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Abstract: Calcium has been established as a key messenger in both intra- and intercellular

signaling. Experimentally observed intracellular calcium responses to different agonists show

a variety of behaviors from simple spiking to complex oscillatory regimes. Here we study

typical experimental traces of calcium oscillations in hepatocytes obtained in response to

phenylephrine and ATP. The traces were analyzed with methods of nonlinear time series

analysis in order to determine the stochastic/deterministic nature of the intracellular calcium

oscillations. Despite the fact that the oscillations appear, visually, to be deterministic yet

perturbed by noise, our analyses provide strong evidence that the measured calcium traces in

hepatocytes are prevalently of stochastic nature. In particular, bursting calcium oscillations

are temporally correlated Gaussian series distorted by a monotonic, instantaneous, time-

independent function, whilst the spiking behavior appears to have a dynamical nonlinear

component whereby the overall determinism level is still low. The biological importance of

this finding is discussed in relation to the mechanisms incorporated in mathematical models

as well as the role of stochasticity and determinism at cellular and tissue levels which

resemble typical statistical and thermodynamic effects in physics.

Keywords: Cellular signaling, Calcium oscillations, Time series analysis, Noise, Temporal

correlation.
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1. Introduction

Many non-excitable eukaryotic cell types, including hepatocytes, respond to extracellular

agonists acting through the phosphoinositide signaling pathway, such as certain hormones and

neurotransmitters, by generating oscillatory changes in concentration of free cytosolic

calcium (calcium oscillations). Calcium oscillations play a vital role in intra- and intercellular

signaling. Many cellular processes, such as secretion or egg fertilization are regulated by

oscillatory changes in cytosolic calcium concentration.

Since the 1980s, when self-sustained calcium oscillations were first discovered [1,2]

numerous further experimental observations have been published (for review, see [3-5]).

Calcium oscillations are generated following binding of the agonist to its plasma membrane

receptor which stimulates, through G protein activation, generation of the second messenger

inositol-1,4,5-trisphosphate (InsP3), which activates the InsP3-dependent channel on the

endoplasmic reticulum leading to the rapid release of calcium ions into the cytosol. Calcium

oscillations are maintained, controlled and shaped by a complex interplay of calcium fluxes

between the cytosol, intracellular calcium stores, calcium-binding proteins and the external

environment. Many theoretical studies have been conducted to explain the mechanism of

calcium oscillations as well as the phenomenon of calcium waves. Such studies have

considered influences at the level of all of the biological processes outlined above (for review

see [6,7]).

The mechanisms for calcium oscillations have been mainly modeled as deterministic

processes (for review see [6]). However, since the number of membrane receptors, ion

channels, and calcium ions in some organelles is very low (cf. [7]), stochastic effects cannot

be neglected. Indeed, it has been recognized recently that several different aspects of calcium

signaling in cells definitely require stochastic treatment. A range of stochastic models has

been developed for the modeling of single Ca2+ channels [7-9], intracellular calcium

oscillations [10-13], and intracellular calcium wave propagation [11,14]. Some authors have

also investigated stochastic effects in coupled cellular systems [11,15-18] and the role of

internal noise in stochastic resonance effects [16,19-23]. To emphasize the importance of the

stochastic treatment versus deterministic modeling, several comparisons of stochastic and

deterministic models have been performed [12,24-28].

Although the theoretical studies predict an important role of stochasticity at the cellular

level, there is a lack of direct experimental evidence confirming either the stochastic or
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deterministic nature of intracellular calcium signals. Therefore, in this paper the

stochastic/deterministic nature of intracellular calcium oscillations is investigated directly on

the basis of experimental data. We analyze experimentally measured calcium oscillations in

hepatocytes by using methods of nonlinear time series analysis [29]. Previous studies have

provided ample evidence that these methods can be applied successfully to experimentally

obtained biomedical signals at the level of organs [30,31]. Prominent examples include the

characterization of the dynamics of cardiac tissue [32], networks of neural cells [33], or the

human locomotion apparatus [34,35]. Importantly, the output of these studies has vast

biomedical applicability. In cardiac tissue, methods of nonlinear time series analysis can be

applied to non-invasively detect “silent” heart arrhythmias or imminent heart failure, or to

extract the foetal electrocardiogram from maternal recordings [36]. Moreover,

electrocardiographic recordings, in conjunction with signals obtained from other

cardiovascular sources (breathing, vascular rhythmicity, etc.), can be exploited to avoid

