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Generalized Hooke’s law for isotropic second
gradient materials

By F. perr’Isora’®, G. Sciarra? aAND S. Viporr'™*
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via Budossiana 18, 00184 Rome, Italy
3 Laboratorio di Strutture e Materiali Intelligenti, Universita di Roma La
Sapienza, Ala Nord, Palazzo Caetani, 04012 Cisterna di Latina, Italy

In the spirit of Germain the most general objective stored elastic energy for a second
gradient material is deduced using a literature result of Fortuné & Vallée. Linear
isotropic constitutive relations for stress and hyperstress in terms of strain and strain-
gradient are then obtained proving that these materials are characterized by seven
elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski.
Using a suitable decomposition of the strain-gradient, it is found a necessary and
sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of
the stored elastic energy. The problem of warping in linear torsion of a prismatic second
gradient cylinder is formulated, thus obtaining a possible measurement procedure for one
of the second gradient elastic moduli.

Keywords: stress concentration; constitutive behaviour; elastic material

1. Introduction

Three-dimensional Cauchy continua represent a mathematical model suitable to
describe many phenomena occurring in bodies which are deformed because of
external actions. However, some deformation problems in linear elasticity have
solutions which present singularities; the Flamant—Boussinesq problem and the
Kelvin problem are two well-known examples (Georgiadis & Anagnostou 2008).
It is therefore clear that when highly concentrated stress occur, a more detailed
description of deformation phenomena is required. On the other hand, Cosserat &
Cosserat (1909) already generalized Cauchy model to describe continuous media in
which microrotations play a relevant role. Most recently, Cosserat models were
used by many authors (e.g. Ehlers & Volk 1998) to describe granular materials,
fluid saturated porous media or soils. Stress concentration phenomena revealed to
be of importance in plasticity and fracture mechanics: in proximity of the region
where plastic deformations take place Cauchy models are not able to catch some
relevant phenomena (e.g. Deborst & Sluys 1991). Shear bands, transition regions
between elastic and plastic regimes, crack initiations are some among them which
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require more encompassing models (e.g. Unger & Aifantis 2000). Similarly, when
modelling the constitutive behaviour of two-phase composites, Drugan & Willis
(1996) found that the leading-order correction to a homogeneous constitutive
equation involves a term proportional to the second gradient of the ensemble average
of strain.

A possible generalization of Cauchy models including those proposed by
Cosserat & Cosserat (1909) can be found in Toupin (1962), Mindlin (1964) and
Germain (1973). In these papers, continuum mechanics is framed in a setting
where stored (deformation) energy depends not only on strain, but also on strain
gradient. The more general continua, thus introduced, are called second gradient
continua by Germain or first strain-gradient continua by Mindlin. In these
approaches, the concept of contact actions needs more general treatment than
the one due to Cauchy. Indeed, second gradient continua show surface contact
actions of two different types: contact surface forces and contact surface double-
forces. Moreover, when Cauchy cuts present edges, then also contact line forces
arise (dell’Isola & Seppecher 1997). To analyse the dependence of stored energy
on strain gradient and the relationship between this energy and contact actions,
it is necessary to establish some properties of third-order tensors.

Each third-order tensor S,;, symmetric with respect to its first two indices,
can be uniquely decomposed as the sum of a third-order tensor, completely
symmetric with respect to all permutations of its indices, and a ‘sym-skew’ third-
order tensor, (skew-symmetric) symmetric with respect to its (last) first two
indices. We refer to equations (2.10) and (2.11) for a precise definition.

The strain gradient is a third-order tensor which is symmetric with respect to
its first two indices: therefore, it can be decomposed into its completely
symmetric and sym-skew parts. In Toupin (1962) and Mindlin (1964), the stored
energy depends only on the sym-skew part of the strain gradient, while the
complete dependence is assumed in Germain (1973). As a consequence, the
contact double forces reduce in Toupin (1962) and Mindlin (1964) to couple
stresses, while no such limitation is assumed in Germain (1973), where Piola—
Kirchhoff stress and hyperstress tensors are introduced but no constitutive
assumption for the stored energy is discussed.

In the present paper we deduce, using a variational principle, equilibrium
equations for second gradient materials in terms of the stored energy density,
thus obtaining the corresponding representation of Piola—Kirchhoff stress and
hyperstress. No small deformation assumption is necessary to this aim and,
therefore, the obtained equations are valid in finite elasticity. Using the
representation theorems of Suiker & Chang (2000), the most general
homogeneous quadratic isotropic constitutive relation for second gradient stored
(deformation) energy is found. As a consequence, constitutive relations for Piola—
Kirchhoff stress and hyperstress in terms of strain and strain-gradient are
obtained: these are generalized Hooke’s laws valid for isotropic second gradient
materials. For these materials, together with standard Lamé moduli, five more
moduli are needed.

Subsequently, it is deduced a necessary and sufficient condition assuring that
the stored energy is positive definite: to this aim it has been necessary to
introduce a further decomposition of the strain gradient. The constitutive
equations given by Mindlin (1964) and used by Sokolowski (1970) are found as a
particular case when three out of the five aforementioned moduli vanish.
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One of the most relevant problem to be addressed, when new constitutive
equations are introduced, concerns the design of experimental procedures to apply for
getting measurements of newly introduced moduli. To this aim, in the last section,
the closed-form solution for the linear torsion of a prismatic, hollow, circular,
second gradient cylinder is found which allows for the determination of the torsional
rigidity in term of the standard shear modulus and of one specific second gradient
modulus. For a generic cross section the problem of warping in linear torsion is
formulated; the differences with a study due to Sokolowski (1970) are discussed.

