
HAL Id: hal-00501643
https://hal.science/hal-00501643

Submitted on 12 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining and applying prediction performance metrics
on a recurrent NARX time series model.
Ryad Zemouri, Rafael Gouriveau, Noureddine Zerhouni

To cite this version:
Ryad Zemouri, Rafael Gouriveau, Noureddine Zerhouni. Defining and applying prediction performance
metrics on a recurrent NARX time series model.. Neurocomputing, 2010, 73 (13-15), pp.2506-2521.
�10.1016/j.neucom.2010.06.005�. �hal-00501643�

https://hal.science/hal-00501643
https://hal.archives-ouvertes.fr

Defining and applying prediction performance metrics on a recurrent
NARX time series model
Ryad Zemouri*, Rafael Gouriveau**, Noureddine Zerhouni**

* Laboratoire d'Automatique du CNAM,
75003 Paris, France, (e-mail: ryad.zemouri@cnam.fr)
** FEMTO-ST Institute, UMR CNRS 6174 - UFC / ENSMM / UTBM,
Automatic Control and Micro-Mechatronic Systems Department
25000 Besançon, France (e-mail: rgourive@ens2m.fr)

ABSTRACT.
Nonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling
the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction.
The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the
real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different
prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture)
affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the
RNN neural network.
KEYWORDS: Time series prediction, recurrent radial basis function network, NARX models, prediction performance metrics.

1. Introduction

Time series are pervasive in data acquisition hence a
significant amount of work has been done in the realm of
time series analysis, modeling, and prediction to support
analysis and interpretation of such data
[15,4,6,11,13,16,20,21,23,28,29,32,44,1]. The commonly
encountered models of time series include auto-regressive
(AR) models [11,32,1], recurrent neural networks
[4,11,16,21,28,29,50,1,7] and fuzzy rule-based models
[4,13,20,21,44,40]. In many cases time series could be
difficult to model due to complex system dynamics; in such
cases it is useful to apply non-linear prediction
architectures such as neural networks in order to improve
prediction performance [23,28]. It is also worth noting that
with the growing diversity of constructs of computational
intelligence, we are provided with a significant number of
architectures of neural networks, fuzzy systems and
evolutionary optimization schemes that could be exploited
to enhance the performance of prediction of non-linear
time series.

In one-step-ahead prediction tasks, Artificial Neural
Networks (ANN) models are required to estimate the next
sample value of a time series, without feeding back it to the
model’s input regressor [30]. In other words, the input
regressor contains only actual sample points of the time
series. If the user is interested in a longer prediction

horizon, a procedure known as multi-step-ahead or long-
term prediction, the model’s output should be fed back to
the input regressor for a fixed but finite number of time
steps [41]. In this case, the components of the input
regressor, previously composed of actual sample points of
the time series, are gradually replaced by previously
predicted values.

If the prediction horizon tends to infinity, from some
time in the future the input regressor will start to be
composed only of estimated values of the time series [30].
In this case, the multi-step-ahead prediction task becomes a
dynamic modeling task, in which the ANN model acts as
an autonomous system, trying to recursively emulate the
dynamic behavior of the system that generated the
nonlinear time series [17,18]. Multi-step-ahead prediction
and dynamic modeling are much more complex to deal
with than one-step-ahead prediction, and it is believed that
these are complex tasks in which ANN models play an
important role, in particular recurrent neural architectures
[36].

Either using ANNs or others techniques to model time
series, the prediction metric is a key issue to address. There
is no general agreement as to an appropriate and acceptable
set of metrics that can be employed in time series
prediction [8,19]. Some metrics as the repeatability or the
precision can be used to quantify the goodness of the
prediction and can be used also to compare several
techniques.

2

In this study, we develop a nonlinear time series
prediction model based on a recurrent radial basis function
network (RRBF) [47]. To improve the accuracy of the
prediction model, an AutoRegressive with eXogenous
inputs model (ARX) is used to correct the predictions
error. Moreover, since performances of the ANN are
partially depending on an initial randomly parameterization
of its structure, criteria are proposed to quantify the
precision, the accuracy, and the reproducibility of
predictions. It enables to a priori estimate the usefulness of
a neural network structure.

The remainder of the paper is organized as follows. A
literature review highlighting the main trends, presenting
main categories of fuzzy models and ANN in section 2.
Section 3 describes the architectural of the proposed
prediction model. Let call it a NARX model (Nonlinear
ARX). The section 4 deals with the prediction metrics.
Section 5 and 6 presents the experiments data and the
prediction results.

2. Literature overview

In this section, a concise overview of some of the
existing models of computational intelligence (CI) used in
time series analysis and prediction is presented [15]. As a
reference, we will be alluding to standard autoregressive
linear models (AR models) as extensively discussed in
statistics and signal processing [6,11,32]. Let us recall that
the standard AR(q) model of order ‘‘q’’ is described by the
following expression:

1
(1) () (1)

q

i
i

x t x t tϕ ε
=

+ = + +� (1)

where iϕ for 1, 2,.....i q= are the parameters of the
model, ()x t is the value at time instant t, and ε is the
residual error. Typically the residual error is assumed to be
zero-mean white noise with a normal distribution. The
parameters of the AR(q) model can be determined by
finding the auto-correlation sequence Lφ for lag

,......,L q q= − and solving the Yule–Walker system of
equations [6]:

1 0 1 1 1

2 1 0 2 2

1 2 0

. .

. .
.
.

. .

q

q

q q q q

φ φ φ φ ϕ
φ φ φ φ ϕ

φ φ φ φ ϕ

− − +

− +

− −

� � � � � �
� � � � � �
� � � � � �
� � � � � �=
� � � � � �
� � � � � �
� � � � � �� � � � � �

 (2)

Fuzzy rule-based models have been found in various
areas of application including, control, reliability modeling,
planning and scheduling, economics forecasting, decision
making, pattern recognition, etc., as well as time series
prediction. [31] provides a survey on the way of building

such models whereas [22] gives an interesting overview of
applications of fuzzy systems in industrial engineering.

