Bingmei Yang 
  
Andrea Hodgkinson 
  
Peter J Oates 
  
Beverley A Millward 
  
Professor Andrew G Demaine 
email: andy.demaine@pms.ac.uk
  
  
High glucose induction of DNA binding activity of the transcription factor NFκB in patients with diabetic nephropathy

Keywords: Nuclear factor kappa B, Diabetic nephropathy, Aldose reductase, Aldose reductase inhibitor, siRNA

The aim of this study was to investigate whether high glucose induces aldose reductase (AKR1B1) expression through NFkB, which may contribute to the pathogenesis of diabetic nephropathy. 34 Caucasoid patients with type 1 diabetes were recruited; 20 nephropaths and 14 long-term uncomplicated subjects. Peripheral blood mononuclear cells (PBMCs) were cultured under normal or high glucose (25 mmol/l of D-glucose) with or without an aldose reductase inhibitor (ARI). High glucose increased NFκB binding activities in the PBMCs from nephropaths compared to the uncomplicated subjects (1.77+0.22 vs. 1.16+0.04, p=0.02). ARI induced a substantially greater decrease of NFκB binding activities in the nephropaths compared to the uncomplicated subjects (0.58+0.06 vs. 0.79+0.06, p=0.032). AKR1B1 protein levels in the nephropaths were increased under high glucose conditions and decreased in the presence of an ARI, whilst the silencing of the NFκB p65 gene in-vitro reduced the transcriptional activities of AKR1B1 in luciferase assays. These results show that NFκB induces AKR1B1expression under high glucose conditions, and the pattern of expression differs between nephropaths and the uncomplicated subjects.

A C C E P T E D M A N U S C R I P T A C C E P T E D M A N U S C R I P T INTRODUCTION

A large number of patients with type 1 and type 2 diabetes mellitus will develop one or more chronic microvascular complications during the course of their diabetes. The precise mechanisms that initiate and promote diabetic microvascular complications are still being elucidated. It is well established that high glucose stimulates increased flux through the polyol pathway, and this is linked to abnormalities such as osmotic and oxidative stresses that have been cited as promoters of diabetic microvascular disease [START_REF] Brownlee | The Pathobiology of Diabetic Complications: A unifying mechanism[END_REF][START_REF] Hansen | The role of taurine in diabetes and the development of diabetic complications[END_REF][START_REF] Dan | Interaction between the polyol pathway and non-enzymatic glycation on mesangial cell gene expression[END_REF].

Aldose reductase (AKR1B1) is the first and rate-limiting enzyme of the polyol pathway and its expression is tightly regulated by intracellular osmolality at the transcriptional level [START_REF] Smardo | Kidney aldose reductase gene transcription is osmotically regulated[END_REF]. This is mediated through the osmotic response elements (OREs) located in the 5' flanking sequences of the AKR1B1 gene [START_REF] Ko | Identification and characterisation of multiple osmotic response sequences in the human aldose reductase gene[END_REF]. There are three OREs, (OREA, OREB and OREC), that act as specific binding sites for the transcription factor, nuclear factor of activated T cells 5 (NFAT5) or the TonE binding protein (TonEBP) [START_REF] Ko | Identification and characterisation of multiple osmotic response sequences in the human aldose reductase gene[END_REF].

Our previous study has demonstrated that high glucose significantly increased the DNAbinding activity of NFAT5 to the OREs, in particular to the OREC [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF]. Furthermore, this increase was significantly higher in patients with type 1 diabetes and nephropathy compared with those patients without microvascular complications. These results indicate that AKR1B1 is up-regulated by the transcriptional factor NFAT5 under high glucose conditions.