2. Equilibrium equations for second gradient materials

Second gradient theories of deformable bodies are characterized by requiring the
volume density of the virtual internal work W™ to depend linearly on virtual
displacement field 6w and on its first and second spatial gradients, see Toupin
(1962), Mindlin (1964) and Germain (1973)

Wint(éu) = —JD (gaéua + 250U, 5 + Hagyéua_ﬂy); (2.1)

here and in what follows we use commas to denote partial derivatives.
The principle of virtual work is therefore assumed to have the following form:

W™ (5u) + W™ (6u) = 0, (2.2)

where the equality is assumed to be valid for every sufficiently smooth virtual
displacement field du; and D is the Eulerian domain occupied by the considered
body. From now on Greek indices refer to coordinates with respect to a fixed
orthonormal frame in the Euclidean space and Einstein convention on repeated
indices is used. The representation assumed for W™" is made plausible by the
Schwartz (1963) representation theorem for continuous linear functionals. Simple
successive applications of Gauss theorem imply that the external work W' has
the following form (Seppecher 1989):

W (su) = J b, 0u, +J (t0uy + 740U, gmg) + ZJ [aOUg, (2.3)
D oD n JEn

where 0D is the boundary of D, assumed to be differentiable almost everywhere;
and &, is the hth edge of 0D, if any. On the curve &£, the normal m to the
boundary 0D suffers a jump.

As a consequence, the introduced second gradient internal actions,' the stress
Y and the hyperstress II, balance not only bulk forces b and surface tractions ¢,
but also surface double-forces 7 and tractions per unit line f (Germain 1973).

In this paper, the existence of a regular Lagrangian stored (deformation)
energy density ¥ is assumed. Moreover, we assume the variation of the stored
energy to equal the opposite of the internal work W™" once this last has been
expressed in terms of Lagrangian quantities. The consequent Lagrangian
representation of the principle of virtual work allows us to determine the searched
equilibrium equations.

! Zero-th order stress ¢ has to vanish because of the invariance under change of observer of the
internal work, see for instance Seppecher (1989).
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(a) Kinematics

A Lagrangian description of motion is adopted for second gradient solids. Let
us consider the reference configuration Dy of the body as a sufficiently smooth
domain of the Euclidean ambient space £. Placement of material particles are
determined by the bijective function x : Dy — £ mapping any material particle in
its current position. Moreover, D:= (D) and the displacement field is defined,
as usual, Uy (X ) =xu(X)— T4iX;, for XED,. Here and in what follows, Latin and
Greek indices denote respectively the Lagrangian and Eulerian components with
respect to fixed orthonormal frames in the reference and current configurations;
moreover, the invertible matrix T represents the parallel transport from
coordinates in D, to coordinates in D; for the sake of simplicity, here we refer
to both Dy and D in the same orthonormal coordinate system. Thus, T,;=04;
with ¢ the Kronecker delta; the distinction between Lagrangian (Latin) and
Eulerian (Greek) components is, therefore, not essential. However, this distinction
will be useful when discussing the objectivity of the stored deformation energy,
which involves changes of reference in the current configuration.

To deduce equilibrium equations from a variational principle the varied
displacement map u* needs to be introduced, for all X&Dy;:

Ua(X3) = Xa(X;) = TeiXi + 0ua(X), (2.4)

where du represents an arbitrary variation of the function u. The physical
meaning of this variation is well-known in mechanics, and stands as the
aforementioned virtual displacement. When no misunderstanding is possible, we
will denote with the same symbol éu and the corresponding Eulerian field duoy '
It is not the purpose of this paper to determine the regularity assumptions for
x or u which guarantee the existence and uniqueness of the deformation problem.
Therefore we will limit ourselves to assume that sufficiently smooth placement
maps are considered.

We denote the deformation tensor F,;:=Yx,,; here, i means the direction in the
reference configuration along which the derivative is computed. Requiring
that J:=det F>0, the polar decomposition F,;=R,gdg;U; holds true, with
ReOrth™, the proper rotation, and U€Sym™, the pure stretch. Here, Orth™
represents the group of orthogonal matrices with positive determinant; similarly,
Sym™ is the cone of positive definite symmetric matrices. The mixed second-
order tensor R with components R,; = R,30s; is usually labelled as the rotation
component of F.

Finally, the Green—Lagrange strain tensor

Ey, = (FaiFak - 5ik)/2 = (Uij UJk - 5ik)/2a (2-5)

is introduced to measure deformations with respect to the reference
configuration.

Since F'is the Lagrangian gradient of the placement map x it should satisfy the
following compatibility (local integrability) conditions

0= (Curl F)m = _eiijaj,k = _eiijal,k Ul] - Eiijal Ul],k (26)

Proc. R. Soc. A
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Multiplying by Raf one gets the following:
0= 8iijafRal,k Ulj + eijk Ufj,kv (27)

where the third-order tensor RafRa,_’k represents the Lagrangian pull-back of the
gradient of rotation (Lagrangian gradient of rotation, for the sake of
conciseness). It is skew-symmetric with respect to f and [ indices, therefore, it
has at most nine independent components. Indeed, following Fortuné & Vallée
(2001), the Lagrangian gradient F'is locally integrable and, therefore, equation
(2.7) is identically verified, if

RafRal,k = eﬂmAmk’ (28)

holds with .

1
Amk :zm (Uml(curl U)nl - E Uij(curl U) ijémn> Unk- (2'9)

Equations (2.8) and (2.9) guarantee the Lagrangian gradient of rotation, and
consequently VF, to be represented in terms of the stretch U and its gradient V U.
Here, and in the following, V denotes the Lagrangian gradient, i.e. gradient with
respect to material coordinates. This result will be useful in §2b, when specifying
the restrictions on the stored energy coming from objectivity requirements.

