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ABSTRACT 

Deficiency of NADH:ubiquinone oxidoreductase or complex I (CI) is the most common cause of 

disorders of the oxidative phosphorylation system in humans. Using life cell imaging and blue-

native electrophoresis we quantitatively compared superoxide production and CI amount and 

activity in cultured skin fibroblasts of 5 healthy control subjects and 21 children with inherited 

isolated CI deficiency. Thirteen children had a disease causing mutation in one of the nuclear-

encoded CI subunits, whereas in the remainder the genetic cause of the disease is not yet 

established. Superoxide production was significantly increased in all but one of the patient cell 

lines. An inverse relationship with the amount and residual activity of CI was observed. In 

agreement with this finding, rotenone, a potent inhibitor of CI activity, dose-dependently 

increased superoxide production in healthy control cells. Also in this case an inverse relationship 

with the residual activity of CI was observed. In sharp contrast, however, rotenone did not 

decrease the amount of CI. The data presented show that superoxide production is increased in 

inherited CI deficiency and that this increase is primarily a consequence of the reduction in 

cellular CI activity and not of a further leakage of electrons from mutationally malformed 

complexes. 

 

Keywords: fibroblast, mitochondria, hydroethidine, rotenone, fluorescence microscopy 
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INTRODUCTION 

The mitochondrial oxidative phosphorylation (OXPHOS) system consists of five multiprotein 

complexes: NADH:ubiquinone oxidoreductase (complex I or CI), succinate-dehydrogenase-

ubiquinone oxidoreductase (CII), ubiquinol:cytochrome c oxidoreductase (CIII), cytochrome c 

oxidase (CIV) and F0F1-ATP synthase (CV) [1]. The first four complexes (CI-CIV), together 

with two electron carriers (coenzyme Q10 and cytochrome c), constitute the respiratory chain that 

utilizes the energy of NADH and succinate, oxidized at CI and CII, respectively, to translocate 

protons from the mitochondrial matrix into the intermembrane space. The latter results in a 

negative potential (∆ψ) across the inner mitochondrial membrane, which is crucial for the 

maintenance of mitochondrial integrity [2].  

Dysfunction of the OXPHOS system is associated with a wide array of clinical manifestations, 

ranging from single lesions in Leber’s hereditary optic neuropathy or maternally-inherited 

nonsyndromic deafness to more widespread lesions including myopathies, encephalomyopathies, 

cardiopathies, or complex multisystem syndromes [3-6]. Inherited disorders of the OXPHOS 

system are observed once every 10,000 live births and the most frequently occurring enzymatic 

deficiency is found in CI (EC 1.6.5.3), which catalyzes the transfer of electrons from NADH to 

coenzyme Q10. In human heart, this complex consists of at least 45 different subunits, together 

having a molecular weight close to 1 MDa [7]. With the aid of differential extraction techniques, 

CI can be subdivided into a flavoprotein (FP), iron-sulfur protein (IP) and hydrophobic protein 

(HP) fraction. The catalytic core of the complex comprises 14 evolutionary conserved subunits, 2 

of which reside in the FP fraction, 5 in the IP fraction and 7 in the HP fraction [8]. In humans, 

these core subunits are encoded by the nuclear NDUFV1 and NDUFV2 genes, the nuclear 

NDUFS1, NDUFS2, NDUFS3, NDUFS7 and NDUFS8 genes and the mitochondrial ND1-ND6 
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and ND4L genes. Thus far, disease causing mutations have been identified in all 14 core subunits 

[1] and, as far as the nuclear genome is concerned, in genes encoding supernumerary subunits 

NDUFS4 [1] and NDUFS6 [9] and assembly factor B17.2L [10]. 

The pathophysiological mechanisms linking defects in CI genes to cellular dysfunction and 

disease are only partially understood. To obtain insight into these mechanisms, we use skin 

fibroblasts of patients with inherited isolated CI deficiency and study the biogenesis of CI and 

cytopathological consequences of its dysfunction. Native gel electrophoresis and in-gel activity 

assays revealed that mutations in CI subunits (NDUFS2, NDUFS4, NDUFS7 and NDUFS8) 

markedly reduced the expression of the fully assembled, catalytically active complex [11]. At the 

cell physiological level, this reduction was found to be associated with disturbed mitochondrial 

Ca2+ handling and ensuing ATP production during hormone stimulation [12,13].  

