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Abstract

We study the boundary value problem with Radon measures for nonnegative solutions
of LV u := −∆u + V u = 0 in a bounded smooth domain Ω, when V is a locally bounded
nonnegative function. Introducing some specific capacity, we give sufficient conditions on a
Radon measure µ on ∂Ω so that the problem can be solved. We study the reduced measure
associated to this equation as well as the boundary trace of positive solutions. In the appendix
A. Ancona solves a question raised by M. Marcus and L. Véron concerning the vanishing set
of the Poisson kernel of LV for an important class of potentials V .
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1 Introduction

Let Ω be a smooth bounded domain of RN and V a locally bounded real valued measurable
function defined in Ω. The first question we adress is the solvability of the following non-
homogeneous Dirichlet problem with a Radon measure for boundary data,

{

−∆u+ V u = 0 in Ω
u = µ in ∂Ω.

(1.1)

Let φ be the first (and positive) eigenfunction of −∆ in W 1,2
0 (Ω). By a solution we mean a

function u ∈ L1(Ω), such that V u ∈ L1
φ, which satisfies

∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ. (1.2)

for any function ζ ∈ C1
0 (Ω) such that ∆ζ ∈ L∞(Ω). When V is a bounded nonnegative function,

it is straightforward that there exist a unique solution. However, it is less obvious to find general
conditions which allow the solvability for any µ ∈ M(∂Ω), the set of Radon measures on ∂Ω. In
order to avoid difficulties due to Fredholm type obstructions, we shall most often assume that
V is nonnegative, in which case there exists at most one solution.

Let us denote by KΩ the Poisson kernel in Ω and by K[µ] the Poisson potential of a measure,
that is

K[µ](x) :=

∫

∂Ω
KΩ(x, y)dµ(y) ∀x ∈ Ω. (1.3)

We first observe that, when V ≥ 0 and the measure µ satisfies
∫

Ω
K[|µ|](x)V (x)φ(x)dx < ∞, (1.4)

then problem (1.1) admits a solution. A Radon measure which satisfies (1.4) is called an admis-
sible measure and a measure for which a solution exists is called a good measure.

We first consider the subcritical case which means that the boundary value is solvable for
any µ ∈ M(∂Ω). As a first result, we prove that any measure µ is admissible if V is nonnegative
and satisfies

sup
y∈∂Ω

ess

∫

Ω
KΩ(x, y)V (x)φ(x)dx < ∞, (1.5)

where φ is the first positive eigenfuntion of −∆ in W 1,2
0 (Ω). Using estimates on the Poisson

kernel, this condition is fulfilled if there exists M > 0 such that for any y ∈ ∂Ω,

∫ D(Ω)

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
≤ M (1.6)

where D(Ω) = diam(Ω). We give also sufficient conditions which ensures that the boundary
value problem (1.1) is stable from the weak*-topology of M(∂Ω) to L1(Ω)∩L1

V φ(Ω). One of the
sufficient conditions is that V ≥ 0 satisfies

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
= 0, (1.7)
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uniformly with respect to y ∈ ∂Ω.

In the supercritical case problem (1.1) cannot be solved for any µ ∈ M(∂Ω). In order to
characterize positive good measures, we introduce a framework of nonlinear analysis which have
been used by Dynkin and Kuznetsov (see [16] and references therein) and Marcus and Véron
[30] in their study of the boundary value problems with measures

{

−∆u+ |u|q−1u = 0 in Ω
u = µ in ∂Ω,

(1.8)

where q > 1. In these works, positive good measures on ∂Ω are completely characterized by the
C2/q,q′-Bessel in dimension N-1 and the following property:

A measure µ ∈ M+(∂Ω) is good for problem (1.8) if and only if it does charge Borel sets
with zero C2/q,q′-capacity, i.e

C2/q,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ ∂Ω, E Borel. (1.9)

Moreover, any positive good measure is the limit of an increasing sequence {µn} of admissible
measures which, in this case, are the positive measures belonging to the Besov space B2/q,q′(∂Ω).
They also characaterize removable sets in terms of C2/q,q′-capacity.

In our present work, and always with V ≥ 0, we use a capacity associated to the Poisson
kernel KΩ and which belongs to a class studied by Fuglede [18] [19]. It is defined by

CV (E) = sup{µ(E) : µ ∈ M+(∂Ω), µ(E
c) = 0, ‖VK[µ]‖L1

φ
≤ 1}, (1.10)

for any Borel set E ⊂ ∂Ω. Furtheremore CV (E) is equal to the value of its dual expression
C∗
V (E) defined by

C∗
V (E) = inf{‖f‖L∞ : Ǩ[f ] ≥ 1 on E}, (1.11)

where

Ǩ[f ](y) =

∫

Ω
KΩ(x, y)f(x)V (x)φ(x)dx ∀y ∈ ∂Ω. (1.12)

If E is a compact subset of ∂Ω, this capacity is explicitely given by

CV (E) = C∗
V (E) = max

y∈E

(∫

Ω
KΩ(x, y)V (x)φ(x)dx

)−1

. (1.13)

We denote by ZV the largest set with zero CV capacity, i.e.

ZV =

{

y ∈ ∂Ω :

∫

Ω
KΩ(x, y)V (x)φ(x)dx = ∞

}

, (1.14)

and we prove the following.

1- If {µn} is an increasing sequence of positive good measures which converges to a measure µ
in the weak* topology, then µ is a good measure.

2- If µ ∈ M+(∂Ω) satisfies µ(ZV ) = 0, then µ is a good measure.
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3- A good measure µ vanishes on ZV if and only if there exists an increasing sequence of positive
admissible measures which converges to µ in the weak* topology.

In section 4 we study relaxation phenomenon in replacing (1.1) by the truncated problem

{

−∆u+ Vku = 0 in Ω
u = µ in ∂Ω.

(1.15)

where {Vk} is an increasing sequence of positive bounded functions which converges to V locally
uniformly in Ω. We adapt to the linear problem some of the principles of the reduced measure.
This notion is introduced by Brezis, Marcus and Ponce [10] in the study of the nonlinear Poisson
equation

−∆u+ g(u) = µ in Ω (1.16)

and extended to the Dirichlet problem
{

−∆u+ g(u) = 0 in Ω
u = µ in ∂Ω,

(1.17)

by Brezis and Ponce [11]. In our construction, problem (1.15) admits a unique solution uk.
The sequence {uk} decreases and converges to some u which satisfies a relaxed boundary value
problem

{

−∆u+ V u = 0 in Ω
u = µ∗ in ∂Ω.

(1.18)

The measure µ∗ is called the reduced measure associated to µ and V . Note that µ∗ is the largest
measure for which the problem

{

−∆u+ V u = 0 in Ω
u = ν ≤ µ in ∂Ω.

(1.19)

admits a solution. This truncation process allows to construct the Poisson kernel KΩ
V associated

to the operator −∆ + V as being the limit of the decreasing limit of the sequence of kernel
functions {KΩ

Vk
} asociated to −∆+ Vk. The solution u = uµ∗ of (1.18) is expressed by

uµ∗(x) =

∫

∂Ω
KΩ

V (x, y)dµ(y) =

∫

∂Ω
KΩ

V (x, y)dµ
∗(y) ∀x ∈ Ω. (1.20)

We define the vanishing set of KΩ
V by

Sing
V
(Ω) = {y ∈ ∂Ω : KΩ

V (x0, y) = 0}, (1.21)

for some x0 ∈ Ω, and thus for any x ∈ Ω by Harnack inequality. We prove

1- Sing
V
(Ω) ⊂ ZV .

2- µ∗ = µχ
Sing

V
(Ω)

.

A challenging open problem is to give conditions on V which imply Sing
V
(Ω) = ZV .

The last section is devoted to the construction of the boundary trace of positive solutions of

−∆u+ V u = 0 in Ω, (1.22)
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assuming V ≥ 0. Using results of [28], we defined the regular set R(u) of the boundary trace
of u. This set is a relatively open subset of ∂Ω and the regular part of the boundary trace is
represented by a positive Radon measure µu on R(u). In order to study the singular set of the
boundary trace S(u) := ∂Ω \ R(u), we adapt the sweeping method introduced by Marcus and
Véron in [29] for equation

−∆u+ g(u) = 0 in Ω. (1.23)

If µ is a good positive measure concentrated on S(u), and uµ is the unique solution of (1.1) with
boundary data µ, we set vµ = min{u, uµ}. Then vµ is a positive super solution which admits a
positive trace γu(µ) ∈ M+(∂Ω). The extended boundary trace Tre(u) of u is defined by

ν(u)(E) := Tre(u)(E) = sup{γu(µ)(E) : µ good, E ⊂ ∂Ω, E Borel}. (1.24)

Then Tre(u) is a Borel measure on Ω. If we assume moreover that

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω, (1.25)

then Tre(u) is a bounded measure and therefore a Radon measure. Finally, if N = 2 and (1.25)
holds, or if N ≥ 3 and there holds

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)(φ(x) − ǫ)2+dx

)

dr

rN+1
= 0, (1.26)

uniformly with respect to ǫ ∈ (0, ǫ0] and y s.t. δΩ(x) := dist (x, ∂Ω) = ǫ, then u = uν(u).

If V (x) ≤ v(φ(x) for some v which satisfies

∫ 1

0
v(t)tdt < ∞, (1.27)

then Marcus and Véron proved in [28] that u = uνu . Actually, when V has such a geometric
form, the assumptions (1.25)-(1.26) and (1.27) are equivalent.

The Appendix, written by A. Ancona, answers a question raised by M. Marcus and L. Véron
in 2005 about the vanishing set of KV when V is nonnegative and δ2ΩV is uniformly bounded.
Such potentials play a very important role in the description of the fine trace of semilinear elliptic
equations as in (1.8 ): actually, for such equations, V = uq−1 satisfies this upper estimate as a
consequence of Keller-Osserman estimate. The following result is proved

Let y ∈ ∂Ω and Cǫ,y := {x ∈ Ω : δΩ(x) ≥ ǫ|x− y|} for 0 < ǫ < 1. If

∫

Cǫ,y

V (x)dx

|x− y|N−2
= ∞, (1.28)

for some ǫ > 0, then y ∈ Sing
V
(Ω).
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2 The subcritical case

In the sequel Ω is a bounded smooth domain in R
N and V ∈ L∞

loc. We denote by φ the first

eigenfunction of −∆ in W 1,2
0 (Ω), φ > 0 with the corresponding eigenvalue λ, by M(∂Ω) the

space of bounded Radon measures on ∂Ω and by M+(∂Ω) its positive cone. For any positive
Radon measure on ∂Ω, we shall denote by the same symbol the corresponding outer regular
bounded Borel measure. Conversely, for any outer regular bounded Borel µ, we denote by the
same expression µ the Radon measure defined on C(∂Ω) by

ζ 7→ µ(ζ) =

∫

∂Ω
ζdµ.