Within all fuzzy rule-based approaches, Takagi-
Sugeno-Kang (TSK) models are the dominant category of
models used. A TSK model is a first order Takagi Sugeno
(TS) Fuzzy Inference System (FIS). In a few words, a first-
order TS model can be seen as a multi-model structure
consisting of linear models that are not necessarily
independent [3]. It is based on the fuzzy decomposition of
the input space. For each part of the state space, a fuzzy
rule is formed, the global output been a combination of the
whole rules. For prediction problems, given the inherent
dynamics of time series one has to cope up with, a TS FIS
comes here in the following form [21]:

()
()

1

0 1

 () ()

 () ()

 (1) () ()
M

M

IF x t is A x t AND

AND x t M is A x t M

THEN x t a a x t a x t M

− −

+ = + + + −

 (3)

The condition part of the above rule includes a finite
sequence of values (inputs) of the time series of some
horizon M, namely (), (1),....., ()x t x t x n M− − which
invoke (activate) some fuzzy sets defined in the space of
amplitude of the time series. iA are fuzzy membership
functions capturing information granules forming the
condition part of the ith rule. The conclusion (consequent)
of the rule is a linear function of the inputs where the linear
relationship is governed by its parameters

0 1, ,...., Ma a a ∈ℜ . In this sense the condition part of the
rule captures the ‘‘history’’ of the time series. Being more
specific, the rule is concerned only with the dynamic of the
time series being pertinent to the condition of the rule.

 The TS scheme of the form given above has been
under intensive investigation in fuzzy modeling. One can
refer here to some studies concerning architectural
enhancements of the rules as well as coming up with
various ways of designing (optimizing) such models. For
instance, in [4,13] discussed were ideas of making the
conclusion part of the rules non-linear by using neural
networks. Some other studies were focused on the use of
such rule-based systems in prediction problems [4,13,21].
Radial basis functions are also used for prediction of time
series [16]. Some research has also been completed in
fuzzy clustering of time series [25,26]. Authors in [4]
utilized a locally recurrent neural network in the
consequent of the rules of a TSK–FIS (with Fuzzy
Inference System) model for predicting wind speeds. They
employ an IIR-MLP (Infinite Impulse Response Multi-
Layer Perceptron) [4] as the consequent of each rule and
considered Gaussian fuzzy sets as the antecedent of each
rule. A common fuzzy prediction network used is the
ANFIS described in [21]. A feed-forward neural network
trained via a hybrid least squares estimate (LSE) and
gradient descent is used as the consequent of the fuzzy

3

rules. They showed slightly better performance for ANFIS
when being compared with a standard neural network. The
ANFIS performs better than the standard AR model used in
time series prediction. Authors in [13] use NARMAX
(Non-linear AutoRegressive Moving Average with
eXogenous inputs) as the consequent of the fuzzy rules.
Feed-forward and recurrent neural network approaches for
a TSK–FIS models for prediction are explored. They report
better performance using neural networks as the
consequent function in the TSK–FIS model.

The radial basis function neural network has been
applied to time series prediction [16]. The authors explore
several different radial basis functions applied to the
prediction of several time series. The choice of basis
function and basis function parameters significantly
impacted the prediction performance [16]. Several fuzzy
recurrent neural networks have also been applied to time
series prediction [50,1,7]. A recurrent fuzzy neural network
(RFNN) is developed in [50] using ordered derivatives in
the training procedure. In [1] time series prediction is
accomplished for a time series of linguistic concepts called
a fuzzy time series and trained via genetic algorithms. The
experiments show an improvement in the prediction of
linguistic time series using a RFNN compared with other
fuzzy time series prediction algorithms. Authors in [7]
develop an improved circular back-propagation (ICBP)
network where the weights are +1 or -1 to improve the
predictive generalization of the network. Experiments
conducted in [7] show that there are improvements in one-
step and p-step prediction performance for DLS-ICBP on
several synthetic data sets. The study reported in [26]
comes with an interesting conclusion that clustering of raw
streaming time series data could be of limited relevance
since cluster centers are often sinusoidal in shape. Authors
suggest several ways of countering meaningless clustering
results such as having a large number of cluster centers and
completing post-processing to find fewer yet more
meaningful clusters. A survey of the different time series
clustering methods are described in [25] including several
different clustering algorithms and distance measures.

3. Prediction model architecture

3.1. The Radial Basis Function network

In practice, Multi-Layer Perceptron (MLP) have been
found to perform poorly in a number of ways, slow
convergence of weights and difficulty in modeling
differential responses. Radial basis function (RBF) neural
networks are able to surpass the MLPs as they are simpler
in structure and have the ability to model any nonlinear
function in a straightforward way. On one hand MLP
networks are global approximators with nonlinear input-

output mappings and the representation of knowledge is
distributed throughout the network. On the other hand,
RBF networks are local approximators with nonlinear
input-output mapping. The knowledge representation in
this case is localized. Thus, RBF network are able to learn
faster and suffer less from interference, as compared to
MLPs.

A key feature of RBF networks is that the output layer
is merely a linear combination of the hidden layer signals,
there being only one hidden layer. Therefore, RBF
networks allow for a much simpler weight updating
procedure and subsequently open up greater possibilities
for stability proofs and network robustness in that the
network can be described readily by a set of nonlinear
equations.

The RBF network is commonly used for the purpose of
modeling uncertain and nonlinear functions. Utilizing RBF
networks for modeling purposes could be seen as an
approximation problem in a high-dimensional space.
Consider the RBF network, which can be seen as a two-
layer processing structure, as shown in Figure 1.a. The
hidden layer consists of an array of computing units (i.e.,

1 2, ,... kφ φ φ). These hidden units provide a set of basis
functions of the input vectors (i.e., 1 2, ,.... dx x x) as they are
expanded into the higher dimension hidden-unit space. The
mapping from the input vectors to the outputs of the hidden
units is nonlinear, whereas the mapping from the hidden
units to the final output of the RBF network is linear.