Partial inhibition of CI activity by chronic treatment with rotenone significantly increased 

superoxide production and lipid peroxidation in cultured skin fibroblasts of healthy control 

subjects [14]. Similarly, the formation of superoxide-derived hydroxyl radicals and lipid 

peroxidation products was found to be increased in fibroblasts of three patients with a reduced 

rotenone-sensitive NADH-cytochrome c reductase (CI and CIII) activity [15]. At pathological 

concentrations, superoxide and its derived reactive oxygen species are hazardous for the cell. At 

physiological concentrations, however, they play important roles in a variety of signaling 

processes [16]. In fibroblasts of healthy control subjects we observed that the increase in 

superoxide production induced by chronic rotenone treatment was associated with a marked 

increase in mitochondrial length and degree of branching [14]. Moreover, in patient fibroblasts 

we found that this parameter was linearly correlated with the residual activity of CI [17]. Based 

on these observations, we hypothesized that the increase in mitochondrial length and degree of 
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branching constitutes an adaptive response to protect against the consequences of CI deficiency. 

In agreement with this idea, recent evidence showed that a more complex mitochondrial 

network, induced by manipulating mitochondrial fusion, protected against radical-induced 

mitochondrial depolarization possibly by allowing a more effective sharing of intra-

mitochondrial antioxidants [18]. 

To obtain a quantitative understanding of the relationship between CI deficiency and superoxide 

production, we here compare superoxide production and amount and activity of CI between 

cultured skin fibroblasts of 5 healthy control subjects and 21 children with inherited isolated CI 

deficiency. The data presented show that superoxide production is increased in all patient cell 

lines but to a variable degree and that the extent of increase is inversely proportional to the 

amount and activity of CI. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 7

MATERIALS AND METHODS 

Patient skin fibroblasts – Fibroblasts were derived from skin biopsies of 21 CI deficient children 

in the age range of 0-5 years, 2 age-matched healthy children and 5 healthy adults following 

informed consent and according to relevant institutional review boards [19]. Table 1 shows that 

superoxide production did not differ between adult (CT1-CT5) and age-matched (CT6 and CT7) 

control cell lines. For 11 patients the biochemical analysis, mutations and clinical phenotypes 

were described before (P1, P2 [20]; P4-P6 [21]; P7, P8, P9, P11 [22]; P12 [23]), for 3 patients 

(P3, P10, P13) these data are not yet reported, whereas for the remaining 8 patients the mutations 

are hitherto unknown (P14-P21 [11]). Fibroblasts were cultured in medium 199 with Earle’s salt 

supplemented with 10% (v/v) fetal calf serum, 100 IU/ml penicillin and 100 IU/ml streptomycin 

in a humidified atmosphere of 95% air and 5% CO2 at 37o C. Measurements were performed 

within 5 passages after the start of the culture. The passage number at the onset of the culture is 

given in Table 1.  

 

Enzyme activity measurements – Activities of NADH:ubiquinone oxidoreductase (CI; EC: 

1.6.5.3) and cytochrome c oxidase (CIV; EC: 1.9.3.1) were determined in a mitochondrial 

enriched fraction of cultured fibroblasts as described previously [24]. The activity of CI was 

normalized against that of CIV and expressed as percentage of lowest control (110 mU/U CIV 

[19,24]).  

 

Quantification of superoxide production – Fibroblasts were incubated in HEPES-Tris medium 

(132 mM NaCl, 4.2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5.5 mM D-glucose and 10 mM 

HEPES, pH 7.4), containing 10 µM hydroethidine (HEt; Molecular Probes, Leiden, The 
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Netherlands) for 10 minutes at 37o C. HEt is a lipophylic, uncharged compound that readily 

enters the cell where it reacts with superoxide to form two positively charged products, 2-

hydroxyethidium and ethidium, both of which emit red fluorescence [25]. The reaction was 

stopped by thorough washing of the cells with PBS to remove excess HEt. For quantitative 

analysis of the fluorescent HEt oxidation products, coverslips were mounted in an incubation 

chamber placed on the stage of an inverted microscope (Axiovert 200 M, Carl Zeiss, Jena, 

Germany) equipped with a Zeiss 40x/1.3 NA fluor objective. The cells were excited at 490 nm 

using a monochromator (Polychrome IV, TILL Photonics, Gräfelfing, Germany). Fluorescence 

emission light was directed by a 525DRLP dichroic mirror (Omega Optical Inc., Brattleboro, 

VT, USA) through a 565ALP emission filter (Omega) onto a CoolSNAP HQ monochrome CCD-

camera (Roper Scientific, Vianen, The Netherlands). Hardware was controlled with Metafluor 

6.0 software (Universal Imaging Corporation, Downingtown, PA, USA). Routinely, 10 fields of 

view were analyzed per coverslip using an acquisition time of 100 milliseconds. 