mental awareness in patients during anesthesia [37,38]. In neural tissue, dynamical markers of

electroencephalographic recordings can be used to diagnose epilepsy [39-41], whereas

recordings obtained from the human locomotion apparatus can be used to determine neuro-

degenerative diseases like Parkinson's disease, Huntington's disease, or amyotrophic lateral

sclerosis [42-44]. In summary, past studies analyzing experimental traces obtained at the level

of the organ have proved that nonlinear time series analysis methods have vast potential and

applicability in various fields of medicine and biology. In this context, the present study

represents a further advance in the analysis of experimental biological signals, making a step

from the level of the organ towards the cellular level through the analysis of experimental

recordings of intracellular calcium oscillations.

In this paper, we first present the experimental methods and measurements of cytosolic

calcium concentration from single isolated hepatocytes stimulated with phenylephrine and

ATP. These experimental traces are then analyzed by applying methods of nonlinear time

series analysis in order to determine their stochastic/deterministic nature. We show that the

analyzed intracellular calcium signals are prevalently of stochastic nature. Finally this finding

is discussed in view of previously presented mathematical models and their particularities as

well as analyses of oscillatory experimental traces obtained at the level of the organ.
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2. Experimental methods and results

Single hepatocytes were isolated from fed, male Wistar-strain rats (150-250g) by collagenase

perfusion as described previously [45]. Briefly, the hepatic portal vein was cannulated and an

initial calcium-free perfusion was followed by perfusion with collagenase (0.04% w/v) and

Ca2+ (3.8mM) for 15 minutes. The perfusion rate was 30ml/min throughout. The cells were

harvested and incubated at 37oC at low density (103 cells/ml) in 2% type IX agarose in

William's medium E (WME). Single hepatocytes were prepared for microinjection with the

bioluminescent calcium indicator aequorin, as described previously [46]. The injected cell

was transferred to a perfusable cup held at 37oC, positioned under a cooled, low-noise

photomultiplier, and continuously superfused with WME, to which agonists were added.

Photon counts were sampled every ms50 . At the end of an experiment, the total aequorin

content of each cell was determined by discharging the aequorin by lysing the cell. The data

were retrospectively normalized by calculating the photon counts per second divided by the

total counts remaining. The computed fractional rate of aequorin consumption could then be

plotted as calcium concentration using in vitro calibration data run through a standard high

frequency filter. The application of the α1-adrenergic agonist, phenylephrine (upper panel), or

ATP (lower panel) to single aequorin-injected rat hepatocytes stimulated the generation of

calcium oscillations, as shown in Fig. 1.

Aequorin was provided by Prof. O. Shimomura (Marine Biological Laboratory, Woods

Hole, MA, U.S.A). Collagenase was obtained from Roche Diagnostics (Lewes, U.K.) and

WME from Invitrogen (Paisley, U.K.). Agarose and agonists were purchased from Sigma-

Aldrich (Poole, U.K.).

Figure 1

3. Time series analysis methods and results

We analyze the experimental traces presented in Fig. 1 by applying methods of nonlinear time

series analysis. The goal is to determine the nature of these oscillations in terms of the

underlying dynamics of the system that produced it. In particular, we wish to examine

whether the studied recordings of intracellular calcium oscillations are of deterministic or
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stochastic origin. To introduce the formalism of nonlinear time series analysis we first

introduce ix  as the series under study, where x  is the concentration of Ca2+ ions at each

particular discrete time index i  (note that the actual time t  depicted in Fig. 1 is obtained

simply by multiplying i  by the sampling time interval during the experiment). First we

employ surrogate data methods [47], enabling us to test different null hypotheses regarding

the nature of the recordings. The three null hypotheses for which details will be presented

below are: ix  are independent (temporally uncorrelated) random numbers drawn from some

fixed but unknown distribution, ix  originate from a stationary linear stochastic process with

Gaussian inputs, and finally, ix  originate from a stationary Gaussian linear process that has

been distorted by a monotonic, instantaneous, time-independent nonlinear function. Details on

surrogate data methods can be found in [29] from page 91 onwards. The main idea is that

points of the original time series ix  can be altered so that some characteristic quantities of the

series (like the mean, standard deviation, or the autocorrelation) are preserved while an other

specific marker of nonlinearity, presently denoted by γ , changes or not. Depending on that a

particular null hypothesis can be rejected or confirmed. In order to assure that the null

hypothesis is not rejected solely by chance, several surrogates from the original series ix  have

to be generated to achieve the desired significance level α  by each test. Presently, our aim is

to achieve a significance level of 95.0=α  (95%) when confirming or rejecting a null

hypothesis, which means that for a single-sided test we have to generate 1)]1/(1[ −−α

surrogates from ix .

