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LOCALIZATION FOR THE RANDOM DISPLACEMENT MODEL

FREDERIC KLOPP!, MICHAEL LOSS2, SHU NAKAMURA3, AND GUNTER STOLZ*

Abstract

We prove spectral and dynamical localization for the multi-dimensional random displace-
ment model near the bottom of its spectrum by showing that the approach through multiscale
analysis is applicable. In particular, we show that a previously known Lifshitz tail bound can
be extended to our setting and prove a new Wegner estimate. A key tool is given by a quan-
titative form of a property of a related single-site Neumann problem which can be described
as “bubbles tend to the corners”.

1. INTRODUCTION

We consider the random displacement model (RDM), a random Schrodinger operator
H,=-A+V, (1)
in L2(RY), d > 1, where the random potential has the form

Vo(o) =) gz —i—uw). (2)
iezd
This models a random perturbation of the periodic potential ) . g(x — i), where the single-
site terms sit at exact lattices sites i € Z¢. The parameter w = (w;);cz« describes a configura-
tion of random displacement vectors w; € R?. Before entering a more thorough discussion of
background and assumptions, let us state the main result of our work in a simple non-trivial
special case:

Theorem 1.1. Suppose that d > 2 and that q¢ € C§*(R?) is real-valued, sign-definite, rotation
symmetric and suppq C {z : |x| < r} for some r < 1/4. Also assume that (w;);cza are i.i.d.
Re-valued random variables, uniformly distributed on [—dmaz, dmaz)® where dpae = 1/2 — 1.

Then H,, s spectrally and dynamically localized at energies mear the bottom of its almost
sure spectrum.

The exact meaning of the latter will be recalled below.

The RDM represents a natural way to model a solid with structural disorder. It can be
considered as intermediate between the Anderson model, which has no structural disorder and
randomness instead appears in the form of coupling constants at the single site terms, and the
Poisson model, where the structure of the medium is entirely dissolved by placing single-site
scatterers at the points of a Poisson process. This point of view has recently been supported
by an investigation of the integrated density of states of the RDM in [9] and [10].
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S. N. was partially supported by JSPS grant Kiban (A) 21244008.
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2 KLOPP, LOSS, NAKAMURA, AND STOLZ

It is physically expected that multi-dimensional random Schrédinger operators such as the
three models mentioned above should exhibit localization at energies near the bottom of the
spectrum, while extended states should exist at high energy. For mathematicians the latter
remains an open problem, while localization at low energy for the Anderson model (both in
the continuum and in the original lattice setting) and, with more effort and more recently,
for the Poisson model has been proven rigorously. The references given in Section 5.1 below
may be used as a starting point into the enormous literature on localization for the Anderson
model. For the multi-dimensional Poisson model localization at low energy has been proven,
separately for the case of positive and negative single-site potentials, in [11] and [12].

A localization proof for the RDM provides additional challenges and does not follow from
the methods alone which have led to proofs for the Anderson and Poisson models. The main
reason for this is that the RDM does not have any obvious monotonicity properties with
respect to the random parameters. Such properties are frequently used in an essential way in
the theory of the Anderson model and, to some extend, can also be exploited for the Poisson
model.

This becomes apparent most immediately when attempting to characterize the bottom of
the spectrum for these models. For the Anderson model with sign-definite potential ¢ this
corresponds to choosing all couplings minimal (if ¢ is positive) or maximal (if ¢ is negative),
respectively. For the Poisson model the bottom of the spectrum is 0 if ¢ is positive (due to
large regions devoid of any Poisson points) and —oo if ¢ is negative (due to dense clusters of
Poisson points).

Identifying a mechanism which characterizes the bottom of the spectrum, a crucial prelim-
inary step towards the localization question, poses a non-trivial challenge for the RDM. It
is not at all obvious which configurations w = (w;) of the displacements should characterize
minimal energy.

Far more than a characterization of the spectral minimum is needed for a proof of localiza-
tion. From the theory of the Anderson model it is well known that sufficient ingredients are
smallness of the integrated density of states (IDS) at the bottom of the spectrum (e.g. in the
form of Lifshitz tails), and sensitivity of the spectrum to the random parameters (for example
in the form of spectral averaging or Wegner estimates). The usual approaches to verifying
both of these ingredients make heavy use of monotonicity properties as well, providing further
obstacles to a localization proof for the RDM, where such properties are not apparent.

There are two previous works in which localization properties of modified versions of the
RDM (1), (2) have been shown. In [19], Klopp considered a semiclassical version —h?A + V,
of (1) and was able to show the existence of a localized region in the spectrum for sufficiently
small value of the semiclassical parameter h. In this regime neither Lifshitz tails nor an
exact characterization of the spectral minimum are needed for the localization proof. More
recently, Ghribi and Klopp [14] considered an RDM of the form (1) with an additional peri-
odic background potential. For a generic non-zero choice of the latter and sufficiently small
displacement vectors w;, they use first order perturbation arguments to recover monotonicity
properties which lead to Lifshitz tails as well as a Wegner estimate, and thus localization.

Our goal here is to prove localization for the model (1), (2) without working in the semi-
classical regime or modifying the background. This means that we can not hope to reveal any
monotonicity properties by exclusively using perturbative arguments, at least not easily and
not with first order perturbation theory.
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We will make central use of symmetry properties. In particular, we will assume throughout
that the real-valued single-site potential ¢ is reflection symmetric in each coordinate, i.e.

q(...,$k_1,—$k,...,$k+1,...):q(...,l’k_l,l’k,l’k+1,...), ]le,,d (3)

Due to the use of some higher order perturbation theory we will need some smoothness of
q and for convenience assume that

g € C*(RY), (4)
which could be substantially weakened. We also assume that

suppq C [—r,7]¢ for some r < 1/4. (5)

The latter is best understood in conjunction with the following assumption on the dis-
placement parameters w = (w;);cz¢: They are i.i.d. R%valued random variables, distributed
according to a measure p satisfying

C C supp p C [_dmama dmax]d7 (6)

where d,0x = % — 7. Here C := {(£dmnaz, - - -, £dmar)} denotes the 2¢ corners of the cube
[—dmam,dmax]d. For the proof of our main result, Theorem 1.2 below, we will need some
smoothness of the distribution of u. A convenient assumption is that p has a density p, i.e.

1(B) = [ p(wo) dwy for all Borel subsets B of [—dymaz, dinas]?, and that

p e Cl([_dmaxa dmax]d)' (7)

However, as will be discussed in Section 5, our proofs work for considerably more general
distributions. In particular, our proof of Theorem 1.2 below only uses that p has a C!-density
in a neighborhood of the corners C and can be arbitrary away from this neighborhood.

By (5) and (6), the centers of the “bubbles” ¢(z — i — w;) can move all the way into the
corners i + C of i + [~dmaz, dmaz)?, and the supports of the bumps stay, up to touching,
mutually disjoint. See Figure 1 for a typical configuration. Note that only r» < 1/2 would
be needed to do this in a non-trivial way (give the bubble space to move), but that we will
need r < 1/4 for technical reasons to make use of results in [2] and [21], see the discussion
preceding Corollary 3.4 below.

oF kK
o1 O
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FIGURE 1. A typical configuration
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The random operator H,, is ergodic with respect to shifts in Z? and thus, by the general
theory of ergodic operators, its spectrum is almost surely deterministic, i.e. there is a ¥ C R
such that

o(H,) =% almost surely.

Under the above assumptions it was shown in [1] that among all configurations w a config-
uration with lowest spectral minimum is given by w* = (w});cz¢ where

Wi = ((=1D) "z, - - -, (=1)dppaz), @ = (iy,...,iq) € Z°. (8)

As discussed in [1], under the condition (6) this also characterizes the minimum of the
almost sure spectrum of the RDM, i.e.

Ey:=inf ¥ =inf o(H,+).