If µ ∈ M(∂Ω), we are concerned with the following problem
{

−∆u+ V u = 0 in Ω
u = µ in ∂Ω.

(2.1)

Definition 2.1 Let µ ∈ M(∂Ω). We say that u is a weak solution of (2.1), if u ∈ L1(Ω),
V u ∈ L1

φ(Ω) and, for any ζ ∈ C1
0 (Ω) with ∆ζ ∈ L∞(Ω), there holds

∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ. (2.2)

In the sequel we put

T (Ω) := {ζ ∈ C1
0 (Ω) such that ∆ζ ∈ L∞(Ω)}.

We recall the following estimates obtained by Brezis [9]

Proposition 2.2 Let µ ∈ L1(∂Ω) and u be a weak solution of problem (2.1). Then there holds

‖u‖L1(Ω) + ‖V+u‖L1
φ
(Ω) ≤ ‖V−u‖L1

φ
(Ω) + c ‖µ‖L1(∂Ω) (2.3)

∫

Ω
(−|u|∆ζ + V |u|ζ) dx ≤ −

∫

∂Ω

∂ζ

∂n
|µ|dS (2.4)

and
∫

Ω
(−u+∆ζ + V u+ζ) dx ≤ −

∫

∂Ω

∂ζ

∂n
µ+dS, (2.5)

for all ζ ∈ T (Ω), ζ ≥ 0.

We denote by KΩ(x, y) the Poisson kernel in Ω and by K[µ] the Poisson potential of µ ∈
M(∂Ω) defined by

K[µ](x) =

∫

∂Ω
KΩ(x, y)dµ(y) ∀x ∈ Ω. (2.6)

Definition 2.3 A measure µ on ∂Ω is admissible if
∫

Ω
K[|µ|](x)|V (x)|φ(x)dx < ∞. (2.7)

It is good if problem (2.1) admits a weak solution.
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We notice that, if there exists at least one admissible positive measure µ, then

∫

Ω
V (x)φ2(x)dx < ∞. (2.8)

Theorem 2.4 Assume V ≥ 0, then problem (2.1) admits at most one solution. Furthermore,
if µ is admissible, then there exists a unique solution that we denote uµ.

Proof. Uniqueness follows from (2.3). For existence we can assume µ ≥ 0. For any k ∈ N∗ set
Vk = inf{V, k} and denote by u := uk the solution of

{

−∆u+ Vk(x)u = 0 in Ω
u = µ on ∂Ω.

(2.9)

Then 0 ≤ uk ≤ K[µ]. By the maximum principle, uk is decreasing and converges to some u, and

0 ≤ Vkuk ≤ VK[µ].

Thus, by dominated convergence theorem Vkuk → V u in L1
φ. Setting ζ ∈ T (Ω) and letting k

tend to infinity in equality

∫

Ω
(−uk∆ζ + Vkukζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ, (2.10)

implies that u satisfies (2.2). �

Remark. If V changes sign, we can put ũ = u+K[µ]. Then (2.1) is equivalent to

{

−∆ũ+ V ũ = VK[µ] in Ω
ũ = 0 in ∂Ω.

(2.11)

This is a Fredholm type problem (at least if the operator φ 7→ R(v) := (−∆)−1(V φ) is compact
in L1

φ(Ω)). Existence will be ensured by orthogonality conditions.

If we assume that V ≥ 0 and
∫

Ω
KΩ(x, y)V (x)φ(x)dx < ∞, (2.12)

for some y ∈ ∂Ω, then δy is admissible. The following result yields to the solvability of (2.1) for
any µ ∈ M+(Ω).

Proposition 2.5 Assume V ≥ 0 and the integrals (2.12) are bounded uniformly with respect to
y ∈ ∂Ω. Then any measure on ∂Ω is admissible.

Proof. If M is the upper bound of these integrals and µ ∈ M+(∂Ω), we have,

∫

Ω
K[µ](x)V (x)φ(x)dx =

∫

∂Ω

(
∫

Ω
KΩ(x, y)V (x)φ(x)dx

)

dµ(y) ≤ Mµ(∂Ω), (2.13)
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by Fubini’s theorem. Thus µ is admissible. �

Remark. Since the Poisson kernel in Ω satisfies the two-sided estimate

c−1 φ(x)

|x− y|N
≤ KΩ(x, y) ≤ c

φ(x)

|x− y|N
∀(x, y) ∈ Ω× ∂Ω, (2.14)

for some c > 0, assumption (2.12) is equivalent to

∫

Ω

V (x)φ2(x)

|x− y|N
dx < ∞. (2.15)

This implies (2.8) in particular. If we set Dy = max{|x− y| : x ∈ Ω}, then

∫

Ω

V (x)φ2(x)

|x− y|N
dx =

∫ Dy

0

(

∫

{x∈Ω:|x−y|=r}
V (x)φ2(x)dSr(x)

)

dr

rN

= lim
ǫ→0





[

r−N

∫

Ω∩Br(y)
V (x)φ2(x)dx

]Dy

ǫ

+N

∫ Dy

ǫ

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1





(both quantity may be infinite). Thus, if we assume

∫ Dy

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
< ∞, (2.16)

there holds

lim inf
ǫ→0

ǫ−N

∫

Ω∩Bǫ(y)
V (x)φ2(x)dS = 0. (2.17)

Consequently

∫

Ω

V (x)φ2(x)

|x− y|N
dx = D−N

y

∫

Ω
V (x)φ2(x)dx+N

∫ Dy

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
. (2.18)

Therefore (2.12) holds and δy is admissible.

As a natural extension of Proposition 2.5, we have the following stability result.

Theorem 2.6 Assume V ≥ 0 and

lim
E Borel

|E| → 0

∫

E
KΩ(x, y)V (x)φ(x)dx = 0 uniformly with respect to y ∈ ∂Ω. (2.19)

If µn is a sequence of positive Radon measures on ∂Ω converging to µ in the weak* topology,
then uµn converges to uµ in L1(Ω) ∩ L1

V φ(Ω) and locally uniformly in Ω.
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Proof. We put uµn := un. By the maximum principle 0 ≤ un ≤ K[µn]. Furthermore, it follows
from (2.3) that

‖un‖L1(Ω) + ‖V un‖L1
φ
(Ω) ≤ c ‖µn‖L1(∂Ω) ≤ C. (2.20)

Since −∆un is bounded in L1
φ(Ω), the sequence {un} is relatively compact in L1(Ω) by the

regularity theory for elliptic equations. Therefore, there exist a subsequence unk
and some

function u ∈ L1(Ω) with V u ∈ L1
φ(Ω) such that unk

converges to u in L1(Ω), almost everywhere
on Ω and locally uniformly in Ω since V ∈ L∞

loc(Ω). The main question is to prove the convergence
of V unk

in L1
φ(Ω). If E ⊂ Ω is any Borel set, there holds

∫

E
unV (x)φ(x)dx ≤

∫

E
K[µn]V (x)φ(x)dx

≤

∫

∂Ω

(
∫

E
KΩ(x, y)V (x)φ(x)dx

)

dµn(y)

≤ Mn max
y∈∂Ω

∫

E
KΩ(x, y)V (x)φ(x)dx,

where Mn := µn(∂Ω). Thus

∫

E
unV (x)φ(x)dx ≤ Mn max

y∈∂Ω

∫

E
KΩ(x, y)V (x)φ(x)dx. (2.21)

Then, by (2.19),

lim
|E|→0

∫

E
unV (x)φ(x)dx = 0.

As a consequence the set of function {unφV } is uniformly integrable. By Vitali’s theorem
V unk

→ V u in L1
φ(Ω). Since

∫

Ω
(−un∆ζ + V unζ) dx = −

∫

∂Ω

∂ζ

∂n
dµn, (2.22)

for any ζ ∈ T (Ω), the function u satisfies (2.2). �

Assumption (2.19) may be difficult to verify and the following result gives an easier formu-
lation.

Proposition 2.7 Assume V ≥ 0 satisfies

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω. (2.23)

Then (2.19) holds.

Proof. If E ⊂ Ω is a Borel set and δ > 0, we put Eδ = E ∩Bδ(y) and Ec
δ = E \Eδ. Then

∫

E

V (x)φ2(x)

|x− y|N
dx =

∫

Eδ

V (x)φ2(x)

|x− y|N
dx+

∫

Ec
δ

V (x)φ2(x)

|x− y|N
dx.
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Clearly
∫

Ec
δ

V (x)φ2(x)

|x− y|N
dx ≤ δ−N

∫

E.
V (x)φ2(x)dx. (2.24)

Since (2.16) holds for any y ∈ ∂Ω, (2.18) implies

∫

Eδ

V (x)φ2(x)

|x− y|N
dx = δ−N

∫

Eδ

V (x)φ2(x)dx+N

∫ δ

0

(

∫

E∩Br(y)
V (x)φ2(x)dx

)

dr

rN+1
. (2.25)

Using (2.23), for any ǫ > 0, there exists s0 > 0 such that for any s > 0 and y ∈ ∂Ω

s ≤ s0 =⇒ N

∫ s

0

(

∫

Br(y)
V (x)φ2(x)dx

)

dr

rN+1
≤ ǫ/2.

We fix δ = s0. Since (2.8) holds,

lim
E Borel
|E| → 0

∫

E
V (x)φ2(x)dx = 0. (2.26)

Then there exists η > 0 such that for any Borel set E ⊂ Ω,

|E| ≤ η =⇒

∫

E
V (x)φ2(x)dx ≤ sN0 ǫ/4.

Thus
∫

E

V (x)φ2(x)

|x− y|N
dx ≤ ǫ.

This implies the claim by (2.14). �

An assumption which is used in [28, Lemma 7.4] in order to prove the existence of a boundary
trace of any positive solution of (1.22) is that there exists some nonnegative measurable function
v defined on R+ such that

|V (x)| ≤ v(φ(x)) ∀x ∈ Ω and

∫ s

0
tv(t)dt < ∞ ∀s > 0. (2.27)

In the next result we show that condition (2.27) implies (2.19).