The general mapping function of the RBF network can
be represented by

[]
1

, ()
k

p pj j
j

y w φ
=

= =�g x w x (4)

where 1 2[, ,....]Tdx x x=x is the input vector and
(1 2, ,....p p pkw w w) is a set of the output weights. The

commonly used RBF (.)jφ is the Gaussian represented by

2

2() exp()
2

j
j

j
φ

−
= −

x c

�
x (5)

Each RBF contains a parameter vector called a centre
(jc), and calculates a squared distance between the centre
and the input vector (x). The result is then divided by the
width (j�) and then passed through an exponential
function.

Training a RBF with linear outputs is very fast and is
accomplished through two stages:

4

– The first stage is unsupervised and accomplished by
obtaining cluster centers of the training set input vectors. A
popular method for that purpose is the k-means clustering,

– the second stage consists in solving a set of linear
equations, the solution of which can be obtained by a
matrix inversion technique such as singular value
decomposition or least squares method.

11w 22w

1φ 2φ kφ

1x 2x dx

1φ 2φ kφ

1x 2x dx

1y 2y py1y 2y py

ddw

Figure 1. Radial Basis Function and Recurrent Radial
Basis Function networks

3.2. The Recurrent Radial Basis Function network

The Recurrent RBF neural network considers time as an
internal representation (Figure 1.b). The dynamic aspect is
obtained by the use of an additional self-connection to the
input neurons with a sigmoid activation function. The
RRBF network can thus take into account a certain past of
the input signal.

Every neuron of the input layer gives a summation at
the instant t between its input ix and its previous output
weighted by a self-connection iiw . The output of its
activation function is:

() (1) ()i ii i ia t w t x tξ= − + , ()() ()i it f a tξ = (6)

where ()ia t and ()i tξ represent respectively the
neuron activation and its output at the instant t , and f is
the sigmoid activation function defined as:

() ()
()
1 exp()
1 exp()

x
f x

x
κ
κ

− −
=

+ −
 (7)

The RRBF network was described on several
publications [46,47,37,14,10,33]. A complete study of the
looped neuron can be found on [12,5]. The reader can find
in a detailed mathematical demonstration of the dynamic
behavior of the looped neuron. To have the longest

memory, the self connection weight iiw and the parameter
κ of the sigmoid function must respect this relation:

2iiwκ = . The Figure 2 represents a “n-step” prediction
�()t nΨ + of ()y t using previous observations

[(), (1),......., ()]y t y t y t m= − −y :

� []
1

() ()
k

j j
j

t n w φ
=

Ψ + = =�g y y,w (8)

� []()t nΨ + = g y,w

()y t (1)y t − ()y t m−

1φ 2φ kφ

11w 22w ddw

Figure 2. “t+n” step-ahead-prediction obtained by the
Neural Network

3.3. NARX model and optimal predictors

The statistical approach for forecasting involves the
construction of stochastic models to predict the value of an
observation ty using previous observations. A very general
class of such models used for forecasting purpose is the
Nonlinear AutoRegressive Moving Average with
eXogenous inputs (NARMAX models) [13,42,27,35]
given by:

() [(1)... (), (1)....
..... (), (1)... ()] ()

y

e x

y t y t y t n e t
e t n x t x t n e t

= − − −

− − − +

F

 (9)

where y, e and x are output, noise and external input of the
system model respectively. yn , en and xn are the
maximum lags in the output, noise and input, respectively,
and F is an unknown smooth function. It is assumed that
e(t) has zero mean, is independent and identically

5

distributed, is independent of past y and x, and has a finite
variance 2σ .

The NARMAX models are nonlinear generalization of the
well-known ARX models, which constitute a standard tool
in linear black-box model identification. Several special
cases of the general NARMAX(yn , en , xn) model which
are frequently used are summarized here [13]:

• NAR(yn) model (Nonlinear AutoRegressive) :
() [(1), , , , ()] ()yy t y t y t n e t= − − +F (10)

• NARMA(yn , en) model (Nonlinear AutoRegressive
Moving Average):

() [(1)... (), (1)....
...... ()] ()

y

e

y t y t y t n e t
e t n e t

= − − −

− +

F

 (11)

• NARX(yn , xn) model (Nonlinear AutoRegressive
with eXogenous inputs):

() [(1)... (), (1).....
..... ()] ()

y

x

y t y t y t n x t
x t n e t

= − − −

− +

F

 (12)

The NARX models can represent a wide variety of
nonlinear dynamic behaviors and have been extensively
used in various applications [35,2,34,30,45]. In a general
way, a great equivalence exists between the NARX models
and the recurrent neural network (RNN) [42].

For the prediction purposes, the neural network output
prediction �()t nΨ + is always expressed by a residual
prediction error ε as following (see Figure 3):

�() () ()y t n t n t nε+ = Ψ + + + (13)

Considering the neural prediction �()t nΨ + obtained from
the past input vector [y(t), y(t-1),…y(t-m)] (see Figure 2
and Figure 3), the real system output ()y t n+ is not
available at the time instant t. So, the value of the residual
error ()t nε + can’t be calculated until the time instant
(t+n) where ()y t n+ is available. The equation (13) is then
expressed by:

�() () (())y t n t n tε+ = Ψ + + f (14)

where ()y t n+ represent the ideal system prediction
(without residual error), ()tε is the residual error
calculated at the instant t and f is the function to find to
estimate the prediction error ()t nε + .

()t nε +y
�(1)tΨ +

�()t nΨ +

()y t n+

()y t

Figure 3. Residual error obtained at each prediction.

In our previous work, we have used a Proportional-
Integral-Derivative controller to minimize and to estimate
the prediction error ()t nε + [48]. This model is presented
by the Figure 4 where the residual error ()tε is computed
by a PID controller. The results presented in [48] reveal
that the predictions obtained by this structure are better
than the RRBF network. For all the tests, the best results
are given by 0iK = (integrator parameter of the PID equal
to zero).