In what follows we apply to the strain gradient £, a suitable decomposition
valid for every third-order tensor symmetric with respect to the first two indices.
This reads as follows:

- 1 o N
Ky, =Ky, + 3 (el + eahSy), (2.10)

where K is a completely symmetric third-order tensor and K is a deviatoric
second-order tensor, defined by,

3 1 .
K. =3 (K + Ky + Kij), K= e, Ky, (2.11)

] ]

and €, is the Levi-Civita alternator. The decomposition (2.10) is direct, i.e. the
completely symmetric part K is orthogonal to the sym-skew part of K, i.e.
(ejklk it eaK ;)/3. In Germain (1973) a similar decomposition was used for the
second gradient of the velocity field, a third-order tensor symmetric with respect
to the last two indices.

(b) Objective stored elastic energy

Hyperelastic materials are constitutively characterized, in the context of first
gradient theories, by considering a stored energy function ¥ (per unit volume)
depending on the deformation F. In the framework of second gradient theories,
their constitutive characterization is obtained by considering a stored energy
depending both on the deformation tensor F' and its gradient VF.

In classical elasticity the stored energy function ¥ depends just on stretch U, in
order to be an objective function of the deformation F. Indeed, objectivity of ¥ in
that case means

l//(Fai) = ‘p(QﬁaFai% (2]‘2)

Proc. R. Soc. A
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for every orthogonal tensor Q&Orth. Considering in particular Q.= Rugs
one obtains

w(Fai) = lp(RaﬁRa'yayj sz) = w(éﬁj sz) = lﬁ( sz)

Similarly, when the stored energy depends on both the deformation F and its
gradient VF, the objectivity condition implies,

W(Faiv Fai,j) = II/(QﬁaFaia QﬁaFai,j)’ (213)

for every orthogonal tensor (). When considering ()s,= R,s and according to
equation (2.8), the second argument of the right-hand side in equation (2.13)
becomes

05k QpaFuij = 01 Rugl(Ray0y1) i Ui + Ryy0,1Usij] = Rog Ry j Uy + Uy
= eklmAmj Uli + Uki,j' (214)

Since, by equation (2.9), 4 is univocally determined in terms of the stretch U and
its gradient VU, every stored-energy functional satisfying (2.13) can be written in
the form

IP(Fam F(xi,j) = Ip( Uika Uzkj) (215)

An equivalent form of (2.15) is also given in terms of the Green—Lagrange strain
E, which will be used in the following when developing the variational
formulation:

V(Fai Faij) Z\Z(EihEik,j)- (2.16)

Using the decomposition (2.10) for the third-order tensor Ej ; the following
dependence of ¥ can equivalently be considered:

V(Fuir Foij) ZIp(EikinkjaEA’ik)' (2.17)

(¢) Global equilibrium equations in Eulerian form

The global equilibrium equations for the second gradient solid are obtained
requiring the external work (2.3) to vanish on every kinematically admissible
rigid displacement field

ouy(z) = w, + Q5.

Here, w is a constant vector representing the virtual translation, Q is a constant
skew-symmetric second-order tensor representing the angular virtual displace-
ment and x denotes the current place. One easily obtains the following:

0= (pra " Lpta * ; L,]fa>

+ Q.5 <praxﬂ + Jap(taxﬁ +7,mg) + Z Jghfax{g) ) (2.18)

h

Proc. R. Soc. A
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The arbitrariness of w and @ leads to the global equilibrium equations of
momentum and moment of momentum

pra + Lpta + zh: tha =0, (2.19)

JD(bazﬁ — bgx,) + Lp(taxg — tgwy + Tumg — Tgmy,) + Z L(fa% — fzz,) = 0. (2.20)

h h

Note that the balance of momentum (2.19) involves not only bulk forces and
tractions, but also contact edge-forces; on the other hand, a non-trivial
contribution to the balance of moment of momentum (2.20) comes from skew-
symmetric surface couples 7,mg — 75m, concentrated on the boundary.

(d) Local equilibrium equations in Lagrangian form

The local equilibrium equations for a second gradient solid are obtained from
the principle of virtual work (2.2) by standard localization arguments. In
particular, these equations will be given in terms of Piola—Kirchhoff stress and
hyperstress fields defined as suitable partial derivatives of the stored energy
function. We find it useful to represent in Lagrangian description the internal
work W™ introduced in (2.1)

= J (s,0u; + S40B, + PydBy,). (221)
Dy |

Using the identities

1
6E - § (6F0£LFDU + FaiéFaj),

ij

X . (2.22)
0Ly = 5(6Fai,kFaj + 0F g1 Fi) + 5(5FaiFaj,k + 0F i Fuig)-

The following relations between the Eulerian stress and hyperstress tensors and
the Piola-Kirchhoff tensors S;; and P, are found to be:

So =0, Sos = J T SyFuiFs; + Pi(FojFip + FuinFgp)l,
1 (2.23)
Hotﬁ'y - J szkFajFﬁiFyk'

Furthermore, bearing in mind equation (2.16), we assume the existence of an
objective stored energy function Y(Ey, Ey;), the integral of which gives
the global stored energy of the body. We also assume that the variation of the
global stored deformation energy equals the internal work (2.21)

0 UD Y(Ey, Eik,j)} = - (2.24)

This assumption yields the following expressions:

SZ':O, S_ak[/ alp

= Py=— 2.2
i aE@J ) ik aEich 3 ( 5)

Proc. R. Soc. A
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for the zero-order stress field s, the second Piola—Kirchhoff stress tensor S and the
referential hyperstress tensor P. We remark that P and II are symmetric with
respect to their first two indices, and we recall that the contribution of IT to the
Eulerian internal work is Ilng,tUq gy, being u, g, symmetric with respect to its
last two indices. However, using the decomposition (2.10) for IT it is easily
proved that both the completely symmetric and the sym-skew parts of II
contribute to the internal work.