Proposition 2.8 Assume V satisfies (2.27). Then

lim
E Borel

|E| → 0

∫

E
KΩ(x, y) |V (x)|φ(x)dx = 0 uniformly with respect to y ∈ ∂Ω. (2.28)

Proof. Since ∂Ω is C2, there exist ǫ0 > 0 such that any for any x ∈ Ω satisfying φ(x) ≤ ǫ0, there
exists a unique σ(x) ∈ ∂Ω such that |x− σ(x)| = φ(x). We use (2.23) in Proposition 2.7 under
the equivalent form

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Cr(y)
|V (x)|φ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω, (2.29)
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in which we have replaced Br(y) by the the cylinder Cr(y) := {x ∈ Ω : φ(x) < r, |σ(x)− y| < r}.
Then

∫ ǫ

0

(

∫

Ω∩Cr(y)
|V (x)|φ2(x)dx

)

dr

rN+1
≤ c

∫ ǫ

0

(
∫ r

0
v(t)t2dt

)

dr

r2

≤ c

∫ ǫ

0
v(t)

(

1−
t

ǫ

)

tdt

≤ c

∫ ǫ

0
v(t)tdt.

Thus (2.23) holds. �

3 The capacitary approach

Throughout this section V is a locally bounded nonnegative and measurable function defined
on Ω. We assume that there exists a positive measure µ0 on ∂Ω such that

∫

Ω
K[µ0]V (x)φ(x)dx = E(1, µ0) < ∞. (3.1)

Definition 3.1 If µ ∈ M+(∂Ω) and f is a nonnegative measurable function defined in Ω such
that

(x, y) 7→ K[µ](y)f(x)V (x)φ(x) ∈ L1(Ω× ∂Ω; dx⊗ dµ),

we set

E(f, µ) =

∫

Ω

(
∫

∂Ω
KΩ(x, y)dµ(y)

)

f(x)V (x)φ(x)dx. (3.2)

If we put

ǨV [f ](y) =

∫

Ω
KΩ(x, y)f(x)V (x)φ(x)dx, (3.3)

then, by Fubini’s theorem, ǨV [f ] < ∞, µ-almost everywhere on ∂Ω and

E(f, µ) =

∫

∂Ω

(∫

Ω
KΩ(x, y)f(x)V (x)φ(x)dx

)

dµ(y). (3.4)

Proposition 3.2 Let f be fixed. Then

(a) y 7→ ǨV [f ](y) is lower semicontinuous on ∂Ω.

(b) µ 7→ E(f, µ) is lower semicontinuous on M+(∂Ω) in the weak*-topology

Proof. Since y 7→ KΩ(x, y) is continuous, statement (a) follows by Fatou’s lemma. If µn is a
sequence in M+(∂Ω) converging to some µ in the weak*-topology, then K[µn] converges to K[µ]
everywhere in Ω. By Fatou’s lemma

E(f, µ) ≤ lim inf
n→∞

∫

Ω
K[µn](x)f(x)V (x)φ(x)dx = lim inf

n→∞
E(f, µn).

11
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Notice that if V φf ∈ Lp(Ω), for p > N , then G[V fφ] ∈ C1(Ω) and

Ǩ[f ](y) :=

∫

Ω
KΩ(x, y)V (x)f(x)φ(x)dx = −

∂

∂n
G[V fφ](y). (3.5)

This is in particular the case if f has compact support in Ω.

Definition 3.3 We denote by M
V (∂Ω) the set of all measures µ on ∂Ω such that VK[µ] ∈

L1
φ(Ω). If µ is such a measure, we denote

‖µ‖
MV =

∫

Ω
|K[µ](x)|V (x)φ(x)dx = ‖VK[µ]‖L1

φ
. (3.6)

Clearly ‖ . ‖
MV is a norm. The space MV (∂Ω) is not complete but its positive cone MV

+(∂Ω)
is complete. If E ⊂ ∂Ω is a Borel subset, we put

M+(E) = {µ ∈ M+(∂Ω) : µ(E
c) = 0} and M

V
+(E) = M+(E) ∩M

V (∂Ω).

Definition 3.4 If E ⊂ ∂Ω is any Borel subset we set

CV (E) := sup{µ(E) : µ ∈ M
V
+(E), ‖µ‖

MV ≤ 1}. (3.7)

We notice that (3.7) is equivalent to

CV (E) := sup

{

µ(E)

‖µ‖
MV

: µ ∈ M
V
+(E)

}

. (3.8)

Proposition 3.5 The set function CV satisfies.

CV (E) ≤ sup
y∈E

(
∫

Ω
KΩ(x, y)V (x)φ(x)dx

)−1

∀E ⊂ ∂Ω, E Borel, (3.9)

and equality holds in (3.9) if E is compact. Moreover,

CV (E1 ∪ E2) = sup{CV (E1), CV (E2)} ∀Ei ⊂ ∂Ω, Ei Borel. (3.10)

Proof. Notice that E 7→ CV (E) is a nondecreasing set function for the inclusion relation and
that (3.7) implies

µ(E) ≤ CV (E) ‖µ‖
MV ∀µ ∈ M

V
+(E). (3.11)

Let E ⊂ ∂Ω be a Borel set and µ ∈ M+(E). Then

‖µ‖
MV =

∫

E

(∫

Ω
KΩ(x, y)V (x)φ(x)dx

)

dµ(y)

≥ µ(E) inf
y∈E

∫

Ω
KΩ(x, y)V (x)φ(x)dx.
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Using (3.7) we derive

CV (E) ≤ sup
y∈E

(∫

Ω
KΩ(x, y)V (x)φ(x)dx

)−1

. (3.12)

If E is compact, there exists y0 ∈ E such that

inf
y∈E

∫

Ω
KΩ(x, y)V (x)φ(x)dx =

∫

Ω
KΩ(x, y0)V (x)φ(x)dx,

since y 7→ Ǩ[1](y) is l.s.c.. Thus

‖δy0‖MV = δy0(E)

∫

Ω
KΩ(x, y0)V (x)φ(x)dx

and

CV (E) ≥
δy0(E)

‖δy0‖MV

= sup
y∈E

(
∫

Ω
KΩ(x, y)V (x)φ(x)dx

)−1

.

Therefore equality holds in (3.9). Identity (3.10) follows (3.9) when there is equality. Moreover
it holds if E1 and E2 are two arbitrary compact sets. Since CV is eventually an inner regular
capacity (i.e. CV (E) = sup{CV (K) : K ⊂ E, K compact}) it holds for any Borel set. However
we give below a self-contained proof. If E1 and E2 be two disjoint Borel subsets of ∂Ω, for any
ǫ > 0 there exists µ ∈ M

V
+(E1 ∪ E2) such that

µ(E1) + µ(E2)

‖µ‖
MV

≤ CV (E1 ∪ E2) ≤
µ(E1) + µ(E2)

‖µ‖
MV

+ ǫ.

Set µi = χ
Ei
µ. Then µi ∈ M

V
+(Ei) and ‖µ‖

MV = ‖µ1‖MV + ‖µ2‖MV . By (3.11)

CV (E1 ∪ E2) ≤
‖µ1‖MV

‖µ1‖MV + ‖µ2‖MV

CV (E1) +
‖µ2‖MV

‖µ1‖MV + ‖µ2‖MV

CV (E2) + ǫ (3.13)

This implies that there exists θ ∈ [0, 1] such that

CV (E1 ∪ E2) ≤ θCV (E1) + (1− θ)CV (E2) ≤ max{CV (E1), CV (E2)}. (3.14)

Since CV (E1 ∪ E2) ≥ max{CV (E1), CV (E2)} as CV is increasing,

E1 ∩ E2 = ∅ =⇒ CV (E1 ∪ E2) = max{CV (E1), CV (E2)}. (3.15)

If E1 ∩ E2 6= ∅, then E1 ∪ E2 = E1 ∪ (E2 ∩ Ec
1) and therefore

CV (E1 ∪ E2) = max{CV (E1), CV (E2 ∩ Ec
1)} ≤ max{CV (E1), CV (E2)}.

Using again (3.8) we derive (3.10). �

The following set function is the dual expression of CV (E).
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Definition 3.6 For any Borel set E ⊂ ∂Ω, we set

C∗
V (E) := inf{‖f‖L∞ : Ǩ[f ](y) ≥ 1 ∀y ∈ E}. (3.16)

The next result is stated in [19, p 922] using minimax theorem and the fact that KΩ is lower
semi continuous in Ω × ∂Ω. Although the proof is not explicited, a simple adaptation of the
proof of [1, Th 2.5.1] leads to the result.

Proposition 3.7 For any compact set E ⊂ ∂Ω,

CV (E) = C∗
V (E). (3.17)

In the same paper [19], formula (3.9) with equality is claimed (if E is compact).

Theorem 3.8 If {µn} is an increasing sequence of good measures converging to some measure
µ in the weak* topology, then µ is good.

Proof. We use formulation (4.10). We take for test function the function η solution of
{

−∆η = 1 in Ω
η = 0 on Ω,

(3.18)

there holds
∫

Ω
(1 + V )uµnηdx = −

∫

∂Ω

∂η

∂n
dµn ≤ c−1µn(∂Ω) ≤ c−1µ(∂Ω)

where c > 0 is such that

c−1 ≥ −
∂η

∂n
≥ c on ∂Ω.

Since {uµn} is increasing and η ≤ cφ by Hopf boundary lemma, we can let n → ∞ by the
monotone convergence theorem. If u := limn→∞ uµn , we obtain

∫

Ω
(1 + V ) uηdx ≤ c−1µ(∂Ω).

Thus u and φV u are in L1(Ω). Next, if ζ ∈ C1
0 (Ω) ∩ C1,1(Ω), then uµn |∆ζ| ≤ Cuµn and

V uµn |ζ| ≤ CV uµnη. Because the sequence {uµn} and {V uµnη} are uniformly integrable, the
same holds for {uµn∆ζ} and {V uµnζ}. Considering

∫

Ω
(−uµn∆ζ + V uµnζ) dx = −

∫

∂Ω

∂ζ

∂n
dµn.

it follows by Vitali’s theorem,
∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ.

Thus µ is a good measure. �

We define the singular boundary set ZV by

ZV =

{

y ∈ ∂Ω :

∫

Ω
KΩ(x, y)V (x)φ(x)dx = ∞

}

. (3.19)

Since Ǩ[1] is l.s.c., it is a Borel function and ZV is a Borel set. The next result characterizes the
good measures.
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Proposition 3.9 Let µ be an admissible positive measure. Then µ(ZV ) = 0.

Proof. If K ⊂ ZV is compact, µK = χ
K
µ is admissible, thus, by Fubini theorem

‖µK‖
MV =

∫

K

(∫

Ω
KΩ(x, y)V (x)φ(x)dx

)

dµ(y) < ∞.