Since we wish to test whether the studied recordings of calcium oscillations are of

deterministic or stochastic origin, we use as the specific marker of nonlinearity γ  the zeroth-

order prediction error, arguably being able to infer even very weak nonlinearities in a data set.

Thus, the zeroth-order prediction error γ  will be the main statistical quantity characterizing

the original recordings (specifically denoted by 0γ ) and the surrogates. If γγ <0  for all

1)]1/(1[ −−α  generated surrogates and for all forward prediction steps n  then a null

hypothesis can be rejected with a significance level α . If however γγ >0  at any instance of

the test the null hypothesis is said to be confirmed. The algorithm for the calculation of the

zeroth-order prediction error γ  in dependence on n  can be found in [28] from page 44

onwards, and the actual implementation of the algorithm in C and Fortran on page 264.
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As already mentioned above (and for the sake of completeness), we start with a very

simple null hypothesis that the data are independent random numbers drawn from some fixed

but unknown distribution. To test this null hypothesis we generate surrogates by randomly

shuffling the data (without repetition), thus yielding surrogates with exactly the same

distribution, yet independent construction. Finally, we calculate γ  for the original recording

and for every generated surrogate. Results for both studied recordings of intracellular calcium

oscillations are presented in the top two panels of Fig. 2 in dependence on the number of

forward prediction steps n . It is evident that 0γ  is in both cases smaller than γ  pertaining to

the surrogates. Moreover, this result holds for all n . We can thus clearly reject the null

hypothesis that the two studied data sets are composed of independent random numbers. Note

that γ  pertaining to the surrogates are independent of n , which is expected, as we are dealing

with independent random numbers, for which predicting one time step ahead is just as

impossible as predicting thirty, a hundred or even a thousand time steps ahead. On the other

hand, the increasing values of 0γ  in dependence on n  suggest that there are at least some

temporal correlations between data points in the two studied recordings.

We then proceed with a more interesting null hypothesis that the recordings originate from

a stationary linear stochastic process with Gaussian inputs. The characteristic parameters of a

time series originating from such a process are the mean, the variance, and the autocorrelation

function. Thus, appropriate surrogates must consist of correlated data points with the same

autocorrelation function as the original recording. In order to generate such surrogates, we

have to randomize the phases of the Fourier transform of the original recording, and then

perform the inverse Fourier transform to obtain the desired temporal traces. The middle two

panels of Fig. 2 show γ  in dependence on n . Although the trend of γ  in dependence on n

for the surrogates is now more closely related to the trend of 0γ , it is still obvious that 0γ  are

always smaller than γ  pertaining to the surrogates. Accordingly, we can also reject the null

hypothesis that the two studied data sets originate from a stationary linear stochastic process

with Gaussian inputs. The significance level of the rejection is the same as for the previous

null hypothesis, equaling 95%.

Since the process of phase randomization preserves the Gaussian distribution, it is a

common deviation from the previous null hypothesis that the data does not follow a Gaussian

distribution. The most general null hypothesis, for which there is still an appropriate surrogate

test developed, is that the recording originated from a stationary Gaussian linear process that
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has been distorted by a monotonic, instantaneous, time-independent nonlinear function. In

order to generate appropriate surrogates, we employ an iterative procedure proposed by

Schreiber and Schmitz [48], which uses an implementation similar to a Wiener filter to

enforce the correct spectrum to the resulting surrogates. Due to this, however, a rescaling of

data points was necessary to enforce the right (non-Gaussian) distribution. The two steps can

be iterated several times (presently 10), whereby the resulting surrogates approach the

original recording both in the spectrum as well as the distribution. As above, we have

generated 1)]1/(1[ −−α  such surrogates and calculated the zeroth-order prediction error γ  in

dependence on n . It is fascinating to discover that only spiking calcium oscillations (upper

trace of Fig. 1) are able to pass the test, thus allowing the rejection of the null hypothesis.