The local equilibrium equations are deduced by requiring the validity of
equation (2.2) for every kinematically admissible virtual displacement field. To
this aim, the distinction between essential (prescribed value of displacement) and
natural (prescribed value of traction) boundary conditions needs to be
generalized. On every part L) C 9D, with z=e,n, y=e,n, we may impose four
different kinds of boundary conditions; more precisely we define:

L Uy = Uy, Up g = Wy u-essential (D, u)-essential
Ly Uy = Uy Te =Ty u-essential T-natural
L ty=t, Uy g Mg = Wy t-natural (D, u)-essential
Ly ty =ty Ta=Tq t-natural T-natural

where (D, u), = u,gmg indicates the normal derivative of u and m is the
outward normal to 0D. Subscripts distinguish wu-essential from #natural
boundary conditions, while superscripts distinguish (D,u)-essential from
7T-natural boundary conditions; moreover, on every part of the edge £, standard
distinction between essential and natural conditions holds true.

The varied displacement u” is said to be kinematically admissible if it satisfies
the same essential boundary conditions as u; as a consequence of equation (2.4) the
virtual displacement 6u and its normal derivative, both to be used in the principle
of virtual working, will vanish on 0D}, := £¢U £L" and 0D := LU LS, respectively.

Integration by parts of the left-hand side of (2.24) and standard localization
arguments yield

[Fai(sij _szjm)] ;T Jby =0, on Dy,

Foi(Syj = Pypi)n; — (QpFoiPii) 5 = Jstu, on (9Dy),,,

, (2.26)
FaiPijnkn]- = JSTa on (aD()):f?
[QpFaiPymvsl = Jife  on &y,
which must be used together with the essential boundary conditions
Uy = Uy ON (6D0);a U T3 = W, On (aDO)iv Uy = Uy ON g[(;h' (227)

Here,

—n denotes the outward normal to 0Dy

—every part of the boundary 0D, is locally parametrized by the coordinate
system Xp for B=1,2; by definition Qp,:=0Xp/0X; and () p denotes
derivation with respect to the Xy coordinate;

—as 0D, and & are the inverse images of 0D and £ under the placement map Y,
thus (9D,), is the inverse image of D, under y and (dD,)¢ is that of 0D%;

—Jg, Jr, are the determinant of the surface and line restriction of F;

Proc. R. Soc. A
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— every edge of 0D, corresponds to a jump of its outward normal unit vector. Let
u; denote the components of the unit tangent vector to an edge and n;, n; be
the two Values of n on the two faces of the edge itself; then on the same edge
1/;4 = 7]11“7”1 indicate the components of the Darboux tangent normal vectors

on the left and the right-hand side of the edge; (u;, v}, n]) and (u;,v;, n;) form

the two left-hand bases characterizing both sides of the dlscontlnulty; and

—[¢l:=(¢)" —(¢) indicates the jump through the edge.

The last term in the left-hand side of equation (2.26), can be found also in
Mindlin (1964) and Germain (1973); it arises when splitting a divergence term
into a divergence on the surface plus a normal derivative term, namely (— Py 1)),
which is naturally added to the standard Cauchy traction, S;n;.

3. Linear isotropic constitutive relations

Generalization of Hooke’s law to second gradient materials stems from requiring
the constitutive relation among generalized stresses (S and P) and strains (£ and
VE) to be linear and isotropic. Linearity of the constitutive relations (2.25) with
respect to the strain measures is enforced, as usual, assuming that the stored
elastic energy ¥ is a quadratic form of both its arguments

1
w(Enu E ) 9

where the fourth-order tensor C, the fifth-order tensor H, and the sixth-order
tensor G possess, without loss of generality, the symmetries

Cijkl = Cklij7 Hijklp = Hlpijk7 Gijklpq = Glpqijk' (3-2)

Moreover, the symmetry of the Green—Lagrange strain induces the following
additional symmetries:

Cijkl = Cz'jlk = Cjikh Hijklp = sz‘kzp = Hijkplv Gijklpq = Gjiklpg — Gz]kplq (3~3)

(CZ

jklE Ekl + Q-E[nklpEn kElp + G77klpqEZj kElp q) (31)

When (3.1) holds, the constitutive relations (2.25) read as follows:

Sij = Cyby + Hygpii By Py, = Hip By + Gijipg Eip.o- (3.4)

Following standard arguments for material symmetry characterization, a
second gradient material is said to be isotropic if the stored elastic energy
satisfies the following:

w(E777 E ) = {L( thEhm Qmjv thEhm,n Qmj an)7 (35)

for every orthogonal transformation Q&€ Orth. The request (3.5) implies the
elasticity tensors to fulfil,

Cz'jkl = Chmnr th Qmj an er ’
]{ijklp = Hhmnr9 th Qmj an erQspv (36)
GZJklpq Ghmm"st th Qmj an er Qsp th?