Since
∫

Ω
KΩ(x, y)V (x)φ(x)dx ≡ ∞ ∀y ∈ K

it follows that µ(K) = 0. This implies µ(ZV ) = 0 by regularity. �

Theorem 3.10 Let µ ∈ M+(∂Ω) such that

µ(ZV ) = 0. (3.20)

Then µ is good.

Proof. Since Ǩ[1] is l.s.c., for any n ∈ N∗,

Kn := {y ∈ ∂Ω : Ǩ[1](y) ≤ n}

is a compact subset of ∂Ω. Furthermore Kn ∩ ZV = ∅ and ∪Kn = Zc
V . Let µn = χ

Kn
µ, then

E(1, µn) =

∫

Ω
K[µn]V (x)φ(x)dx ≤ nµn(Kn). (3.21)

Therefore µn is admissible. By the monotone convergence theorem, µn ↑ χ
ZV c

µ and by Theo-
rem 3.8, χ

ZV c
µ is good. Since (5.6) holds, χ

ZV c
µ = µ, which ends the proof. �

The full characterization of the good measures in the general case appears to be difficult
without any further assumptions on V . However the following holds

Theorem 3.11 Let µ ∈ M+(∂Ω) be a good measure. The following assertions are equivalent:

(i) µ(ZV ) = 0.

(ii) There exists an increasing sequence of admissible measures {µn} which converges to µ in
the weak*-topology.

Proof. If (i) holds, it follows from the proof of Theorem 3.10 that the sequence {µn} increases and
converges to µ. If (ii) holds, any admissible measure µn vanishes on ZV by Proposition 3.9. Since
µn ≤ µ, there exists an increasing sequence of µ-integrable functions hn such that µn = hnµ.
Then µn(ZV ) increases to µ(ZV ) by the monotone convergence theorem. The conclusion follows
from the fact that µn(ZV ) = 0. �
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4 Representation formula and reduced measures

We recall the construction of the Poisson kernel for −∆+ V : if we look for a solution of

{

−∆v + V (x)v = 0 in Ω
v = ν in ∂Ω,

(4.1)

where ν ∈ M(∂Ω), V ≥ 0, V ∈ L∞
loc(Ω), we can consider an increasing sequence of smooth

domains Ωn such that Ωn ⊂ Ωn+1 and ∪nΩn = ∪nΩn = Ω. For each of these domains, denote
by KΩ

V χ
Ωn

the Poisson kernel of −∆+ V χ
Ωn

in Ω and by KV χ
Ωn

[.] the corresponding operator.

We denote by KΩ := KΩ
0 the Poisson kernel in Ω and by K[.] the Poisson operator in Ω. Then

the solution v := vn of
{

−∆v + V χ
Ωn

v = 0 in Ω
v = ν in ∂Ω,

(4.2)

is expressed by

vn(x) =

∫

∂Ω
KΩ

V χ
Ωn

(x, y)dν(y) = KV χ
Ωn

[ν](x). (4.3)

If GΩ is the Green kernel of −∆ in Ω and G[.] the corresponding Green operator, (4.3) is
equivalent to

vn(x) +

∫

Ω
GΩ(x, y)(V χ

Ωn
vn)(y)dy =

∫

∂Ω
KΩ(x, y)dν(y), (4.4)

equivalently
vn +G[V χ

Ωn
vn] = K[ν].

Notice that this equality is equivalent to the weak formulation of problem (4.2): for any ζ ∈ T (Ω),
there holds

∫

Ω

(

−vn∆ζ + V χ
Ωn

vnζ
)

dx = −

∫

∂Ω

∂ζ

∂n
dν. (4.5)

Since n 7→ KΩ
V χ

Ωn

is decreasing, the sequence {vn} inherits this property and there exists

lim
n→∞

KΩ
V χ

Ωn
(x, y) = KΩ

V (x, y). (4.6)

By the monotone convergence theorem,

lim
n→∞

vn(x) = v(x) =

∫

∂Ω
KΩ

V (x, y)dν(y). (4.7)

By Fatou’s theorem

∫

Ω
GΩ(x, y)V (y)v(y)dy ≤ lim inf

n→∞

∫

Ω
GΩ(x, y)(V χ

Ωn
vn)(y)dy, (4.8)

and thus,

v(x) +

∫

Ω
GΩ(x, y)V (y)v(y)dy ≤ K[ν](x) ∀x ∈ Ω. (4.9)
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Now the main question is to know whether v keeps the boundary value ν. Equivalently, whether
the equality holds in (4.8) with lim instead of lim inf, and therefore in (4.9). This question
is associated to the notion of reduced measured in the sense of Brezis-Marcus-Ponce: since
V v ∈ L1

φ(Ω) and
−∆v + V (x)v = 0 in Ω (4.10)

holds, the function v + G[V v] is positive and harmonic in Ω. Thus it admits a boundary trace
ν∗ ∈ M+(∂Ω) and

v +G[V v] = K[ν∗]. (4.11)

Equivalently v satisfies the relaxed problem

{

−∆v + V (x)v = 0 in Ω
v = ν∗ in ∂Ω,

(4.12)

and thus v = uν∗ . Noticed that ν∗ ≤ ν and the mapping ν 7→ ν∗ is nondecreasing.

Definition 4.1 The measure ν∗ is the reduced measure associated to ν.

Proposition 4.2 There holds KV [ν] = KV [ν
∗]. Furthermore the reduced measure ν∗ is the

largest measure for which the following problem







−∆v + V (x)v = 0 in Ω
λ ∈ M+(∂Ω), λ ≤ ν

v = λ in ∂Ω,
(4.13)

admits a solution.

Proof. The first assertion follows from the fact that v = KV [ν] by (4.6) and v = uν∗ = KV [ν
∗]

by (4.12). It is clear that ν∗ ≤ ν and that the problem (4.13) admits a solution for λ = ν∗. If
λ is a positive measure smaller than µ, then λ∗ ≤ µ∗. But if there exist some λ such that the
problem (4.13) admits a solution, then λ = λ∗. This implies the claim. �

As a consequence of the characterization of ν∗ there holds

Corollary 4.3 Assume V ≥ 0 and let {Vk} be an increasing sequence of nonnegative bounded
measurable functions converging to V a.e. in Ω. Then the solution uk of

{

−∆u+ Vku = 0 in Ω
u = ν in ∂Ω,

(4.14)

converges to uν∗.

Proof. The previous construction shows that uk = KVk
[ν] decreases to some ũ which satisfies

a relaxed equation, the boundary data of which, ν̃∗, is the largest measure λ ≤ ν for which
problem (4.13) admits a solution. Therefore ν̃∗ = ν∗ and ũ = uν∗ . Similarly {KΩ

Vk
} decreases

and converges to KΩ
V . �

We define the boundary vanishing set of KΩ
V by
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Sing
V
(Ω) := {y ∈ ∂Ω |KΩ

V (x, y) = 0} for some x ∈ Ω. (4.15)

Since V ∈ L∞
loc(Ω), Sing

V
(Ω) is independent of x by Harnack inequality; furthermore it is a Borel

set. This set is called the set of finely irregular boundary points by E. B. Dynkin; the reason for
such a denomination will appear in the Appendix.

Theorem 4.4 Let ν ∈ M+(∂Ω).

(i) If ν((Sing
V
(Ω))c) = 0, then ν∗ = 0.

(ii) There always holds Sing
V
(Ω) ⊂ ZV .

Proof. The first assertion is clear since ν = χ
Sing

V
(Ω)

ν + χ
Sing

V
(Ω))c

ν = χ
Sing

V
(Ω)

ν and, by

Proposition 4.2,

uν∗(x) = KV [ν
∗](x) =

∫

Sing
V
(Ω)

KΩ
V (x, y)dν(y) = 0 ∀x ∈ Ω,

by definition of Sing
V
(Ω). For proving (ii), we assume that CV (Sing

V
(Ω)) > 0; there exists

µ ∈ M
V
+(Sing

V
(Ω)) such that µ(Sing

V
(Ω)) > 0. Since µ is admissible let uµ be the solution of

(1.1). Then µ∗ = µ, thus uµ = K
V [µ] and

K
V [µ](x) =

∫

∂Ω
KΩ

V (x, y)dµ(y) =

∫

Sing
V
(Ω)

KΩ
V (x, y)dµ(y) = 0,

contradiction. Thus CV (Sing
V
(Ω)) = 0. Since (3.9) implies that ZV is the largest Borel set with

zero CV -capacity, it implies Sing
V
(Ω) ⊂ ZV . �

In order to obtain more precise informations on Sing
V
(Ω) some minimal regularity assump-

tions on V are needed. We also recall the following result due to Ancona [6] and developed in
the appendix of the present work.

Theorem 4.5 Assume V ≥ 0 satisfies δ2ΩV ∈ L∞(Ω). If for some y ∈ ∂Ω and some cone Cy

with vertex y such that Cy ∩Br(y) ⊂ Ω ∪ {y} for some r > 0 there holds

∫

Cy

V (x)

|x− y|N−2
dx = ∞, (4.16)

then
KΩ

V (x, y) = 0 ∀x ∈ Ω. (4.17)

This means that (4.16 ) implies that y belongs to Sing
V
(Ω). Set δΩ(x) = dist (x, ∂Ω). We define

the conical singular boundary set

Z̃V =

{

y ∈ ∂Ω :

∫

Cǫ,y
KΩ(x, y)V (x)φ(x)dx = ∞ for some ǫ > 0

}

(4.18)

where Cǫ,y := {x ∈ Ω : δΩ(x) ≥ ǫ|x− y|}. Clearly Z̃V ⊂ ZV .
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Corollary 4.6 Assume V ≥ 0 satisfies δ2ΩV ∈ L∞(Ω). Then Z̃V ⊂ Sing
V
(Ω).

Proof. Let y ∈ Z̃V . Since there exists c > 0 such that

c−1V (x)|x− y|2−N ≤ KΩ(x, y)V (x)φ(x) ≤ cV (x)|x− y|2−N ∀x ∈ Cǫ,y (4.19)

the result follows immediately from (4.16 ), (4.18 ). �

Remark. In situations coming from the nonlinear equation −∆u+ |u|q−1u = 0 in Ω with q > 1,
V = |u|q−1 not only satisfies gd2ΩV ∈ L∞(Ω) but also the restricted oscillation condition: for
any y ∈ ∂Ω and any open cone Cy with vertex y such that Cy ⋐ Ω, there exists c > 0 such that

∀(x, z) ∈ Cy × Cy, |x− y| = |z − y| =⇒ c−1 ≤
V (x)

V (z)
≤ c. (4.20)

It is a consequence of the Keller-Osserman estimate and Harnack inequality. In this case condi-
tion (4.16 ) is equivalent to

∫ 1

0
V (γ(t))tdt = ∞, (4.21)

at least for one path γ ∈ C0,1([0, 1]) such that γ(0) = y and γ((0, 1] ⊂ Cy for some cone Cy ⋐ Ω.