Nuclear factor kappa B (NFκB) is a redox-sensitive transcriptional factor which shares the binding site with OREC in the promoter region of AKR1B1 gene with NFAT5 [START_REF] Iwata | Osmotic response element is regulated for the induction of aldose reductase by tumor necrosis factor-α[END_REF]. NFκB is a widely expressed and is an inducible transcriptional factor with an inactive cytoplasmic and active nuclear DNA-binding form. Canonically, upon stimulation, NFκB is activated through a rapid phosphorylation of IκBα, which is dissociated from NFκB and
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is rapidly translocated to the nucleus where it binds to a κB site and activates its target genes. High glucose-increased flux through the polyol pathway induces redox change and oxidative stress, which activates NFκB. As a result, increased NFκB activity may induce the expression of AKR1B1 by binding to the κB motif in the promoter region of AKR1B1 gene under high glucose conditions. At the same time, NFκB binds to other target genes to increase transcription of these genes, such as macrophage chemotactic protein (MCP-1)

and metallo-matrix-proteinases (MMPs) which are involved in the accumulation of extracellular matrix and contributes to the development of diabetic complications [START_REF] Rovin | Activation of nuclear factor κB correlates with MCP-1 expression by human mesangial cells[END_REF][START_REF] Wahab | Modulation of neutral protease expression in human mesangial cells by hyperglycaemic culture[END_REF][START_REF] Maxwell | Peripheral blood level alterations of TIMP-1, MMP-2 and MMP-9 in patients with type 1 diabetes[END_REF].

Increased activity of NFκB in patients with type 1 as well as type 2 diabetes with microvascular complications have been observed by several groups [START_REF] Mohamed | The role of oxidative stress and NF-kappa B activation in late diabetic complications[END_REF][START_REF] Hofmann | Insufficient glycaemic control increases nuclear factor -κB binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes[END_REF][START_REF] Hofmann | Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-κB[END_REF][START_REF] Bierhaus | Diabetes-associated sustained activation of the transcription factor nuclear factor-κB[END_REF]. Ramana et al. [START_REF] Ramana | Activation of nuclear factor -κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase[END_REF] demonstrated that inhibition of AKR1B1 prevented hyperglycemia-induced NFκB activation in vascular smooth muscle cells. They observed that aldose reductase inhibitors (ARI) inhibited the translocation of NFκB and decreased NFκB DNA binding activities.

The aims of the present study were to determine whether the AKR1B1 gene expression is regulated by NFκB under high glucose conditions, and whether this expression is different between those patients with or without nephropathy. Finally, we investigated the effects of ARI on the NFκB binding, and the effects of the silencing of the NFkB p65 subunit on the expression of AKR1B1 gene in vitro.

MATERIALS AND METHODS

Subjects

The following Caucasoid subjects were included in this study: 34 patients with type 1 diabetes. All patients with type 1 as defined by The Expert Committee On The Diagnosis And Classification Of Diabetes Mellitus [START_REF]The Expert Committee on the diagnosis and classification of diabetes mellitus, Report of the Expert Committee on the diagnosis and classification of diabetes mellitus[END_REF] had attended the Diabetes Clinic,
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Derriford Hospital, Plymouth. The study was approved by the Local Research Ethical Committee and informed consent was obtained from all subjects. The criteria for diabetic microvascular complications have been published previously [START_REF] Heesom | Polymorphism in the 5'end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type 1 diabetes[END_REF].

Uncomplicated: (Uncompls: n=14) have been diagnosed with type 1 for at least 20 years but remain free of retinopathy (fewer than five dots or blots per fundus), proteinuria (urine Albustix negative on at least three consecutive occasions over 12 months) and neuropathy (overt neuropathy was defined if there was any clinical evidence of peripheral or autonomic neuropathy).

Diabetic nephropathy: (Nephropaths: n=20) have had type 1 for at least 8 years with persistent proteinuria (urine Albustix positive on at least three consecutive occasions over 12 months or three consecutive total urinary protein excretion rates >0.5g/24h) in the absence of hematuria or infection on midstream urine samples. Diabetic nephropathy was always associated with retinopathy. Retinopathy was defined as more than five dots or blots per eye; hard or soft exudates, new vessels, or fluorescein angiographic evidence of maculopathy or previous laser treatment for pre-proliferative or proliferative retinopathy;

and maculopathy or vitreous haemorrhage. Fundoscope was performed by both a diabetologist and an ophthalmologist.