In the configuration w* the single site potentials in V- form densest possible clusters where
2¢ neighboring bumps move into adjacent corners of their unit cells, see Figure 2.

CL CLD
O O

L CL)
O O

F1GURE 2. The minimizing configuration

Thus, for the set of assumptions listed above, we have an answer to the preliminary question
of characterizing E, = inf ¥. For a proof of localization we will need much more information.
In particular, we will need quantitative bounds on the probability that other configurations
have spectral minimum close to Ey. This will require one more condition on q.

To state this condition, we need to introduce Neumann operators where a single bump is
placed into a unit cell at varying position. For this, and for later, set

ror

d
Ar = AT’(O) = (_§> 5) ) Ar(z) = Ar +T, Xe= XAi(z)>

the characteristic function of the unit cube centered at x.
For a € [~dmaz, dmaz]|® let

HY (a) = —A+q(x —a) on L*(A;) 9)
with Neumann boundary condition. Finally, let
Eo(a) = inf o(HY (a))

be the lowest eigenvalue of H 1]\\’1 (a). Note that, by symmetry of ¢, Ey(a) is symmetric with
respect to all the coordinate hyperplanes a, =0, k =1,...,d.
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In [1] the following alternative was established (only requiring boundedness of ¢, not smooth-
ness):

(i) Either Ey(a) is strictly maximized at a = 0 and strictly minimized in the corners C of
[_dmmm dma:c]da

(ii) or Ey(a) is identically zero, and the ground state of H}' (a) is constant near the bound-
ary of Aj.

From this and the symmetries of ¢ it is easy to see, e.g. [1], that w* given by (8) is a
spectrally minimizing configuration and that the almost sure spectral minimum Fy of H,, is
given by the minimum value of Fy(a), i.e. its value at a € C.

While it is possible to construct non-vanishing ¢ where (ii) holds, e.g. our remarks in Sec-
tion 5.2, alternative (i) is the generic case. It holds if ¢ # 0 is sign-definite (since then the
ground state energy 0 of the Neumann Laplacian —A% must be shifted up or down), but also
for generic sign-indefinite q.

We are now able to state our main result on localization. Here, for a self-adjoint operator
H and Borel function g we define g(H) by the functional calculus.

Theorem 1.2. Assume that d > 2, w and q satisfy (3) to (7), and that FEy(a) does not vanish
identically in a € [—dmaz, dmaz)®

Then there ezists 6 > 0 such that H,, almost surely has pure point spectrum in I = [Ey, Eq+0]
with exponentially decaying eigenfunctions. Moreover, H,, is dynamically localized in I, in the
sense that for every ¢ <1 there exist C' < oo and n > 0 such that

lg|<1

E (sup ||xmg(Hw)xf(Hw)xyH§> < Qe (10)

for all x,y € Z%. Here, the supremum is taken over all Borel functions g : R — C which
satisfy |g| < 1 pointwise.

The proof of Theorem 1.2 proceeds via multiscale analysis and our main task will be to
establish the two main ingredients into the multiscale analysis, i.e. a smallness bound on the
probability that finite volume restrictions of H,, have low lying eigenvalues (related to Lifshitz
tails of the integrated density of states) and a Wegner estimate.

It is in the proof of these two ingredients where new ideas are needed. In both proofs we will
use that alternative (i) can be strengthened if some smoothness is assumed for ¢: in this case
it can be shown that the first partial derivatives of Ey(a) are non-zero in all directions away
from the symmetry planes. In particular, at its strict minima in the corners C, the function
Ey(a) is not flat as it has non-vanishing gradient. The proof of this result, given in Section 2,
starts from a second-order perturbation theory formula.

This can be considered as the crucial monotonicity property which makes the localization
proof work. In the spectrally minimizing configuration w* of the RDM all bubbles sit in
corners. Non-vanishing of the gradient of Fy(a) in the corners will allow to gain quantitative
control on how close the ground state energies for other configurations are to Fj.

First, in Section 3, this will lead to a Lifshitz tail bound with a proof which is based on
an argument in [21]. This also uses the fact that under alternative (i) the configuration w*
is, up to translation, the unique periodic configuration with spectral minimum FEj, a result
established in [2], where it is also shown that this is not true for d = 1. In [21] it was shown that
this uniqueness result leads to a Lifshitz tail bound for the IDS near Ej if the distribution of
the w; is discrete and contains all corners C. In fact, for technical reasons the bound obtained
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there is weaker than the “classical” Lifshitz tail, but it is strong enough for a localization proof
(if one also has a Wegner estimate). In Section 3 we will show how non-vanishing of V Ey(a)
in the corners can be used to get same bound on the IDS under the assumptions considered
here, i.e. with distribution satisfying (6).

What allows us to push the localization argument through is that under assumption (6) we
can also prove a Wegner estimate, see Section 4. This will again use that VEy(a) # 0 at the
corners, which will provide us with a measure for how much the ground state energy of finite
volume restrictions of H,, is pushed upwards if the bubbles ¢(x — i — w;) move away from the
corners towards the center ¢ of A;(7). This is technically implemented in Proposition 4.3 below
in form of positivity of the derivative of H, with respect to a suitable vector field, whose proof is
close to an argument previously used in [22] for operators with random magnetic fields. Based
on this result, we are able to prove a Wegner estimate by modifying an argument developed in
[5] and [15] in the context of the Anderson model, which itself is a modification of the original
argument due to Wegner. In particular, we obtain the correct (linear) volume dependence
and can conclude Holder continuity of the IDS as a by-product.

We finally mention that the connection between monotonicity properties of Hy' (a) and the
RDM is made through surprisingly simple Neumann bracketing arguments, making crucial use
of the variational characterization of the lowest eigenvalue as the minimum of the quadratic
form. Thus we are able to deduce monotonicity properties of a model with infinitely many
parameters from a one-parameter model. This trick, employed in Sections 3 and 4, was
previously used in [20] to study the Anderson model with sign-indefinite single-site potential.
It is the main reason why symmetry of the single-site potential is important for us.

Our concluding Section 5 serves two purposes. First, in Section 5.1, we briefly discuss how
the Lifshitz tail bound and Wegner estimate obtained here lead to a proof of spectral and dy-
namical localization via multi-scale analysis. In Section 5.2 we mention some generalizations,
related results and open problems.

2. BUBBLES TEND TO THE CORNERS

In this section we will prove a property of the derivatives of Fy(a), the ground state of
the Neumann operators Hy (a) defined in (9), which is crucial for all our later arguments.
The main result of [1], i.e. that under the generic alternative (i) the function Ey(a) is strictly
minimized in the corners C, may be dubbed as “bubbles tend to the corners”. The seemingly
small but important improvement to be shown here means that “bubbles tend to the corners
at non-zero derivative”.

In fact, in [1] two methods were developed to prove results of this type. One method,
used to prove Theorem 1.3 in [1], applied to Neumann operators on rectangular domains as
considered here and is mostly based on exploiting symmetries of the domain and the potential.
A second, very different, method was developed in [1] to show the phenomenon that “bubbles
tend to the boundary” for Neumann operators on general smooth domains and with smooth
potentials, see the proof of Theorem 1.4 in [1]. What we do here is to apply the second method
in the setting of rectangular domains. That “smooth methods” apply to rectangles is possible
due to our use of Neumann boundary conditions, which allow to get smooth extensions by
reflection. Our argument works in form of a boot-strap: Once we know from Theorem 1.3 of
[1] that bubbles tend to the corners (having exploited symmetries of the problem) we can add
perturbative arguments (exploiting smoothness) to get the added non-zero derivative property.
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2.1. Basic smoothness properties. Let D C R"™ be an open rectangular parallelepiped
and ¢ be a real-valued smooth function with closed support in D, i.e. ¢ € C°°(D) such that
q(x) = 0 for = in a neighborhood of 9D. Consider the quadratic form

IVull3 + (u, qu)

where we use the symbol
(u,v) = / uw(z)v(z)de .
This quadratic form is a closed form on H 1(ll))) and defines a unique self-adjoint operator
H:=-Ay+q

where Ay is the Neumann Laplacian. The eigenvalues of this operator are discrete, have finite
degeneracy and tend to infinity. It will be important for us that the eigenfunctions are regular
up and including the boundary, i.e., C>°(D). We state this fact as a lemma.