5 The boundary trace

5.1 The regular part

In this section, V ∈ L∞
loc(Ω) is nonnegative. If 0 < ǫ ≤ ǫ0, we denote δΩ(x) = dist (x, ∂Ω) for

x ∈ Ω, and set Ωǫ := {x ∈ Ω : δΩ(x) > ǫ}, Ω′
ǫ = Ω \ Ωǫ and Σǫ = ∂Ωǫ. It is well known that

there exists ǫ0 such that, for any 0 < ǫ ≤ ǫ0 and any x ∈ Ω′
ǫ there exists a unique projection

σ(x) of x on ∂Ω and any x ∈ Ω′
ǫ can be written in a unique way under the form

x = σ(x)− δΩ(x)n

where n is the outward normal unit vector to ∂Ω at σ(x). The mapping x 7→ (δΩ(x), σ(x)) is a
C2 diffeomorphism from Ω′

ǫ to (0, ǫ0]× ∂Ω. We recall the following definition given in [28]. If A
is a Borel subset of ∂Ω, we set Aǫ = {x ∈ Σǫ : σ(x) ∈ A}.

Definition 5.1 Let A be a relatively open subset of ∂Ω, {µǫ} be a set of Radon measures on Aǫ

(0 < ǫ ≤ ǫ0) and µ ∈ M(A). We say that µǫ ⇀ µ in the weak*-topology if, for any ζ ∈ Cc(A),

lim
ǫ→0

∫

Aǫ

ζ(σ(x))dµǫ(x) =

∫

A
ζdµ. (5.1)

A function u ∈ C(Ω) possesses a boundary trace µ ∈ M(A) if

lim
ǫ→0

∫

Aǫ

ζ(σ(x))u(x)dS(x) =

∫

A
ζdµ ∀ζ ∈ Cc(A). (5.2)

The following result is proved in [28, p 694].
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Proposition 5.2 Let u ∈ C(Ω) be a positive solution of

−∆u+ V (x)u = 0 in Ω. (5.3)

Assume that, for some z ∈ ∂Ω, there exists an open neighborhood U of z such that

∫

U∩Ω
V uφ(x)dx < ∞. (5.4)

Then u ∈ L1(K ∩ Ω) for any compact subset K ⊂ G and there exists a positive Radon measure
µ on A = U ∩ ∂Ω such that

lim
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) =

∫

A
ζdµ ∀ζ ∈ Cc(U ∩ Ω). (5.5)

Notice that any continuous solution of (5.3) in Ω belongs to W 2,p
loc (Ω) for any (1 ≤ p < ∞).

This previous result yields to a natural definition of the regular boundary points.

Definition 5.3 Let u ∈ C(Ω) be a positive solution of (5.3). A point z ∈ ∂Ω is called a regular
boundary point for u if there exists an open neighborhood U of z such that (5.5) holds. The
set of regular boundary points is a relatively open subset of ∂Ω, denoted by R(u). The set
S(u) = ∂Ω \ R(u) is the singular boundary set of u. It is a closed set.

By Proposition 5.2 and using a partition of unity, we see that there exists a positive Radon
measure µ := µu on R(u) such that (5.5) holds with U replaced by R(u). The couple (µu,S(u))
is called the boundary trace of u. The main question of the boundary trace problem is to
analyse the behaviour of u near the set S(u).

For any positive good measure µ on ∂Ω, we denote by uµ the solution of (4.1) defined by
(4.10)-(4.11).

Proposition 5.4 Let u ∈ C(Ω) ∩W 2,p
loc (Ω) for any (1 ≤ p < ∞) be a positive solution of (5.3)

in Ω with boundary trace (µu,S(u)). Then u ≥ uµu .

Proof. Let G ⊂ ∂Ω be a relatively open subset such that G ⊂ R(u) with a C2 relative boundary
∂∗G = G \ G. There exists an increasing sequence of C2 domains Ωn such that G ⊂ ∂Ωn,
∂Ωn \G ⊂ Ω and ∪nΩn = Ω. For any n, let v := vn be the solution of

{

−∆v + V v = 0 in Ωn

v = χ
G
µ in ∂Ωn.

(5.6)

Let un be the restriction of u to Ωn. Since u ∈ C(Ω) and V uφ ∈ L1(Ωn), there also holds
V uφn ∈ L1(Ωn) where we have denoted by φn the first eigenfunction of −∆ in W 1,2

0 (Ωn).
Consequently un admits a regular boundary trace µn on ∂Ωn (i.e. R(un) = ∂Ωn) and un is the
solution of

{

−∆v + V v = 0 in Ωn

v = µn in ∂Ωn.
(5.7)
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Furthermore µn|G = χ
G
µu. It follows from Brezis estimates and in particular (2.5) that un ≤ u

in Ωn. Since Ωn ⊂ Ωn+1, vn ≤ vn+1. Moreover

vn +G
Ωn [V vn] = K

Ωn [χ
G
µ] in Ωn.

Since KΩn [χ
G
µu] → K

Ω[χ
G
µu], and the Green kernels GΩn(x, y) are increasing with n, it follows

from monotone convergence that vn ↑ v and there holds

v +G
Ω[V v] = K

Ω[χ
G
µu] in Ω.

Thus v = uχ
G
µu and uχ

G
µu ≤ u. We can now replace G by a sequence {Gk} of relatively open

sets with the same properties as G, Gk ⊂ Gk and ∪kGk = R(u). Then {uχ
Gk

µu} is increasing

and converges to some ũ. Since

uχ
Gk

µu +G
Ω[V uχ

Gk
µu ] = K

Ω[χ
Gk

µu],

and K
Ω[χ

Gk
µ] ↑ K

Ω[µu], we derive

ũ+G
Ω[V ũ] = K

Ω[µu].

This implies that ũ = uµu ≤ u. �

5.2 The singular part

The following result is essentially proved in [28, Lemma 2.8].

Proposition 5.5 Let u ∈ C(Ω) for any (1 ≤ p < ∞) be a positive solution of (5.3) and suppose
that z ∈ S(u) and that there exists an open neighborhood U0 of z such that u ∈ L1(Ω ∩ U0).
Then for any open neighborhood U of z, there holds

lim
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) = ∞. (5.8)

As immediate consequences, we have

Corollary 5.6 Assume u satisfies the regularity assumption of Proposition 5.4. Then for any
z ∈ S(u) and any open neighborhood U of z, there holds

lim sup
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) = ∞. (5.9)

Corollary 5.7 Assume u satisfies the regularity assumption of Proposition 5.4. If u ∈ L1(Ω),
Then for any z ∈ S(u) and any open neighborhood U of z, (5.8) holds.

The two next results give conditions on V which imply that S(u) = ∅.

Theorem 5.8 Assume N = 2, V is nonnegative and satisfies (2.19). If u is a positive solution
of (5.3), then R(u) = ∂Ω.
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Proof. We assume that
∫

Ω
V φudx = ∞. (5.10)

If 0 < ǫ ≤ ǫ0, we denote by (φǫ, λǫ) are the normalized first eigenfunction and first eigenvalue of
−∆ in W 1,2

0 (Ωǫ), then

lim
ǫ→0

∫

Ωǫ

V φǫudx = ∞. (5.11)

Because
∫

Ωǫ

(λǫ + φǫV )udx = −

∫

∂Ωǫ

∂φǫ

∂n
udS,

and

c−1 ≤ −
∂φǫ

∂n
≤ c,

for some c > 1 independent of ǫ, there holds

lim
ǫ→0

∫

∂Ωǫ

udS = ∞. (5.12)

Denote by mǫ this last integral and set vǫ = m−1
ǫ u and µǫ = m−1

ǫ u|∂Ωǫ
. Then

vǫ +G
Ωǫ [V vǫ] = K

Ωǫ [µǫ] in Ωǫ (5.13)

where

K
Ωǫ [µǫ](x) =

∫

∂Ωǫ

KΩǫ(x, y)µǫ(y)dS(y) (5.14)

is the Poisson potential of µǫ in Ωǫ and

G
Ωǫ [V u](x) =

∫

Ωǫ

GΩǫ(x, y)V (y)u(y)dy,

the Green potential of V u in Ωǫ. Furthermore

{

−∆vǫ + V vǫ = 0 in Ωǫ

vǫ = µǫ in ∂Ωǫ.
(5.15)

By Brezis estimates and regularity theory for elliptic equations, {χ
Ωǫ
vǫ} is relatively compact

in L1(Ω) and in the local uniform topology of Ωǫ. Up to a subsequence {ǫn}, µǫn converges to
a probability measure µ on ∂Ω in the weak*-topology. It is classical that

K
Ωǫn [µǫn ] → K[µ]

locally uniformly in Ω, and χ
Ωǫn

vǫn → v in the local uniform topology of Ω, and a.e. in Ω.

Because GΩǫ(x, y) ↑ GΩ(x, y), there holds for any x ∈ Ω

lim
n→∞

χΩǫn
(y)GΩǫn (x, y)V (y)vǫn(y) = GΩ(x, y)V (y)v(y) for almost all y ∈ Ω (5.16)
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Furthermore vǫn ≤ K
Ωǫn [µǫn ] reads

vǫn(y) ≤ cφǫn(y)

∫

∂Ωn

µǫn(z)dS(z)

|y − z|2
.