Cell isolation and cultures

Peripheral venous blood samples (20ml) were collected into 5% EDTA Vacutainers (Becton Dickinson, UK). The PBMC were separated by using Histopaque (Sigma, Dorset, UK) and grown in RPMI 1640 supplemented with D-glucose at a 5.5 mmol/l of concentration, 10% calf serum and 2 mmol/l L-glutamine, 100units/ml penicillin G sodium and 100mg/ml streptomycin sulphate with PHA-P at 5μg/ml of concentration in a 37 0 C incubator with a controlled, humidified atmosphere of 95% air/5%

CO2. These cells were divided into three groups from each individual in 200ml-flasks.
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Group 1 (NG): cells were cultured in the above medium. Group 2 (HG): 19.5mmol/l extra D-glucose was added into above-mentioned medium. Group 3 (ARI+HG): sorbinil (10 µmol/l) which is an ARI was added into above-mentioned medium and 3 hours later [START_REF] Hodgkinson | Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy[END_REF].5mmol/l extra D-glucose was added to the culture medium [START_REF] Ramana | Activation of nuclear factor -κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase[END_REF]. All cells were incubated for 5 days. At the end of the incubation time, cells were harvested and nuclear and cytoplasmic proteins were extracted from PBMC as below. A portion of the PBMCs in some samples were cultured with mannitol for 5 days (a final concentration at 25mM) as positive controls. HEK 293 were cultured in EMEM medium supplemented with Dglucose at a 5.5 mmol/l of concentration, 10% calf serum and 2 mmol/l L-glutamine, 100units/ml penicillin G sodium and 100mg/ml streptomycin sulphate for 5 days at NG, HG and ARI+HG conditions.

Extraction of nuclear protein and cytoplasmic proteins

Cells were collected and re-suspended in 100μl of buffer A (10 μmol/l, HEPES, pH 7.9, 1.5 mmol/l MgCl 2 , 0.5 mmol/l dithiothreitol (DTT), 0.2% NP-40, 100 mmol/l 4-

(2-aminoethyl)-bezenesulfonyl fluoride (AEBSF), 18.4 mg/ml sodium orthovanadate, 42 mg/ml sodium flouride and 2.2 mg/ml aprotonin) and held on ice 15 minutes. The resulting cell lysate was then centrifuged at 13000rpm for 10 minutes. The supernatant containing cytoplasmic proteins was transferred into a fresh tube for Western blotting and the nuclear pellets were re-suspended in 50μl of buffer C (20 mmol/l HEPES pH 7.9, 25% glycerol, 0.42 mol/l NaCl, 1.5 mmol/l, MgCl 2 , 0.5 mmol/l DTT, 0.2 mmol/l EDTA, 100 mmol/l AEBSF, 18.4 mg/ml sodium orthovanadate, 42 mg/ml sodium fluoride, 2.2 mg/ml aprotonin), and incubated on ice for 10 minutes. After centrifugation at 13000 rpm for 10 minutes the supernatant containing the nuclear protein was transferred into a fresh tube and stored at -70 0 C until use. The concentrations of both nuclear and cytoplasmic proteins
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were determined using a Coomassie® Plus Protein Assay kit (Peribo Science Ltd., Chest, UK).

Electrophoretic mobility shift assay (EMSA)

The NFκB probe with consensus sequence to κB motif AAATGGGAAATCACCGGC [START_REF] Iwata | Osmotic response element is regulated for the induction of aldose reductase by tumor necrosis factor-α[END_REF] (Fig. 1A) of AKR1B1 gene was labelled with [α- 32 P] deoxy-ATP by T4 polynucleotide kinase (Amersham Pharmacia Biotech, Buckinghamshire, UK). The labelled probe along with a gel binding buffer was incubated with 25 μg of nuclear proteins at room temperature for 20 minutes. The binding mixtures were resolved by eletrophoresis on a 4% non-denaturing polyacrylamide gel at 100V for 3 to 4 hours. The gel was exposed to X-Omax photographic paper. The specificity of the DNA binding protein for the putative binding sites was established by specific competitors and antibodies against human NFκB p65 (Insight Biotechnology Ltd, Wembley, UK), respectively.

