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In the spirit of Germain the most general objective stored elastic energy for a second
gradient material is deduced using a literature result of Fortuné & Vallée. Linear
isotropic constitutive relations for stress and hyperstress in terms of strain and strain-
gradient are then obtained proving that these materials are characterized by seven
elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski.
Using a suitable decomposition of the strain-gradient, it is found a necessary and
sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of
the stored elastic energy. The problem of warping in linear torsion of a prismatic second
gradient cylinder is formulated, thus obtaining a possible measurement procedure for one
of the second gradient elastic moduli.
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1. Introduction

Three-dimensional Cauchy continua represent a mathematical model suitable to
describe many phenomena occurring in bodies which are deformed because of
external actions. However, some deformation problems in linear elasticity have

sol e
Ke
utions which present singularities; the Flamant–Boussinesq problem and th

lvin problem are two well-known examples (Georgiadis & Anagnostou 2008).
It is therefore clear that when highly concentrated stress occur, a more detailed
description of deformation phenomena is required. On the other hand, Cosserat &
Cosserat (1909) already generalized Cauchy model to describe continuous media in
which microrotations play a relevant role. Most recently, Cosserat models were
used by many authors (e.g. Ehlers & Volk 1998) to describe granular materials,
fluid saturated porous media or soils. Stress concentration phenomena revealed to
be of importance in plasticity and fracture mechanics: in proximity of the region
where plastic deformations take place Cauchy models are not able to catch some
relevant phenomena (e.g. Deborst & Sluys 1991). Shear bands, transition regions
between elastic and plastic regimes, crack initiations are some among them which
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require more encompassing models (e.g. Unger & Aifantis 2000). Similarly, when
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modelling the constitutive behaviour of two-phase composites, Drugan & Willis
(1996) found that the leading-order correction to a homogeneous constitutive
equation involves a termproportional to the second gradient of the ensemble average
of strain.

A possible generalization of Cauchy models including those proposed by
Cosserat & Cosserat (1909) can be found in Toupin (1962), Mindlin (1964) and
Germain (1973). In these papers, continuum mechanics is framed in a setting
where stored (deformation) energy depends not only on strain, but also on strain
gradient. The more general continua, thus introduced, are called second gradient
continua by Germain or first strain-gradient continua by Mindlin. In these
approaches, the concept of contact actions needs more general treatment than
the one due to Cauchy. Indeed, second gradient continua show surface contact
actions of two different types: contact surface forces and contact surface double-
forces. Moreover, when Cauchy cuts present edges, then also contact line forces
arise (dell’Isola & Seppecher 1997). To analyse the dependence of stored energy
on strain gradient and the relationship between this energy and contact actions,
it is necessary to establish some properties of third-order tensors.

Each third-order tensor Sijk, symmetric with respect to its first two indices,
can be uniquely decomposed as the sum of a third-order tensor, completely
symmetric with respect to all permutations of its indices, and a ‘sym-skew’ third-
order tensor, (skew-symmetric) symmetric with respect to its (last) first two
indices. We refer to equations (2.10) and (2.11) for a precise definition.

The strain gradient is a third-order tensor which is symmetric with respect to
its first two indices: therefore, it can be decomposed into its completely
symmetric and sym-skew parts. In Toupin (1962) and Mindlin (1964), the stored
energy depends only on the sym-skew part of the strain gradient, while the
complete dependence is assumed in Germain (1973). As a consequence, the
contact double forces reduce in Toupin (1962) and Mindlin (1964) to couple
stresses, while no such limitation is assumed in Germain (1973), where Piola–
Kirchhoff stress and hyperstress tensors are introduced but no constitutive
assumption for the stored energy is discussed.

In the present paper we deduce, using a variational principle, equilibrium
equations for second gradient materials in terms of the stored energy density,
thus obtaining the corresponding representation of Piola–Kirchhoff stress and
hyperstress. No small deformation assumption is necessary to this aim and,
therefore, the obtained equations are valid in finite elasticity. Using the
representation theorems of Suiker & Chang (2000), the most general
homogeneous quadratic isotropic constitutive relation for second gradient stored
(deformation) energy is found. As a consequence, constitutive relations for Piola–
Kirchhoff stress and hyperstress in terms of strain and strain-gradient are
obtained: these are generalized Hooke’s laws valid for isotropic second gradient
materials. For these materials, together with standard Lamé moduli, five more
moduli are needed.