Lemma 2.1. The eigenfunctions of the operator H can be extended to a neighborhood of D
where they are infinitely often differentiable.

Proof. By reflecting the potential and eigenfunctions repeatedly across the boundary one
obtains a generalized eigenfunction with the same eigenvalue on the whole space R?. Since
the potential is C'*° it follows, by elliptic regularity, that the generalized eigenfunctions are in

C=(RY). 0
We set for a € R”
() =q(z —a) .
The set of points a for which the support of ¢, is a subset of D is denoted by G. This is an
open rectangle as well. We shall denote the eigenvalues of

H, = —-Ayx+q,
in increasing order and counted with multiplicity by
E.(a), n=0,1,2,...
and the corresponding real-valued normalized eigenfunctions as
up(z,a) .

In what follows we often denote the extension of the function to a larger set by the same
symbol.

Lemma 2.2 (Differentiability of eigenvalue and eigenfunction). The eigenvalue Ey(a)
as well as the eigenfunction ug(-,a) are (as an L?(D)-valued function) infinitely often differ-

entiable in a neighborhood of G. In particular these two functions are in C*(G).

Proof. From the formula, which holds for all z in the resolvent set of H,,
(Ho — Z)_l — (Ho — Z)_l = (H, — Z)_l [9ar — Ga) (Har — Z)_l (11)

we see that the non-degenerate eigenvalue Fy(a) is a continuous function. Note that this
formula holds for all positions of the potential, in particular, the support of the potential does
not have to be in D. Thus Ey(a) is strictly separated from the rest of the spectrum locally
uniformly in a. Hence there is a circle C' with center Ey(a) which is strictly separated from
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the rest of the spectrum, locally uniformly in a. Now, repeated use of (11) shows that the
projection onto the eigenfunction wug(z, a),

Pyfa) = —— fg (H,— 2)\dz

271

can be arbitrarily often differentiated with respect to a. The eigenvalue equation
(H, — 2)" Poa) = (Bo(a) — )" Poa)
now shows that Ey(a) in turn can also be differentiated as often as we please. U

Given the above smoothness properties and the non-degeneracy of Fy(a) we can derive the
following first and second order perturbation formulas for Ey(a),

aajEIO(a') = —<UQ, (aqua)u0>a (12)
and
2 UO, acj Qa Uk>2
07 Eoa) = (uo, (92, ¢a)uo) — 22 B —Fy (13)
k0
for 7 =1,...,d. This is done in complete analogy to the better known case of non-degenerate

eigenvalues of operators of the form A+ B, with (12) corresponding to the Feynman-Hellmann
formula, see e.g. Section 2.3 of [1].

2.2. Second order perturbation theory. Making notations more explicit, we now write
D = (a1751) X D/v
where
D = (Oég,ﬁg) X ... X (Oéd,ﬁd) C Rd_l.

Then G = I x G', with an open interval I = (=, d3), 0; > 0, 05 > 0, and an open rectangular
parallelepiped G’ C R

We will consider the dependence of Fy(ay, ..., aq) on the first variable a; € T at fixed value
of (ag,...,aq) € G'. Throughout this subsection we will abuse notation and write g,, := qq,
H,, = —ApN+ G4, as well as E,(a;) and u,(x,a;) for its eigenvalues and eigenfunctions.

The following lemma provides us with a differential equation for the eigenvalue Fy(ay).

Lemma 2.3. The ground state enerqy satisfies the equation

B(ug, Oyug)?

14
B, B, (14)

Eg <U0, 01u0)E = -2 Z

k#0

Here B(u,v) := (u, Av) — (Au,v), E| and E{ refer to a;-derivatives of Ey, and 0,u, refers
to the spatial derivative in z;-direction.

Proof. The proof is essentially the same as in [1], and we present it with the necessary modi-
fications. Differentiating the eigenvalue equation yields

(01¢a, )uo = EoOrug — (—A + qa, ) O1ug

and therefore
<uk7 (81qa1>u0> = _(Ek - E0)<Uk, 81u0> + B(ukv 8luo) . (15)
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Plugging this into the second order perturbation formula (13) (for j = 1) gives

Ey = (uo, (07qa )uo) — 2 [(Ex — Eo)(Oruo, ur)? — 2(Orug, wi) Bux, druo)|
}£0

B(uy, dyug)?
-2
ey
k£0
which, using (15) once more, can be rewritten as

Ey = (uo, (0740 )uo) + 2 [B(ug, Oruo) + (ug, (D14a, )uo)] (ux, O1uo)
k0

Uk,aluo
—oy Bl 5 F
k£0
= (ug, (07 qay o) + 2> [B(ug, Dyug) + (tx, (31a, o)) (1, Druig)

— 2[B(uo, O1ug) + (w0, (O14a, )u0)]{uo, Orug)

uk,aluo
—2)
o Ey — Ey

= (uo, (9744, )u0) + 2{D1u0, (D1qa, Juo) + 2 Z B(uk, Ovuo) (uy, Orug)
k

- 2[B(u0> a1u0) + <u0a (01Qa1)u0>]<u07 a1u0>
Uka aluo
—2> T E
o Ey — Ey
where finally the completeness relation of the u; was used. Integration by parts shows that
(uo, (0%%1)UO> + 2(01uo, (01Gay Juo) = 0
and, using again (15) with k£ = 0, we can simplify further and get

Ey = 223 g, Ovg) (g, Orug) — 4(uo, (014a, )to) (o, Ortto)

uk7 81U0
—2) (16)
0 Ei — Eq
Consider
> Blug, 0vuo) (g, hug) = Y [(ug, Adiug) — (Auy, dyug)](ug, drug) - (17)
k k

Since ug € C*°(D) we know that Adjug is square integrable and hence

Z(ukaA&Uo)(Uk,aon) = <81U0, A81u0> .
k
The second term of (17) we write as

D A=A+ gayJun, Oyuo) (ug, ruo) — > (s ks o) (g, Drug) -

k k



10 KLOPP, LOSS, NAKAMURA, AND STOLZ

The second sum equals (011, gq, O1up) while the first sum is

Z Ek(“ka 81u0)2 = Z(Ek - E0)<Uk7 81U0>2 + E0H81uu||2
k

k

= ((Hq — E0)1/281U07 H, — E0)1/281U0> + E0||81U0H2

_ / (1VOuol? + o, (Brue)?] da (18)
D

by Kato’s form representation theorem [17], since 0 uy is in the form domain. Collecting terms
we find from (17) that

2 Bk, ) e, Do) = [{0yu0, Ay + [ V0ol
k

Up to this moment we just have copied the proof of [1] (or, more precisely, a “fixed direction”
version thereof). Applying Green’s identity we find that

Z B(Uk, 81u0)(uk, 81U0> = / V . (81U(]V81U0) dSL’ (19)
3 D

which equals

7|
j
where S; and Tj are the faces of D perpendicular to the j direction. Since 0juo = 0 on S}
and 7; we find that the sum can be restricted to the indices j # 1. Since 0;01u¢ = 010;u0
and 0;up = 0 on S; and Tj, the expression (20) vanishes. After substituting this and the first
order perturbation formula (12) for j = 1 into (16) we arrive at (14).

/(81U0)8j81ﬂ0d5—/(81U0)8j81U0dS] y (20)
S; T;

J

U

Lemma 2.4. Assume that the right hand side of (14) vanishes for some a1o € I. Then
E(](CLL(]) = E(/](CLL(]) =0 and 8j81u0(-, CL1’0> =0 fOT’ CL”] = 1, NP ,d on all fCLC@S Of D.
Moreover, uy(-,a10) is constant on the right and left faces Sy and Ty of D.

