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ABSTRACT.  
Nonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling 
the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. 
The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the 
real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different 
prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) 
affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the 
RNN neural network. 
KEYWORDS: Time series prediction, recurrent radial basis function network, NARX models, prediction performance metrics. 

1. Introduction 

Time series are pervasive in data acquisition hence a 
significant amount of work has been done in the realm of 
time series analysis, modeling, and prediction to support 
analysis and interpretation of such data 
[15,4,6,11,13,16,20,21,23,28,29,32,44,1]. The commonly 
encountered models of time series include auto-regressive 
(AR) models [11,32,1], recurrent neural networks 
[4,11,16,21,28,29,50,1,7] and fuzzy rule-based models 
[4,13,20,21,44,40]. In many cases time series could be 
difficult to model due to complex system dynamics; in such 
cases it is useful to apply non-linear prediction 
architectures such as neural networks in order to improve 
prediction performance [23,28]. It is also worth noting that 
with the growing diversity of constructs of computational 
intelligence, we are provided with a significant number of 
architectures of neural networks, fuzzy systems and 
evolutionary optimization schemes that could be exploited 
to enhance the performance of prediction of non-linear 
time series.  

In one-step-ahead prediction tasks, Artificial Neural 
Networks (ANN) models are required to estimate the next 
sample value of a time series, without feeding back it to the 
model’s input regressor [30]. In other words, the input 
regressor contains only actual sample points of the time 
series. If the user is interested in a longer prediction 

horizon, a procedure known as multi-step-ahead or long-
term prediction, the model’s output should be fed back to 
the input regressor for a fixed but finite number of time 
steps [41]. In this case, the components of the input 
regressor, previously composed of actual sample points of 
the time series, are gradually replaced by previously 
predicted values. 

If the prediction horizon tends to infinity, from some 
time in the future the input regressor will start to be 
composed only of estimated values of the time series [30]. 
In this case, the multi-step-ahead prediction task becomes a 
dynamic modeling task, in which the ANN model acts as 
an autonomous system, trying to recursively emulate the 
dynamic behavior of the system that generated the 
nonlinear time series [17,18]. Multi-step-ahead prediction 
and dynamic modeling are much more complex to deal 
with than one-step-ahead prediction, and it is believed that 
these are complex tasks in which ANN models play an 
important role, in particular recurrent neural architectures 
[36].  

Either using ANNs or others techniques to model time 
series, the prediction metric is a key issue to address. There 
is no general agreement as to an appropriate and acceptable 
set of metrics that can be employed in time series 
prediction [8,19]. Some metrics as the repeatability or the 
precision can be used to quantify the goodness of the 
prediction and can be used also to compare several 
techniques. 
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In this study, we develop a nonlinear time series 
prediction model based on a recurrent radial basis function 
network (RRBF) [47]. To improve the accuracy of the 
prediction model, an AutoRegressive with eXogenous 
inputs model (ARX) is used to correct the predictions 
error. Moreover, since performances of the ANN are 
partially depending on an initial randomly parameterization 
of its structure, criteria are proposed to quantify the 
precision, the accuracy, and the reproducibility of 
predictions. It enables to a priori estimate the usefulness of 
a neural network structure. 

The remainder of the paper is organized as follows. A 
literature review highlighting the main trends, presenting 
main categories of fuzzy models and ANN in section 2. 
Section 3 describes the architectural of the proposed 
prediction model. Let call it a NARX model (Nonlinear 
ARX). The section 4 deals with the prediction metrics. 
Section 5 and 6 presents the experiments data and the 
prediction results.  

2. Literature overview 

In this section, a concise overview of some of the 
existing models of computational intelligence (CI) used in 
time series analysis and prediction is presented [15]. As a 
reference, we will be alluding to standard autoregressive 
linear models (AR models) as extensively discussed in 
statistics and signal processing [6,11,32]. Let us recall that 
the standard AR(q) model of order ‘‘q’’ is described by the 
following expression: 

1
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where iϕ  for 1, 2,.....i q=  are the parameters of the 
model, ( )x t  is the value at time instant t, and ε  is the 
residual error. Typically the residual error is assumed to be 
zero-mean white noise with a normal distribution. The 
parameters of the AR(q) model can be determined by 
finding the auto-correlation sequence Lφ  for lag 

,......,L q q= −  and solving the Yule–Walker system of 
equations [6]: 
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Fuzzy rule-based models have been found in various 
areas of application including, control, reliability modeling, 
planning and scheduling, economics forecasting, decision 
making, pattern recognition, etc., as well as time series 
prediction. [31] provides a survey on the way of building 

such models whereas [22] gives an interesting overview of 
applications of fuzzy systems in industrial engineering. 