Subsequently, it is deduced a necessary and sufficient condition assuring that
the stored energy is positive definite: to this aim it has been necessary to
introduce a further decomposition of the strain gradient. The constitutive
equations given by Mindlin (1964) and used by Sokolowski (1970) are found as a
particular case when three out of the five aforementioned moduli vanish.
Proc. R. Soc. A
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equations are introduced, concerns the design of experimental procedures to apply for
getting measurements of newly introduced moduli. To this aim, in the last section,
the closed-form solution for the linear torsion of a prismatic, hollow, circular,
second gradient cylinder is found which allows for the determination of the torsional
rigidity in term of the standard shear modulus and of one specific second gradient
modulus. For a generic cross section the problem of warping in linear torsion is
formulated; the differences with a study due to Sokolowski (1970) are discussed.
2. Equilibrium equations for second gradient materials
Second gradient theories of deformable bodies are characterized by requiring the
volume density of the virtual internal work W int to depend linearly on virtual
displacement field du and on its first and second spatial gradients, see Toupin
(1962), Mindlin (1964) and Germain (1973)

W intðduÞZK

ð
D

�
2adua CSabdua;b CPabgdua;bg

�
; ð2:1Þ

here and in what follows we use commas to denote partial derivatives.
The principle of virtual work is therefore assumed to have the following form:

W intðduÞCW extðduÞZ 0; ð2:2Þ
where the equality is assumed to be valid for every sufficiently smooth virtual
displacement field du; and D is the Eulerian domain occupied by the considered
body. From now on Greek indices refer to coordinates with respect to a fixed
orthonormal frame in the Euclidean space and Einstein convention on repeated
indices is used. The representation assumed for W int is made plausible by the
Schwartz (1963) representation theorem for continuous linear functionals. Simple
successive applications of Gauss theorem imply that the external work W ext has
the following form (Seppecher 1989):

W extðduÞZ
ð
D
badua C

ð
vD
ðtaduaCtadua;bmbÞC

X
h

ð
Eh
fadua; ð2:3Þ

where vD is the boundary of D, assumed to be differentiable almost everywhere;
and Eh is the hth edge of vD, if any. On the curve Eh the normal m to the
boundary vD suffers a jump.

As a consequence, the introduced second gradient internal actions,1 the stress
S and the hyperstress P, balance not only bulk forces b and surface tractions t,
but also surface double-forces t and tractions per unit line f (Germain 1973).

In this paper, the existence of a regular Lagrangian stored (deformation)
energy density j is assumed. Moreover, we assume the variation of the stored
energy to equal the opposite of the internal work W int once this last has been
expressed in terms of Lagrangian quantities. The consequent Lagrangian
representation of the principle of virtual work allows us to determine the searched
equilibrium equations.

1 Zero-th order stress z has to vanish because of the invariance under change of observer of the

internal work, see for instance Seppecher (1989).
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A Lagrangian description of motion is adopted for second gradient solids. Let
us consider the reference configuration D0 of the body as a sufficiently smooth
domain of the Euclidean ambient space E. Placement of material particles are
determined by the bijective function c : D0/E mapping any material particle in
its current position. Moreover, Ddc(D0) and the displacement field is defined,
as usual, ua(X )dca(X )KTaiXi , for X2D0. Here and in what follows, Latin and
Greek indices denote respectively the Lagrangian and Eulerian components with
respect to fixed orthonormal frames in the reference and current configurations;
moreover, the invertible matrix T represents the parallel transport from
coordinates in D0 to coordinates in D; for the sake of simplicity, here we refer
to both D0 and D in the same orthonormal coordinate system. Thus, TaiZdai
with d the Kronecker delta; the distinction between Lagrangian (Latin) and
Eulerian (Greek) components is, therefore, not essential. However, this distinction
will be useful when discussing the objectivity of the stored deformation energy,
which involves changes of reference in the current configuration.

