complex with ds(dG-dC)6 was higher (in absolute value) than for the one with ds(dA-

dT)6. This result is compatible to a deeper interaction of ASC with the G-C sequence, which 

agrees with the Raman data. However, the lack of torsional flexibility enables interaction of 

the tail with the reactive sites of the grooves.  

 The stability of the two best scored ASC-oligonucleotide complexes obtained by 

docking calculations was checked using QM/MM methodology. In both cases, the MD 

simulations were successful, thus achieving relaxed final structures. They are shown in Fig. 8. 

As it can be observed, the two final complexes exhibit a fully intercalated acridine ring. Three 

main common facts can be pointed out: i) conformational changes of the bases in the hole, ii) 

appreciable out-of-plane deviations of the acridine moieties, and iii) adaptation of the 

spermine tail to the oligonucleotide groove to achieve additional interatomic contacts. The 

highest deviations measured for the dihedral angles within the acridine ring were 24 and 21 

deg. for the complexes with ds(dA-dT)6 and ds(dG-dC)6, respectively. 

 The optimized complexes ASC-ds(dA-dT)6 shows the acridine ring deeply 

intercalated into the double-helix. As a consequence, it is able to interact with the two 
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adenine-thymine base pairs of the hole. The Watson-Crick hydrogen bonding is broken in the 

hole, which allows the amide group of ASC to interact with the adenine-N1 atom. The H...N1 

calculated distance is 1.98 Å, which is within the range of a medium-intensity hydrogen bond 

[77]. In addition, the oxygen atom of the amide group has captured one acidic hydrogen atom 

of the second NH2
+ group of spermine. These interactions agree with the observed Raman 

shift of 5 cm-1 for the amide III band of ASC at 1379 cm-1. The C(6)-NH2 moieties of the two 

adenine bases of the hole have rotated their amino groups by about 90 deg with respect to 

their starting positions, which is well correlated with the observed behaviour for the 

oligonucleotide Raman band at 1577 cm-1. As can be easily observed in the Fig. 8, the 

spermine side chain is adapted to the groove shape, which allows it to establish weak atomic 

contacts with the phosphate groups and the adenine bases. 

  The structural specificities of the complex with ds(dG-dC)6 are different than those 

observed for ds(dA-dT)6. Thus, the π-stacking interaction of the acridine moiety is only 

clearly established with a purine ring within the hole. This theoretical prediction could 

explain the observed trends in the fluorescence spectra (Fig. 5). If we accept that the intensity 

reduction upon intercalation was assigned to a charge-transfer phenomenon between the bases 

and the ligand, the greater π−stacking predicted for acridine with the bases of the adenine-

thymine oligonucleotide will give rise to a more efficient charge-transfer. As a consequence, 

quenching of the ASC fluorescence will be more intense, as observed in the Fig. 5. On the 

other hand, the amide group of ASC interacts through the hydrogen atom with a cytosine-N3 

atom (1.90 Å), which has also lost its hydrogen bond with the corresponding guanine base. In 

this case, no hydrogen migration was predicted, which can be well correlated with the 

different response shown by the amide band at 1379 cm-1 of ASC, depending on the 

oligonucleotide sequence. The side chain deviation from the linear structure was greater in 

the complex with ds(dG-dC)8. As a consequence, stronger hydrogen bonds are established, 
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which involve a guanine-O6 atom (1.66 Å) and a phosphate moiety (1.64 Å). This result is 

relevant because a strong interaction of the polycationic tail is required to induce 

oligonucleotide condensation at high ASC concentrations, as demonstrated by Raman 

spectroscopy. 

 

Conclusions 

 

In summary, our results present a coherent set of experimental and theoretical data 

aimed at finding new insights about the interaction of DNA with intercalator drugs. In this 

study we have obtained new insights on preferential binding sites of the acridine-spermine 

conjugate. Our results indicate that the spermine tail modulates the interaction of acridine 

with oligonucleotide chains. This interaction appears as base sequence dependent, which was 

not previously reported for acridine. Our findings support the possibilities of these new 

molecules to be applied to anti-tumor pharmacology and biotechnology, since they add 

several specific characteristics provided by the polyamine moiety to the previously described 

interesting properties of acridine derivatives. Thus, we can postulate a potential application as 

stabilizers of GC-containing sequences, maybe blocking their ability to be substrates (or 

ligands) of essential DNA-modifying enzymes (proteins). Further efforts, coming from 

biophysics and molecular biology, will be necessary to complete the characterization of the 

potential usefulness of these compounds. 
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 Figure legends 

 

 

Figure 1. Chemical structure of the acridine-spermine conjugate (ASC). 