Within all fuzzy rule-based approaches, Takagi-
Sugeno-Kang (TSK) models are the dominant category of 
models used. A TSK model is a first order Takagi Sugeno 
(TS) Fuzzy Inference System (FIS). In a few words, a first-
order TS model can be seen as a multi-model structure 
consisting of linear models that are not necessarily 
independent [3]. It is based on the fuzzy decomposition of 
the input space. For each part of the state space, a fuzzy 
rule is formed, the global output been a combination of the 
whole rules. For prediction problems, given the inherent 
dynamics of time series one has to cope up with, a TS FIS 
comes here in the following form [21]: 
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          (3) 

The condition part of the above rule includes a finite 
sequence of values (inputs) of the time series of some 
horizon M, namely ( ),  ( 1),.....,  ( )x t x t x n M− −  which 
invoke (activate) some fuzzy sets defined in the space of 
amplitude of the time series. iA  are fuzzy membership 
functions capturing information granules forming the 
condition part of the ith rule. The conclusion (consequent) 
of the rule is a linear function of the inputs where the linear 
relationship is governed by its parameters 

0 1, ,...., Ma a a ∈ℜ .  In this sense the condition part of the 
rule captures the ‘‘history’’ of the time series. Being more 
specific, the rule is concerned only with the dynamic of the 
time series being pertinent to the condition of the rule. 

 The TS scheme of the form given above has been 
under intensive investigation in fuzzy modeling. One can 
refer here to some studies concerning architectural 
enhancements of the rules as well as coming up with 
various ways of designing (optimizing) such models. For 
instance, in [4,13] discussed were ideas of making the 
conclusion part of the rules non-linear by using neural 
networks. Some other studies were focused on the use of 
such rule-based systems in prediction problems [4,13,21]. 
Radial basis functions are also used for prediction of time 
series [16]. Some research has also been completed in 
fuzzy clustering of time series [25,26]. Authors in [4] 
utilized a locally recurrent neural network in the 
consequent of the rules of a TSK–FIS (with Fuzzy 
Inference System) model for predicting wind speeds. They 
employ an IIR-MLP (Infinite Impulse Response Multi-
Layer Perceptron) [4] as the consequent of each rule and 
considered Gaussian fuzzy sets as the antecedent of each 
rule. A common fuzzy prediction network used is the 
ANFIS described in [21]. A feed-forward neural network 
trained via a hybrid least squares estimate (LSE) and 
gradient descent is used as the consequent of the fuzzy 
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rules. They showed slightly better performance for ANFIS 
when being compared with a standard neural network. The 
ANFIS performs better than the standard AR model used in 
time series prediction. Authors in [13] use NARMAX 
(Non-linear AutoRegressive Moving Average with 
eXogenous inputs) as the consequent of the fuzzy rules. 
Feed-forward and recurrent neural network approaches for 
a TSK–FIS models for prediction are explored. They report 
better performance using neural networks as the 
consequent function in the TSK–FIS model.  

The radial basis function neural network has been 
applied to time series prediction [16]. The authors explore 
several different radial basis functions applied to the 
prediction of several time series. The choice of basis 
function and basis function parameters significantly 
impacted the prediction performance [16]. Several fuzzy 
recurrent neural networks have also been applied to time 
series prediction [50,1,7]. A recurrent fuzzy neural network 
(RFNN) is developed in [50] using ordered derivatives in 
the training procedure. In [1] time series prediction is 
accomplished for a time series of linguistic concepts called 
a fuzzy time series and trained via genetic algorithms. The 
experiments show an improvement in the prediction of 
linguistic time series using a RFNN compared with other 
fuzzy time series prediction algorithms. Authors in [7] 
develop an improved circular back-propagation (ICBP) 
network where the weights are +1 or -1 to improve the 
predictive generalization of the network. Experiments 
conducted in [7] show that there are improvements in one-
step and p-step prediction performance for DLS-ICBP on 
several synthetic data sets. The study reported in [26] 
comes with an interesting conclusion that clustering of raw 
streaming time series data could be of limited relevance 
since cluster centers are often sinusoidal in shape. Authors 
suggest several ways of countering meaningless clustering 
results such as having a large number of cluster centers and 
completing post-processing to find fewer yet more 
meaningful clusters. A survey of the different time series 
clustering methods are described in [25] including several 
different clustering algorithms and distance measures.  