It will follow in Theorem 2.5 below that wug(-, a1) takes the same value on Sy and T7.

Proof. The vanishing of the right side of (14) means that

<Auk, 81u0) — <uk, A@luo) =0. (21)
Using the eigenvalue equation —Auy, + qq, yur = Ejuy, we can transform this into
(Ek - EO)(“ka a1u0> = _<uka (al(JaLo)uO) : (22)

Now pick any function f € C*°(D) and use the previous identity to write
Z(Ek - E0)<uk> alu0><.fa uk) - = Z(uk’ <81Qa1,0)u0><fa uk) + <u0a a1(]a1,0u0>(f> UO) : (23)
k k

Since the functions ug, k¥ = 0,1,2,... form an orthonormal basis for L?(D) we can simplify
these expressions and obtain

Z<uk> (81Qa1,0)u0><fa uk) = <fa (alC.Ial,o)uO)a

k
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and, similar to (18), using that f as well as 0juq are in the form domain,

Z(Ek — Eo)(ug, Ovuo) (f, ur) = (V [, V(Oito)) + (f, a0 O1t0) — Eo(f, Druo) -

k

Plugging the latter two identities back into (23) we arrive at

(Vf,V(01w)) + (f; 01(qay su0)) — Eolf, O1uo) = (uo, (01qay ) uo) (f, o) - (24)
Now pick f € (D) so that we can integrate by parts without boundary terms and get
<f7 81(—Au0 * ay oo — E0U0)> = <U07 (aIQal,o)u(])(fv Uo) . (25)

Since the left side vanishes for all f € C2°(D) and the latter are dense in L?(D), we must
necessarily have that

<U0, (81%1,0)1&0) =0,
i.e., Ej(aip) =0 by (12). Thus we have for all f € C*(D),

(Vf,V(0i1w)) + (f; 01(qay yu0)) — Eolf, Or1ug) =0 . (26)
Doing the same integration by parts as above, this time with boundary terms, yields

7

j J J

for all f € C*°(D). This means that
8j81u0 =0 (28)

pointwise on S; and T} for all j = 1,...,d. In particular, & ug(z,ao1) = 0 on S; and T;. Since
the potential vanishes on the faces S; and T} we find that ug satisfies the equation

’ . 82U0 .
— A Ug = — Z ) = EQ(G())UQ (29)

on S, and 77. The function ug is smooth up to and including the boundary of D, in particular
it is a smooth function on the faces of D. Consider the d — 2 dimensional ‘edge” where S; and
So, say, meet. The gradient of ug at this intersection must be of the form

VUO = (O, 0, 03U0, e 0du0) . (30)

Hence, ug is an eigenfunction of —A’ on S and T} with a Neumann condition on the boundary.
Since ug has a fixed sign, Ey(a;0) must be the lowest eigenvalue of the Neumann Laplacian
on S; and 7T} and hence

EQ(CLL()) =0 s (31)

and ug is constant on Sy as well as on 77. O

Theorem 2.5. Assume that the right side of (14) vanishes for some a1 € I. Then Ey(a;) =
0 identically in I and for every a; € I the eigenfunction uo(z,ay) is constant on the two

rectangles L = a1,y + 8 + a1] x D' and R := [ — 0y + a1, 1] x D', i.e. the parts of D to
the left and right of supp qq, -
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Proof. Let us first assume that a; o € (—01,02). Then the faces S; and T) of D are in the
complement of the support of g, .

Pick a point on S;. We may call this point the origin. By the reflection argument already
used in the proof of Lemma 2.1 the function ug(x, a1 ) is harmonic in a neighborhood N of
0. Thus it has a convergent power series expansion

> car” (32)

which can also be written as

Z o} Z Clhanyt® = Z ¥ P(a') (33)
k=0 k=0

where 2’ = (x9,...,x4). Since u is harmonic we find the recursion
A'Py(2) + (k+1)(k+2)Pyo(z') =0 ,k=0,1,2,... . (34)

By Lemma 2.4 we know that u,(0,2’, a1) is constant and we find that F,(2’) is constant,
too, and thus Py(2') = 0 for k > 2, even. Since 0,0;u((0,2") = 0 for j = 2,...,d we find
that 0;P(2') = 0 for j = 2,...,d and hence P;(2’) is constant and thus on account of (34),
Py(z') =0 for all k > 2. Thus uy(z,ap1) = ¢+ dz; near 0, where ¢, d are constants. However,
as ug(z, ap,) satisfies Neumann boundary conditions, we must have d = 0. This implies that
ug(z,a01) = ¢ on a1, ar + 61 + ar] x D', where g,, , = 0.

In the same way, now starting with a point on the face 77 it is shows that ug(z,ap;) is
constant on [3; — 0y + a0, B1] x D'.

If we translate the potential g,, , () = Ga, o (x —a1) = q(x —ay,0—ay) the translated function
v(z) = uo(r — a1, a1) is an eigenfunction of the Schrodinger equation Hg, ,—a,v = Ey(a1,0)v
and since v has fixed positive sign, it is the ground state. Thus the eigenvalue Ey(a;) = 0
identically in a; € 1.

If a1 o = 03, then the above argument works to show constancy of ug(x, a1 0) on [oq, g +01+
aro) X D', while [8; — 8, + ar o, f1] X D’ degenerates to the face T;, where constancy already
follows from Lemma 2.4. From here the proof is completed as before, using that ug(z, a1 )

also satisfies Neumann conditions on 7;. The case a; o = —d; is done in the same way, with
the role of the faces reversed.
This proves the theorem. O

So far we have had no need to require any symmetry of the potential q. But this will be
required now in order to make use of a result from [1], which enters our reasoning in the form
of a bootstrap argument.

Thus assume now that (aq, 51) = (—s,s) for some s > 0, suppq C [—r,r] x D’ for some
0 < r < s, and that ¢ is reflection-symmetric with respect to the first variable, i.e. ¢(z1,2") =
q(—xy1,2') for all z; € (—s,s) and 2’ € D'. The following result does not require smoothness
of ¢, but merely boundedness.

Theorem 2.6. We have the following alternative: Either

(i) Eo(ay) is strictly decreasing for a; € [0, s—r| (and thus, by symmetry, strictly increasing
in [—(s—r1),0]), or

(ii) Eo(ay) vanishes identically in a; € [—(s —r),s — r|] and u(z;0) is constant in D \
([=r,r] x D) (and, by symmetry, takes the same value in both connected components of this
set).
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Proof. This is, line by line, the argument provided in the proof of Theorem 3.1 in [1], where
the authors saw no need to state the result in its full strength. U

If Fo(-) is differentiable, as true for the case of smooth ¢ considered here, one might ex-
pect that the strict monotonicity of Ey(ai) for a; # 0, established under alternative (i) in
Theorem 2.6, corresponds to non-vanishing derivative. Using Theorem 2.6 as a first step in a
bootstrap argument, we can indeed show that this is true.

Corollary 2.7. Let q be smooth and satisfy the assumptions of Theorem 2.6. Also assume that
Ey(ay) does not vanish identically. Then E{(a;) <0 for all a; € (0,s —r] and, by symmetry,
E{(0) =0 and E{(ay) > 0 for a; € [—(s—1),0).

Proof. 1t follows from Theorem 2.6 that E{(a;) < 0 for a; € (0,s—r|. Suppose that E{(a;) =
0 for one such value a; . By Theorem 2.5 the right hand side of (14) is strictly negative at
a0, meaning that E{(a;) < 0.