 

Blue-native electrophoresis – Cultured skin fibroblasts were harvested by trypsinization, 

washed, and resuspended (approx. 2·106 cells) in 100 µl ice-cold PBS. For isolation of 

mitochondria, cells were incubated with 2 mg/ml digitonin (Biosciences Inc., La Jolla, CA, 

USA) in a final volume of 200 µl for 10 min on ice. Next, 1 ml ice-cold PBS was added followed 

by centrifugation (5 min; 10,000g; 4° C). Mitochondrial pellets were washed twice with 1 ml ice-

cold PBS and stored overnight (-20° C). Pellets were solubilized in 100 µl ACBT buffer (Fluka, 

Steinheim, Germany) containing 1.5 M aminocaproic acid and 75 mM Bis-Tris/HCl (pH 7.0). To 

extract mitochondrial protein complexes, 20 µl 10% (w/v) ß-lauryl maltoside was added and the 

solution was incubated for 10 min on ice. After centrifugation (30 min; 10,000g; 4° C), 10 µl of 
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blue native sample buffer (Biorad Laboratories, Hercules, CA, USA) was added to the 

supernatant. Blue native PAGE (BNP) and Western blotting, using monoclonal antibodies with 

human reactivity against the NDUFA9 (39-kDa) subunit of CI (Molecular Probes) and the 70-

kDa subunit of CII (Molecular probes) at a dilution of 1:1000, was performed as described 

previously [26]. For quantitative analysis gels were loaded with exactly 40 µg of mitochondrial 

protein. After Western blotting, luminescent signals were quantitatively analyzed by exposing 

illumination films to the blots for different periods of time (5-180 s). Non-saturating films were 

scanned using a G690 Imaging Densitometer (Biorad). From these scans, the integrated optical 

density of each band was determined and background corrected. The resulting numerical values 

were normalized to those obtained with control cells on the same blot.  

 

Data analysis – Processing and analysis of fluorescence images and densitometer scans was 

performed with Image Pro Plus 5.1 (Media Cybernetics, San Diego, CA, USA) and Metamorph 

6.1 (Universal Imaging Corporation, Downingtown, PA, USA). Numerical results were 

visualized using Origin Pro 7.5 (OriginLab Corp., Northampton, MA, USA) and presented as the 

mean ± SEM. During linear regression analysis, the degree of bivariate correlation between sets 

of data was analyzed by calculating Pearson’s R. This parameter expresses the proportion of total 

variation that is explained by the regression. If R is ±1, the total variation in the fit can be 

explained in terms of the regression curve [27]. For R>0 the correlation is positive, for R<0 the 

correlation is negative. Statistical differences between average values were determined using an 

independent two-population Student’s t-test (Bonferroni corrected). P-values <0.05 were 

considered significant.  
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Chemicals – Culture materials were obtained from Invitrogen (Breda, The Netherlands), all other 

reagents were from Sigma-Aldrich (St. Louis, MO, USA). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 11

RESULTS 

Quantitative measurement of superoxide production in human skin fibroblasts – In this study 

we assessed superoxide production in living cells using hydroethidine (HEt), a membrane-

permeable derivative of ethidium bromide that is specifically converted by superoxide into 2-

hydroxyethidium and ethidium [25,28]. Both products are positively charged and emit red 

fluorescence when excited at 490 nm. Human skin fibroblasts were grown to ~70% confluence, 

treated with 10 µM HEt for 10 min and thoroughly washed to remove non-oxidized HEt. Next, 

video-imaging microscopy was used for subcellular quantification of the fluorescent oxidation 

products formed during the 10-min incubation period with HEt. We reported before that the 

fluorescent products formed during the oxidation of HEt accumulated predominantly in the 

nucleus and a widespread network of tubular structures located within the cytosol [14]. Figure 

1A shows that in both compartments the average fluorescence intensity remained stable for at 

least 200 s, indicating that non-oxidized HEt was effectively removed during the washing step 

and that its oxidation products did not translocate during the ensuing recording period. In 

addition, this result demonstrates that the fluorescent products were resistant to photo-bleaching. 