In order to go to the limit in the expression

Ln := G
Ωǫn [V vǫn ](x) =

∫

Ω
χ

Ωǫn
(y)GΩǫn (x, y)V (y)vǫn(y)dy, (5.17)

we may assume that x ∈ Ωǫ1 where 0 < ǫ1 ≤ ǫ0 is fixed and write Ω = Ωǫ1 ∪Ω′
ǫ1 where

Ω′
ǫ1 = Ω \Ωǫ1 := {x ∈ Ω : dist (x, ∂Ω) ≤ ǫ1}

and Ln = Mn + Pn where

Mn =

∫

Ωǫ1

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy (5.18)

and

Pn =

∫

Ω′
ǫ1

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy. (5.19)

Since
χ

Ωǫ1
(y)GΩǫn (x, y)V (y)vǫn(y) ≤ cχ

Ωǫ1
(y) |ln(|x− y|)|V (y)vǫn(y)

≤ c ‖V ‖L∞(Ωǫ1 )
χ

Ωǫ1
(y) |ln(|x− y|)| vǫn(y),

it follows by the dominated convergence theorem that

lim
n→∞

Mn =

∫

Ωǫ1

GΩ(x, y)V (y)v(y)dy. (5.20)

Let E ⊂ Ω be a Borel subset. Then GΩǫn (x, y) ≤ c(x)φǫn(y) if y ∈ Ω′
ǫ1 . By Fubini,

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x)

∫

∂Ωn

(

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
φ2
ǫn(y)V (y)

|y − z|2
dy

)

µǫn(z)dS(z)

≤ cc(x) max
z∈∂Ωǫn

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
φ2
ǫn(y)V (y)

|y − z|2
dy

(5.21)
If y ∈ Ωǫn ∩ E, there holds φ(y) = φǫn(y) + ǫn. If z ∈ ∂Ωǫn ∩ E and we denote by σ(z) the
projection of z onto ∂Ω, there holds |y − σ(z)| ≤ |y − z|+ ǫn. By monotonicity

φǫn(y)

|y − z|
≤

φǫn(y) + ǫn
|y − z|+ ǫn

≤
φ(y)

|y − σ(z)|
, (5.22)

thus
∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max
z∈∂Ω

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
φ2(y)V (y)

|y − z|2
dy. (5.23)
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By (2.19) this last integral goes to zero if
∣

∣Ω′
ǫ1 ∩ E ∩Ωǫn

∣

∣ → 0. Thus by Vitali’s theorem,
the sequence of functions {χ

Ωǫn
(.)GΩǫn (x, .)V (y)vǫn(.)}n∈N is uniformly integrable in y, for any

x ∈ Ω. It implies that

lim
n→∞

∫

Ω
χΩǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy =

∫

Ω
GΩ(x, y)V (y)v(y)dy, (5.24)

and there holds v + G[V v] = K[µ]. Since u = mǫvǫ in Ω and mǫ → ∞, we get a contradiction
since it would imply u ≡ ∞. �

In order to deal with the case N ≥ 3 we introduce an additionnal assumption of stability.

Theorem 5.9 Assume N ≥ 3. Let V ∈ L∞
loc(Ω), V ≥ 0 such that

lim
E Borel

|E| → 0

∫

E
V (y)

(φ(y) − ǫ)2+
|y − z|N

dy = 0 uniformly with respect to z ∈ Σǫ and ǫ ∈ (0, ǫ0]. (5.25)

If u is a positive solution of (5.3), then R(u) = ∂Ω.

Proof. We proceed as in Theorem 5.8. All the relations (5.10)-(5.20) are valid and (5.21) has to
be replaced by

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max
z∈Σǫn

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
φ2
ǫn(y)V (y)

|y − z|N+1
dy. (5.26)

Since (5.22) is no longer valid, (5.22) is replaced by

∫

Ω′
ǫ1
∩E

χΩǫn
(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max

z∈Σǫn

∫

E
V (y)

(φ(y)− ǫn)
2
+

|y − z|N+1
dy. (5.27)

By (5.25) the left-hand side of (5.27) goes to zero when |E| → 0, uniformly with respect to
ǫn. This implies that (5.24) is still valid and the conclusion of the proof is as in Theorem 5.8.
�

Remark. A simpler statement which implies (5.25) is the following.

lim
δ→0

∫ δ

0

(

∫

Br(z)
V (y)(φ(y) − ǫ)2+dy

)

dr

rN+1
= 0, (5.28)

uniformly with respect to 0 < ǫ ≤ ǫ0 and to z ∈ Σǫ. The proof is similar to the one of
Proposition 2.7.

Remark. When the function V depends essentially of the distance to ∂Ω in the sense that

|V (x)| ≤ v(φ(x)) ∀x ∈ Ω, (5.29)

and v satisfies
∫ a

0
tv(t)dt < ∞, (5.30)

Marcus and Véron proved [28, Lemma 7.4] that R(u) = ∂Ω, for any positive solution u of (5.3).
This assumption implies also (5.25). The proof is similar to the one of Proposition 2.8.
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5.3 The sweeping method

This method introduced in [32] for analyzing isolated singularities of solutions of semilinear
equations has been adapted in [25] and [29] for defining an extended trace of positive solutions
of differential inequalities in particular in the super-critical case. Since the boundary trace
of a positive solutions of (5.3) is known on R(u) we shall study the sweeping with measure
concentrated on the singular set S(u)

Proposition 5.10 Let u ∈ C(Ω) be a positive solution of (5.3) with singular boundary set S(u).
If µ ∈ M+(S(u)) we denote vµ = inf{u, uµ}. Then

−∆vµ + V (x)vµ ≥ 0 in Ω, (5.31)

and vµ admits a boundary trace γu(µ) ∈ M+(S(u)). The mapping µ 7→ γu(µ) is nondecreasing
and γu(µ) ≤ µ.

Proof. By [33], (5.31) holds. But V uµ ∈ L1
φ(Ω) =⇒ V vµ ∈ L1

φ(Ω), if we set w := G[V vµ], then
vµ + w is nonnegative and super-harmonic, thus it admits a boundary trace in M+(∂Ω) that
we denote by γu(µ). Clearly γu(µ) ≤ µ since vµ ≤ uµ and γu(µ) is nondeacreasing with µ as
µ 7→ uµ is. Finally, since vµ is a supersolution, it is larger that the solution of (5.3) with the
same boundary trace γu(µ), and there holds

uγu(µ) ≤ vµ. (5.32)

Proposition 5.11 Let
ν
S
(u) := sup{γu(µ) : µ ∈ M+(S(u))}. (5.33)

Then ν
S
(u) is a Borel measure on S(u).

Proof. We borrow the proof to Marcus-Véron [29], and we naturally extend any positive Radon
measure to a positive bounded and regular Borel measure by using the same notation. It is clear
that ν

S
(u) := ν

S
is an outer measure in the sense that

ν
S
(∅) = 0, and ν

S
(A) ≤

∞
∑

k=1

ν(Ak), whenever A ⊂
∞
⋃

k=1

Ak. (5.34)

Let A and B ⊂ S(u) be disjoint Borel subsets. In order to prove that

ν
S
(A ∪B) = ν

S
(A) + ν

S
(B), (5.35)

we first notice that the relation holds if max{ν
S
(A), ν

S
(B)} = ∞. Therefore we assume that

ν
S
(A) and ν

S
(B) are finite. For ε > 0 there exist two bounded positive measures µ1 and µ2 such

that
γu(µ1)(A) ≤ ν(A) ≤ γu(µ1)(A) + ε/2

and
γu(µ2)(B) ≤ ν(B) ≤ γu(µ2)(B) + ε/2
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Hence
ν
S
(A) + ν

S
(B) ≤ γu(µ1)(A) + γu(µ2)(B) + ε

≤ γu(µ1 + µ2)(A) + γu(µ1 + µ2)(B) + ε
= γu(µ1 + µ2)(A ∪B) + ε
≤ ν

S
(A ∪B) + ε.

Therefore ν
S
is a finitely additive measure. If {Ak} (k ∈ N) is a sequence of of disjoint Borel

sets and A = ∪Ak, then

ν
S
(A) ≥ ν

S





⋃

1≤k≤n

Ak



 =

n
∑

k=1

ν
S
(Ak) =⇒ ν

S
(A) ≥

∞
∑

k=1

ν
S
(Ak).

By (5.34), it implies that ν
S
is a countably additive measure. �

Definition 5.12 The Borel measure ν(u) defined by

ν(u)(A) := ν
S
(A ∩ S(u)) + µu(A ∩R(u)), ∀A ⊂ ∂Ω, A Borel, (5.36)

is called the extended boundary trace of u, denoted by Tre(u).

Proposition 5.13 If A ⊂ S(u) is a Borel set, then

ν
S
(A) := sup{γu(µ)(A) : µ ∈ M+(A)}. (5.37)

Proof. If λ, λ′ ∈ M+(S(u))

inf{u, uλ+λ′} = inf{u, uλ + uλ′} ≤ inf{u, uλ}+ inf{u, uλ′}.

Since the three above functions admit a boundary trace, it follows that

γu(λ+ λ′) ≤ γu(λ) + γu(λ
′).

If A is a Borel subset of S(u), then µ = µA + µAc where µA = χ
E
µ. Thus

γu(µ) ≤ γu(µA) + γu(µAc),

and
γu(µ)(A) ≤ γu(µA)(A) + γu(µAc)(A).

Since γu(µAc) ≤ µAc and µAc(A) = 0, it follows

γu(µ)(A) ≤ γu(µA)(A).

But µA ≤ µ, thus γu(µA) ≤ γu(µ) and finally

γu(µ)(A) = γu(µA)(A). (5.38)

If µ ∈ M+(A), µ = µA, thus (5.37) follows. �
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Proposition 5.14 There always holds

ν(u)(Sing
V
(Ω)) = 0, (5.39)

where Sing
V
(Ω) is the vanishing set of KΩ

V (x, .) defined by (4.15).

Proof. This follows from the fact that for any µ ∈ M+(∂Ω) concentrated on SingV (Ω), uµ = 0.
Thus γu(µ) = 0. If µ is a general measure, we can write µ = χ

Sing
V

(Ω)
µ + χ

(Sing
V

(Ω))c
µ, thus

uµ = uχ
(Sing

V
(Ω))c

µ. Because of (5.32)

γu(µ)(Sing
V
(Ω)) = γu(χ(Sing

V
(Ω))c

µ)(Sing
V
(Ω)) ≤ (χ

(Sing
V

(Ω))c
µ)(Sing

V
(Ω)) = 0,

thus (5.39) holds. �

Remark. This process for determining the boundary trace is ineffective if there exist positive
solutions u in Ω such that

lim
δΩ(x)→0

u(x) = ∞.

This is the case if Ω = BR and V (x) = c(R − |x|)−2 (c > 0). In this case KΩ
V (x, .) ≡ 0. For any

a > 0, there exists a radial solution of

−∆u+
cu

(R− |x|)2
= 0 in BR (5.40)

under the form

u(r) = ua(r) = a+ c

∫ r

0
s1−N

∫ s

0
u(t)

tN−1dt

(R − t)2
. (5.41)

Such a solution is easily obtained by fixed point, u(0) = a and the above formula shows that ua
blows up when r ↑ R. We do not know if there a exist non-radial positive solutions of (5.40).
More generaly, if Ω is a smooth bounded domain, we do not know if there exists a non trivial
positive solution of

−∆u+
c

d2(x)
u = 0 in Ω. (5.42)

Theorem 5.15 Assume V ≥ 0 and satisfies (2.19). If u is a positive solution of (5.3), then
Tre(u) = ν(u) is a bounded measure.