Western blotting

Briefly, a total 50μg of cytoplasmic proteins were loaded onto a 7.5 or 10% precast SDS-PAGE (BIO-RAD Laboratory Ltd, Hempstead, UK), electrophoresed for 2-3 hours at 100 volts, transferred to nitrocellular membrane (Amersham, USA) overnight. Next, the membrane was blocked with 5% non-fat milk and 0.05% Tween 20 -PBS for one hour at room temperature. Immunoblotting was performed with primary rabbit antibodies against human AKR1B1 and IκB-α (Abcam Ltd, Cambridge, UK) as well as with primary mouse antibodies against NFκB p65, phosphorylated IκB-α (Insight Biotechnology Ltd, Wembley, UK) in appropriate dilutions, respectively. Secondary antibodies against rabbit or mouse IgG of horse-radish peroxidase-conjugated were used in a 1:10,000 dilution (Sigma, UK). A chemiluminescence kit (Pierce, UK) and Kodak X-Omat film (Amersham, UK) were used to detect the amount of proteins. Meantime, in order to have

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 8 
an equal amount of proteins in all wells, β-actin levels were measured by using a mouse antibody against human β-actin in 1:10,000 dilution (Sigma, UK) and a secondary antibody against mouse IgG of horse-radish peroxidase-conjugated in 1:10,000 dilution (Sigma, UK).

DNA binding activities of NFκB and protein levels of AKR1B1, NFκB p65, phosphorylated IκB-α and IκB-α were analysed and quantified by using a phosphoimager (BIO-RAD, UK) with multi-analyst software. All results were expressed as means of fold increases due to high glucose treatment, calculated by dividing the amount of density in high glucose-treated cells by the amount of density in untreated cells or as means of fold decreases due to ARI treatment, calculated by dividing the amount of density in high glucose with ARI treated cells by the amount of density in high glucose-treated cells.

SiRNA assay

In order to investigate effects of NFκB on the transcription of AKR1B1 gene under high glucose conditions, we silenced the NFκB gene by RNA interference. Three siRNA duplex sequences were pre-designed from Ambion (Ambion Limited, UK), targeting to exon 7, 8 and 9 of the NFκB p65 gene, respectively. A negative control siRNA was purchased from Ambion as well.

Transfection of siRNA was carried out by using siFECT siRNA transfection reagent (Promega, Southampton, UK) and transfection of plasmids was performed by using Tfx-20 reagent (Promega, Southampton UK). The day before transfection, HEK 293 cells (which express NFκB p65 identified by RT-PCR, data not shown) were seeded at 30% to 50% confluence in 96-well plates and each transfection was performed in duplicates. siRNA at a concentration range from 10 nmol/l to 1000 nmol/l was tested and a 500 nmol/l of siRNA gave a detectable silencing effect. Among three siRNAs, the one targeting exon 9 gave the highest silencing. Therefore, siRNA targeting at exon 9 and conditions (ARI was added 3 hours earlier before D-glucose was added). All cells were cultured for another 30 hours. At the end of culture, cells were lysed using 20 μl of lysis buffer (Promega, Southampton, UK). AKR1B1 transcription activity was measured using a Dual-luciferase reporter assay system (Promega, Southampton, UK) in a MLX luminometer (Dynex Technologies Inc., USA). For each transfection, the relative activity was defined as firefly luciferase activity normalised by the activity of the internal control (Renilla luciferase) as described previously [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF][START_REF] Yang | Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications[END_REF].

Statistical Analysis

All data were expressed as the means + standard error of the means (SE). Student t-test was used to compare differences between two groups and ANOVA was used to compare differences between more than two groups. A p value of less than 0.05 was considered to be significant.
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RESULTS

Clinical characteristics of patients with type 1 diabetes with or without nephropathy are

shown in Table 1. There were no differences in age, gender, age at onset of diabetes, duration of diabetes, Hb1Ac and glucose levels between two groups.