Further, for a; near a,p,

1
Eo(al) = Eo(aL(]) + —E()'(al,o)(al — al,o)z + O(‘CLl — CL1’0|3).

2
Negativity of E{j(a10) contradicts that, by Theorem 2.6, Ey(ay) is strictly decreasing near a; .
This completes the proof. O

We are ready to state and complete proving the strengthened version of Theorem 1.3 of [1],
which will be central to all our later considerations in the localization proof.

The domain D in R?Y may be any open rectangular parallelepiped and ¢ a C*-smooth
function with closed support contained in D and having the same symmetry hyper-planes
as D. We define G and Ey(a) for a € G as in Section 2.1. Then G is an open rectangular
parallelepiped and we may assume that its center is in the origin and G = (= M7, M) X ... X
(— Mg, My).

Corollary 2.8. Assume that Ey(a) is not identically zero on G. For all a = (ay,...,aq) € G
and all 1 =1,...,d we have

<0, ifa; >0,

8¢E0(CL) = O, Zf a; = O,

>0, ifa; <O0.
Proof. 1t suffices to consider ¢ = 1. Fix any values a; € [-M;, M,], j = 2,...,d. By Theo-
rem 1.3 of [1] (or, better, its proof) the function Ey(a;) := Ey(ay,as, ..., as) does not vanish
identically (it decreases for a; > 0 and increases for a; < 0. Thus Corollary 2.7 completes our
argument. U

Open Problem: It is an open problem to show that the phenomenon “bubbles tend to the
corners”, i.e. results such as Theorem 3.1 in [1] or Corollary 2.8 above, also appears if the
rectangular domain D is replaced by more general polyhedra, for example regular n-gons in
R2. Again this should need a suitable symmetry assumption on the potential ¢, e.g. spherical
symmetry. Particularly interesting would be the case of an equilateral triangle, as all other
results in this paper would be applicable to this case as well. It was shown in [1] for general
smooth convex domains that the minimizing position lies at the boundary.
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3. LIFSHITZ TAILS

In proving smallness of the IDS of H, near Ej, the almost sure spectral minimum of H,,
we will rely on a prior result of this kind for the RDM (1), (2) established in [21]. Their result
requires widely the same assumptions as made above, i.e. (3), (5), (6) and that Ey(a) does
not vanish identically, but needs in addition that the support of the distribution p is finite.
This violates our assumption (7) (and every other assumption on g which works for our proof
of a Wegner estimate in Section 4).

However, based on the results from Section 2, one might expect that configurations in which
all bubbles sit in corners, as dealt with in [21], constitute the worst case scenario for smallness
of the IDS near E,. We will make this rigorous here by showing that the IDS of H, can be
bounded from above (up to a multiplicative constant) by the IDS of a modified RDM where
all bubbles have been moved to the nearest corner.

More precisely, for an a € G = [~dnaz, dmaz)?, let ¢(a) denote the element of C closest to a.
If there is more than one such point, any of them can be chosen; for the sake of definiteness, we
may order the points in C lexicodgraphically and chose the first in the list. For a displacement
configuration w = (w;);czd € G we will write c(w) for the closest corner configuration given
by (c(w)); = c(wy), i € Z4.

For a non-negative integer L, let Agz 1 = (—L —1/2, L+ 1/2)¢ and H,, ;, the restriction of
H, to Ay with Neumann boundary conditions. Also, let A}, | = 74N Aory1. We will prove

Proposition 3.1. There exists a constant C' € (0,00) such that, in the sense of quadratic
forms,

1
H,p—FEy> E(Hc(w),L — L) (35)

for all w € @Zd and all L > 0.

We start by showing this for L = 0, i.e. on the level of the single-site operators H f\vl (a). This
is achieved in the following two lemmas, which separately treat the cases where the bubble is
close to a corner or not close.

Recall from Section 1 that Ey(a) denotes the ground state energy of HY (a) for a € G and
that the almost sure spectral minimum FEjy of H,, is given by Ey(a) when a is one of the corners
C of G. As a consequence of Corollary 2.8, Ey(a) grows linearly in the distance of a from the
nearest corner, i.e. there exists a constant C' € (0, 00) such that,

Eola) — By > éD(a) (36)

where D(a) = mingec |a — ¢|.
We will use this to prove

Lemma 3.2. There exists C > 0 and § > 0 such that, if D(a) <9, then

HY (@) = By >  (H(0) — Eo+ la—cl)) (37)

Proof. Let a € G and pick ¢ € C such that D(a) = |a — ¢|. As ¢ is C*, write
Hy\ (a) — Ey = Hy (¢) = By +q(- —a) —gq(- — ¢)

N (38)
=H) (¢c) = Ey+ (c—a) -Vq(- —c) +o|la —cl).
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Using (36), one obtains that
1
HY (c)— Ey+(c—a) Vq(-—c) > E|a —c|+ o(|la —¢|).

Hence, there exists p € (0,1) small such that, for o € S~ with ¢+ po € G, one has
HY (¢) = By — po - V(- — ¢) > p/2C.
We recall Lemma 2.1 of [20]: If we suppose A > 0 and A+ B > ¢y > 0, then we have
A+tB>min(1/2,¢) - (A+1t) for t € [0,1/2], since
A+tB=(1—-t)A+t(A+ B) > ;A +tcy > min(3, co)(A +t).

Applying this with A = HY' (¢) — Ey and B = po - V(- — ¢), we learn there exists C), > 0 such
that for t € [0,1/2] and for o € S with ¢ + po € G, one has

1
HY (¢) — Eg—tpo - Vq(-—c) > o (HX (c) — Eg + 1).
p
Hence, in view of (38), for |a — ¢| < p/2 and t = |a — ¢|/p, one has
1
HY (@)~ By > & (HY(€) = By +la —cl/p) + olla ).
p

Finally, this implies that there exists § > 0 such that for |[a—c| < 6, one has (37) and completes
the proof of Lemma 3.2. O

Bubbles which are not close to a corner are easier to handle and considered in

Lemma 3.3. Fiz 6 € (0,1). There exists C = Cs € (0,00) such that, for D(a) > § and all
c €C, one has

1
HY (a) — Ey > e (HX (c) — Ey+ |la—cl).

Proof. Fix § € (0,1). By (36) there exists 7 > 0 such that, for a with D(a) > 0, HY (a)—Ey >
n. Hence, as |q(z — a) — q(z — ¢)| > —2||q||s0, there exists C' > 1 such that, for a satisfying
D(a) > § and all ¢ € C, one has

1
(C + 1)(Hy, (a) = Eo) — (HR,(c) = Eo) > Cnp = 2lqlloc > 1 > ala—cd.

Hence,

This proves Lemma 3.3. l

Proof. (of Proposition 3.1) To complete the proof of Proposition 3.1 we need to extend the
result of the previous lemmas to general boxes Ayp 1. This is done by an argument previously
used in the proof of Theorem 2.1 in [20] which makes crucial use of properties of Neumann
boundary conditions.
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For ¢ € H'(Ayz11), the form domain of H, 1, one has that the restriction of ¢ to A;(4) is
in H'(A1(2)) for each i € Ay, and

(Hop — Eo), ) = > ((—A = Ey+q(- — i — w)v, ¥)a,

. !
€Ny 4y

where (-, )4 denotes the standard scalar product in L*(A). This may also be applied to the
modified displacement model H,

(Hew),r — Eo),v) = Z (A = Eo + q(- — i — c(wi) ), ), (i)-

- !
i€ASr Ly

Hence, using Lemmas 3.2 and 3.3 on each term in the sum, we obtain that

(Ho = Bob,0) 2 = 37 (R (e)) = Bo + s = ) D, )
i€AL;
1

Z 5<(Hc(w),L - EO)wv ¢>7

where the positive term ), (|w; — ¢(w;)|®, ¥)a, ;) was omitted. This completes the proof of
Proposition 3.1. 0

The random displacement model Hy = —A + >, ;4 q(- — ¢(w;)) has i.i.d. displacement
vectors (c(w));eze, whose distribution is discrete with support given by the corners C of G.
Thus it satisfies the assumptions of Theorem 4.1 in [21]; hence, by the proof of Theorem 1.2
in [21], in particular (16) in the same work, there exist C' < oo and p > 1 such that, for all L,

P(H,(.),r has an eigenvalue less than Ey + C/L*) < L "

Note that this requires that d > 2. The argument leading to Theorem 4.1 of [21] uses
crucially the uniqueness (up to translations) of the minimizing configuration of the potentials
proved in [2], which holds only for d > 2. See Section 5.2 below for a comment on the
differences for d = 1. The assumption » < 1/4 in (5) was used in [2] for a more technical
reason (rather than just r < 1/2) and thus also enters our argument here.