Proc. R. Soc. A
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for every @€ Orth. In Suiker & Chang (2000) the tensors C, H and G satisfying
equations (3.6) are determined considering only proper orthogonal transfor-
mations Q€ Orth™. However, this is not sufficient to characterize isotropy;
indeed, equations (3.6) must also be fulfilled by every reflection.”
This distinction is not relevant when discussing isotropy of even-order tensors,
(3.6)1 3, but reveals to be crucial when considering odd-order tensors as in (3.6)s.
Requiring the conditions (3.2), (3.3) and (3.6) to be satisfied for every Q& Orth,
we obtain generalized Hooke’s law for isotropic second gradient materials
Cijit = 20,01 + (040, + 00, Hijyy =0,
Gijklpq = 02(6Zj6k16pq + 62:]'5kp6lq + (32']{5]'(1(3[]7 + 6iq6jk6lp) + 03(6@'6]“15[1,)
+ C5(6ikajl5pq + 6%6]'])6@ + 6i16jk5pq + 6ip6jk6lq) + Cll(ailéjpékq
+ 0;,0;101,) + €15(040,,08) + 0,,0;,01 + 0,005, + 0;,0;,01)-
Therefore, isotropic linear elastic second gradient materials are completely
described in terms of seven constants; two of them are the standard Lamé
coefficients A and u. In (3.7) a notation similar to that introduced in Suiker & Chang
(2000) was used for the material constants. Remark that

(3.7)

(i) in Suiker & Chang (2000) the equations (3.7) are not explicitly derived; as
long as one needs to consider the boundary conditions (2.26)s 3 4, they must be
derived;

(ii) without the request of invariance under reflections the fifth-order tensor H
would not vanish, being in the form

Hiyy = cs(&indjp + €0 + €jadsy + €j1y0i1), (3.8)
which is the form of ‘isotropic’ fifth-order tensor determined by Suiker &
Chang (2000), where isotropy is defined as invariance under linear

transformations in Ortht.

4. Positive definiteness of stored elastic energy

As well known in linear elasticity,” if the stored elastic energy y is a strictly convex
function of strain, then the solution of the equilibrium equations, in terms of
displacements, is unique up to an infinitesimal rigid displacement field (see
Salengon 1995). A first approach to second-gradient elasticity may start by
assuming that the stored elastic energy is a strictly convex function of strain and
strain-gradient. Investigations will be needed to generalize quasi-convexity and
related arguments.

Assuming ¢ to be a quadratic form of its arguments, the strict convexity is
equivalent to the positive definiteness of the following quadratic form of £ and VE:

1
Y= 5 Sii(Buny By p) Eij + P (B, B ) Eij g > 0,

2Every Q€Orth can be obtained as the composition of an element of Orth™ either with the
identity matrix (I) or with an arbitrary reflection; for instance minus the identity (—I) when
considering an odd dimensional ambient space.

3 Here linearity means that only the linear part of the Green-Lagrange strain tensor with respect to
displacement gradient is retained.
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where S and P are prescribed by equation (3.4). In the case of isotropic materials,
see equation (3.7), the positive definiteness of ¢ yields inequality constraints on
both first and second gradient constitutive parameters A, u, ¢s, ¢3, ¢5, ¢11 and ¢g5.

In order to determine these constraints, one can rewrite equation (3.7) in matrix
form, using a Voigt-type representation for the considered tensors. The Sylvester
criterion” is then applied to check the positive definiteness of the quadratic form .
To this aim, different equivalent choices for listing the strict components of tensors
E, VE, S and P can be introduced.

As the constitutive coupling H vanishes, the standard Voigt representation for
S and E allows for the independent determination of the constraints u>0 and
3A+2u>0. Then, considering only the relationship between P and VE, the
equations (3.7) can be stated in the following block-diagonal form:

Pl]l Ell 1 P222 E22 2
P122 E12.2 PlQl El?l
Pigg | = Gi| Euss |, Pogz | = Gi| Eass |,
P221 E22,1 P112 E112
P331 E331 P332 E33 2 <4 1)
P333 E33 3
PLﬂ E131 P123 E12 3
Pogy | = G| Eas2 |, Pigy | = Gy Bz |,
P113 Ell 3 P231 E231
Paos3 Ey 3
where G and G, matrices are defined as follows:
402+C3 +4C5+2C1] +4C15 2(32 +4C5 202 +4C5 2CQ+C3 2C2+03
202 + 4C5 4(C5 + C11 + C15) 4C5 202 + 4615 2C2
G1 = 2()2 + 405 4C5 4(65 + Ci1 + 015) 202 2C2 + 4015
262+03 202 +4Cl5 2(32 C3 +2(311 C3
262+03 2(32 202 +4Cl5 C3 C3 +2(511

and
€11 G5 Cip
Gy=4] ¢35 ¢y ¢
Ci5 Ci5 (11

However, to apply Sylvester’s criterion to matrix G; may present some difficulties.
To overcome them, the decomposition (2.10) for the tensors P and VFE is revealed
to be useful. Indeed, once a suitable linear combination of the strict components of
P and VE is introduced, the constitutive relations (3.7) assume the form

* Sylvester’s criterion states that a matrix M is positive definite iff the determinants associated with
all upper-left submatrices of M are positive.
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P32 p23 E32—E23
P oy E 9
Posyy+ Piy | =T1| Eggs + Eqpp | (4.2)
P13 Psl E13 E?)l
P33 E 333
Poyys+ Ppyg | =11| Eogs + Eqys |»

P oy — P33 = 3vy(B1p — Euz3), Pyy + Pog = 6y5(Esy + Eyg),
Poss— P11y = 3v5(Eygs — E1yy), P+ Py = 6y5(Eys + Eyy), (4.3)
P oy — P11y = 3vy(Egys — E1y3), Py + Py =6y5(Ey + Eyy),

Py By
]522 =T, Ezg ) P123 = 372E1237 (4.4)
Py By
where
Y1 2vi—v2 13 2 -1 -1
Fys=\2yi—vy 4vi+v2 2v3 |, Iy=vys =1 2 -1 (4.5)
V3 273 Y4 -1 -1 2
and

’)’1:22(C11 + 2015) + 402 + C3 + 405,

2

Yo = 4(611 + 2615), Y3 :zg (405 —2c¢y _203)7 (4'6)
8 4

vii=g Ben —3eis—dey + 2¢ + 265), 75 = (e — ).