High glucose significantly increased NFκB binding activities to the κB motif site in

PBMCs

We observed that two binding bands were formed in the gel shit with NFκB probe, which were consistent with Ramana et al. study [START_REF] Ramana | Activation of nuclear factor -κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase[END_REF]. In the presence of cold (unlabelled)

NFκB probe, the band was abolished (Figure 1B). The super shift analysis of NFκB showed that following the incubation with antibodies against human NFκB p65, the binding complex with the probe to κB motif were shifted upwards as indicated in Figure 1B.

The DNA-binding activities of NFκB to the κB motif in PBMCs exposed to either normal glucose, high glucose or, ARI with high glucose conditions, from a nephropath and an uncomplicated subject are shown in Figure 1C. Following the incubation with high glucose there was a significantly increased DNA binding activities of NFκB to κB motif in PBMCs in both the nephropaths and uncomplicated subjects. These increases were particularly significant in the nephropaths compared with uncomplicated group (1.77+0.22 vs. 1.16+0.04, p=0.02) (Table 2). ARI treatment significantly decreased the DNA-binding activities of NFκB to κB motif under high glucose conditions in both the nephropaths by 67% (1.77+0.22 vs. 0.58+0.06, p=0.0001) and uncomplicated by 32% (1.16+0.04 vs. 0.79+0.06, p=0.0002) groups, respectively (Table 2). The ARI-linked decrease in NFκB binding activity was significantly greater in the nephropaths compared to the uncomplicated (0.58+0.06 vs. 0.79+0.06, p=0.032) (Table 2).
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High glucose significantly increased protein level of the AKR1B1

Western blots were used to measure the AKR1B1, NFκB p65, IκB-α and phosphorylated IκB-α protein levels (Figure 2). In the presence of high glucose there was a significant increase in AKR1B1 protein in PBMCs from the nephropaths compared to the uncomplicated (1.26+0.08 vs. 0.93+0.07, p=0.02). This is consistent with our earlier study of elevated AKR1B1 mRNA and proteins by high glucose in the nephropaths [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF][START_REF] Hodgkinson | Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy[END_REF]. In the presence of the ARI, the elevation of AKR1B1 protein by high glucose was significantly suppressed in PBMCs from the nephropaths (1.26+0.08 vs. 0.76+0.07, p=0.01), but not from uncomplicated subjects (0.93+0.07 vs. 0.81+0.06, p=0.24) (Table 3). High glucose slightly increased the expression of NFκB p65 and phosphorylated IκB-α and IκB, respectively, in PBMC from the nephropaths, but those increases were not significantly different compared to PBMC from the uncomplicated subjects. In the presence of ARI, those protein levels were decreased by various degrees from 10 to 20% compared with that under high glucose conditions from the nephropaths, respectively.

Again, these changes were not statistically significant. All results are summarised in Table 3.

Silencing of NFκB reduces AKR1B1 gene transcription

These results were consistent with our previous studies showing [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF][START_REF] Yang | Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications[END_REF] that the recombinants with the Z-2/C-106 AKR1B1 haplotype had the highest transcriptional activity among all haplotypes. The Z/C-106 AKR1B1 haplotype had the second highest transcriptional activity in transfected HEK 293 cells in luciferase assays. High glucose significantly increased AKR1B1 transcription by 1.2 fold in the HEK293 cells transfected with both Z-2/C-106 and Z/C-106 AKR1B1 haplotypes, respectively (Figure 3A andB). In the presence of the siRNA targeting NFκB p65, transcriptional activities of AKR1B1 in the Z-2/C-106 recombinants were reduced by 50%, 56%, 60% and 50% under NG, HG, AKR1B1 with Z/C-106 recombinants were decreased by 50%, 57%, 56% and 37% under NG, HG, ARI and ARI with HG, respectively (Figure 3B). The silencing of NFκB p65 gene was confirmed by Western blotting by using an antibody against human NFκB p65 (Figure 3C). However, the ARI did not decrease transcriptional activities in those cells transfected with either Z-2/C-106 or Z/C-106 AKR1B1 haplotypes without siRNA transfection. There were no significant changes in transcriptional activities in transfected cells with the control siRNA compared to cells without siRNA between either normal glucose, high glucose or, high glucose and ARI for both haplotypes (data not shown).