3. Prediction model architecture  

3.1. The Radial Basis Function network

In practice, Multi-Layer Perceptron (MLP) have been 
found to perform poorly in a number of ways, slow 
convergence of weights and difficulty in modeling 
differential responses. Radial basis function (RBF) neural 
networks are able to surpass the MLPs as they are simpler 
in structure and have the ability to model any nonlinear 
function in a straightforward way. On one hand MLP 
networks are global approximators with nonlinear input-

output mappings and the representation of knowledge is 
distributed throughout the network. On the other hand, 
RBF networks are local approximators with nonlinear 
input-output mapping. The knowledge representation in 
this case is localized. Thus, RBF network are able to learn 
faster and suffer less from interference, as compared to 
MLPs. 

A key feature of RBF networks is that the output layer 
is merely a linear combination of the hidden layer signals, 
there being only one hidden layer. Therefore, RBF 
networks allow for a much simpler weight updating 
procedure and subsequently open up greater possibilities 
for stability proofs and network robustness in that the 
network can be described readily by a set of nonlinear 
equations. 

The RBF network is commonly used for the purpose of 
modeling uncertain and nonlinear functions. Utilizing RBF 
networks for modeling purposes could be seen as an 
approximation problem in a high-dimensional space. 
Consider the RBF network, which can be seen as a two-
layer processing structure, as shown in Figure 1.a. The 
hidden layer consists of an array of computing units (i.e., 

1 2, ,... kφ φ φ ). These hidden units provide a set of basis 
functions of the input vectors (i.e., 1 2, ,.... dx x x ) as they are 
expanded into the higher dimension hidden-unit space. The 
mapping from the input vectors to the outputs of the hidden 
units is nonlinear, whereas the mapping from the hidden 
units to the final output of the RBF network is linear. 

The general mapping function of the RBF network can 
be represented by 

[ ]
1

, ( )
k

p pj j
j

y w φ
=

= =�g x w x                                            (4)  

where 1 2[ , ,.... ]Tdx x x=x  is the input vector and 
( 1 2, ,....p p pkw w w ) is a set of the output weights. The 

commonly used RBF (.)jφ is the Gaussian represented by  

2

2( ) exp( )
2

j
j

j
φ

−
= −

x c

�
x                                                  (5) 

Each RBF contains a parameter vector called a centre 
( jc ), and calculates a squared distance between the centre 
and the input vector ( x ). The result is then divided by the 
width ( j� ) and then passed through an exponential 
function. 

Training a RBF with linear outputs is very fast and is 
accomplished through two stages: 
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– The first stage is unsupervised and accomplished by 
obtaining cluster centers of the training set input vectors. A 
popular method for that purpose is the k-means clustering, 

– the second stage consists in solving a set of linear 
equations, the solution of which can be obtained by a 
matrix inversion technique such as singular value 
decomposition or least squares method. 

        

11w 22w

1φ 2φ kφ

1x 2x dx

1φ 2φ kφ

1x 2x dx

1y 2y py1y 2y py

ddw

Figure 1. Radial Basis Function and Recurrent Radial 
Basis Function networks 

3.2. The Recurrent Radial Basis Function network

The Recurrent RBF neural network considers time as an 
internal representation (Figure 1.b). The dynamic aspect is 
obtained by the use of an additional self-connection to the 
input neurons with a sigmoid activation function. The 
RRBF network can thus take into account a certain past of 
the input signal. 