Note that in the bottom left panel of Fig. 2 γγ <0  irrespective of n  and for all generated

surrogates. On the other hand, for bursting calcium oscillations (lower trace of Fig. 1) it is in

fact impossible to reject the null hypothesis (at 95% significance) that the recording

originated from a stationary Gaussian linear process that has been distorted by a monotonic,

instantaneous, time independent nonlinear function. As can be inferred from the bottom right

panel of Fig. 2, 0γ  is well within the distribution of γ .

The above results thus imply that the spiking calcium oscillations are eligible for further

analyses with methods of nonlinear time series analysis. It is thus reasonable to proceed with

a standard determinism test to determine the level of stochasticity in the upper trace of Fig. 1.

We used the method originally proposed by Kaplan and Glass [49], which is based on

measuring average directional vectors in a coarse-grained phase space. The idea is that, in

case of a deterministic solution, neighboring trajectories in a small portion of the phase space

should all point in the same direction, i.e. not cross, thus assuring uniqueness of solutions,

which is the hallmark of determinism. The determinism factor 10 ≤≤ κ  is obtained by

calculating the average length of all resultant vectors pertaining to a particular phase space

box, whereby the resultant vectors are obtained by assigning a unit vector to each pass of the

trajectory through a particular phase space box and calculating their vector sum. Hence, if the

dynamics of oscillations are deterministic, the average length of all directional vectors κ  will

be 1, while for a completely stochastic system 0=κ . In order to employ the method we

reconstruct the phase space from ix  via the standard embedding procedure [29]

( ) ),...,,,( 12 τττ −+++= miiiii xxxxp , (1)
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using the embedding delay 60=τ  [50] and embedding dimension 7=m  [51] (we have used

5=m  for results in Fig. 2 to relax the suitable neighbors criterion for the surrogates, but

results remain qualitatively the same if higher embedding dimensions are used). The phase

space ip was coarse-grained into 716  boxes and the pertaining determinism factor was found

equaling 7.0≈κ , thus indicating that although the temporal trace might have been produced

by dynamic nonlinearities, the level of stochasticity is still high as experimental recordings of

deterministic signals at the organ level usually have 9.0>κ  [52,53].

Figure 2

4. Discussion

In summary, the results of our analyses suggest that stochasticity is an important factor in

the dynamics of intracellular calcium oscillations. Particularly, the presented results of

nonlinear time series analysis methods applied to experimental calcium traces in hepatocytes

show an extremely high degree of stochasticity at the cellular level. Although surprising at the

first glance, these results represent an experimentally based confirmation of some previous

theoretical hypotheses. There exist numerous theoretical predictions drawing attention to

stochastic modeling and emphasizing the importance of stochastic effects at the cellular level

[7-23]. It has been shown that dynamics of single Ca2+ channels can be better described by

stochastic modeling [7-9]. Stochastic effects were also included in mathematical models for

intracellular calcium oscillations [10-13], intracellular calcium wave propagation [11,14], and

coupled cellular systems [11,15-18]. Moreover, it has also been shown that inherent

fluctuations or noisy environment might lead to stochastic resonance effects [16,19-23]. It

should be emphasized that some of these model predictions are pure theoretical

considerations; however, as our results show, there exist, at least for stochastic modeling of

calcium oscillations, solid experimental bases. This again confirms the strong predictive

power of mathematical modeling. Several examples exist in which mathematical models had

indicated solutions, which were confirmed experimentally later [54]. Therefore, interactive

experimental and theoretical investigations are of crucial importance. Indeed, the fairly small

number of Ca2+ ions within the cell (cf. [7]) creates associated non-negligible stochastic
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fluctuation. Together with the extensive measurement error inevitably present in such

complex experimental set-ups, this will contribute substantially to temporal traces that show

very sparse markers of dynamic nonlinearity.

Previously, nonlinear time series analysis of biological signals has been limited to those

measured at the level of the organ. Examples range from the analyses of electrocardiographic

recordings [32,55] as well as other cardiovascular sources such as breathing and vascular

rhythmicity [38], electroencephalographic recordings [33], or recordings characterizing the

human locomotion apparatus [34,35]. These studies show that signals measured at the level of

the organ are characterized by a high degree of determinism, much higher than that

characterizing the cellular signals presented here. This apparent discrepancy between the

stochastic nature of cellular signals and deterministic nature of signals in tissue compares well

with the scenario recently predicted by mathematical modeling of coupled calcium oscillators

[17]. In that theoretical study a mechanism is presented for the transition from stochasticity to

determinism in calcium oscillations, via diffusive coupling of individual cells that are

modeled by stochastic simulations of the governing reaction-diffusion equations. It has been

shown that, under physiologically-relevant conditions, the collective dynamics of coupled

cells is, unlike that of isolated cells, deterministic for large-enough ensemble sizes. These

model predictions are in best agreement with the nonlinear time series analysis of

experimental results at the cellular level and at the level of the organ, i.e., stochastic versus

deterministic nature between real-life recordings of physiological functions at cellular and

organ level.