To deduce equilibrium equations from a variational principle the varied
displacement map u� needs to be introduced, for all X2D0:

u�
aðXiÞdcaðXiÞKTaiXi CduaðXiÞ; ð2:4Þ

where du represents an arbitrary variation of the function u. The physical
meaning of this variation is well-known in mechanics, and stands as the
aforementioned virtual displacement. When no misunderstanding is possible, we
will denote with the same symbol du and the corresponding Eulerian field du+cK1.
It is not the purpose of this paper to determine the regularity assumptions for
c or u which guarantee the existence and uniqueness of the deformation problem.
Therefore we will limit ourselves to assume that sufficiently smooth placement
maps are considered.

We denote the deformation tensor Faidca,i; here, i means the direction in the
reference configuration along which the derivative is computed. Requiring
that Jddet FO0, the polar decomposition FaiZRa,bdbjUji holds true, with
R2OrthC, the proper rotation, and U2SymC, the pure stretch. Here, OrthC

represents the group of orthogonal matrices with positive determinant; similarly,
SymC is the cone of positive definite symmetric matrices. The mixed second-
order tensor �R with components �RajdRabdbj is usually labelled as the rotation
component of F.

Finally, the Green–Lagrange strain tensor

Eik Z ðFaiFakK dikÞ=2Z ðUijUjkK dikÞ=2; ð2:5Þ

is introduced to measure deformations with respect to the reference
configuration.

Since F is the Lagrangian gradient of the placement map c it should satisfy the
following compatibility (local integrability) conditions

0Z ðcurl FÞia ZK3ijkFaj;k ZK3ijk �Ral;kUljK 3ijk �RalUlj;k : ð2:6Þ
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0Z 3ijk �Raf
�Ral;kUlj C3ijkUfj;k ; ð2:7Þ

where the third-order tensor �Raf Ral;k represents the Lagrangian pull-back of the
gradient of rotation (Lagrangian gradient of rotation, for the sake of
conciseness). It is skew-symmetric with respect to f and l indices, therefore, it
has at most nine independent components. Indeed, following Fortuné & Vallée
(2001), the Lagrangian gradient F is locally integrable and, therefore, equation
(2.7) is identically verified, if

�Raf
�Ral;k Z 3flmLmk ; ð2:8Þ

holds with

Lmkd
1

det U
Umlðcurl UÞnlK

1

2
Uijðcurl UÞijdmn

� �
Unk: ð2:9Þ

Equations (2.8) and (2.9) guarantee the Lagrangian gradient of rotation, and
consequently VF, to be represented in terms of the stretch U and its gradient VU.
Here, and in the following, V denotes the Lagrangian gradient, i.e. gradient with
respect to material coordinates. This result will be useful in §2b, when specifying
the restrictions on the stored energy coming from objectivity requirements.

In what follows we apply to the strain gradient Eij,k a suitable decomposition
valid for every third-order tensor symmetric with respect to the first two indices.
This reads as follows:

Kijk Z ~Kijk C
1

3
ð3jklK̂ li C3iklK̂ ljÞ; ð2:10Þ

where ~K is a completely symmetric third-order tensor and K̂ is a deviatoric
second-order tensor, defined by,

~Kijkd
1

3
ðKijk CKjki CKkijÞ; K̂ lid3ljkKijk; ð2:11Þ

and eijk is the Levi-Civita alternator. The decomposition (2.10) is direct, i.e. the
completely symmetric part ~K is orthogonal to the sym-skew part of K, i.e.

ð3jklK̂ liC3iklK̂ ljÞ=3. In Germain (1973) a similar decomposition was used for the
second gradient of the velocity field, a third-order tensor symmetric with respect
to the last two indices.