Every neuron of the input layer gives a summation at 
the instant t  between its input ix  and its previous output 
weighted by a self-connection iiw . The output of its 
activation function is: 

( ) ( 1) ( )i ii i ia t w t x tξ= − + , ( )( ) ( )i it f a tξ =                      (6) 

where ( )ia t  and ( )i tξ  represent respectively the 
neuron activation and its output at the instant t , and f  is 
the sigmoid activation function defined as: 

( ) ( )
( )
1 exp( )
1 exp( )

x
f x

x
κ
κ

− −
=

+ −
                                                    (7) 

The RRBF network was described on several 
publications [46,47,37,14,10,33]. A complete study of the 
looped neuron can be found on [12,5]. The reader can find 
in a detailed mathematical demonstration of the dynamic 
behavior of the looped neuron. To have the longest 

memory, the self connection weight iiw  and the parameter 
κ  of the sigmoid function must respect this relation: 

2iiwκ = . The Figure 2 represents a “n-step” prediction 
�( )t nΨ +  of ( )y t  using previous observations 

[ ( ), ( 1),......., ( )]y t y t y t m= − −y : 

� [ ]
1

( ) ( )
k

j j
j

t n w φ
=

Ψ + = =�g y y,w                                      (8) 

� [ ]( )t nΨ + = g y,w

( )y t ( 1)y t − ( )y t m−

1φ 2φ kφ

11w 22w ddw

   

Figure 2. “t+n” step-ahead-prediction obtained by the 
Neural Network           

3.3. NARX model and optimal predictors                

The statistical approach for forecasting involves the 
construction of stochastic models to predict the value of an 
observation ty  using previous observations. A very general 
class of such models used for forecasting purpose is the 
Nonlinear AutoRegressive Moving Average with 
eXogenous inputs (NARMAX models) [13,42,27,35] 
given by: 

( ) [ ( 1)... ( ), ( 1)....
..... ( ), ( 1)... ( )] ( )

y

e x

y t y t y t n e t
e t n x t x t n e t

= − − −

− − − +

F
               

               (9)

where y, e and x are output, noise and external input of the 
system model respectively. yn , en  and xn  are the 
maximum lags in the output, noise and input, respectively, 
and F is an unknown smooth function. It is assumed that 
e(t) has zero mean, is independent and identically 
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distributed, is independent of past y and x, and has a finite 
variance 2σ .  

The NARMAX models are nonlinear generalization of the 
well-known ARX models, which constitute a standard tool 
in linear black-box model identification. Several special 
cases of the general NARMAX( yn , en , xn ) model which 
are frequently used are summarized here [13]: 

• NAR( yn ) model (Nonlinear AutoRegressive) : 
( ) [ ( 1), , , , ( )] ( )yy t y t y t n e t= − − +F                                (10)

• NARMA( yn , en ) model (Nonlinear AutoRegressive 
Moving Average): 

( ) [ ( 1)... ( ), ( 1)....
...... ( )] ( )

y

e

y t y t y t n e t
e t n e t

= − − −

− +

F
                  

                           (11)

• NARX( yn , xn ) model  (Nonlinear AutoRegressive 
with eXogenous inputs): 

( ) [ ( 1)... ( ), ( 1).....
..... ( )] ( )

y

x

y t y t y t n x t
x t n e t

= − − −

− +

F
               

                           (12) 

The NARX models can represent a wide variety of 
nonlinear dynamic behaviors and have been extensively 
used in various applications [35,2,34,30,45]. In a general 
way, a great equivalence exists between the NARX models 
and the recurrent neural network (RNN) [42].  

For the prediction purposes, the neural network output 
prediction �( )t nΨ + is always expressed by a residual 
prediction error ε as following (see Figure 3):  

�( ) ( ) ( )y t n t n t nε+ = Ψ + + +                                          (13) 

Considering the neural prediction �( )t nΨ +  obtained from 
the past input vector [y(t), y(t-1),…y(t-m)] (see Figure 2 
and Figure 3), the real system output ( )y t n+  is not 
available at the time instant t. So, the value of the residual 
error ( )t nε +  can’t be calculated until the time instant 
(t+n) where ( )y t n+ is available. The equation (13) is then 
expressed by:  

�( ) ( ) ( ( ))y t n t n tε+ = Ψ + + f                                           (14) 

where ( )y t n+  represent the ideal system prediction 
(without residual error), ( )tε  is the residual error 
calculated at the instant t and f  is the function to find to 
estimate the prediction error ( )t nε + . 

( )t nε +y
�( 1)tΨ +

�( )t nΨ +

( )y t n+

( )y t

Figure 3. Residual error obtained at each prediction. 

In our previous work, we have used a Proportional-
Integral-Derivative controller to minimize and to estimate 
the prediction error ( )t nε +  [48]. This model is presented 
by the Figure 4 where the residual error ( )tε  is computed 
by a PID controller. The results presented in [48] reveal 
that the predictions obtained by this structure are better 
than the RRBF network. For all the tests, the best results 
are given by 0iK =  (integrator parameter of the PID equal 
to zero).   