The stochastic nature of signals at the cellular level and the deterministic nature of signals

at the level of the organ also compares well with the relation of statistical physics and

thermodynamics. It is well known that predictions obtained by statistical methods approach

the deterministic limit for large particle numbers. By using this analogy, it can be

hypothesized that the stochastic nature of signals at cellular level becomes increasingly

deterministic when the ensemble of cells forming the tissue increases. To test the hypothesis,

further experimental measurements accompanied by nonlinear time series analysis are

needed; in particular recordings from different numbers of cells. It would then be interesting

to analyze the transition from single-cell traces to recordings at the level of the organ, and

thus to elucidate directly from the experimental data, the discrepancy between stochasticity at

the cellular level, and the prevalence of determinism at the level of the organ.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

11

Acknowledgements

A grant from British Council and Slovenian Research Agency (BI-GB/06-013) is gratefully

acknowledged. Anne K. Green (grant 065845) and C. Jane Dixon (grant 059089) are also

grateful to the Wellcome Trust for funding. Matjaž Perc additionally acknowledges support

from the Slovenian Research Agency grant Z1-9629.

References

[1] K.S.R. Cuthbertson, P.H. Cobbold, Phorbol ester and sperm activate mouse oocytes by

inducing sustained oscillations in cell Ca2+, Nature 316 (1985) 541-542.

[2] N.M. Woods, K.S.R. Cuthbertson, P.H. Cobbold, Repetitive transient rises in

cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319 (1986) 600-

602.

[3] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms (Cambridge University

Press, Cambridge, 1996).

[4] M. Berridge, P. Lipp, M. Bootman, Calcium signaling, Curr. Biol. 9 (1999) R157-R159.

[5] A.K. Green, O. Zolle, A.W.M. Simpson, Regulation of [Ca2+]c oscillations by plasma

membrane Ca2+ fluxes: a role for natriuretic peptides. Biochem. Soc. Trans. 31 (2003)

934-938.

[6] S. Schuster, M. Marhl, T. Höfer, Modelling of simple and complex calcium oscillations.

From single-cell responses to intercellular signaling, Eur. J. Biochem. 269 (2002) 1333-

1355.

[7] M. Falcke, Reading the patterns in living cells - the physics of Ca2+ signaling, Adv.

Phys. 53 (2004) 255-440.

[8] J.W. Shuai, P. Jung, Optimal intracellular calcium signaling, Phys. Rev. Lett. 88 (2002)

068102.

[9] F.M. Gabhann, M.T. Yang, A.S. Popel, Monte Carlo simulations of VEGF binding to

cell surface receptors in vitro. Biochim. Biophys. Acta. 1746 (2005) 95-107.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12

[10] M. Kraus, B. Wolf, Modellbildung in der Biologie: Strukturierte Analyse intrazellulärer

Calcium-Oszillationen in elektrisch nicht erregbaren Zellen, Naturwissenschaften 79

(1992) 289-299.

[11] M.E. Gracheva, R. Toral, J.D. Gunton, Stochastic Effects in Intercellular Calcium

Spiking in Hepatocytes, J. theor. Biol. 212 (2001) 111-125.

[12] U. Kummer, B. Krajnc, J. Pahle, A. K. Green, C. J. Dixon, M. Marhl, Transition from

stochastic to deterministic behavior in calcium oscillations, Biophys. J. 89 (2005) 1603-

1611.

[13] K. Prank, M. Waring, U. Ahlvers, A. Bader, E. Penner, M. Möller, G. Barbant, C.

Schöfl, Precision of intracellular calcium spike timing in primary rat hepatocytes, Syst.

Biol. 2 (2005) 31-34.

[14] M. Kraus, B. Wolf, Crosstalk between cellular morphology and calcium oscillation

patterns, Cell Calcium 19 (1996) 461-472.