DISCUSSION

Chronic hyperglycaemia is a major initiator of microvascular complications in diabetes. Accelerated flux through the polyol pathway may be a key to the development of diabetic nephropathy and other complications [START_REF] Dan | Interaction between the polyol pathway and non-enzymatic glycation on mesangial cell gene expression[END_REF]. There is strong evidence that those patients with diabetic nephropathy have increased expression and activity of AKR1B1.

We previously demonstrated that the increased expression of AKR1B1 gene is accompanied by elevated AKR1B1 protein level, is ORE-dependent, and regulated by NFAT5 under high glucose conditions [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF]. High glucose induced NFAT5 binding activities to the OREs has been also observed in the myo-inositol oxygenase (MIOX) gene [START_REF] Nayak | Modulation of renal-specific oxidoreductase myo-inositol oxygenase by high-glucose ambience[END_REF][START_REF] Prabhu | Up-regulation of human myoinositol oxygenase by hyperosmotic stress in renal proximal tubular epithelial cells[END_REF], which is closely linked to the polyol pathway and has been suggested to play an important role in the development of diabetic nephropathy [START_REF] Arner | Expression of myoinositol oxygenase in tissues susceptible to diabetic complications[END_REF].

NFκB is activated by a large variety of stimuli including cytokines, viruses, oxidative stress and genotoxic drugs. There is growing evidence that high glucose as well as diabetes can activate NFκB expression [START_REF] Bierhaus | Diabetes-associated sustained activation of the transcription factor nuclear factor-κB[END_REF][START_REF] Yerneni | Hyperglycaemia induced activation of nuclear transcription factor k B in vascular smooth muscle cells[END_REF][START_REF] Guijarro | Transcription factor-kB (NFkB) and renal disease[END_REF][START_REF] Hattori | High-glucose-induced nuclear factor κB activation in vascular smooth muscle cells[END_REF]. Previous studies have shown that
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NFκB-DNA binding activity was increased in response to elevated glucose in cultured porcine vascular smooth muscle cells [START_REF] Yerneni | Hyperglycaemia induced activation of nuclear transcription factor k B in vascular smooth muscle cells[END_REF] and PBMCs from patients with type 1 diabetes [START_REF] Bierhaus | Diabetes-associated sustained activation of the transcription factor nuclear factor-κB[END_REF] and the activity correlated with blood glucose levels. In present study, we demonstrated that the binding activity of NFκB to the κB motif of the AKR1B1 gene was significantly increased under high glucose conditions in nephropaths. In contrast, there was no increase in NFκB-DNA binding activity in patients without microvascular complications. The exact mechanisms have still to be elucidated and explored, but genetic factors or an imbalance of redox probably make important contributions. Our previous report [START_REF] Hodgkinson | The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy[END_REF] indicated there was a defect of anti-oxidant gene expression in patients with nephropathy. Since high glucose causes excess free radical generation [START_REF] Obrosova | How does glucose generate oxidative stress in peripheral nerve?[END_REF][START_REF] Gupta | Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na+-K+-ATPase activity[END_REF], this implies that the increase in NFκB binding activity may be due to a generalized response to oxidative stress. This is supported by our previous report that PBMCs of nephropaths have decreased expression of cytoplasmic anti-oxidant genes in response to excess glucose, whilst those from patients with no complications have a marked increase in expression of these genes [START_REF] Hodgkinson | The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy[END_REF]. Since NFκB activation is redox dependent [START_REF] Baeuerle | NF-κB: ten years after[END_REF][START_REF] Barnes | Nuclear factor-κB a pivotal transcription factor in chronic inflammatory diseases[END_REF], and increased metabolic flux through AKR1B1 is strongly linked to a change in redox potential within the cell [START_REF] Chung | Contribution of polyol pathway to diabetes-induced oxidative stress[END_REF], it is possible that NFκB could provide positive feedback to regulate the level of AKR1B1 expression through κB motif. This notion is supported by our results that ARI decreased the DNA binding activities of NFκB in both the nephropaths and uncomplicated subjects. It is also supported by Ramana et al. study [START_REF] Ramana | Activation of nuclear factor -κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase[END_REF] that ablation of AKR1B1 by siRNA prevented high glucose induced NFκB activation in vitro. Furthermore, silencing of NFκB p65 significantly decreased the transcriptional activity of AKR1B1 in vitro in this study, which provided solid evidence that high glucose regulates the expression of AKR1B1 gene through the transcriptional factor NFκB. The susceptible haplotype (Z-2/C-106) to the diabetic nephropathy showed the highest transcriptional activity and the
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common haplotype (Z/C-106) in population showed the second higher transcriptional activity in luciferase assays, which are consistent with our previous results [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF][START_REF] Yang | Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications[END_REF]. The different haplotypes may change the binding activity of NFκB p65 to the κB motif in the promoter region of the AKR1B1 gene as we have seen in nephropaths. Taken together, reduced luciferase activities by silencing of both NFAT5 [START_REF] Yang | Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy[END_REF] and NFκB p65 expression in HEK 293 cells transfected with those recombinants supports the notion that interaction between NFAT5 and NFκB is required for transcription of AKR1B1 gene although we believe that there are more accessory proteins involved in the binding complex because our supershift analysis could not completely abolish the bands by using antibodies against NFκB and NFAT5 (data not shown).