11w 22w

1φ 2φ Mφ

(1)y t +

()y t (1)y t −τ

�()tΨ

()y t
+

−
()tε

τ
�(1)tΨ +

()
d

tK
t

ε∂
∂

()iK ε τ τ∂�

()pK tε

Σ

Σ

11w 12w 1Mw

Figure 4. The RRBFError structure for time series
prediction

6

In this paper, we present an extension of the PID structure
presented by the Figure 4. The prediction �()t nΨ +
obtained by the RRBF network is combined with an
AutoRegressive eXogenous model to process the residual
prediction error. The whole prediction obtained model is
described by the NARX system depicted in Figure 5. The
several Predictions obtained through the RRBF network at
different time instant (� � �(), (1), , ()t t t mΨ Ψ − Ψ −�) are
computed with the real available values
((), (1), , ()y t y t y t m− −�). The “n-step” prediction

()y t n+ obtained by the whole model is then described by
the following equation:

�

�

� �
0 0

() [,]

() ()

() () ()
i m i m

i i
i i

y t n

t n

t n a t i b y t i

α ε

α
= =

= =

+ =

= Ψ + +

= Ψ + + Ψ − + −� �

F

 f

y �

 (15)

The parameters (, ,i ia bα) are calculated by linear
regression (matrix inversion technique).

�()t nΨ +�()tΨ�(1)tΨ −()y t

() [,]y t n+ = F y �

�()t mΨ −(1)y t −()y t m−

()y t

(1)y t −

()y t m−
�()t nΨ +

Figure 5. “t+n” step-ahead-prediction obtained by the
NARX model (the whole model)

4. Performance metrics for neural network prediction

4.1. Prediction evaluation

In a general way, the choice of an error measure to
compare prediction methods has been much discussed (see
for example [9]. The prediction performance are used to be
assessed using the Root Mean Square Error criterion

(RMSE) which is the most popular prediction error
measure, the Mean Absolute Scaled Error (MASE) that,
according to [19], is the more adequate way of comparing
prediction accuracies, or the coefficient of determination
(R2) which is a measure of how well future outcomes are
likely to be predicted by the model. In any case, those error
measures are only intended as summaries for the error
distribution for a specific model. This distribution is
usually expected to be a normal white noise in a forecasting
problem, but it probably is not so in a complex problem
like load forecasting. More over, this prediction metrics do
not address the problem of quantifying the interest of a
given model with regards to its sensibility to initial
parameterization. This point is more widely discussed in
this section and some metrics are proposed to face up with.

Learning is an important capability of neural networks.
Learning rules are algorithms for finding suitable weights
W and other network parameters. Learning of a neural
network can be viewed as a nonlinear optimization
problem in which the goal is to find a set of network
parameters minimizing the cost function for given
examples. Putting it in another way, learning is an
optimization process that produces an output that is as
close as possible to the desired output by adjusting network
parameters. For the same learning set, the neural network
structure or parameters can be different at each training
run. This results from the random initialization of certain
parameters of the training process.

The quality of the prediction can be completely different at
each running of the training algorithm. This is most likely
due to the fact that training a neural network involves
minimizing an error function with a multitude of local
minima. To test the prediction performances of a neural
prediction model according to the prognostic metrics
presented on this section, several running of the
“training/test” process have to be done. Suppose that M
represents the number of all the “training/test” running. For
every running i of the training algorithm, a new value of the
mean prediction error E(i) and the standard deviation std(i)
are obtained for the n data of the test set as follows :

()
1

1() () ()
n

i

j
E i j j

n
ξ ζ

=

= −� (16)

()2

1

1() () ()
n

j
std i E i j

n
ζ

=

= −� (17)

where

()i jξ is the jth output obtained by the ith neural model
()jζ is the jth system output

The measures of the prognostic neural system
performance are then processed on the variations of E(i)

7

and std(i). The different training and test running steps are
presented as follows:

for i=1 to M
- train the ANN on the training data set
- test the ANN on the test data set
- calculate the mean prediction error E(i) produced

by the ith neural model on the test set
- calculate the standard deviation std(i) produced by

the ith neural model on the test set
Next i

On this basis, various performance metrics can be
proposed.

4.2. The timeliness

The timeliness is given by the global mean of all the M
values of E(i):

1

1Timeliness = = ()
M

i
E E i

M =
� (18)

where M is the number of the training/test running, E(i) is
the mean error of every running test i of the ith neural
model obtained at the training step i.

The perfect score is timeliness = 0. For a small value of the
timeliness, the probability to have a prediction close to the
real value can be significant. On the contrary, if the
timeliness value is important, the probability to have a
wrong prediction is very high (Figure 6).

0t 1t nt 0t 1t nt

 =0E >0E

Figure 6. an example of two different Timeliness values.

4.3. The Precision

The Precision is given by the global mean of all the M
values of std(i):

1

1Precision = = ()
M

i
std std i

M =
� (19)

where std(i) is the standard deviation of each running test i
of the ith neural model obtained by the training step i.

The perfect score is precision = 0. For a small value of the
precision, the probability to have predictions grouped
together can be significant. On the contrary, if the
precision value is important, the predictions are dispersed
(Figure 7).

0t 1t nt

2µ

0t 1t nt

1µ

 =0E

Figure 7. an example of two different Precision values.

4.4. The repeatability

The Repeatability is given by the standard deviation of
both E(i) and std(i). A simple way to calculate the
repeatability parameter is :

() () +
Repeatability =

2
std Eσ σ

 (20)

where () and ()std Eσ σ represent the standard deviation
of the M values of respectively the std(i) and E(i) values :

() ()2

1

1 ()
M

i
std std std i

M
σ

=

= −� (21)

() ()2

1

1 ()
M

i
E E E i

M
σ

=

= −� (22)

The perfect score is Repeatability =0. This parameter
indicates how close the different values of the E(i) and the

8

std(i) are grouped or clustered together. This parameter
reveals the dispersion of E(i) and std(i) values. For small
values of () and ()std Eσ σ , it means that at each
training/running time i, the neural model gives the same
performances on the test set. The repeatability parameter
reveals the random initialization influence of some learning
parameters. The training process is completely repeatable
for small values of the repeatability parameter. The
structure of the neural model is always the same at each
running of the training process.