[15] M.E. Gracheva, J.D. Gunton, Intercellular communication via intracellular calcium

oscillations, J. theor. Biol. 221 (2003) 513-518.

[16] J. Zhang, Z. Hou, H. Xin, Effects of internal noise for calcium signalling in a coupled

cell system, Phys. Chem. Chem. 7 (2005) 2225-2228.

[17] M. Perc, M. Gosak, M. Marhl, From stochasticity to determinism in the collective

dynamics of diffusively coupled cells, Chem. Phys. Lett. 421 (2006) 106-110.

[18] M. Perc, M. Marhl, Noise-induced spatial dynamics in the presence of memory loss.

Physica A 375 (2007) 72-80.

[19] R. Steuer, C. Zhou, J. Kurths, Constructive effects of fluctuations in genetic and

biochemical regulatory systems, BioSystems 72 (2003) 241-251.

[20] H. Li, Z. Hou, H. Xin, Internal noise stochastic resonance for intracellular calcium

oscillations in a cell system, Phys. Rev. E 71 (2005) 061916.

[21] H. Li, Z. Hou, H. Xin, Internal noise enhanced detection of hormonal signal through

intracellular calcium oscillations, Chem. Phys. Lett. 402 (2005) 444-449.

[22] M. Yi, Q. Liu, J. Li, C. Zhu, Enhancement of internal-noise coherence resonance by

modulation of external noise in a circadian oscillator, Phys. Rev. E 73 (2006) 041923.

[23] C. Zhu, Y. Jia, Q. Liu, L. Yang, X. Zhan, A mesoscopic stochastic mechanism of

cytosolic calcium oscillations, Biophys. Chem. 125 (2007) 201-212.

[24] D. Gonze, J. Halloy, A. Goldbeter, Deterministic versus stochastic models for circadian

rhythms, J.  Biol. Phys. 28 (2002) 637–653.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13

[25] D. Gonze, J. Halloy, J. C. Leloup, A. Goldbeter, Stochastic models for circadian

rhythms: effect of molecular noise on periodic and chaotic behaviour, C. R. Biol. 326

(2003) 189-203.

[26] D. Gonze, J. Halloy, A. Goldbeter, Emergence of coherent oscillations of stochastic

models for circadian rhythms, Physica A 342 (2004) 221–233.

[27] P. Smolen, D.A. Baxter, J.H. Byrne, A Reduced Model Clarifies the Role of Feedback

Loops and Time Delays in the Drosophila Circadian Oscillator, Biophys. J. 83 (2002)

2349-2359.

[28] D.B. Forger, C.S. Peskin, Stochastic simulation of the mammalian circadian clock,

Proc. Natl. Acad. Sci. USA 102 (2005) 321-324.

[29] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press,

Cambridge, 1997).

[30] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark,

J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and

PhysioNet: components of a new research resource for complex physiologic signals,

Circulation. 101 (2000) e215-e220.

[31] A.L. Goldberger, L.A.N. Amaral, J.M. Hausdorff, P.C. Ivanov, C.K. Peng, H.E.

Stanley, Fractal dynamics in physiology: Alterations with disease and aging, Proc. Natl.

Acad. Sci. USA. 99 (2002) 2466-2472.

[32] H. Kantz, T. Schreiber, The human ECG - nonlinear deterministic versus stochastic

aspects, IEE Proc. Sci. Meas. Technol. 145 (2002) 279–84.

[33] A. Galka, Topics in Nonlinear Time Series Analysis: With Implications for EEG

Analysis (World Scientific Publishing Company, Singapore, 2000).

[34] J.B. Dingwell, J.P. Cusumano, Nonlinear time series analysis of normal and

pathological human walking, Chaos 10 (2000) 848-863.

[35] U.H. Buzzi, N. Stergiou, M.J. Kurz, P.A. Hageman, J. Heidel, Nonlinear dynamics

indicates aging affects variability during gait, Clin. Biomech. 18 (2003) 435-443.

[36] M. Richter, T. Schreiber, D.T. Kaplan, Fetal ECG extraction with nonlinear state-space

projections, IEEE Trans. Biomed. Eng. 45 (1998) 133–137.

[37] G. Widman, T. Schreiber, B. Rehberg, A. Hoeft, C.E. Elger, Quantification of depth of

anesthesia by nonlinear time series analysis of brain electrical activity, Phys. Rev. E 62

(2000) 4898-4903.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14

[38] A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič,

Reversible transitions between synchronization states of the cardiorespiratory system,

Phys. Rev. Lett. 85 (2000) 4831-4834.