Figure 1A furthermore shows that dissipation of the mitochondrial membrane potential by FCCP 

(p-trifluoromethoxy carbonyl cyanide phenyl hydrazone; 1 µM) leads to a rapid decrease in 

tubular fluorescence. This result identifies the tubular structures as active mitochondria in which 

positively charged HEt oxidation products are retained in a membrane potential-dependent 

manner. The FCCP-induced decrease in tubular fluorescence was mirrored by a concomitant 

increase in nuclear fluorescence, indicating the translocation of HEt oxidation products from the 

mitochondria to the nucleus. The results obtained with FCCP demonstrate that HEt oxidation 
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products can easily pass mitochondrial membranes. Therefore, it is not possible to make a 

statement concerning the exact site(s) of primary HEt oxidation.   

  

Chronic rotenone treatment dose-dependently increases superoxide production in human skin 

fibroblasts – To mimic the pathological condition of chronic CI deficiency, control fibroblasts 

were cultured in the presence of different concentrations (0.1-5000 nM) of rotenone for 72 h 

[14]. At concentrations at or below 1 nM, this specific inhibitor of CI had no effect on the 

amount of fluorescent oxidation products that accumulated in the mitochondrial compartment 

during the 10-min incubation period with HEt (Fig. 1B, closed circles). At higher concentrations, 

however, the drug dose-dependently increased this amount. For the entire range of rotenone 

concentrations, mitochondrial and nuclear fluorescence were linearly correlated (R=0.98, 

p<0.0001). The increase in mitochondrial fluorescence was virtually mirrored by the decrease in 

residual CI activity (Fig. 1B, open circles), determined in a mitochondrial enriched fraction of 

cultured fibroblasts (data from [14]). Half-maximal concentrations were 110 nM and 20 nM, 

respectively. These findings show that in human skin fibroblasts drug-induced reduction in CI 

activity is accompanied by increasing production of cellular superoxide.  

 

Chronic rotenone increases fully assembled CI in human skin fibroblasts – We showed before 

that chronic rotenone treatment (100 nM, 72 h) caused an increase in mitochondrial length and 

degree of branching [14]. Using blue-native polyacrylamide gel electrophoresis we here show 

that this treatment also caused a 1.3-fold increase (p<0.05) in fully assembled CI (Fig. 1C). In 

contrast, this treatment did not alter the amount of CII. 
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Superoxide production is increased in patient skin fibroblasts – The amount of fluorescent 

oxidation products that accumulated in the mitochondrial compartment during the 10-min 

incubation with HEt did not significantly differ between fibroblasts of seven healthy control 

subjects (Table 1, CT1-CT7). Compared to control, however, mitochondrial accumulation of 

HEt oxidation products was significantly increased in all but two patient cell lines (P2 and P20). 

As for healthy control fibroblasts treated with various concentrations of rotenone, mitochondrial 

and nuclear fluorescence were linearly correlated for the whole cohort of patient cell lines 

(R=0.98, p<0.0001). Linear regression analysis furthermore revealed an inverse relationship 

between mitochondrial fluorescence and residual CI activity (Fig. 2, R=-0.83, p<0.0001). In all 

patient cell lines, acute treatment with 100 nM rotenone (during the 10-min incubation with HEt) 

caused a further increase in fluorescence intensity (Table 1), demonstrating the presence of a 

functional rotenone binding site. 