4.5. The Accuracy

The accuracy is obtained from the three parameters and it
gives a global appreciation of the prediction. A simple way
to calculate the accuracy is:

1Accuracy =
Repeatability + Timeliness + Precision

 (23)

If a neural model has a good Timeliness, Precision and
is completely Repeatable, the prediction given by this
neural model is very close to the real data. The prediction
confidence is then very high. A big value of the accuracy
parameter gives a great confidence of the prediction.

Figure 8 illustrates the three prediction metrics: the
timeliness, the precision and the repeatability described by
a radar graph. This figure reveals the quality of the
prediction made by the neural network according to the
value of the three metrics. Figure 9 gives the relation
between the accuracy and the three metrics. One can see
that the accuracy is very high for small values of the:
timeliness, precision and repeatability. On the contrary, the
accuracy is very low if, at least, one of the three metrics has
a great value.

1

1Timeliness = = ()
M

i
E E i

M =
�

1

1Precision = = ()
M

i

std std i
M =
�

() ()2

1

1 ()
M

i
std std std i

M
σ

=

= −�

() ()2

1

1 ()
M

i
E E E i

M
σ

=

= −�

() () +
Repeatability =

2
std Eσ σ

0t 1t nt

0t 1t nt

0t 1t nt

0t 1t nt

1µ

2µ

1 2µ µ<<<

Figure 8. Neural Network system performance measures

Figure 9. The relation between accuracy and the three other metrics.

5. Experiments & data benchmarks

Two experimental data sets have been used to test the
prediction performances of the proposed structure with
regards to the classical RRBF network. In the two cases,
the aim of the predictions is to approximate a phenomenon
by learning data gathered from the system.

For all the benchmarks, three sets were used: a training
set, a validation set and a test set (Figure 10). The first set
was used for the training parameters of the neural network
(the k centers of the Gaussian nodes and the output
weights). 50 samples have been used for training set and 50
samples for validation set. All data have been normalized
by range [-1,+1]. Predictions steps were made from "t+1"
to "t+10" by increments of 1 (in order to measure the
quality of the long-term prediction). Predictions have been
performed as described below:

�

� �

�

() [,]

. () . ()

. (1) . () . (1)

y t n

a t n b t

c t d y t e y t

+ =

= Ψ + + Ψ

+ Ψ − + + −

F

y �

 (24)

� ()

()
1

() (), (-1)

. (), (-1)
k

j j
j

t n y t y t

w y t y tφ
=

� �Ψ + = � �

=�

g

,w

 (25)

Once the RRBF model found by training, the second
step is to find the NARX model parameter (a, b, c, d, e) by
linear regression on the second training set (Figure 10). In
order to find the best RRBF structure with regard to the k

centers, several models of neural networks have been
created by varying the number of basis functions from 2 to
50 nodes. The k-means training algorithm has been used to
find the best Gaussian centers for each k-structure. The
basis width parameter of the Gaussian nodes was fixed to
1. The neural network trained with the first set is validated
in the second one. Validation uses data different from the
training set, thus the validation set is independent from the
estimated model. This helps to select the best one among
the different model parameters. To avoid overfitting or
underfitting, the optimal model parameters should be
selected so as to have the best performance measure
associated with the validation set. Since this dataset is
independent from the estimated model, the generalization
error obtained is a fair estimated. The best model which
gives the best mean prediction error in the validation set is
then selected and tested in the third set (the test set). The
model with the best generalization performance is then
selected with this crossvalidation technique (see Figure
11).

11

11
w

22
w

1φ

2φ

Mφ

ˆ(1)x t +

()x t

(1)x t −

τ

Σ

ˆ(1)x t +

(1)x t +
()x t

(1)x t +

11
w

22
w

1φ

2φ

Mφ

ˆ(1)x t +

()x t

(1)x t −

τ

Σ

()x t
()x t

Figure 10. Training process and crossed validation

Figure 11. Procedure for performance criteria estimation.

5.1. Mackey Glass

The first data set is the chaotic Mackey-Glass time
series data [21]. This time series is a benchmark problem
extensively used: it's a non periodic and non convergent
time series (Figure 12). Considering our final applicative
objective able to carry out predictions on such a signal is of
good omen: what makes difficult a modeling phase are real
complex systems which generally have a nonstationary and
non-linear behavior. The time series is governed by the
following formula:

() ()
1 ()c

dy y t db ay t
dt y t d

−= −
+ −

 (26)

where a, b, c and d are real constants. The values of
most commonly parameters used in literature are

0.1, 0.2, 10, and 17a b c d= = = = where at the initial
time 0 00, () 1.2t x t= = . The differential equation is
approximated by the 4th order Runge-Kutta algorithm with
time step equal to 1. Tests on this time series aim at
predicting future values ()y t n+ by using past values as
follows:

() [(), (1)]y t n y t y t+ = −F (27)

Figure 12. The original Mackey Glass time series and the
one step prediction (1)y t + .

5.2. Lorenz

The Lorenz time series is a long synthetic chaotic time
series (see Figure 13) obtained from
http://www.physics.emory.edu/~weeks/research/tseries1.ht
ml. The time series is governed by the following
differential equations:

(), t t t t t t

t t t

dy dxx y ry x y z
dt dt
dz y x bz
dt

σ= − = − −

= −
 (28)

we take parameter setting 10, 28, 8 / 3r bσ = = = and
use the 4000 y-ordinate points derived from a Rung-Kutta
integrator with time step 0.01. Tests on this time series aim
at predicting future values ()y t n+ by using past values as
follows:

() [(), (1)]y t n y t y t+ = −F (29)

12

Figure 13. The original Lorenz time series and the one step
prediction (1)y t + .

6. Results

To measure performances of the prediction model
presented in section 3 by the metrics presented in section 4,
the simulation tests were running 1000 times for each
benchmark (i=1 to M=1000). At each simulation running i,
the mean prediction error E(i) and the standard deviation
std(i) are calculated.