We have demonstrated that increases in NFκB binding activities in response to high glucose were prevented by treatment with an ARI in PBMCs, particularly in the nephropaths. These findings together with those reported in cell lines and other species [START_REF] Ramana | Activation of nuclear factor -κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase[END_REF][START_REF] Obrosova | How does glucose generate oxidative stress in peripheral nerve?[END_REF][START_REF] Ramana | Aldose reductase mediates cytotoxic signals of hyperglycaemia and TNF-in human lens epithelial cells[END_REF][START_REF] Williamson | Hyperglycemic pseudohypoxia and diabetic complications[END_REF][START_REF] Ramana | Aldose reductase mediates mitogenic signalling in vascular smooth muscle cells[END_REF] strongly suggest that increased expression and activity of AKR1B1 is intricately linked with the activation of the pro-inflammatory transcription factor NFκB.

The precise mechanism underlying these observations has still to be determined. Recently it has been shown that inhibition of aldose reductase either by ARIs or SiRNA can abolish many of the pro-inflammatory effects of NFκB in animal models of systemic inflammation. The inhibition of aldose reductase can modify a number of NFκB related molecular and cellular pathways within the cell including mitogenic signalling and the accumulation of products of lipid peroxidation [START_REF] Ramana | Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition[END_REF]. A recent study from the same group showed that high glucose induced NFκB activation could be prevented by ARI through inhibition of TNF-α synthesis and secretion in vascular smooth muscle cell [START_REF] Ramana | Aldose reductase-regulated tumour necrosis factor-alpha production is essential for high glucoseinduced vascular smooth muscle cell growth[END_REF]. All those results indicate that ARI could be modulating the response by decreasing the action of AKR1B1 through its action as a pro-inflammatory mediator [START_REF] Ramana | Aldose reductase mediates cytotoxic signals of hyperglycaemia and TNF-in human lens epithelial cells[END_REF].
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The absence of any significant detectable changes in protein levels of cytoplasmic NFκB, IkB-α and P-IkB-α in the patient groups may be due to a number of reasons including higher DNA binding affinity of NFκB in the diabetic nephropaths compared with diabetic controls. This might be influenced by genetic variation in the promoter region [START_REF] Yang | Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications[END_REF]. In addition, previous reports suggest that the reservoir of individual nuclear proteins is far greater than the total amount of NFκB protein actually required for binding to the DNA binding motifs [START_REF] Natoli | Interaction of NF-κB with chromatin: the art of being at the right place at the right time[END_REF]. Finally, it is likely that access to these motifs differs between patients with or without nephropathy [START_REF] Yang | Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications[END_REF][START_REF] Saccani | Two waves of nuclear factor κB recruitment to target promoters[END_REF]. Consequently, in our study there may be reduced requirement for NFkB to translocate from the cytoplasm to the nucleus.