11w 22w

1φ 2φ Mφ

( 1)y t +

( )y t ( 1)y t −τ

�( )tΨ

( )y t
+

−
( )tε

τ
�( 1)tΨ +

( )
d

tK
t

ε∂
∂

( )iK ε τ τ∂�

( )pK tε

Σ

Σ

11w 12w 1Mw

Figure 4. The RRBFError structure for time series 
prediction 
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In this paper, we present an extension of the PID structure 
presented by the Figure 4. The prediction �( )t nΨ +
obtained by the RRBF network is combined with an 
AutoRegressive eXogenous model to process the residual 
prediction error. The whole prediction obtained model is 
described by the NARX system depicted in Figure 5. The 
several Predictions obtained through the RRBF network at 
different time instant ( � � �( ), ( 1), , ( )t t t mΨ Ψ − Ψ −� ) are 
computed with the real available values 
( ( ), ( 1), , ( )y t y t y t m− −� ). The “n-step” prediction 

( )y t n+  obtained by the whole model is then described by 
the following equation:  

�

�

� �
0 0

( ) [ , ]

( ) ( )

( ) ( ) ( )
i m i m

i i
i i

y t n

t n

t n a t i b y t i

α ε

α
= =

= =

+ =

= Ψ + +

= Ψ + + Ψ − + −� �

F

           f

           

y �

         (15) 

The parameters ( , ,i ia bα ) are calculated by linear 
regression (matrix inversion technique). 

�( )t nΨ +�( )tΨ�( 1)tΨ −( )y t

( ) [ , ]y t n+ = F y �

�( )t mΨ −( 1)y t −( )y t m−

( )y t

( 1)y t −

( )y t m−
�( )t nΨ +

Figure 5. “t+n” step-ahead-prediction obtained by the 
NARX model (the whole model) 

4. Performance metrics for neural network prediction 

4.1. Prediction evaluation 

In a general way, the choice of an error measure to 
compare prediction methods has been much discussed (see 
for example [9]. The prediction performance are used to be 
assessed using the Root Mean Square Error criterion 

(RMSE) which is the most popular prediction error 
measure, the Mean Absolute Scaled Error (MASE) that, 
according to [19], is the more adequate way of comparing 
prediction accuracies, or the coefficient of determination 
(R2) which is a measure of how well future outcomes are 
likely to be predicted by the model. In any case, those error 
measures are only intended as summaries for the error 
distribution for a specific model. This distribution is 
usually expected to be a normal white noise in a forecasting 
problem, but it probably is not so in a complex problem 
like load forecasting. More over, this prediction metrics do 
not address the problem of quantifying the interest of a 
given model with regards to its sensibility to initial 
parameterization. This point is more widely discussed in 
this section and some metrics are proposed to face up with. 

Learning is an important capability of neural networks. 
Learning rules are algorithms for finding suitable weights 
W and other network parameters. Learning of a neural 
network can be viewed as a nonlinear optimization 
problem in which the goal is to find a set of network 
parameters minimizing the cost function for given 
examples. Putting it in another way, learning is an 
optimization process that produces an output that is as 
close as possible to the desired output by adjusting network 
parameters. For the same learning set, the neural network 
structure or parameters can be different at each training 
run. This results from the random initialization of certain 
parameters of the training process.  

The quality of the prediction can be completely different at 
each running of the training algorithm. This is most likely 
due to the fact that training a neural network involves 
minimizing an error function with a multitude of local 
minima. To test the prediction performances of a neural 
prediction model according to the prognostic metrics 
presented on this section, several running of the 
“training/test” process have to be done. Suppose that M 
represents the number of all the “training/test” running. For 
every running i of the training algorithm, a new value of the 
mean prediction error E(i) and the standard deviation std(i)
are obtained for the n data of the test set as follows : 

( )
1

1( ) ( ) ( )
n

i

j
E i j j

n
ξ ζ

=

= −�                                              (16) 

( )2

1

1( ) ( ) ( )
n

j
std i E i j

n
ζ

=

= −�                                        (17) 

where  

( )i jξ  is the jth output obtained by the ith neural model 
( )jζ  is the jth system output 

The measures of the prognostic neural system 
performance are then processed on the variations of E(i) 
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and std(i). The different training and test running steps are 
presented as follows:  

for i=1 to M 
- train the ANN on the training data set 
- test the ANN on the test data set 
- calculate the mean prediction error E(i) produced 

by the ith neural model on the test set 
- calculate the standard deviation std(i) produced by 

the ith neural model on the test set 
Next i 

On this basis, various performance metrics can be 
proposed. 