6.1. Mackey-Glass

Figures N°14 to N°18 illustrate a comparative results
obtained by the whole model (�() [,]y t n+ = F y �) and
those obtained by the neural network only
(� []()t nΨ + = g y ,w). The results show that the prediction
performances of the whole model are better than those
obtained by the NN model. Figure 14 reveals the great
disparity of the Accuracy parameter among the two
models. The Figure 15 illustrates the three parameters of
the accuracy: the timeliness parameter, the precision
parameter and the repeatability parameter. One can see
that the timeliness and the precision obtained by the whole
model are better than the NN model, and this for all the
horizon of prediction. The Figure 16 illustrates the
interpretation of the results shown by the Figure 15. Both
timeliness and precision parameters of the whole model
are smaller than those obtained by the RRBF. The
prediction performances of the whole model are better than
the neural model: the predictions of the whole model are
less dispersed, and are closer to the real system.

The results obtained for the repeatability (shown by the
Figure 15) are very important for the robustness of the NN.
The prediction repeatability obtained by the whole model is
very high from (t+1) to (t+6). This means that the
combination obtained by the NARX model gives more

repeatability for the predictions. Figure 17 shows the
complexity of the Neural Network for each horizon of the
prediction. The number k of the Gaussian nodes is
presented with the mean value and the standard deviation
for all the tests. The Figure 18 reveals the results obtained
for the parameters (a, b, c, d, e) of the whole model.

6.2. Lorenz data set

The results obtained with the two prediction models for
the Lorenz data set are presented by figures N°19 to N°22.
Prediction performances measures obtained by the whole
model are better than those obtained by the NN model.
Figure 21 shows the complexity of the Neural Network for
each horizon of the prediction. The number k of the
Gaussian nodes is presented with the mean value and the
standard deviation for all the tests. The Figure 22 reveals
the results for the parameters (a, b, c, d, e) of the whole
model.

7. Conclusion

In this paper, a neural NARX predictor model is proposed,
tested and compared. The proposed predictor model
provides a first step prediction made by a recurrent neural
network. A second step consists to reduce the prediction
error made by the recurrent NN. A linear combination
between the neural network outputs and the real data, at
several past times is then used. The whole NARX model
obtained improves highly the predictive performances of
the neural network. Experiments and comparative studies
demonstrate superior performance of the proposed
approach over the classical structur of the RRBF network.
Further study is necessary to investigate the robustness of
the proposed methods and to compare it with other neural
architecture. One possible way to test the robustness is to
train the prediction model using various training data
groups generated from the system at different sampling
rates. If the prediction models are formed similarly despite
using different training data group, the proposed prediction
methods are deemed robust in this sense.
The second contribution of the article is a new
methodology for measuring the prediction performances of
a neural network. The Accuracy of the prediction is given
by three parameters: the timeliness, the precision and the
repeatability. Theses metrics gives some numerical
information to compare different schemes and provides an
objective way to measure how changes in training or
prediction model (Neural network architecture) affect the
quality of predictions in term of: the training algorithm
stability (repeatability), the dispersion (precision) and the
rightness (timeliness) of the prediction. This methodology
can be used in several prediction applications as failure
prognosis [49], software fault prediction, Air quality
prediction ...etc. There is no general agreement as to an

13

appropriate and acceptable set of metrics that can be
employed in prediction applications, and researchers are
still working on this. For example in the maintenance field,
one can find some interesting studies on the prognosis
metrics in [43,38,39,24].

� � � � � � � � 	 �

�

�

�

�

�

�

��������
����

� � � � � � � � 	 �

�

�

�

�

�

�

�

	

�

��������������������������

��� !�"�� ����#�
����

Figure 14. The prediction Accuracy for the Mackey Glass
data set

Figure 15. Prediction metric for the Mackey Glass data set

t 1t + t n+t 1t + t n+

Figure 16. the relation between the (Timeliness /
Precision) and the quality of the prediction. The
performance obtained by the whole model is better than the
NN prediction.

Figure 17. The NN complexity for the Mackey Glass data
set.

14

Figure 18. The NARX parameter for the Mackey Glass
data set

� � � � � � � � 	 �

�

�$�

�

�$�

�

�$�

�

�$�

�

�$�

	

��������������������������

��� !�"�� ����#�
����

� � � � � � � � 	 �

$�

�

�$�

�

�$�

�

�$�
%��

�

������������

Figure 19. The prediction Accuracy for the Lorenz data set

Figure 20. Prediction metric for the Lorenz data set

15

Figure 21. The NN complexity for the Lorenz data set.

Figure 22. The NARX parameter for the Lorenz data set

References

[1] Aliev R.A., B. Fazlollahi, R.R. Aliev, B. Guirimov,
Linguistic time series forecasting using fuzzy recurrent
neural networks, Soft Comput.12(2) (2007)183–190.

[2] Andalib Arash and Farid Atry, « Multi-step ahead forecasts
for electricity prices using NARX: A new approach, a
critical analysis of one-step ahead forecasts », Energy
Conversion and Management (Elsevier) Volume 50, Issue
3, March 2009, Pages 739-747

[3] Angelov P., Filev D., An approach to online identification
of takagi-sugeno fuzzy models, IEEE Transaction Systems,
Man, and Cybernetics - Part B: Cybernetics, vol. 34 (2004),
pp. 484-498.

[4] Barbounis T.G., Theocharis J.B., "A locally recurrent fuzzy
neural network with application to wind speed prediction
using spatial correlation", Neurocomputing, vol. 70, Issues
7-9, 2007, p. 1525-1542.

[5] Bernauer E., Les réseaux de neurones et l'aide au diagnostic
: un modèle de neurones bouclés pour l'apprentissage de
séquences temporelles, thèse de doctorat, LAAS/Toulouse
1996.

[6] Box G., G.M. Jenkins, Time Series Analysis: Forecasting
and Control, second ed., Holden-Day,Oakland,CA,1976.

[7] Dai Q., S. Chen, Chained DLS-ICBP neural networks with
multiple steps time series prediction, Neural Process. Lett.
21 (2005) 95–107.