Using Proposition 3.1, we immediately obtain the following finite volume bound on the prob-
ability for finding low lying eigenvalues. It is this result which enters the proof of localization
via multiscale analysis.

Corollary 3.4. There exist C < co and > 1 such that, for all L,
P(H,, 1 has an eigenvalue less than Ey+ C/L*) < Lu™".

The results of [21] also show that the integrated density of states of H,(,, say N, satisfies
a Lifshitz tails estimate of the form
log | log N (E 1
lim sup o |log N(E)| < ——. (39)

E—B, log(E—Ey) — 2
E>FEy

By Proposition 3.1 we see that N, the integrated density of states of H,,, satisfies, for £ > Ej,
N(E) < N(Ey+ C(E — Ey)).

Hence, we have proven the following result which is not required in the localization proof but
stated here for its independent interest.
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Theorem 3.5. The IDS N of H, has a Lifshitz tail of the form

i su 08 [1og N(B))|
E—>S;op log(E — Eo) —
E>Ep

We expect that the Lifshitz exponent 1/2 is not optimal and should instead be d/2, the
standard value known from the Anderson model. We can think of two ways in which one could
try to get this improvement, non of which we know how to make rigorous. One approach
would be to show that (39) holds with exponent d/2, which would immediately give the same
in Theorem 3.5. That this should hold is discussed in [21], where the exponent 1/2 is found
due to one part of the proof which uses an essentially one-dimensional argument.

Another way to argue would be to make use of the term ), |w; — ¢(w;)|xa,) which was
dropped in the proof of Proposition 3.1. Under our assumptions (6) and (7) this means
that one would have to show standard Lifshitz tails for an Anderson-type model where the
unperturbed operator is the random operator H,,. However, the known methods do not
work for the irregular background potential appearing here.

1
5

4. A WEGNER ESTIMATE

Throughout this section, we write H;(a) = H f\vl (i)(a) for simplicity. Our goal in this section
if to prove the following Wegner estimate for energies near Ey = inf, 7 Ey(a), where Ey(a) =
inf o(H;(a)):

Theorem 4.1. There exists 6 > 0 such that, for any o € (0, 1), there exists Co, > 0 such that,
for every interval I C [Ey, Ey + 6] and L € N,
E(tr x1(Ho,r)) < Call* LY. (40)

As an immediate consequence of the existence of the integrated density of states (see e.g. [25])
and Theorem 4.1, we get

Corollary 4.2. There ezists 6 > 0 such that, for any o € (0,1), the integrated density of
states of H,, is a-Hélder continuous in [Ey, Fo + ¢].

The rest of this section will be devoted to the proof of Theorem 4.1.
For a function f on G we set

(0cf)(a) := Via),

with ¢(a) denoting the corner closest to a as in Section 3. Thus, 0. denotes the directional
derivative in the direction of the closest corner, where points a with multiple closest corners
will not play a role in the arguments below.

By Corollary 2.8 there exists dg > 0 and ry > 0 such that 9.Fy(a) < —dy for all a € A, :=
{a € G :|c(a) — a|] <1}, a neighborhood of C.

Let n € C*(R) such that 0 <7 < 1, n(r) =1 for r < ry and n(r) = 0 for r > 2r,. Using
this function as a cut-off, we localize the vector fields associated with 9, onto a neighborhood

of the corners, defining
(0.f)(a) = n(lc(a) — a])(9:f)(a). (41)

cla) —a
|e(a) — a

For each i € Z%, we write

/ / . i) — Wi
Ol Ho =0, uq(- —i —w;) = —n(|c(w;) — wi\)‘cgw.;ﬁ

c,w;

(Vo) —i —w;).
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If v € H'(Ayp41), the form domain of H, r, then ¢; = ¥|a, ) € H'(A1()), the form
domain of H;(w;), and, with the usual abuse of notation for the quadratic form,

(b, Hopt) = > (s, Hi(w)ths), (42)
i€AY
as well as
Z <¢7aé,win,Lw>: Z <¢i78é,win‘(Wi)¢i>- (43)
ieA’zL+1 z'eA’ZL+1

Proposition 4.3. There exist 61 > 0 and do > 0 such that

= D (. (O Hor)¥) = 89l (44)

i€AL;

forall L € N, and ¢ € H'(Aapy 1) with (¥, (H,. 1 — Eo)v) < 80|

Proposition 4.3 will be established through a series of lemmas.
Let P;(a) be the eigenprojection onto the groundstate of H;(a), P;(a) :== I — P;(a), and

By = inf (o(Hi(@) \ {Eoa)}) > Eo.

ac

Lemma 4.4. If ¢ € H'(Aypy1) with (¢, (Hy, 1 — Eo)t > < &||v||?, then
2 2
3 Pl < (45)
Proof. We have
(W, (Hop = B)w) = ) {(Bo(wi) — Eo)llPi(wi)vil®

i€AL
+(Pi(wi) i, (Hi(w;) — Eo)Pi(wi)i) }
> (Bi—Eo) Y I[Pswi)esll?,

€AY
which yields (45) by the assumption. O
By the results of [1] we have

EO,ro = Lnf E(](CL) > Fy.
acG\Ar,

Define Ay, :={i € Ayp+ wi € Ay}
Lemma 4.5. If ¢ € H'(Agp 1) with (¢, (Hy,p — EO) ) < Go|0||?, then
2 2
I < g el (46)
€AY
Proof. This follows from the assumption and

(¥, (Ho — o)) > Y (Eose — Eo)llwill*.

1"
2€A2L+1
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Lemma 4.6. There exist C; < oo and Cy < 00 such that for p € L*(A1(4)),
— (. (0L Hi(a))p) = —(0, . Eo(a) | Pa)el® = Cillel [ Picll = CollPip]®. (47)

Proof. Omitting the variable a we have,
0P, = ~0\P, = —0l(P}) = Pi(0,P) + (9.P)P;
and
OLH, = 0.(EoP; + P;HP;)

(0.E0) P; + Eo(0,P:) + (0.P;)H; P; + P;(0.H;) P; + P;H;(0,P;)

(0.Eo)P; + Eo(0.P) P; —l—EO ( )

+ Pi(0.H;)P; — (0.P) H;P; — P;H;(0.P,).
Thus, for ¢ € L*(A4(7)),

—(p, (L)) = —(0.E0)(p, Pip) — 2E0Re(Pip, (0.F;) )
— (Pip, (0.H;) Pip) + 2Re(H;(0.P;), Pip).

This implies (47) if we can show that the operators 9., ,H;(a), (0, ,F;)(a) and H;(a)(. ,P;)(a)
are bounded in L?(A,(7)), uniformly in a € G. This is clear for

8L Hi(a) = —nlle(a) — af) D=

|e(a) — al
For P;(a) we write, as in Section 2,

Pi) = 5§ (Hila) = 2) d,

where C' circles around Ep(a), and can be chosen locally independent of a and with distance
to Ey(a) which is bounded below uniformly in a € G (as the distance of Ey(a) and Ej(a) is
uniformly bounded below). From this we can conclude that

(0o P)(a) = = ]{C(Hi(a) —2) (0o Hi(a)(Hi(a) — 2)"" dz

(Vg)(- —i—a).