The use of the introduced decomposition reduces to three the maximal dimension
of the constitutively coupled blocks and renders the application of the Sylvester
criterion feasible. Indeed, positive definiteness of ¢ implies the following conditions
on the constitutive parameters v
2
v1>0,  0<y,<5vy, 74>5&, Y5> 0, (4.7)
Y17 72
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which can be also stated in terms of the constitutive parameters c;

C
C11>O, _%< C15< C11, 563 +4Cll>20157

4.
c3(3enn +ep5) + 2(0%1 _505 —6ci509 —20%5 + ¢11(2¢y + 015)) (48)

4015 - 1003 _8011

The decomposition proposed for the strict components of the hyperstress P and
strain gradient VE is illustrated in appendix A.

Under the assumption of small strains, Sokolowski (1970), closely following
Mindlin (1964), assumes the stored energy to depend quadratically on the
infinitesimal strain ¢; = (u +u;;)/2 and on the gradient of the curl of
the displacement field k;; = w, ;=—¢;,,u, ,;. Two additional constants, n and &,
are hence introduced in h1s constitutive relations. We remark that, the second—
order tensor k;, which is the only second gradient contrlbutlon considered
by Toupin (1962), Mindlin (1964) and Sokolowski (1970), coincides with the linear
part of E;; with respect to § = ||Vu|| < 1:

_ GIo

However, equations (4.2) and (4.5) show that, even for linear isotropic materials,
the completely symmetric strain gradient E is constitutively coupled with the
sym-skew strain gradient F.

The constitutive relations (4.1), or equivalently (4.2)—(4.4), can be compared
with those of Sokolowski (1970) when assuming small deformations around a zero-
stress reference configuration. If the five constitutive second gradient constants are
chosen according to the following:

C5>

Kij

(4.9)

o =0nu, 3 =—200p, o =—0nu/2, } (410)
e = 0% (n + Dy, o5 = =0 (n + 1)p/2
or
P
N=1=7 =0, v=4C0-nu v =040k, (411)

our constitutive relations are equivalent to the ones derived by Sokolowski (1970).
For the particular case (4.10), the conditions (4.8) reduce to

02> 0, —-1<n<1, (4.12)
as required in Sokolowski (1970).

5. Warping in torsion of a prismatic second gradient cylinder

This section is devoted to show how second gradient theories modify the elliptic
problem for warping in the torsion of prismatic cylinders. To this aim, the
linearized form of strain measures (2.5) in terms of displacement gradient, and
the balance laws (2.26) near a zero-stress reference configuration will be considered.
In particular the infinitesimal strain e; is used instead of the Green-Lagrange
strain Ej;, while the Piola-Kirchhoff and the Cauchy stress (and hyperstress)
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can be identified. Let us introduce an orthonormal coordinate system { X1, X5, X3}
for the reference configuration of a prismatic cylinder, in which the X3 axis is
orthogonal to the cross section B. The body forces in the cylinder and the tractions
on the mantle are supposed vanishing as in the standard de Saint Venant problem;
forces can be applied only on the two bases and on their boundaries. As
displacement field for such a cylinder we here postulate the standard displacement
field of the de Saint Venant torsion,

(S _@X2X3, U9 = @Xng, Ug = @’U}(Xl, XQ), (51)

where O is the unit angle of torsion. Accordingly, in what follows, we deduce the
balance laws, that the unknown function w( X7, X5) must satisfy, and the boundary
conditions, that one must apply to the bases, for the field (5.1) to be a solution. It is
easy to verify from (5.1) that the only non-vanishing components of strain and
strain gradient are the following:

ey =e31 = O(w; — X5)/2, &3 =3 = O(wy + X7)/2,
€132 = €312 = @(w,m —1)/2, €931 = €321 = @(w,n +1)/2, (5.2)
€131 = €311 = ®w711/27 €322 = €939 = @11422/2-

Using the constitutive relation (3.7), we obtain the corresponding non-vanishing
stresses and hyperstresses

Si3 = 831 = uO(w; — X3)/2,  Sp3 = Sz = uO(wy + X,)/2,
Pz = @(201510,11 + CQAw)a Pio3 = Pyi3 = @(201510,12)7
Pi31 = P31 = O((c1q + c15)wy + csAw),

Pi3y = P31 = O(cy1(wip — 1) + ¢i5(wye + 1)),

Poyz = O(2ci5w + crAw),

P31 = Pyy1 = O(ci5(wio — 1) + ey (wyg + 1)),

Py3y = P30 = O((c11 + c15) w0 + csAw),

Pys33 = O(cy + 2¢5)Aw, J

where Aw:=w 1 + w22 means the in-plane Laplacian.
Finally, substituting in the linearized form of the balance laws (2.26), we obtain
the following elliptic problem for the warping function w:

uAw— (¢ + ¢15 + c5)AAw =0, in B,
(mw—(c11 + ¢15 + c5)Aw) gng + dg = ueypXpny, on dB, (5.4)
Nypw 4p =0, on 0B,
where
+ e 9
dS :Z% 6_ (Sin 219(’(1}22 — wn) + 2 COS 219'[012) (55)
s , . :
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Figure 1. The conventions used for the abscissa s and the angle ¥ to compute the divergence dg on
the mantle of the cylinder.