[8] Dammers E., Measurement in the ex post evaluation of
forecasts, Quality and Quantity, vol. 27:1 (1993), pp. 31-
45.

[9] De Gooijer J.G., Hyndman R.J., 25 years of time series
forecasting, International Journal of Forecasting, vol. 22
(2006), pp. 443–473.

[10] Dodonov Evgueni, and Rodrigo Fernandes de Mello « A
novel approach for distributed application scheduling based
on prediction of communication events » Future Generation
Computer Systems (Elsevier 2009)

[11] Dorffner G., Neural networks for time series processing,
Neural Network World6 (4)(1996) 447–468.

[12] Frasconi P., Gori M. et Soda G., « Local Feedback
Multilayered Networks », Neural Computation, Vol. 4, pp.
120-130, 1992.

[13] Gao Y., M.J. Er, NARMAX time series model prediction:
feedforward and recurrent fuzzy neural network
approaches, Fuzzy Sets Syst.150(2005) 331–350.

[14] Gowrishankar Ramesh, B.H.S.; Satyanarayana, P.S,
“Neural network based BER prediction for 802.16e
channel” 15th International Conference on Software,
Telecommunications and Computer Networks, (SoftCOM
2007). 27-29 Sept. 2007 Page(s):1 – 5.

16

[15] Graves Daniel, Wiltold Pedrycz, “Fuzzy prediction
architecture using recurrent neural networks”
Neurocomputing 72 (2009), pp. 1668-1678.

[16] Harpham C., C.W. Dawson, The effect of different basis
functions on a radial basis function network for time series
prediction: a comparative study, Neurocomputing 69
(2006)2161–2170.

[17] Haykin S., J.C. Principe, Making sense of a complex world,
IEEE Signal Process. Mag. 15 (3) (1998) 66–81.

[18] Haykin S., X.B. Li, Detection of signals in chaos, Proc.
IEEE 83 (1) (1995) 95–122.

[19] Hyndman R.J., Koehler A.B., Another look at measures of
forecast accuracy, International Journal of Forecasting, vol.
22 (2006), pp. 679-688.

[20] Jacquin A.P., A.Y. Shamseldin, Development of rainfall-
runoff models using Takagi–Sugeno fuzzy inference
systems, J.Hydrol.329(2006) 154–173.

[21] Jang J.S.R., “ANFIS: adaptive network-based fuzzy
inference system”, IEEE Transaction on Systems, Man and
Cybernetics 23(3), 1993, p. 24-38.

[22] Kahraman C., Gülbay M., Kabak Ö., Applications of Fuzzy
Sets in Industrial Engineering: A Topical Classification, in
Kahraman, C. (Ed.) Fuzzy Applications in Industrial
Engineering, Studies in Fuzziness and Soft Computing 201,
Springer, Heidelberg (2006), pp. 1-55.

[23] Karray F.O., C. deSilva, Soft Computing and Intelligent
Systems Design: Theory, Tool sand Applications, Pearson
Addison Wesley, Harlow, Essex,2004.

[24] Leao, B.P.; Yoneyama, T.; Rocha, G.C.; Fitzgibbon, K.T. «
Prognostics performance metrics and their relation to
requirements, design, verification and cost-benefit » in
international conference on Prognostics and Health
Management (PHM 2008), 2008. Denver CO,

[25] Liao W.T.,Clustering of time series data—a survey,Pattern
Recognition 38 (2005) 1857–1874.

[26] Lin J., E. Keogh, W.Truppel, Clustering of streaming time
series is meaningless, in: Eigth ACM SIGMOD Workshop
on Research Issues in Data Ming and Knowledge
Discovery, ACM, San Diego, 2003, pp.56–65.

[27] Luh Guan-Chun, WU Chun-Yin, CHENG Wei-Chong
« Artificial immune regulation (AIR) for model-based fault
diagnosis » Artificial immune systems : (Catania, 13-16
September 2004)ICARIS 2004 : international conference
on artificial immune systems No3, Catania , ITALIE
(13/09/2004) 2004 , vol. 3239, pp. 28-41.

[28] Mandic D.P., J.A. Chambers, Recurrent Neural Networks
for Prediction: Learning Algorithms and Architectures and
Stability, Wiley, Chichester, 2001.

[29] McDonnell J.R., D.Waagen, Evolving recurrent
perceptrons for time series modeling,
IEEETrans.NeuralNetworks5(1)(1994)665–685.

[30] Menezes Jr. José Maria P., and Guilherme A. Barreto,
« Long-term time series prediction with the NARX
network: An empirical evaluation » Neurocomputing
Volume 71, Issues 16-18, October 2008, Pages 3335-3343
Advances in Neural Information Processing (ICONIP
2006) / Brazilian Symposium on Neural Networks (SBRN
2006).

[31] Mitra S., Hayashi S., Neuro–Fuzzy Rule Generation:
Survey in Soft Computing Framework, IEEE Transactions
on neural networks, vol. 11:3 (2000), pp. 758-768.

[32] Neurmaier A., T. Schneider, Estimation of parameters and
eigen modes of multivariate autoregressive models,
ACMTrans. Math. Software27(1)(2001) 27–57.

[33] Palluat N., D. Racoceanu1, and N. Zerhouni « A neuro-
fuzzy monitoring system: Application to flexible
production systems » Computers in Industry (Elsevier)
Volume 57, Issue 6, August 2006, Pages 528-538 E-
maintenance Special Issue

[34] Pham H.T., Tran, V.T., Yang, B-S., “A hybrid of nonlinear
autoregressive model with exogenous input and
autoregressive moving average model for long-term
machine state forecasting”, Expert Systems with
Applications (Elsevier) (2009)

[35] Pisoni E., Farina M., Carnevale C., Piroddi L., “Forcasting
peak air pollution levels using NARX models” Engineering
Applications of Artificial Intelligence (Elsevier) Vol. 22
(2009) p. 593-602.

[36] Principe J.C., N.R. Euliano, W.C. Lefebvre, Neural
Adaptive Systems: Fundamentals Through Simulations,
Wiley, New York, 2000.