21

is uniformly bounded in a. In this expression one can absorb an additional factor H;(a) to
show uniform boundedness of H;(a)(3. ,P;)(a).
O

We are now ready to complete the proof of Proposition 4.3:

Proof. By Lemmas 4.4 and 4.5 we have

SooP@IGllP = > (el = IPa(wi)il?)
NG A

I = > Nl = D Pi(wieall®

zEA’Q’LJrl i€/

5, 5 ) ,
]__
( s ) I

v

2L+1

v
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Let ¢3 := sup,eq 0. ,Fo(a)|. With Lemma 4.6 we find
— > W Oy Hao)V) = — > (y, (0L Hiw:)s)

i€AL; €AY 1
> (O Bo(wi) || Piwi) il
i€AG L
—C1 > illlPawa) il = Co Y 1 Pi(wi)bi]?
WAL €AYy
> = Y (O Eow))IPw)till> = > (L Eolwi)) || Pi(ws )i
WEAY L i€AY;
1/2
C _ _
—71H¢|| STPiw)vill? ] —Ca D IPswi)vill* (48)
1€/ €N/

2L+1 2L+1
Now we use that —0, , Eo(w;) is bounded from below by dy if i & Aj; ., (the latter means
wi € Ag and thus 0, , Fo(wi) = e, Eo(w;)) and by ¢z if i € A, . Also using the bounds

from Lemma 4.4 and 4.5 again, we arrive at

/ 02 5o
D D R vy ) L

1€

2L+1
92 2 1 2
vy LU e
02
— C! 2,
ey L
Choose 99 > 0 such that
b G h G b
Ey., — Ep 2VE,—-Ey, FE, —E 4’
and 5 5 5
2 " 2 %
E,—-Ey Ey,,—Eo 2
Then 5
- Z <¢7 (aé,win,L)w> > ZOH¢||2

€Ay
This proves (44) with d; = dy/4.
O

We now prove Theorem 4.1. We follow the approach developed in [15] based on L? estimates
of the spectral shift function (see also [5]). The method can be adapted to our model thanks
to Proposition 4.3.

For 0 from Proposition 4.3 choose § = d5/2 and let I C [Ey, Ey + 0] be an interval of the
form [ =[E —¢,E+¢].

Let x € C*(R) be a real-valued function such that y(z) = —1 for z < —¢; x(z) = 0 for
x>¢e; X' >0;and ||} |l < 1/e.
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By our assumption on / and the Gohberg-Krein formula, see e.g. Proposition 2 in [23],
Proposition 4.3 implies that

tr | = Y O, Her—E+t) | =tr [ X(Hor—E+t) [~ Y (0.,,Ho)

. / s ’
€A1 €AY

> ovtr (X' (Hop — E+1)).

Then, as supp x’' C [—¢,¢] and as x’ > 0, one has

E(tr xi(H.)) < Eltr / C V(Has— B+ 1)

—2¢

IN

5% > /_: E (tr (=0, X(Hor — E+1)])) dt. (49)

. !
€AY

In the above expectation we want to write the integration with respect to w; over GG as
a sum of integrals over the intersection of G’ with each one of the 27 orthants, using polar
coordinates with respect to the corners ¢ € C in each orthant. For this we represent a € G
by (1,0, c(a)) € (0,00) x S¥1 x C, where c(a) again denotes the corner closest to a and (r,6)
polar coordinates of a — ¢(a). For a function f supported near the corners C this means that

/Gf ()pla)da=2 /Sd /O " Jr0 = p(r0 — et dr b,

ceC

with S9! denoting the intersection of S¥~ with the orthant containing —c.
With a = w; this leads to

E(tr (=0, [x(Hor — E+1)]))

=B, (tr > /S /0 . O [X(Hur — E+ t)n(r)p(ré — c)ri=tdr d@), (50)

ceC

where E; denotes the expectation with respect to the random variables (wj);zi- Here a sign-
change is due to the fact that 0, acts in the direction opposite to 0..,. By integration by
parts, we have

/0 o 0, [X(Hw,L — F+ t)}n(r)p(rr@ _ C)’f’d_ldr

- /0 . X(Ho — E+1t) — x(Hyo ., — E+)]0:(n(r)p(ro — c)rdNdr, (51)

(4)
J
that the second term in (51) actually integrates out to zero, as n(r) vanishes at both
endpoints. But we include this term in the integral to be able to make use of bounds on

X(Hw,L —E+ t) - X(Hw(i)l/ — FE+ t).

= w; for j # i, andd wi(i) = ¢(w;). Note
-1
,

where w® is the random variable such that w
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Now (51) implies that
tr ( i K O X(Hyr, — E+t)|n(r)p(ro — c)rd_ldr)
(s Hao X 000 ) 00— - (52)

This uses the spectral shift function {(A ; Hy,r, H @ ;) for the pair (H, r, H,w ;) which is
defined so that

/R S NEN s Hor oo 1 )dA = tr (p(Hoor) — o(Hoo 1),

for all p € Cg°(R). The invariance principle for the spectral shift function (see e.g. [26] or [3])
states that the spectral shift function {(A; Hy r, Hyo ) can be written as

EN s Hory Hyo 1) = —§(9k(AN) 5 96 (Ho 1), gk (Hou 1))

Here we define gi(\) = (A + M)~* and M is picked such that w-a.s., inf, V() > —M + 1.
By definition H, 1 — H,u = q(- —i —w;) — q(- — i — c¢(w;)) which is a bounded, compactly
supported potential. In Section 5 of [15], it is proved that (actually for more general operators),
if k > pd/2+1 and p > 1, the operator gi(H,, 1) — gr(H, 1) is super trace class of order 1/p,
i.e. its singular values to the power 1/p are summable; the p-th power of this sum is denoted
by || - ||1/p- Moreover, ||gx(Ho,z) — gx(Hyo 1)]l1/p < Co for Cy > 0 independent of w and L.

Using a simple change of variables and the bound ||£(+; A, B)||» < ||[A— BH%Z proven in [5]
we find

/|€()‘§Hw,Lan(i),L)|pd)‘ - / 1€(g1(A); gk (Ho 1), gx(Houo 1)) [P dA

< ¢ / (5 u(Hov ) g (oo 1)) dis
R
< Cllge(Hur) — ge(Hyo 2)llyp
< CG, (53)

As ||X]le < 1/e and suppx’ C [—¢,¢], (53) and the Hoélder inequality imply that, for any
q € (1,+00), there exists C, > 0 such that

sup

/5( s Hoy L, Hw(i)7L>X,(>\)d>\‘ < C, gl/a=1
R

As 0,[n(r)p(rf — ¢)r*~] is a bounded, compactly supported function uniformly in ¢ and c,
(52) then implies that

(/ O [X(Hyp — E+t)n(r)p (r@—c)rd_ldr)‘ < C et

Plugging this into (50) and then into (49), we get that, for any ¢ € (1,+00), there exists
C, > 0 such that

sup

2e
E(tr x;(H,1)) < Cy [Ny | e¥/77! / dt < C e/

—2e
This completes the proof of Theorem 4.1. O
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5. CONCLUDING REMARKS

5.1. Remarks on multi-scale analysis. It is well known to experts in the field that Lifshitz
tails of the IDS, more precisely, a bound as in Corollary 3.4, combined with a Wegner estimate
such as Theorem 4.1 leads to a proof of spectral and dynamical localization via multi-scale
analysis (MSA). For the sake of reaching a broader audience we include some discussion of the
strategy and additional tools which are behind this. Here it is very convenient to follow the
presentation in [25], which we highly recommend to readers who want to understand MSA.
In particular, while including applications to models other than the one considered here, [25]
carefully singles out all the properties required of a model to make the various steps of MSA
work. This allows us the luxury to mostly discuss the validity of these properties for our model,
after which the reader can follow the details in [25] without changes. The conclusions reached
in [25] are somewhat weaker than what we state in Theorem 1.2. One gets the existence of an
interval I = [Fy, Fy+ ¢'] with pure point spectrum and exponentially decaying eigenfunctions
as well as dynamical localization in the sense that

lgl<1

E <Sup |||X|p9(Hw)XI(Hw)Xy||) <0 (54)

for all p > 0. The bound (10), stronger than (54) both with respect to the decay in |z — y|
and the Hilbert-Schmidt norm used, was shown to be obtainable via MSA in [13], see also
the review [18], which represents the current state of the art. This follows the same general
strategy, i.e. using input much weaker than what we have obtained here to prove localization.