Figure 2. Electronic absorption spectra of ASC (solid lines) and deconvoluted spectra (dotted 

line). 

Figure 3. Electronic absorption spectra in the visible region of solutions 2 µM ASC and 

increased concentrations of the oligonucleotides up to 120 µM. The oligonucleotide 

concentration increment in each step was 20 µM. Panel 1: ds(dA-dT)8. Panel 2: ds(dG-dC)8.  

Figure 4. Thermal denaturing curves from the electronic absorbance at 260 nm (solid lines) 

of poly-ds(dA-dT)8 and ct DNA, both at a concentration 60 µM in phosphate, alone (circles) 

and in the presence of 3µM ASC (squares). Temperature increment was 2 or 0.5 oC for 

wavelength regions far or around the melting region, respectively. First derivatives of the 

thermal denaturing curves are represented as dasched (free) and dotted (with 3 µM ASC) 

curves. 

Figure 5. Panel 1: fluorescence emission spectra of oligonucleotide-intercalated ethidium (2 

µM of ethidium and 60 µM, in phosphate, of the oligonucleotides) in the presence of 0, 4 and 

8 µM of ASC. Panel 2: fluorescence emission spectra solutions 2 µM ASC in the presence of 

increased concentrations of the oligonucleotides up to 80 µM. The oligonucleotide 

concentration increment in each step was 20 µM. 

Figure 6. Electronic CD spectra of the oligonucleotides (60 µM in phosphate) in the presence 

of different concentrations of ASC: 10 µM (circles), 50 µM (diamonds), 200 µM (squares) 

and 500 µM (triangles). Solid lines are the spectra in absence of ASC. 
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Figure 7. Raman spectra of solutions (A) 60 mM oligonuleotide, in phosphate; (B) 60 mM 

oligonuleotide and 3 mM ASC; (C) 60 mM oligonuleotide and 10 mM ASC; (D) 60 mM 

ASC. Panel 1: ds(dA-dT)8. Panel 2: ds(dG-dC)8. The solutions were prepared by mixing 1.5 

µl of oligonucleotide stock solutions (120 mM in phosphate) with 1.5 µl of ASC, at 

concentrations either 6 or 20 mM. 

Figure 8. Comparison between the docked (left) and MD relaxed (right) structures of ASC 

intercalated into oligonucleotide sequences. Above: ds(dA-dT)6. Below: ds(dG-dC)6. 
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Table 1. Wavenumbers and assignments for relevant bands measured in the Raman

spectra of solutions 60 mM ds(dA-dT)
8
, in phosphate, and different concentrations of

ASC.

ds(dA-dT)
8

ds(dA-dT)
8

3 mM ASC

ds(dA-dT)
8

10 mM ASC
ASC Assignments a

1594 1596 acridine,  (arom)

1577 1577 1580 adenine (C6-NH2, N3)

1538 1541 acridine,  (arom)

1510 1510 1509 adenine

1495 1495 1495
acridine, (C-H) +

(arom)

1461 1459 1458 deoxyribose

1416 1415 1418 (CH2)

1384 1379 amide III + ( arom)

1375 1375 thymine (CH3),

1341 1342 1344 adenine

1306 1308 acridine, (C-H)

1304 1301 1301 adenine, thymine

1280 1282 (arom) + (C-H)

1248 1251 adenine (C6-NH2), thymine

1092 1092 1092 phosphodioxy

1021 1018 1021 acridine, (C-H)

840 840/832 839 phosphodiester,deoxyribose

793 793 793 phosphodiester, thymine

729 727 727 adenine (N3)

a Symbols used:  (stretching),  (bending),  (out-of-plane bending).
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Table 2. Wavenumbers and assignments for relevant bands measured in the Raman

spectra of solutions containing 60 mM ds(dG-dC)
8
, in phosphate, alone and in the

presence of 3 mM ASC.

ds(dG-dC)
8

ds(dG-dC)
8
-ASC ASC Assignments a

1577 1578 guanine (N3)

1488 1488 guanine (N7)

1416 1418 (CH2)

1375 1379 amide III + ( arom)

1362 1364 deoxyribose

1317 1314 guanine

1303 1308 acridine, (C-H)

1291 1294 cytosine

1218 1221 acridine, (C-H)

1177 1173 cytosine, guanine

1092 1092 phosphodioxy

896 896 phosphodiester, deoxyribose

828 828/816 phosphodiester

784 784 phosphodiester, cytosine

a Symbols used:  (stretching),  (bending).
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