Proof. Set ν = ν(u) and assume ν(∂Ω) = ∞. By dichotomy there exists a decreasing sequence
of relatively open domains Dn ⊂ ∂Ω such that Dn ⊂ Dn−1, diamDn = rn → 0 as n → ∞, and
ν(Dn) = ∞. For each n, there exists a Radon measure µn ∈ M+(Dn) such that γu(µn)(Dn) = n,
and

u ≥ vµn = inf{u, uµn} ≥ uγu(µn).

Set mn = n−1γu(µn), then mn ∈ M+(Dn) has total mass 1 and it converges in the weak*-
topology to δa, where {a} = ∩nDn. By Theorem 2.6, umn converges to uδa . Since u ≥ numn , it
follows that

u ≥ lim
n→∞

numn = ∞,
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a contradiction. Thus ν is a bounded Borel measure (and thus outer regular) and it corresponds
to a unique Radon measure. �

Remark. If N = 2, it follows from Theorem 5.8 that u = uν and thus the extended boundary
trace coincides with the usual boundary trace. The same property holds if N ≥ 3, if (5.25)
holds.

A Appendix: A necessary condition for the fine regularity of a

boundary point with respect to a Schrödinger equation

by Alano Ancona2

This appendix is devoted to the derivation of a sufficient condition –stated in Theorem A.1
below (section A1)– for the fine singularity of a boundary point of a Lipschitz domain with
respect to a potential V . This theorem answers a question communicated by Moshe Marcus
and Laurent Véron to the author –and related to the work [30] by Marcus and Véron-. The
expounded proof goes back to the unpublished manuscript [6]. In a forthcoming paper other
criterions for fine regularity will be given – in particular a simple explicit necessary and sufficient
condition for the fine regularity of a boundary point and a criteria for having almost everywhere
regularity in a subset of the boundary.

The exposition can be read independently of the above paper of L. Véron and C. Yarur. The
few notions necessary to the statement of Theorem A.1 are recalled in section A1. Section A2
is devoted to some known basic preliminary results and the proof of Theorem A.1 is given in
section A3.

Acknowledgment. The author is grateful to Moshe Marcus and Laurent Véron for bringing
to his attention their motivating question.

A.1 Framework, notations and main result

Let Ω be a bounded Lipschitz domain in R
N . Denote δΩ(x) := d(x;RN \ Ω) the distance from

x to the complement of Ω in R
N and for a > 0, let V(Ω, a) denote the set of all nonnegative

measurable function V : Ω → R such that V (x) ≤ a/(δΩ(x))
2 in Ω. We also let x0 to denote a

fixed reference point in Ω.
For V ∈ V(a,Ω), we will consider the Schrödinger operator LV := ∆ − V associated with

the potential V . Here ∆ is the classical Laplacian in R
N .

The kernels Ky, K̃
V
y and KV

y . It is well known ([22], [23]) that to each point y ∈ ∂Ω corresponds
a unique positive harmonic function Ky in Ω that vanishes on ∂Ω and satisfies the normalization
condition Ky(x0) = 1. This function is the Martin kernel w.r. to the Laplacian in Ω with pole
at y and normalized at x0. It may also be seen as a Poisson kernel with respect to ∆ in Ω.
The function Ky is obviously superharmonic in Ω with respect to LV and we may hence consider
its greatest LV -harmonic minorant K̃V

y in Ω defining hence another kernel function at y.

2Département de Mathématiques, Bâtiment 425, Université Paris-Sud 11, Orsay 91405 France

Email address: alano.ancona@math.u-psud.fr
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By the results in [4] (see paragraph A2 below) it is also known that for each y ∈ ∂Ω there
exists a unique positive LV -harmonic function KV

y in Ω that vanishes on ∂Ω \ {y} and satisfies

KV
y (x0) = 1. Thus K̃V

y = cy K
V
y with cy = K̃V

y (x0). Here a function u : Ω → R is LV -harmonic
if u is the continuous representative of a weak solution u of LV (u) = 0 (so u ∈ H1

loc(Ω) by

assumption and necessarily u ∈ W 2,p
loc (Ω) for all p < ∞).

The set of “finely” regular boundary points with respect to LV in Ω is

Reg
V
(Ω) := {y ∈ ∂Ω ; K̃V

y > 0} = {y ∈ ∂Ω ; cy > 0 } (A.1)

-since c is u.s.c. this is a Kσ subset of ∂Ω- and the set of “finely” irregular boundary points
is Sing

V
(Ω) := ∂Ω \ Reg

V
(Ω). These notions were introduced by E. B. Dynkin in his study of

positive solutions in Ω of a non linear equation such as ∆u = uq, q > 1 -in which case, given u,
we recover Dynkin’s definition on taking V = |u|q−1. See the books [16], [17] of E. B. Dynkin
and the references there. From the probabilistic point of view, a boundary point y ∈ ∂Ω is LV

finely regular iff for the Brownian motion {ξs}0≤s<τ starting say at x0 and conditioned to exit
from Ω at y, it holds that

∫ τ
0 V (ξs) ds < +∞ a.s., or in other words, iff the probability for this

process to reach y when killed at the rate e−V (ξs) ds is strictly positive.
Let us now state Theorem A.1. It answers the question (2005) of Marcus-Véron alluded to

above: suppose that for sufficiently many Lipschitz path (resp. every linear path) γ : [0, η] → Ω
such that γ(0) = y and d(γ(t), ∂Ω) ≥ c |γ(t)− y| for 0 ≤ t ≤ η and some c > 0, it holds that

∫ η

0
t V (γ(t)) dt = +∞;

does it follow that y is finely singular w.r. to V and Ω ?

Theorem A.1 Let y ∈ ∂Ω and let Cǫ,y := {x ∈ Ω ; δΩ(x) ≥ ε d(x, y)} for 0 < ε < 1. If
∫

Cǫ,y

V (x)
dx

|x− y|N−2
= +∞ (A.2)

for some ε > 0, then y ∈ Sing
V
(Ω).

A.2 Boundary Harnack principle for LV

To prove Theorem A.1 we will rely on the main result of [4] (see also [5]) in well-known forms
more or less explicit in [4] (see e.g. Theorem 5′ and Corollary 27 there) or [5]. In this section we
state these needed ancillary results and fix some notations to be used in what follows.

Fix positive reals r, ρ > 0 such that 0 < 10 r < ρ and let f be a ρ
10r lipschitz function in the

ball BN−1(0, r) of R
N−1 – we let BN−1(m, s) to denote the ball in R

N−1 of center m and radius
r–. Define then the region Uf (r, ρ) in R

N as follows

Uf (r, ρ) := {(x′, xN ) ∈ R
N−1 × R ≃ R

N ; |x′| < r, f(x′) < xN < ρ } (A.3)

We will also denote it U (leaving f , r and ρ implicit) when convenient. Set ∂#U := ∂U ∩ {x =
(x′, xN ) ∈ R

N ; |x′| ≤ r, xN = f(x′) } and define T (t) := BN−1(0; tr) × (−tρ,+tρ) .
Recall Va(U) is the set of all Borel nonnegative functions V in U such that V (x) ≤ a

δ(x)2
for

x ∈ U . For V Hölder continuous (in fact for a natural class of second order elliptic operators)
the following statement goes back to [2]. See also [13] for V = 0.
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Lemma A.2 Let V ∈ Va(U) and set LV := ∆ − V . There is a constant C depending only on
N , a and ρ

r such that for any two positive LV -harmonic functions u and v in U that vanish on
∂#U ,

u(x)

u(A)
≤ C

v(x)

v(A)
for all x ∈ U ∩ T (

1

2
) (A.4)

where A = AU = (0, . . . , 0, ρ2 ).

Proof. Let us briefly recall -for readers convenience- how this lemma follows from Theorem 1
in [4]. By homogeneity we may assume that r = 1 and that ρ is fixed. Let A′ = (0, . . . , 0, 2ρ3 )
and let BN denote the open ball BN (0, 1) in R

N . It is easy to construct a bi-Lipschitz map F :
U → BN (0, 1) with a bi-lipschitz constant depending only on ρ and N and which maps A′ onto
0, U ∩ T (1/2) onto B−

N := {x ∈ BN ; xN < −1
2} and U \ T (34) onto B+

N := {x ∈ BN ; xN ≥ 1
2 }.

Standard calculations show that if u is ∆ − V harmonic in U then the function u1 :=
u ◦F−1 is L1 −V ◦F−1 harmonic in BN for some (symmetric) divergence form elliptic operator
L1 =

∑

i,j ∂i(aij∂j) in BN satisfying C−1
1 IN ≤ {aij} ≤ C1 IN with C1 = C1(N, rρ) ≥ 1. Let

V1 = V ◦ F−1
1 . Clearly V1 ∈ V(BN , a′) for a′ = C2 a.

Other simple calculations show that the operator L = (1 − |x|)2(L1 − V1) seen as a map
H1

loc(BN ) → H−1
loc (BN ) is an adapted elliptic operator in divergence form over the hyperbolic

ball BN (i.e. w.r. to the hyperbolic metric ds2 = |dx|2

(1−|x|2)2 ) in the sense of [4]. Moreover since

the form ϕ 7→
∫

BN
aij∂iϕ∂jϕdx − ε0

∫

BN

ϕ2

(1−|x|)2
dx is coercive for ε0 = ε0(C1, N) > 0 chosen

sufficiently small, the differential operator L is weakly coercive which means that there exists
ε0 = ε0(N, rρ) > 0 such that L+ ε0 admits a Green’s function in BN .

This shows that Theorem 1 in [4] applies to L. Thus there is a constant c = c(ε0, C1, N),
c ≥ 1, such that for z = (z′, zN ) ∈ B+

N and y ∈ B−
N one has

c−1 GL(y, z) ≤ GL(y, 0)GL(0, z) ≤ cGL(y, z) (A.5)

Here we have also used the standard Harnack inequalities for L and have denoted GL the L
Green’s function in BN w.r. to the hyperbolic metric (we adopt the notational convention that
u(x) := GL(x, y) satisfies Lu = −δx in the weak sense [33] w.r. to the hyperbolic volume).
Notice that GL(x, y) = δ(y)N−2g(x, y) if g is Green’s function of L1 − V1 in BN (w.r. to the
usual metric).