 

Fully assembled CI is decreased in patient skin fibroblasts – We reported before that the 

amount of fully assembled CI is markedly reduced in patient fibroblasts with mutations in 

nuclear-encoded CI subunits [11]. Figure 3, depicts assembly data of a subgroup of 13 patients, 

7 with a known mutation (Table 1, P1-P5 and P12-P13) and 6 with a hitherto unknown mutation 

(Table 1, P14-P16 and P18-P20), and shows that in all but one (P20) of them the amount of fully 

assembled CI was lower than control. Except cell line P20, the cell lines of the other patients 

with a hitherto unknown mutation (open symbols) did not differ from those with a known 

mutation (closed symbols). Linear regression analysis revealed that for the whole cohort of 

patient cell lines this parameter was negatively related to the cell’s superoxide production (R=-

0.62, p=0.017) and positively to its residual CI activity (R=0.89, p<0.0001). 
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DISCUSSION 

Malfunction of the OXPHOS system causes a wide range of neuromuscular, cardiac, and 

endocrine disorders and, more recently, has also been implicated in age-related diseases and 

various forms of cancer [3,6,29]. In 40% of the cases of inherited OXPHOS disease, the 

deficiency is associated with an isolated (25%) or combined (15%) defect in CI, the first and 

largest complex of the OXPHOS system [19]. At present, however, there is only very limited 

information about the cytopathological effects of a disease-causing reduction in CI activity. 

Here, we quantitatively assessed superoxide production in living skin fibroblasts of a large 

cohort of 21 patients with inherited isolated CI deficiency, 13 of which with an established 

mutation in one of the nuclear-encoded CI subunits and 8 in which the disease causing mutation 

still has to be established, and demonstrate an inverse relationship with the amount and residual 

activity of this complex. The same inverse relationship between superoxide production and CI 

activity was observed in healthy fibroblasts treated with increasing concentrations of rotenone. In 

the latter case, however, the amount of CI increased rather than decreased, indicating that 

superoxide production can increase in the absence of any mutated subunit. Based on the latter 

finding we conclude that in isolated human CI deficiency increased cellular superoxide 

production is primarily a consequence of decreased cellular CI activity and not of further 

electron leakage due to the presence of a mutated subunit. 

In healthy cells, the vast majority (>90%) of reactive oxygen species is produced as a 

consequence of oxidative phosphorylation [2,30]. Work on isolated mitochondrial preparations 

suggests that CI and CIII are the major contributors to superoxide production [2,30,31]. In 

addition, CII can contribute by donating electrons to CI via reverse electron flow [32,33]. As far 

as CI is concerned, single electron reduction of oxygen can occur at the FMN binding site, the 
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iron-sulfur clusters and/or the Q-binding site [32-37]. Evidence has been provided that 

superoxide produced by CI is released into the mitochondrial matrix, whereas that produced by 

CIII enters both the matrix and the intermembrane space [33]. It has been demonstrated that 

reverse electron flow can be effectively blocked by CI inhibitors, leading to a reduction in 

superoxide production. Here we show that in all patient cell lines acute addition of rotenone 

increased rather than decreased the amount of HEt oxidation products, indicating that reverse 

electron flow is not the underlying cause of increased superoxide production in isolated human 

CI deficiency. 

In addition to CI and CIII, the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase 

can produce significant amounts of superoxide, especially under conditions that the NADH level 

in the matrix is increased [38]. Moreover, other organelles, such as the endoplasmic reticulum 

and peroxisomes, may contribute to the production of superoxide (reviewed in [39]). Because 

HEt oxidation products can easily pass mitochondrial membranes, the method used here to 

measure cellular superoxide production does not allow to make a statement concerning the exact 

site(s) of HEt oxidation. Whatever the case may be, the present finding that chronic rotenone 

decreased the activity of CI and increased the amount of HEt oxidation products with virtually 

the same potency indicates that a reduction in mitochondrial CI activity is associated with an 

increase in cellular superoxide production. Importantly, because the inhibitor increased rather 

than decreased the amount of fully assembled CI, it can be concluded that the observed increase 

in superoxide production was not due to misassembly of the complex. 

The same correlation between cellular superoxide production and residual CI activity was 

observed within our large cohort of CI deficient patient cell lines. In this case, however, the 

decrease in residual activity was quantitatively correlated with a decrease in fully assembled CI. 
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In agreement with our results, the NDUFS1-Q522K mutation has recently been published to be 

associated with a marked reduction in CI amount and activity and a significant increase in 

mitochondrial superoxide and derived reactive oxygen species [40]. Taken together, the present 

findings may provide first insight into the mechanism of superoxide production in human CI 

deficiency in that they suggest that decreasing numbers of active complexes produce increasing 

amounts of superoxide not because of the presence of a mutated subunit but as a consequence of 

a decrease in cellular CI activity. The alternative explanation that increasing numbers of partially 

assembled complexes are responsible for the observed increase in superoxide production is not 

supported by the present finding that chronic rotenone treatment increased rather than decreased 

the amount of fully assembled CI. 