4.2. The timeliness 

The timeliness is given by the global mean of all the M
values of E(i): 

1

1Timeliness =  = ( )
M

i
E E i

M =
�                                        (18)

where M is the number of the training/test running, E(i) is 
the mean error of every running test i of the ith neural 
model obtained at the training step i.  

The perfect score is timeliness = 0. For a small value of the 
timeliness, the probability to have a prediction close to the 
real value can be significant. On the contrary, if the 
timeliness value is important, the probability to have a 
wrong prediction is very high (Figure 6).  

0t 1t nt 0t 1t nt

 =0E  >0E

Figure 6. an example of two different Timeliness values.   

4.3. The Precision

The Precision is given by the global mean of all the M
values of std(i): 

1

1Precision  =  = ( )
M

i
std std i

M =
�                                      (19)

where std(i) is the standard deviation of each running test i
of the ith neural model obtained by the training step i.  

The perfect score is precision = 0. For a small value of the 
precision, the probability to have predictions grouped 
together can be significant. On the contrary, if the 
precision value is important, the predictions are dispersed 
(Figure 7).  

0t 1t nt

2µ

0t 1t nt

1µ

 =0E

Figure 7. an example of two different Precision values.

4.4. The repeatability 

The Repeatability is given by the standard deviation of 
both E(i) and std(i). A simple way to calculate the 
repeatability parameter is :  

( ) ( ) + 
Repeatability  = 

2
std Eσ σ

                                 (20)

where ( ) and ( )std Eσ σ  represent the standard deviation 
of the M values of respectively the std(i) and E(i) values :  

( ) ( )2

1

1 ( )
M

i
std std std i

M
σ

=

= −�                                    (21)

( ) ( )2

1

1 ( )
M

i
E E E i

M
σ

=

= −�                                           (22)

The perfect score is Repeatability =0. This parameter 
indicates how close the different values of the E(i) and the 



8 

std(i) are grouped or clustered together. This parameter 
reveals the dispersion of E(i) and std(i) values. For small 
values of ( ) and ( )std Eσ σ , it means that at each 
training/running time i, the neural model gives the same 
performances on the test set. The repeatability parameter 
reveals the random initialization influence of some learning 
parameters. The training process is completely repeatable 
for small values of the repeatability parameter. The 
structure of the neural model is always the same at each 
running of the training process.  

4.5. The Accuracy 

The accuracy is obtained from the three parameters and it 
gives a global appreciation of the prediction. A simple way 
to calculate the accuracy is: 

1Accuracy = 
Repeatability + Timeliness + Precision

   (23)

If a neural model has a good Timeliness, Precision and 
is completely Repeatable, the prediction given by this 
neural model is very close to the real data. The prediction 
confidence is then very high. A big value of the accuracy 
parameter gives a great confidence of the prediction. 

Figure 8 illustrates the three prediction metrics: the 
timeliness, the precision and the repeatability described by 
a radar graph. This figure reveals the quality of the 
prediction made by the neural network according to the 
value of the three metrics. Figure 9 gives the relation 
between the accuracy and the three metrics. One can see 
that the accuracy is very high for small values of the: 
timeliness, precision and repeatability. On the contrary, the 
accuracy is very low if, at least, one of the three metrics has 
a great value.  



1
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M

i
E E i

M =
�

1

1Precision  =  = ( )
M

i
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M =
�

( ) ( )2

1
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i
std std std i
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=

= −�
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1
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=
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Figure 8. Neural Network system performance measures



Figure 9. The relation between accuracy and the three other metrics. 

5. Experiments & data benchmarks 

Two experimental data sets have been used to test the 
prediction performances of the proposed structure with 
regards to the classical RRBF network. In the two cases, 
the aim of the predictions is to approximate a phenomenon 
by learning data gathered from the system.  