Supppose that u1 is positive L harmonic (i.e. L1−V1 harmonic) in BN and that u1 vanishes on
∂BN ∩{x ∈ ∂BN ; xN ≤ 1

2}. Then u1 can be represented as a Green potential in BN ∩{x ; xN <
1
2} : u1(y) =

∫

GL(y, z) dν(z) where ν is a nonnegative Borel measure on {z ∈ BN ; zN = 1
2}

and yN ≤ 1
2 . So upon integrating (A.5 ) we get (with another constant c)

c−1 u1(y) ≤ u1(0) g(y, 0) ≤ c u1(y) (A.6)

for y ∈ B−
N . Thus if u is a positive LV solution in U that vanishes in ∂#U it follows –on using

the change of variable y = F (x)– that

c−1 u(x) ≤ u(A′)G(x,A′) ≤ c u(x) (A.7)
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for x ∈ U(12 ), where G is Green’s function w.r. to LV in U . Using Harnack inequalities for LV ,
the lemma easily follows.�

Remark. Using Lemma A.2, well known arguments (see [2]) show that for every bounded Lips-
chitz domain Ω in R

N and every V ∈ V(Ω, a), a > 0, the following potential theoretic properties
hold in Ω equipped with LV := ∆ − V (we let GV

y to denote the LV Green’s function in Ω

with pole at y) : (a) For each P ∈ ∂Ω, the limit KV
P (x) = limy→P GV

y (x)/G
V
y (x0), x ∈ Ω,

exists and KL
P is a positive LV -harmonic function KL

P in Ω which depends continuously on P
and vanishes continuously in ∂Ω \ {P}, (b) For each P ∈ ∂Ω, every positive LV -solution in
Ω that vanishes on ∂Ω \ {P} is proportional to KV

P , (c) Every positive LV -solution u in Ω
can be written in a unique way as u(x) =

∫

∂Ω KV
P (x) dµ(P ), x ∈ Ω, for some positive (finite)

measure µ in ∂Ω. See [4].

A.3 Proof of Theorem A.1

Again Ω is a bounded Lipschitz domain in R
N and V ∈ V(Ω, a), a ≥ 0.

For the proof we use a simple variant of the comparison principle given in Lemma A.2.
Notations are as before, in particular U = Uf (r, ρ) is the domain considered in A2 and A =
AU = (0, . . . , 0, ρ2 ). Let A

′ = (0, . . . , 0, 2ρ3 ).

Lemma A.3 Let u be positive harmonic (w.r. to ∆) in U , let v be positive ∆− V -harmonic in
U and assume that u = v = 0 in ∂#U . Then

v(x)

v(A)
≤ c

u(x)

u(A)
for x ∈ U ∩ T (

1

2
) (A.8)

for some positive constant c depending only on ρ/r, the constant a and N .

Proof. We have seen that v(x) ≤ c v(A′)GV
A′(x) in U ∩ T (12 ) and we know that GV

A ≤ G0
A in

U if GV
A′ is (∆ − V )-Green’s function in U with pole at A′. By maximum principle, Harnack

inequalities and the known behavior of G0
A′ in B(A′, r4) (more precisely G0

A(x) ≤ c1 := c1(r,N)
in ∂B(A′, r4)) we have that u(x) ≥ c1 v(A)G

0
A′(x) in U \ B(A′, r4 ). So that –using Harnack

inequalities in B(A′, r2) for u and v– the lemma follows. �

Remark. The opposite estimate, i.e. u(x)
u(A) ≤ C v(x)

v(A) (with another constant C > 0), cannot be

expected to hold in general as shown by simple (and obvious) examples.
Denote gVx0

the Green’s function with respect to ∆ − V in Ω and with pole at x0. For y ∈ ∂Ω,
a pseudo-normal for Ω at y is a unit vector ν ∈ R

N such that that for some small η > 0, the set
C(y, νy, η) := {y + t(νy + v) ; 0 < t < η, ‖v‖ ≤ η } is contained in Ω.

Proposition A.4 Given y ∈ ∂Ω and a pseudo-normal νy at y for U , the following assertions
are equivalent:

(i) K̃V
y = 0 (i.e. y ∈ SingV (Ω))

(ii) lim supt↓0 K
V
y (y + tνy)/Ky(y + tνy) = +∞

(iii) limt↓0 K
V
y (y + tνy)/Ky(y + tνy) = +∞

(iv) limx→y g
V
x0
(x)/g0x0

(x) = 0.

31



Proof. (a) We first recall a standard consequence of Lemma A.2 that relates gVx0
and KV

y near
y (for any y ∈ ∂Ω).

Consider u = KV
y and v := gVy+tνy . Using Lemma A.2 and the fact that v ∼ t2−N in

∂B(y+tνy,
η
2 t), 0 < t < η, we see that u(x) ∼ u(y+tνy) t

N−2 gVy+tνy(x) for x ∈ Ω\B(y+tνy, tη/2)
(here ∼ means “is in between two constant times ” with constants depending only on y, Ω, νy
and a).

Taking in particular x = x0 we obtain that KV
y (y + tνy) ∼ 1/(tN−2gV (y + tνy;x0)). In

particular considering the special case V = 0, we get also that Ky(y + tνy) ∼ 1/(tN−2g(y +
tνy;x0)).

(b) Using the above we see that (ii) is equivalent to (iv)′: lim inft↓0 g
V
x0
(y+tνy)/g

0
x0
(y+tνy) =

0.
(c) Now to show that (iv) and (iv)′ are equivalent we may assume that y = 0, νy =

(0, . . . , 0, 1) and (with the notations above in A.2) that T (1) ∩ Ω = U , U = Uf (r, ρ) and
x0 ∈ Ω \ U .

Applying Lemma A.3 to U , u = gVx0
,v = gx0 , and Ut = Utj for a sequence tj, tj ↓ 0 such that

u(Atj ) = o(v(Atj )), Atj = (0, . . . , 0, tj), we get that u(x) ≤ c
u(Atj

)

v(Atj
) v(x) in Ω ∩ T (tj

ρ
2 ). Hence

(iv)′ imply (iv). And –using (a) again– conditions (ii), (iii) and (iv) are equivalent.
(d) Similarly if on the contrary gV (Aj , x0) ≥ c g(Aj , x0), for some sequence Aj = tjν, tj ↓ 0

and a positive real c, we have (since a priori gV ≤ g) that :

KV
Aj
(x) := gV (Aj , x)/g

V (Aj , x0) ≤ c−1 KAj
(x) = c−1 g(Aj , x)/g(Aj , x0) (A.9)

and letting j → ∞ we get KV
y ≤ c−1Ky. Thus, (i)⇒(iv).

Since obviously (ii) ⇒ (i), Proposition A.4 is proved. �
The next lemma is the key for the proof of Theorem A.1. Returning again to the canonical

Lipschitz domain U = Uf (r, ρ), let V ∈ Va(U) and for θ ∈ (0, 1
10 ), let U

θ := {x ∈ U ; d(x, ∂U) ≥

θr }, IθU :=
∫

Uθ V (x) dx
|δU (x)|N−2 .

Obviously 1
rN−2

∫

Uθ V (x) dx ≤ IθU ≤ 1
(θr)N−2

∫

Uθ V (x) dx.

Lemma A.5 Let u, ũ be two nonnegative continuous functions in U that are respectively ∆-
harmonic and LV -harmonic in U . Assume that ũ ≤ u in ∂U and ũ = u = 0 in ∂#U . Then for
some constant c = c( rρ , a, θ,N) > 0,

(1 + cIθ) ũ(x) ≤ u(x) for x ∈ U ∩ T (
1

2
) (A.10)

Proof. Since the assumptions and the conclusion are invariant under dilations we may assume
that r is fixed as well as ρ. Replacing u by the harmonic function in U with same boundary
values as ũ we may also assume that u = ũ in ∂U . Since ∆(u− ũ) = −V ũ and u− ũ vanishes
on ∂U , we see that u− ũ = GU (V ũ) where GU is the usual Green’s function in U .

By Harnack property and since GU (x, y) ≥ c = c(θ, a,N) > 0 for x ∈ B1 = B(A1,
r

100 ),
A1 = (0, . . . , 0, 3r4 ), and y ∈ U θ, we have

u(x)− ũ(x) ≥ c Iθ ũ(A1), x ∈ B1.
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Thus in U , w(x) := u(x) − ũ(x) ≥ c Iθ ũ(A1)R
B1
1 (x) where RB1

1 is the (classical) capacitary
potential ([15]) of B1 in U and using the comparison principle Lemma 1 for V = 0 we have
w ≥ c Iθ ũ(A1)

u
u(A1)

in U(12) := T (12) ∩ U .

Using then Lemma A.2 (and Harnack inequalities)

w(x) ≥ c′′ Iθ ũ(A1)
ũ(x)

ũ(A1)
= c′′′ Iθ ũ(x), x ∈ U(

1

2
)

Thus, u(x) ≥ (1 + c′′′ Iθ) ũ(x) in U(12 ). �

Proof of Theorem A.1. We may assume that y = 0, that for some r, ρ, f , Ω ∩ T (1) = U :=
Uf (r, ρ) (with the notation fixed above in section A2) and that x0 /∈ U .

Set Tn = T (2−n), Cn
y := Cǫ,y∩(Tn\Tn+1) for n ≥ 1, u = G0

x0
, ũ = GV

x0
(where GV

x0
is Green’s

function with pole at x0 with respect to ∆ − V in Ω). One may also observe that ε may be
assumed so small that Σε

0 contains the truncated cone C := {(x′, xN ) ; xN < ρ
2 , |x

′| < r
ρ xN }.

For each n ≥ 0 there is a greatest αn > 0 such that u ≥ αn ũ in Un (we know that αn ≤ 1).
By the key Lemma A.5 (and elementary geometric considerations)

αn+1 ≥ αn (1 + cIn+1) if Im :=

∫

Cm

V (x)

δΩ(x)N−2
dx (A.11)

for some constant c = c(ε, r
ρ , a,N) independent of n. Thus

αn ≥ α0

n−1
∏

k=1

(1 + c Ik) ≥ α0 (1 + c

n−1
∑

k=1

Ik) ≥ c α0

∫

C1\Cn+1

V (x)

δΩ(x)N−2
dx

which shows that limαn = +∞. Thus GV
x0

= o(G0
x0
) at y and by Proposition A.4 the point y

belongs to SingV (Ω). �
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15, 65-87 (1965).

[19] Fuglede B., Application du théorème minimax l’étude de diverses capacités, C.R. Acad.

Sci. Paris 266, 921-923 (1968).

[20] Gilbarg D. and Trudinger N.S., Partial Differential Equations of Second Order, 2nd
ed. Springer-Verlag, London-Berlin-Heidelberg-New York (1983).
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