[39] J. Theiler, On the evidence for low-dimensional chaos in an epileptic

electroencephalogram, Phys. Lett. A 196 (1994) 335-341.

[40] M.W. Slutzky, P. Cvitanovic, D.J. Mogul, Deterministic chaos and noise in three in

vitro hippocampal models of epilepsy, Ann. Biomed. Eng. 29 (2001) 607-618.

[41] Z.J. Kowalik, A. Schnitzler, H. Freund, O.W. Witte, Local Lyapunov exponents detect

epileptic zones in spike-less interictal MEG recordings, Clin. Neurophysiol. 112 (2001)

60-67.

[42] J.M. Hausdorff, S.L. Mitchell, R. Firtion, C.K. Peng, M.E. Cudkowicz, J.Y. Wei, A.L.

Goldberger, Altered fractal dynamics of gait: reduced stride-interval correlations with

aging and Huntington's disease, J. Appl. Physiol. 82 (1997) 262-269.

[43] J.M. Hausdorff, A. Lertratanakul, M.E. Cudkowicz, A.L. Peterson, D. Kaliton, A.L.

Goldberger, Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J.

Appl. Physiol. 88 (2000) 2045-2053.

[44] R. Yulmetyev, S. Demina, N. Emelyanova, F. Gafarova, P. Hänggi, Stratification of the

phase clouds and statistical effects of the non-Markovity in chaotic time series of

human gait for healthy people and Parkinson patients. Physica A 319 (2003) 432-446.

[45] C.J. Dixon, P.H. Cobbold, A.K. Green, Actions of ADP, but not ATP, on cytosolic free

Ca2+ in single rat hepatocytes mimicked by 2-methylthioATP. Br. J. Pharmacol. 116

(1995) 1979-1984.

[46] C.J. Dixon, A.K. Green, in: Measuring Calcium and Calmodulin Inside and Outside

Cells, ed. O.H. Petersen, Aequorin measurements of cytosolic calcium (Springer Lab

Manual, Springer-Verlag, New York, 2001) p. 65-90.

[47] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity

in time series: The method of surrogate data. Physica D 58 (1992) 77-94.

[48] T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev.

Lett. 77 (1996) 635-638.

[49] D.T. Kaplan, L. Glass, Direct test for determinism in a time series. Phys. Rev. Lett. 68

(1992) 427-430.

[50] A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual

information. Phys. Rev. A 33 (1986) 1134-1140.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15

[51] M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for

phase space reconstruction using a geometrical construction. Phys. Rev. A 45 (1992)

3403-3411.

[52] M. Perc, Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys.

26 (2005) 757-768.

[53] M. Perc, The dynamics of human gait. Eur. J. Phys. 26 (2005) 525-534.

[54] S. Schuster, E. Klipp, and M. Marhl, in: Discovering Biomolecular Mechanisms with

Computational Biology, ed. F. Eisenhaber, The predictive power of molecular network

modelling case studies of predictions with subsequent experimental verification (Lands

Bioscience, Georgetown, 2006) p. 115-127.

[55] T. Jagrič, M. Marhl, D. Štajer, Š. Tadel Kocjančič, T. Jagrič, M. Podbregar, and M.

Perc, Irregularity test for very short ECG signals as a method for predicting a successful

defibrillation in patients with ventricular fibrillation, Translational Research 149 (2007)

145-151.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

16

Figure Captions

Figure 1 Experimentally-obtained calcium responses to phenylephrine (upper trace) and

ATP (lower trace) in single aequorin-injected rat hepatocytes.

Figure 2 Surrogate data test for different null hypotheses (see text for details). Grey

stripes indicate the distribution of zeroth-order prediction errors (γ ) for the

surrogates, while black lines denote prediction errors for the original

recordings ( 0γ ), in dependence on the number of prediction steps n . Results in

the left panels pertain to the spiking (upper trace of Fig. 1) and in the right

panels to the bursting (lower trace of Fig. 1) intracellular calcium oscillations.

γ  were calculated by embedding each time series into a five dimensional phase

space with delay 60=τ  as determined by the mutual information method [50]

of original recordings. Neighbors for prediction were sought amongst those

points that were inside 5% of maximal distance to the reference.

Figure 1
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Figure 2