For all the benchmarks, three sets were used: a training
set, a validation set and a test set (Figure 10). The first set 
was used for the training parameters of the neural network 
(the k centers of the Gaussian nodes and the output 
weights). 50 samples have been used for training set and 50 
samples for validation set. All data have been normalized 
by range [-1,+1]. Predictions steps were made from "t+1" 
to "t+10" by increments of 1 (in order to measure the 
quality of the long-term prediction). Predictions have been 
performed as described below: 

�

� �

�

( ) [ , ]

. ( ) . ( )

. ( 1) . ( ) . ( 1)

y t n

a t n b t

c t d y t e y t

+ =

= Ψ + + Ψ

+ Ψ − + + −

F

           

              

y �

                       (24)

� ( )

( )
1

( ) ( ), ( -1)

. ( ), ( -1)
k

j j
j

t n y t y t

w y t y tφ
=

� �Ψ + = � �

=�

g

            

,w

                                 (25) 

Once the RRBF model found by training, the second 
step is to find the NARX model parameter (a, b, c, d, e) by 
linear regression on the second training set (Figure 10). In 
order to find the best RRBF structure with regard to the k

centers, several models of neural networks have been 
created by varying the number of basis functions from 2 to 
50 nodes. The k-means training algorithm has been used to 
find the best Gaussian centers for each k-structure. The 
basis width parameter of the Gaussian nodes was fixed to 
1. The neural network trained with the first set is validated 
in the second one. Validation uses data different from the 
training set, thus the validation set is independent from the 
estimated model. This helps to select the best one among 
the different model parameters. To avoid overfitting or 
underfitting, the optimal model parameters should be 
selected so as to have the best performance measure 
associated with the validation set. Since this dataset is 
independent from the estimated model, the generalization 
error obtained is a fair estimated. The best model which 
gives the best mean prediction error in the validation set is 
then selected and tested in the third set (the test set). The 
model with the best generalization performance is then 
selected with this crossvalidation technique (see Figure 
11).  
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Figure 10. Training process and crossed validation 

Figure 11. Procedure for performance criteria estimation.

5.1. Mackey Glass 

The first data set is the chaotic Mackey-Glass time 
series data [21]. This time series is a benchmark problem 
extensively used: it's a non periodic and non convergent 
time series (Figure 12). Considering our final applicative 
objective able to carry out predictions on such a signal is of 
good omen: what makes difficult a modeling phase are real 
complex systems which generally have a nonstationary and 
non-linear behavior. The time series is governed by the 
following formula: 

( ) ( )
1 ( )c

dy y t db ay t
dt y t d

−= −
+ −

                                            (26) 

where a, b, c and d are real constants. The values of 
most commonly parameters used in literature are 

0.1,  0.2,  10,  and 17a b c d= = = =  where at the initial 
time 0 00,  ( ) 1.2t x t= = . The differential equation is 
approximated by the 4th order Runge-Kutta algorithm with 
time step equal to 1. Tests on this time series aim at 
predicting future values ( )y t n+  by using past values as 
follows: 

( ) [ ( ), ( 1)]y t n y t y t+ = −F                                                (27)

Figure 12. The original Mackey Glass time series and the 
one step prediction ( 1)y t + . 

5.2. Lorenz 

The Lorenz time series is a long synthetic chaotic time 
series (see Figure 13) obtained from 
http://www.physics.emory.edu/~weeks/research/tseries1.ht
ml. The time series is governed by the following 
differential equations: 

( ),  t t t t t t

t t t

dy dxx y ry x y z
dt dt
dz y x bz
dt

σ= − = − −

= −
                              (28) 

we take parameter setting 10, 28, 8 / 3r bσ = = =  and 
use the 4000 y-ordinate points derived from a Rung-Kutta 
integrator with time step 0.01. Tests on this time series aim 
at predicting future values ( )y t n+  by using past values as 
follows: 

( ) [ ( ), ( 1)]y t n y t y t+ = −F                                               (29) 
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Figure 13. The original Lorenz time series and the one step 
prediction ( 1)y t + .

6. Results 

To measure performances of the prediction model 
presented in section 3 by the metrics presented in section 4, 
the simulation tests were running 1000 times for each 
benchmark (i=1 to M=1000). At each simulation running i, 
the mean prediction error E(i) and the standard deviation 
std(i) are calculated.  