The cohort of patient cell lines used in this study included 13 cell lines with established 

mutations in nuclear-encoded CI subunits (see, Table 1). All 6 affected subunits are predicted to 

constitute part of the matrix-protruding arm of CI [41]. Five of them, NDUFV1 (51-kDa), 

NDUFS1 (75-kDa), NDUFS2 (49-kDa), NDUFS7 (PSST) and NDUFS8 (TYKY), belong to the 

group of 14 “central” subunits that are sufficient to perform all bioenergetic functions of the 

complex, whereas the remaining one, NDUFS4 (AQDQ), belongs to the large group of accessory 

proteins. Except for NDUFS2, the other 4 “central” subunits carry iron-sulfur clusters 

responsible for electron transport from NDUFV1, where NADH is oxidized, to NDUFS7, where 

ubiquinone is reduced. With the exception of 5 cell lines carrying a mutation in NDUFS4 (see 

below), 7 (P6 was not analyzed) of the other 8 cell lines displayed a fully assembled complex on 

a blue-native gel, the amount of which was decreased to a variable degree. Irrespective of the 

affected subunit, this amount was quantitatively correlated with the cell’s residual CI activity, 

indicating that primarily the expression of the fully assembled complex rather than its intrinsic 
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activity is altered. This conclusion is in agreement with our proposal that the increase in cellular 

superoxide production is not a direct consequence of further electron leakage from complexes 

containing a mutated subunit, but of the decrease in cellular CI activity. Importantly, when 

patient cells were acutely treated with rotenone, superoxide production was even further 

increased. This indicates that the rotenone-binding site, which is part of the coenzyme Q binding 

site [30,42], is intact in these CI deficient patients. 

Regarding the 5 patient cell lines carrying a mutation in NDUFS4, they all showed a rotenone-

sensitive CI activity when assayed in a mitochondrial enriched fraction. On the other hand, all 5 

cell lines showed only an inactive subcomplex on a blue-native gel. Previous work revealed the 

complete absence of any NDUFS4 in patient cell lines P7 and P11 [43]. Together with the 

information that the other 3 patient cell lines of the present study are either homozygous for a 

premature stop codon (P8 and P9) or carry a premature stop codon and a frameshift (P10) and, 

therefore, do not express any NDUFS4, these results indicate that in the absence of NDUFS4 

catalytically active complexes are formed, which are, however, relatively unstable and fall apart 

during blue-native electrophoresis. Analysis of the amount of subcomplex as a measure of the 

amount of catalytically active complex in the mitochondrial enriched fraction then shows that 

also in these patient cells significantly less catalytically active complex is formed. In contrast to 

the present study, it was recently shown that fibroblasts of a patient with a nonsense mutation in 

the first exon of the NDUFS4 gene (NDUFS4-W16X) produced normal amounts of superoxide 

[40]. Similarly, the present study demonstrates that superoxide production can be increased (P1) 

or normal (P2) in fibroblasts of two CI deficient brothers. Both cell lines showed the same 

decrease in fully assembled CI and residual CI activity. These findings indicate that additional 

factors, such as detoxifying enzymes and nonenzymatic antioxidants, play a role in determining 
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net superoxide production. The involvement of such factors is also evident from the large 

variation in superoxide production at any given residual CI activity (Fig. 2).   

Finally, our results partially agree with earlier work showing that superoxide generation was 

increased in 5 CI deficient patients, whereas it was not different from control or even lower than 

control in another 8 patients [44]. Moreover, in contrast to the latter study, we found no 

correlation between the rate of superoxide production and clinical phenotype (depicted in Table 

1). At present, we have no explanation for these discrepancies. Major differences are the use of 

living fibroblasts rather than frozen-thawed mitochondria and the use of HEt instead of the 

chemiluminescent probe lucigenin. Both studies had only two clinical phenotypes in common, 

Leigh’s Disease (LD) and Fatal Infantile Lactic Acidosis (FILA). In both studies, the LD patients 

showed an increase in superoxide, whereas the two FILA patients investigated in the earlier 

study showed either a decrease or no change in superoxide production. Our study did not include 

patients displaying Cardiomyopathy with Cataracts and Hepatomegaly with Renal Tubulopathy, 

shown in the previous study to have a decreased and normal rate of superoxide production, 

respectively. Obviously, evaluation of these latter clinical phenotypes is required to be confident 

that under all conditions of isolated CI deficiency a decrease in CI activity is associated with an 

increase in cellular superoxide production.      