To link our results with the strategy employed in [25], we first note that the Wegner estimate
of Theorem 4.1 is much stronger than what is required in MSA. In fact, for £ € I, :=
[Eo, Eo +6/2], 0 € (0,1/2), all ¢ > 0 and ¢ sufficiently large, we get from Theorem 4.1 and
Chebychev’s inequality that

]P){diSt(O-(Hw,f)? E) < eXp(_EQ)} < E(tr X[E—exp(—ﬁ),E-i—exp(—ée)](Hw,f)) < E_q>

i.e. that the Wegner estimate denoted as W (o, ¢, 0, q) in [25] holds.
Next, we observe that the Lifshitz-tail bound from Corollary 3.4 implies the following: For
any £ > 0 and 8 € (0, 1) there exists Ly = Lo(f3, &) such that

P(H, 1 has an eigenvalue less than Ey + Lﬁ_l) < L~¢

for all L > L. This follows from Corollary 3.4 with a Neumann bracketing argument exactly
as in the proof of Theorem 2.2.3 in [25].

For E € I := [Ey, Ey + L°~!/2] one may now use a Combes-Thomas estimate (which holds
for very general semi-bounded Schrodinger operators, and thus certainly in our setting) to
turn this into an initial length estimate (ILE) for the decay of the “smeared” Green function
Ixe(Hor — E) x|l with y near the center of Ay and x near its boundary. In fact, for
v = LP~! and L sufficiently large, one obtains the ILE denoted by G(I, L,~, ) in [25].

As carried out in Chapter 3 of [25], the MSA machine can be started with the first L
satisfying the above if one links the 6 from the Wegner estimate and the § from the ILE by
0<20<p<1.

[25] explicitly identifies four more “soft” ingredients which are needed along the way of
running the machine to prove the exponential decay properties of Green’s function necessary
to conclude pure point spectrum with exponentially decaying eigenfunctions:

(i) independence (INDY) of restrictions H,, » and H, n of H,, to disjoint cubes A and A/,
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(ii) an a-priori Weyl-type bound tr x ;(H,a) < C|A| (WEYL) for the number of eigenvalues
in an interval J covering the energy regime considered,

(iii) a geometric resolvent inequality (GRI) which allows to carry Green function bounds
from smaller cubes over to larger cubes,

(iv) an eigenfunction decay inequality (EDI) which allows to relate Green function bounds
to decay of generalized eigenfunctions.

All these properties are either obvious in our setting or were proven in [25] for Schrédinger
operators much more general than needed here. The same holds for the bound

() tr (xaxs(Ha)) < CIAJ*, 5 > 0 fixed,

which enters the proof of dynamical localization, e.g. Theorem 3.4.1 in [25].

With this we hope to have prepared the motivated reader for consulting the details in [25].
The even more motivated reader will be rewarded by [13] with stronger results.

5.2. Related results and problems. (i) The Wegner estimate and the Lifshitz tails, and
therefore our main result Theorem 1.2, hold under weaker assumptions on the distribution
p of the displacements. E.g. the proof as written in Section 4 only requires that p has a
C'-density p near the corners C. This is made possible through the introduction of the cut-off
n supported near the corners in (41).

It is evident from (52) that the C' condition for p is only needed in the radial direction
with respect to the corners. In fact, similar to [14] we could allow distributions supported on
a suitable submanifold. Examples would be the uniform distribution supported on a “cross”
in d = 2 or, in general dimension, uniform distribution supported on the boundary 0G of

G= (_dmaxv dmam>d-
d

(ii) Under our assumptions and in d > 2, among all periodic configurations w € a , w* as
defined in (8) is, up to translations, the unique minimizer in the sense that inf o(H,~) = inf 2.
This was proven in [2] and enters the argument in [21] leading to Corollary 3.4 and the Lifshitz
tail estimate Theorem 3.5 above.

As also shown in [2], in d = 1 there are many periodic minimizing configurations. This has
strong consequences for the IDS at the bottom of the spectrum. An extreme case is given by
the 1D Bernoulli displacement model, i.e. p = %5dmaz + %5_%“, whose IDS satisfies the lower
bound N(Ey +¢) > C/In’e. This singular behavior is the extreme opposite of a Lifshitz tail.

(iii) The previous remark might mislead into expecting that the Bernoulli displacement
model is not localized at low energy. Spectral localization for the 1D random displacement
model (at all energies and for arbitrary non-trivial distribution of the displacements) has been
proven in [4] and [24] (using methods of [7]). These methods are completely different from
what is available for d > 1, and, in particular, do not require smallness of the IDS. One
uses dynamical systems tools such as results on products of random matrices, in particular
Furstenberg’s theorem. In fact, one finds that the Lyapunov exponents are positive with the
possible exception of a discrete set of energies. As far as dynamical localization is concerned,
it might be violated at those critical energies. For examples of this see [16, 6]. Away from the
critical energies, however, one also has dynamical localization.

In the case of the one-dimensional Bernoulli displacement model, the energy Ej provides a
new example of a critical energy. This is seen as follows: By the results of [2], for any € > 0
almost surely there is a solution ug of H,u = Eyu and C' > 0 such that %exp(—x_l/z_e) <
lug(z)| < Cexp(x!'/?7¢). Using the lower bound and the standard reduction of order argument
one shows that there is a second linearly independent solution u; which satisfies the same upper
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bound. This shows that the transfer matrices grow sub-exponentially. Thus the Lyapunov
exponent at Fy vanishes.

(iv) An interesting open problem arises from cases of the random displacement model where,
in the language used in the introduction, alternative (ii) holds, i.e. where FEjy(a) vanishes
identically. Examples for this (non-generic) situation can be constructed as follows:

Let 0 < ¢ € C*(A1(0)) be constant near the boundary (but not constant throughout
A1(0)). In the definition (1), (2) of the random displacement H, model pick the single-
site potential as ¢ = Ag/p. By construction, this leads to alternative (ii). Moreover, for
every displacement configuration w a generalized ground state of H, to Ey = 0 is given by
¢ =3, ¢(—n—w,)xam (here we think of ¢ as extended by a constant onto all of R?).
Note that 1/C < ¢ < C for some C' > 0 uniformly in w.

This leads to van Hove behavior of the IDS at Ey =0, i.e.

éEd/Q < N(E) < CEY?

for £ > 0, which follows with the same argument as provided for a closely related example in
Section 3 of [20].

It would be interesting to know if this can generate non-trivial transport (and thus prevent
dynamical localization). This is the case in dimension d = 1. Starting with ¢, the reduction of
order argument provides a second, linearly independent, solution which grows at most linearly.
Thus, the transfer matrix also grows linearly. By Corollary 2.1 in [6], which is based on work
in [8], this implies that the time-averaged moments |X|? of suitable solutions of the time-
dependent Schrodinger equation are bounded below by CT®=%/2 This rules out dynamical
localization in the sense of (54) for p > 5. Clearly, there are multiple obstacles to extending
these methods to higher dimension.

We finally remark that the methods of [8] and [6] do not suffice to obtain non-trivial trans-
port under the sub-exponential growth bounds on the transfer matrix discussed in remark (iii)
above.
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