6.1. Mackey-Glass 

Figures N°14 to N°18 illustrate a comparative results 
obtained by the whole model ( �( ) [ , ]y t n+ = F y � ) and 
those obtained by the neural network only 
( � [ ]( )t nΨ + = g y ,w ). The results show that the prediction 
performances of the whole model are better than those 
obtained by the NN model. Figure 14 reveals the great 
disparity of the Accuracy parameter among the two 
models. The Figure 15 illustrates the three parameters of 
the accuracy: the timeliness parameter, the precision
parameter and the repeatability parameter. One can see 
that the timeliness and the precision obtained by the whole 
model are better than the NN model, and this for all the 
horizon of prediction. The Figure 16 illustrates the 
interpretation of the results shown by the Figure 15. Both 
timeliness and precision parameters of the whole model 
are smaller than those obtained by the RRBF. The 
prediction performances of the whole model are better than 
the neural model: the predictions of the whole model are 
less dispersed, and are closer to the real system. 

The results obtained for the repeatability (shown by the 
Figure 15) are very important for the robustness of the NN. 
The prediction repeatability obtained by the whole model is 
very high from (t+1) to (t+6). This means that the 
combination obtained by the NARX model gives more 

repeatability for the predictions. Figure 17 shows the 
complexity of the Neural Network for each horizon of the 
prediction. The number k of the Gaussian nodes is 
presented with the mean value and the standard deviation 
for all the tests. The Figure 18 reveals the results obtained 
for the parameters (a, b, c, d, e) of the whole model. 

6.2. Lorenz data set 

The results obtained with the two prediction models for 
the Lorenz data set are presented by figures N°19 to N°22. 
Prediction performances measures obtained by the whole 
model are better than those obtained by the NN model. 
Figure 21 shows the complexity of the Neural Network for 
each horizon of the prediction. The number k of the 
Gaussian nodes is presented with the mean value and the 
standard deviation for all the tests. The Figure 22 reveals 
the results for the parameters (a, b, c, d, e) of the whole 
model. 

7. Conclusion 

In this paper, a neural NARX predictor model is proposed, 
tested and compared. The proposed predictor model 
provides a first step prediction made by a recurrent neural 
network. A second step consists to reduce the prediction 
error made by the recurrent NN. A linear combination 
between the neural network outputs and the real data, at 
several past times is then used. The whole NARX model 
obtained improves highly the predictive performances of 
the neural network. Experiments and comparative studies 
demonstrate superior performance of the proposed 
approach over the classical structur of the RRBF network. 
Further study is necessary to investigate the robustness of 
the proposed methods and to compare it with other neural 
architecture. One possible way to test the robustness is to 
train the prediction model using various training data 
groups generated from the system at different sampling 
rates. If the prediction models are formed similarly despite 
using different training data group, the proposed prediction 
methods are deemed robust in this sense.    
The second contribution of the article is a new 
methodology for measuring the prediction performances of 
a neural network. The Accuracy of the prediction is given 
by three parameters: the timeliness, the precision and the 
repeatability. Theses metrics gives some numerical 
information to compare different schemes and provides an 
objective way to measure how changes in training or 
prediction model (Neural network architecture) affect the 
quality of predictions in term of: the training algorithm 
stability (repeatability), the dispersion (precision) and the 
rightness (timeliness) of the prediction. This methodology 
can be used in several prediction applications as failure 
prognosis [49], software fault prediction, Air quality 
prediction ...etc. There is no general agreement as to an 
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appropriate and acceptable set of metrics that can be 
employed in prediction applications, and researchers are 
still working on this. For example in the maintenance field, 
one can find some interesting studies on the prognosis 
metrics in [43,38,39,24]. 
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Figure 14. The prediction Accuracy for the Mackey Glass 
data set 

Figure 15. Prediction metric for the Mackey Glass data set 

t 1t + t n+t 1t + t n+

Figure 16. the relation between the (Timeliness / 
Precision) and the quality of the prediction. The 
performance obtained by the whole model is better than the 
NN prediction.  

Figure 17. The NN complexity for the Mackey Glass data 
set. 
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Figure 18. The NARX parameter for the Mackey Glass 
data set 

� � � � � � � � 	 �

�

�$�

�

�$�

�

�$�

�

�$�

�

�$�

	

��������������������������

��� !�"�� ����#�
����

� � � � � � � � 	 �





$�

�

�$�

�

�$�

�

�$�
%��


�

������������

Figure 19. The prediction Accuracy for the Lorenz data set 

Figure 20. Prediction metric for the Lorenz data set
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Figure 21. The NN complexity for the Lorenz data set. 

Figure 22. The NARX parameter for the Lorenz data set 
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