and

0 -1
€4p = ( ) ; Nyp = (e + ci5)nanp + 504 (5.6)
10 /45
Here, AA means the in-plane double Laplacian, A,B=1,2 and summation over
repeated indices is understood. The abscissa s along the boundary 08 and the angle
¢ formed between the normal n and the horizontal axis have been chosen
according to figure 1. Let us remark that the term dg introduces in the boundary
conditions (5.4), the curvature 0/9s of the curve 98, as one would expect when
considering the general form of the boundary conditions (2.26), for the traction.
The obtained elliptic problem does not coincide with the one formulated in
Sokolowski (1970), because the term corresponding there to dg does not contain
the curvature of the boundary 0. Moreover, in Sokolowski (1970) the matrix N4z
is spherical and the boundary condition (5.4)3 reduces to 0*w/0n°=0. This last
circumstance is also related to the more general constitutive equations (4.1) found
in §3. Indeed, Sokolowski (1970) excludes from the analysis the completely
symmetric part of the strain gradient, hence limiting to the particular class of
second gradient materials in which hyperstresses reduce to the so called couple-stress.
In the case of a circular hollow cylinder, the elliptic problem (5.4) has w=0 as
unique solution and the torsion problem can be easily solved. In this case, the
deformation fields (5.2) as well as the stress fields (5.3) are sensibly simplified.
Indeed, when w=0, the displacement field (5.1) depends quadratically on the
variables { X;}, the hyperstress components P;, result to be constant and the local
equilibrium equations (2.26); in the bulk are identically verified. Moreover, the
boundary conditions (2.26)s 3 are verified with vanishing tractions ¢ and double
forces 7 on the lateral mantle of the cylinder. On the other hand, the tractions and
double forces (2.26)s 3 on the basis B at X3=L, as well as the concentrated edge
forces (2.26)4 on the inner and outer circumferences CLi, do not vanish and are
estimated as follows:

t =—u0X,, ty=pOX,, t3=0, in By,
7., =0, =1,2,3 in By, (5.7)

fi=0(c;,— ci5)sin?d, fp=—0(c;;— cy5)cos ¥, f;, =0, onCj.
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Figure 2. The second gradient deformation and hyperstress components: E 199 —FE 133 and
P 199 — P 33. These are constitutively coupled by vs in equation (4.3);.

Figure 3. The second gradient deformation and hyperstress components: E 193 and P jo3. These are
coupled by 75 in equation (4.4),.

For the circular hollow cross section, the angle ¢ coincides with the circumferential
polar coordinate in the basis. The surface tractions, the surface double-forces and
the tractions per unit line given in (5.7) are statically equivalent to a pure torque.

The simplified form of (5.2) and (5.3) for w=0, allows for the closed form
evaluation of the torsional stiffness, say K to this aim, the stored elastic energy is
written as the following quadratic function of ©:

1 1
v=35 JD(Szjfij + Pyeip) =t5 K,0%. (5-8)

Proc. R. Soc. A


http://rspa.royalsocietypublishing.org/

Hooke’s law for second gradient material 17

Figure 4. The second gradient deformation and hyperstress components: E 39+ E 93 and P 30+ P 23-
These are coupled by v, in equation (4.3),.

With simple calculations one obtains the following:

K; = ulp +2(ciy — c15)4, (5.9)
where Ip:=m(Rey — Ri;)/2 is the moment of polar inertia, A :=m(R%, —RZ,) is
the area of the cross section, R, and R.. are the inner and outer radii of the
cylinder. Equation (5.9) may represent an effective tool to experimentally estimate
the second gradient constitutive parameter ys=4(c;;— ¢15)/9. Moreover, the
analytical solution found could be a valid (patch) test in the development of finite-
element codes for second gradient materials. From an experimental point of view, the
solution with w=0 can be realized clamping the two bases of a hollow circular
cylinder to two rigid supports which undergo arelative rotation ® around the X3 axis.

6. Conclusions

A geometrically nonlinear theory of second gradient elasticity has been analysed; this
accounts for Green—Lagrange strain and strain-gradient measures as well as for the
Cauchy and Piola—Kirchhoff stress and hyperstress tensors. Owing to a previous
result (Fortuné & Vallée 2001) which links the rotation gradient to the
strain gradient, the most general hyperelastic energy functional must depend on
the strain and on all the components of strain gradient including the completely
symmetric part. Hence, hyperstresses do not limit to couple stresses but include
double forces.

The most general linear elastic constitutive relations for isotropic materials are
also derived; these relations generalize standard Hooke’s law to second gradient
materials. The presented analysis shows that a complete isotropic second gradient
constitutive theory must include five more parameters in addition to the classical
Lamé constants. The conditions for the positive definiteness of the considered
quadratic strain energy are found by means of a novel decomposition of the strain
gradient tensor, graphically shown in appendix A.
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Figure 5. The second gradient deformatign and hyperstress components: (a) Eqy and Py
(0) E 199+ F133 and P99+ Pq33; and (¢) Esy—Eo3 and Psy — Pa3. These are coupled by I'y in
equation (4.2);.

Even in the simple problem of linear torsion formulated in §5, the introduced
constitutive parameters play a relevant role, influencing the warping function and
the torsional stiffness. While the experimental measurement of the second gradient
parameter 5 seems feasible, from the quoted results, it is an open problem the
design of measurement procedures for the remaining four parameters. For
instance, the correction to the bending stiffness found by Anthoine (1998)
under the constitutive assumption of Sokolowski (1970), could be extended to
consider the general constitutive relations proposed here.