We cannot fully explain patterns of phosphorylated IκB-α and IκB-α protein levels under various conditions in both groups. Theoretically, an increase in phosphorylated IκBshould be accompanied by a decrease in total IκB due to phosphorylation. A recent review [START_REF] Janssens | Signals from within: the DNA-damage-induced NFκB response[END_REF] suggested that there are three major NFκB activating pathways responding to various stimuli: the canonical, the alternative and atypical pathways. Oxidative stress may lead to the atypical pathway with a weak and slow NFκB signal (with peak activities reached after 2-4 hours) [START_REF] Li | Is NFκB the sensor of oxidative stress?[END_REF] and long-term high glucose may generate oxidative and genotoxic stresses, which may partly induce NFκB activities in an IKK-independent way. Therefore, the absence of significant decreases in IκB-α expression in PBMCs may reflect this fact, cells exposed to chronic high glucose. Our observation is consistent with previous reports showing sustained NFκB activation in the absence of significant decreases in IκB-α expression in PBMCs exposed to chronic high glucose [START_REF] Bierhaus | Diabetes-associated sustained activation of the transcription factor nuclear factor-κB[END_REF].

In conclusion, the exposure of human PBMCs to high glucose in vitro caused increased binding of NFκB to the κB motif. These increases were significantly higher in patients with the nephropathy compared to the uncomplicated subjects and were accompanied with an increase in protein level of AKR1B1. ARI decreased the binding Data are means+SE (ranges) in years. Levels of plasma and Hemoglobin A1c (HbA1c) are expressed as means+SE in mmol/l and %, respectively. Uncomplicated: patients have been diagnosed with type 1 for at least 20 years but remain free of retinopathy (fewer than five dots or blots per fundus), proteinuria (urine Albustix negative on at least three consecutive occasions over 12 months) and neuropathy (overt neuropathy was defined if there was any clinical evidence of peripheral or autonomic neuropathy). Diabetic nephropaths: patients have had type 1 for at least 8 years with persistent proteinuria (urine Albustix positive on at least three consecutive occasions over 12 months or three consecutive total urinary protein excretion rates >0.5g/24h) in the absence of hematuria or infection on midstream urine samples. 

A C C E P T E D M A N U S C R I P T

  A C C E P T E D M A N U S C R I P T negative control at a 500 nmol/l were used in our study. For analysing the effect of silencing of NFκB p65 on the transcription of AKR1B1 gene, recombinants pGL3 reporter plasmids at 98 ng which contain the promoter region with OREC/κB motif and haplotypes Z-2/C-106 or Z/C-106 of the AKR1B1 gene [6, 18] and firefly luciferase gene downstream were co-transfected with pRL-TK control plasmids which contain the Renilla reniformis luciferase gene into the cells at 2 ng after 24 hours of siRNA transfection. Next day, cells were divided into four groups: (a) cells were maintained in original media; (b) cells were switched to HG (a final concentration at 25 mmol/l of D-glucose) and (c) cells were switched to ARI (sorbinil at 10 μmol/l); (d) cells were switched to HG and ARI
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 1 Figure 1. A: A sequence scheme of the promoter region of AKR1B1 gene. (AC)n is the
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 2 Figure 2. Western blotting results with antibodies against human AKR1B1, NFκB p65,

Figure 3 .

 3 Figure 3. Data are means+SE (5 experiments were performed). Results are relative
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Table 1 . Clinical characteristics of patients with type 1 diabetes

 1 

		Nephropaths	Uncomplicated
		(n=20)	(n=14)
	Male:Female	6:14	4:10
	Age	49.6+13.9	48.1+14.9
	(years)	(30-82)	(19-74)
	Age at onset of	12.3+8.8	15.2+9.4)
	diabetes	(1-35)	(2-38)
	(years)		
	Duration of diabetes	34.9+8.1	34.3+9.4)
	(years)	(21-49)	(20-53)
	Plasma Glucose	9.8+0.8	10.1+1.5
	(mmol/L)		
	HbA1c	8.2+0.3	8.3+0.3
	(%)		

A C C E P T E D M A N U S C R I P T