[37] Samantaa B., and S. Bandopadhyay « Construction of a
radial basis function network using an evolutionary
algorithm for grade estimation in a placer gold deposit »
Computers & Geosciences (Elsevier) Volume 35, Issue 8,
August 2009, Pages 1592-1602

[38] Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.;
Saha, S.; Schwabacher, M., « Metrics for evaluating
performance of prognostic techniques », in international
conference on Prognostics and Health Management (PHM
2008), 2008. Denver CO,

[39] Saxena Abhinav, Bhaskar Saha, Jose Celaya, Kai Goebel,
Sankalita Saha, « On Applying the Prognostics
Performance Metrics », in annual Conference of the
Prognostics and Health Management Society (PHM) 2009
San Diego, CA September 27 – October 1, 2009

[40] Setnes M., R. Babuska, H.B. Verbruggen, Rule-based
modeling: precision and transparency, IEEE Trans.SMC-
Part C28(1)(1998)165–169.

[41] Sorjamaa A., J.H.N. Reyhani, Y. Ji, A. Lendasse,
Methodology for long-term prediction of time series,
Neurocomputing 70 (16–18) (2007) 2861–2869.

17

[42] Sum J.P.F., Kan W.-K, Young G.H, “a note on the
equivalence of NARMAX anf RNN”, Neural Computing &
Applications (Springer-Verlag), (1999), vol8, p. 33-39

[43] Vachtsevanos G., Lewis F.L., Roemer M., Hess A., Wu B.,
Intelligent Fault Diagnosis and Prognosis for Engineering
Systems, Hoboken, New Jersey, Wiley & Sons, 2006.

[44] Vernieuwe H., N.E.C. Verhoest, B. DeBaets, R.Hoeben,
F.P. DeTroch, Cluster-based fuzzy models for ground water
flow in the unsaturated zone, Adv. Water
Resour.30(2007)701–714.

[45] Wei H.L., D.Q. Zhu, S.A. Billings and M.A. Balikhin,
« Forecasting the geomagnetic activity of the Dst index
using multiscale radial basis function networks » Advances
in Space Research Volume 40, Issue 12, 2007, Pages 1863-
1870

[46] Zemouri R., Racoceanu D., Zerhouni N. – b – « Réseaux de
neurones Récurrents à Fonction de base Radiales :RRFR/
Application au pronostic », Revue d’Intelligence
Artificielle, RSTI série RIA, Vol. 16, N°03, 2002.

[47] Zemouri R., Racoceanu D., Zerhouni N., "Recurrent Radial
Basis Function network for Time-Series Prediction", Engin.
Appl. of Artificial Intelligence, vol. 16, 2003, pp.453-463.

[48] Zemouri, R., Gouriveau, R., Zerhouni, R. (2009).
Combining a recurrent neural network and a PID controller
for prognostic purpose: A way to improve the accuracy of
predictions. In PENTOM'09 Conf., Autrans, France.

[49] Zemouri R., Gouriveau R., « Towards Accurate and
Reproducible Predictions for Prognostic: an Approach
Combining a RRBF Network and an AutoRegressive
Model » 1st IFAC Workshop on Advanced Maintenance
Engineering, Services and Technology (A-MEST’10),
Lisbon, Portugal, 1-2 July 2010.

[50] Zhou S.M., X.-D.Xu, A new type of recurrent fuzzy neural
network for modeling dynamic systems,
Knowl.BasedSyst.14(2001)243–251.

Ryad Zemouri received his engineer degree at
Mouloud Mammeri University of Tizi-Ouzou (Algeria) in
1998 and his Ph.D. in automatic control and computer
science in Franche-Comté University in 2003. He joined
the Conservatoire National des Arts & Métiers (CNAM) of
Paris in September 2003 where he works actually as
Associate Professor. His main research interests are
computational intelligence, pattern recognition, neural
networks, and industrial prognostics systems.

Rafael Gouriveau received his engineer degree from
National Engineering School of Tarbes (ENIT) in 1999. He
then got his MS (2000) and his Ph.D. in Industrial Systems
in 2003, both from the Toulouse National Polytechnic
Institute (INPT). During his PhD, he worked in the field of
risk management and dependability analysis. In September
2005, he joined the national high school of mechanics and
microtechniques of Besançon (ENSMM) as Associate
Professor. His main teaching activities are concerned with
production, maintenance, manufacturing, and informatics
domains. Nowadays, his research interests concern the
development of industrial prognostics systems by using
connexionist systems like neuro-fuzzy methods, and the
investigation of reliability modeling by using possibility
theory.

Noureddine Zerhouni received his engineer degree from
National Engineers and Technicals School of Alger
(ENITA) in 1985. After a short period in industry as
engineer, he then received his Ph.D. Degree in Automatic
Control from the Grenoble National Polytechnic Institute in
1991. In September 1991, he joined the National
Engineering School of Belfort (ENIB) as Associate
Professor. At this time, his main activity were concerned
with modelling, analyse and control of manufacturing
systems.
Since September 1999, Noureddine Zerhouni is Professor
at the national high school of mechanics and
microtechniques of Besançon (www.ens2m.fr). He found
and is responsible of the research group "Design and
maintenance of mechatronic systems" (COSMI) of
FEMTO-ST Institute, AS2M Department. His main
research activities are thereby concerned with intelligent

18

maintenance systems and e-maintenance: COSMI group
works on detection, diagnostic and prognostic of failure, on
reactive and dynamic scheduling problems, as well as on
reliability modeling. Noureddine Zerhouni has been and is
involved in various European and National projects on
intelligent maintenance systems like FP5 European
Integrated Project of ITEA program (Information
Technology for European Advancement) PROTEUS,
NEMOSYS (Naval E-Maintenance Oriented SYStem) with
DCNS, AMIMAC-FAME (Reliability Improvement of
Embeded Machine) with ALSTOM and CEGELEC.
He is also member of the international relations group of
ENSMM, and develops special relationships with Romania
and Algeria.