The authors thank dott. Giuseppe Ruta for having discussed carefully the content of a first draft of
this paper.
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Figure 6. The second gradient deformation and hyperstress components: (a) E; and P1y; (b) E g
and P y; and (¢) E33 and P33. These are coupled by I'y in equation (4.4);. Remark that E;, E
and F 33 are linearly dependent since the second-order tensor E; is deviatoric.

Appendix A

A standard technique to visualize strain and stress fields is to display
the deformations of an elementary reference volume (usually a cube) together
with the associated contact forces on its boundary. Here, a similar approach is used
to display the elementary states of strain-gradient and hyperstress, see equations
(4.2)—(4.4).
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The ‘second gradient’ deformations of an elementary cube centred in the
origin are shown. We choose in the space of strain-gradients a suitable basis; for
each element, say C;;, of this basis the corresponding displacement is chosen to
be the second-order polynomial wu,(X;, X, X3)=(C;#X;X;)/2. With these choices
the averages in the cube of all the (first-gradient) deformation fields are
vanishing. Yet, the hyperstress fields are constant in the cube; thus, by equation
(2.26),, their contribution to the contact forces ¢ is vanishing, and they are
displayed only through the associated contact double-forces 7 and edge-forces f
on the boundaries of the cube. Grey arrows are used to display the contact
double-forces 7, while black arrows are used for the edge-forces f (figures 2-6).

References

Anthoine, A. 1998 Inertie de flexion d’une section circulaire selon la theorie du second gradient.
Comptes Rendus de I’Académie des Sciences Series IIB Mechanics 326, 233-236. (doi:10.1016/
S1251-8069(98)80031-6)

Cosserat, E. & Cosserat, F. 1909 Théorie des corps déformables. Paris, France: Hermann.

Deborst, R. & Sluys, L. J. 1991 Localization in a Cosserat continuum under static and dynamic
loading conditions. Comput. Methods Appl. Mech. Eng. 90, 805-827. (doi:10.1016/0045-
7825(91)90185-9)

dell’Isola, F. & Seppecher, P. 1997 Edge contact forces and quasi-balanced power. Meccanica 32,
33-52. (doi:10.1023/A:1004214032721)

Drugan, W. J. & Willis, J. R. 1996 A micromechanics-based nonlocal constitutive equation and
estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44,
497-524. (doi:10.1016/0022-5096(96)00007-5)

Ehlers, W. & Volk, W. 1998 On theoretical and numerical methods in the theory of porous media
based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Struct. 35, 4597-4617.
(doi:10.1016/S0020-7683(98)00086-9)

Fortuné, D. & Vallée, C. 2001 Bianchi identities in the case of large deformations. Int. J. Eng. Sci.
39, 113-123. (doi:10.1016/S0020-7225(00)00027-6)

Georgiadis, H. G. & Anagnostou, D. S. 2008 Problems of the Flamant-Boussinesq and Kelvin type in
dipolar gradient elasticity. J. Elast. 90, 71-98. (doi:10.1007/s10659-007-9129-x)

Germain, P. 1973 La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie
du second gradient. J. Mécanique 12, 235-274.

Mindlin, R. D. 1964 Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78.
(doi:10.1007/BF00248490)

Salencon, J. 1995 Mécanique du continu. Paris, France: Ellipses.

Schwartz, L. 1963 Theorie des distributions. Paris, Frace: Hermann.

Seppecher, P. 1989 Etude des conditions aux limites en théorie du second gradient: cas de la
capillarité. C.R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 309, 497-502.

Sokolowski, M. 1970 Theory of couple-stresses in bodies with constrained rotations. In CISM courses
and lectures, vol. 26. Berlin, Germany: Springer.

Suiker, A. S. J. & Chang, C. S. 2000 Application of higher-order tensor theory for formulating
enhanced continuum models. Acta Mech. 142, 223-234. (doi:10.1007/BF01190020)

Toupin, R. A. 1962 Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385—414.
(doi:10.1007/BF00253945)

Unger, D. J. & Aifantis, E. C. 2000 Strain gradient elasticity theory for antiplane shear cracks. Part
I, II. Theor. Appl. Fract. Mech. 34, 243-265. (doi:10.1016/S0167-8442(00)00041-0)

Proc. R. Soc. A


http://dx.doi.org/doi:10.1016/S1251-8069(98)80031-6
http://dx.doi.org/doi:10.1016/S1251-8069(98)80031-6
http://dx.doi.org/doi:10.1016/0045-7825(91)90185-9
http://dx.doi.org/doi:10.1016/0045-7825(91)90185-9
http://dx.doi.org/doi:10.1023/A:1004214032721
http://dx.doi.org/doi:10.1016/0022-5096(96)00007-5
http://dx.doi.org/doi:10.1016/S0020-7683(98)00086-9
http://dx.doi.org/doi:10.1016/S0020-7225(00)00027-6
http://dx.doi.org/doi:10.1007/s10659-007-9129-x
http://dx.doi.org/doi:10.1007/BF00248490
http://dx.doi.org/doi:10.1007/BF01190020
http://dx.doi.org/doi:10.1007/BF00253945
http://dx.doi.org/doi:10.1016/S0167-8442(00)00041-0
http://rspa.royalsocietypublishing.org/

	Generalized Hookes law for isotropic second gradient materials
	Introduction
	Equilibrium equations for second gradient materials
	Kinematics
	Objective stored elastic energy
	Global equilibrium equations in Eulerian form
	Local equilibrium equations in Lagrangian form

	Linear isotropic constitutive relations
	Positive definiteness of stored elastic energy
	Warping in torsion of a prismatic second gradient cylinder
	Conclusions
	The authors thank dott. Giuseppe Ruta for having discussed carefully the content of a first draft of this paper.
	Appendix A
	References