In accordance with the above findings, antioxidants were found to improve OXPHOS function in 

superoxide dismutase 2 null mice [45] and fibroblasts of Parkinson’s disease patients [46]. 

Furthermore, chronic antioxidant treatment was shown to increase CV activity and ATP 

synthesis in cybrids containing the mtDNA of patients with the T8993G mtDNA mutation 

associated with impaired oxidative phosphorylation in NARP (neuropathy, ataxia and retinitis 

pigmentosa) and MILS (maternally inherited Leigh’s syndrome) [47]. Likewise, chronic oral 
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administration of high concentrations of vitamin E was found to prevent the loss of 

mitochondrial function and reduce protein and lipid oxidation in brain and liver of aging mice 

[48]. These beneficial effects were paralleled by an increased lifespan, better neurological 

performance and higher exploratory activity. Regarding human CI deficiency, patients have been 

found to respond differentially to antioxidant treatment (e.g. ref. [49]). 
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FIGURE LEGENDS  

 

Figure 1: Effect of chronic rotenone treatment on subcellular superoxide production, 

residual CI activity and cellular CI expression in human skin fibroblasts – (A) FCCP-

induced redistribution of HEt oxidation products between mitochondria and nucleus. Fibroblasts 

(CT1, Table 1) were incubated with 10 µM hydroethidine (HEt) for 10 min at 37o C, thoroughly 

washed and visualized using fluorescence microscopy. FCCP (1 µM) was added at the 

designated time (arrow). Fluorescence signals were obtained from the indicated compartments 

and background corrected. (B) Dose-dependency of the effect of chronic (72 h) rotenone 

treatment on the accumulation of HEt oxidation products in the indicated compartment (closed 

symbols) and the residual CI activity (open symbols). Fibroblasts were pretreated with vehicle or 

the indicated concentration of rotenone (closed symbols) for 72 h. Residual CI activity (right y-

axis) and fluorescence intensity (left y-axis) are expressed as percentage of vehicle-treated 

control. The data presented are the average ± SEM of 3 independent measurements. (C) Effect of 

chronic rotenone treatment (100 nM, 72 h) on CI expression. Mitochondrial enriched fractions of 

vehicle- and rotenone-treated cells were subjected to blue native electrophoresis and Western 

blotting. Intensities of the CI and CII bands were determined by densitometry and expressed as 

percentage of vehicle-treated control. The data presented are the average ± SEM of three 

independent experiments. *, significantly different from control.   

 

Figure 2: Inverse relationship between superoxide production and residual CI activity in 

fibroblasts of patients with isolated CI deficiency – Measurement of superoxide production 

was performed as described in the caption to figure 1. Fluorescence intensity in the indicated 
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compartment (left y-axis) is expressed as percentage of vehicle-treated control (CT). Mean 

values, number of cells analyzed and patient numbers are depicted in Table 1. Closed and open 

symbols represent patient cell lines with a known (13) and hitherto unknown (8) mutation, 

respectively. Linear regression analysis reveals an inverse correlation between superoxide 

production and residual CI activity for the whole cohort of patient cell lines. 

 

Figure 3: Inverse relationship between superoxide production and fully assembled CI in 

fibroblasts of patients with isolated CI deficiency – Measurement of superoxide production 

and analysis of fully assembled CI was performed as described in the caption to figure 1. The 

Western blot shows the decrease in fully assembled CI in one of the patient cells lines (P4). 

Linear regression analysis reveals an inverse correlation between superoxide production and 

amount of fully assembled CI for 7 patient cell lines with a known (black symbols) and 6 with a 

hitherto unknown (open symbols) mutation. Assembly data are from 9 (CT), 1 (P5, P14, P15, 

P16, P18, P19, P20), 2 (P1, P2, P3, P13), 4 (P4) and 5 (P12) independent experiments. Mean 

fluorescence intensities (± SEM), number of cells analyzed and patient numbers are depicted in 

Table 1. 
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