(b ) Objective stored elastic energy

Hyperelastic materials are constitutively characterized, in the context of first
gradient theories, by considering a stored energy function j (per unit volume)
depending on the deformation F. In the framework of second gradient theories,
their constitutive characterization is obtained by considering a stored energy
depending both on the deformation tensor F and its gradient VF.

In classical elasticity the stored energy function j depends just on stretch U, in
order to be an objective function of the deformation F. Indeed, objectivity of j in
that case means

jðFaiÞZjðQbaFaiÞ; ð2:12Þ
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one obtains

jðFaiÞZjðRabRagdgjUjiÞZjðdbjUjiÞZ ĵðUjiÞ:

Similarly, when the stored energy depends on both the deformation F and its
gradient VF, the objectivity condition implies,

jðFai;Fai;jÞZjðQbaFai;QbaFai;jÞ; ð2:13Þ

for every orthogonal tensor Q. When considering QbaZRab and according to
equation (2.8), the second argument of the right-hand side in equation (2.13)
becomes

dbkQbaFai;j Z dbkRab½ðRagdglÞ; jUli CRagdglUli;j �Z �Rak
�Ral;jUli CUki;j

Z 3klmLmjUli CUki;j : ð2:14Þ

Since, by equation (2.9), L is univocally determined in terms of the stretch U and
its gradient VU, every stored-energy functional satisfying (2.13) can be written in
the form

jðFai;Fai;jÞZ ĵðUik ;Uik;jÞ: ð2:15Þ

An equivalent form of (2.15) is also given in terms of the Green–Lagrange strain
E, which will be used in the following when developing the variational
formulation:

jðFai;Fai;jÞZ ~jðEik ;Eik;jÞ: ð2:16Þ

Using the decomposition (2.10) for the third-order tensor Eik, j the following
dependence of j can equivalently be considered:

jðFai;Fai;jÞZ �jðEik ; ~Eikj ;ÊikÞ: ð2:17Þ

(c ) Global equilibrium equations in Eulerian form

The global equilibrium equations for the second gradient solid are obtained
requiring the external work (2.3) to vanish on every kinematically admissible
rigid displacement field

duaðxÞZwa CUabxb:

Here, w is a constant vector representing the virtual translation, U is a constant
skew-symmetric second-order tensor representing the angular virtual displace-
ment and x denotes the current place. One easily obtains the following:

0Zwa

ð
D
baC

ð
vD
ta C

X
h

ð
Eh

fa

 !

CUab

ð
D
baxb C

ð
vD
ðtaxbCtambÞC

X
h

ð
Eh
faxb

 !
: ð2:18Þ
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momentum and moment of momentumð
D
ba C

ð
vD
ta C

X
h

ð
Eh
fa Z 0; ð2:19Þ

ð
D
ðbaxbK bbxaÞC

ð
vD
ðtaxbK tbxa CtambK tbmaÞC

X
h

ð
Eh
ðfaxbK fbxaÞZ 0: ð2:20Þ

Note that the balance of momentum (2.19) involves not only bulk forces and
tractions, but also contact edge-forces; on the other hand, a non-trivial
contribution to the balance of moment of momentum (2.20) comes from skew-
symmetric surface couples tambK tbma concentrated on the boundary.
(d ) Local equilibrium equations in Lagrangian form
The local equilibrium equations for a second gradient solid are obtained from
the principle of virtual work (2.2) by standard localization arguments. In
particular, these equations will be given in terms of Piola–Kirchhoff stress and
hyperstress fields defined as suitable partial derivatives of the stored energy
function. We find it useful to represent in Lagrangian description the internal
work W int introduced in (2.1)

K ~W
int

Z

ð
D0

ðsidui CSijdEij CPijkdEij;kÞ: ð2:21Þ

Using the identities

dEij Z
1

2
ðdFaiFaj CFaidFajÞ;

dEij;k Z
1

2
ðdFai;kFaj CdFaj;kFaiÞC

1

2
ðdFaiFaj;k CdFajFai;kÞ:

9>=
>; ð2:22Þ

The following relations between the Eulerian stress and hyperstress tensors and
the Piola–Kirchhoff tensors Sij and Pijk are found to be:

2a Z 0; Sab Z JK1½SijFaiFbj CPijkðFajFbi;k CFai;kFbjÞ�;

Pabg Z JK1PijkFajFbiFgk :

9=
; ð2:23Þ

Furthermore, bearing in mind equation (2.16), we assume the existence of an
objective stored energy function ~jðEik;Eik;jÞ, the integral of which gives
the global stored energy of the body. We also assume that the variation of the
global stored deformation energy equals the internal work (2.21)

d

ð
D0

~jðEik ;Eik;jÞ
� �

ZK ~W
int
: ð2:24Þ

This assumption yields the following expressions:

si Z 0; Sij Z
v ~j

vEij

; Pijk Z
v ~j

vEij;k

; ð2:25Þ
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for the zero-order stress field s, the second Piola–Kirchhoff stress tensor S and the
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referential hyperstress tensor P. We remark that P and P are symmetric with
respect to their first two indices, and we recall that the contribution of P to the
Eulerian internal work is Pabgua,bg, being ua,bg symmetric with respect to its
last two indices. However, using the decomposition (2.10) for P it is easily
proved that both the completely symmetric and the sym-skew parts of P
contribute to the internal work.

The local equilibrium equations are deduced by requiring the validity of
equation (2.2) for every kinematically admissible virtual displacement field. To
this aim, the distinction between essential (prescribed value of displacement) and
natural (prescribed value of traction) boundary conditions needs to be
generalized. On every part Ly

x3vD, with xZe,n, yZe,n, we may impose four
different kinds of boundary conditions; more precisely we define:
where ðDnuÞadua;bmb indicates the normal derivative of u and m is the

Le
e uaZ �ua ua;bmbZ �wa u -essential (Dnu)-essential

Ln
e uaZ �ua taZ �ta u -essential t-natural

Le
n taZ�ta ua;bmbZ �wa t-natural (Dnu)-essential

Ln
n taZ�ta taZ �ta t-natural t-natural
outward normal to vD. Subscripts distinguish u -essential from t-natural
boundary conditions, while superscripts distinguish (Dnu)-essential from
t-natural boundary conditions; moreover, on every part of the edge Eh standard
distinction between essential and natural conditions holds true.

The varied displacement u� is said to be kinematically admissible if it satisfies
the same essential boundary conditions as u; as a consequence of equation (2.4) the
virtual displacement du and its normal derivative, both to be used in the principle
of virtual working, will vanish on vD-

e dLe
egLn

e and vDe
-dLe

egLe
n, respectively.

Integration by parts of the left-hand side of (2.24) and standard localization
arguments yield

½FaiðSijKPijk;kÞ�;j CJba Z 0; on D0;

FaiðSijKPijk;kÞnjKðQBjFaiPijknkÞ;B Z JSta; on ðvD0Þ-n ;
FaiPijknknj Z JSta on ðvD0Þn-;

EQBjFaiPijknknBF Z JLfa on En
0h;

9>>>>>=
>>>>>;

ð2:26Þ

which must be used together with the essential boundary conditions

ua Z �ua on ðvD0Þ-e ; ua;bnb Z �wa on ðvD0Þe-; ua Z �ua on Ee
0h: ð2:27Þ

Here,

— n denotes the outward normal to vD0;
— every part of the boundary vD0 is locally parametrized by the coordinate

system X̂B for BZ1,2; by definition QBidvX̂B=vXi and ( ),B denotes
derivation with respect to the X̂B coordinate;

— as vD0 and E0 are the inverse images of vD and E under the placement map c,
thus ðvD0Þ-e is the inverse image of vD-

e under c and ðvD0Þe- is that of vDe
-;

— JS, JL are the determinant of the surface and line restriction of F;
Proc. R. Soc. A
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mi denote the components of the unit tangent vector to an edge and nKi ;n
C
i be

the two values of n on the two faces of the edge itself; then on the same edge
nGi deijlmjn

G
l indicate the components of the Darboux tangent-normal vectors

on the left and the right-hand side of the edge; ðmi; n
C
i ;n

C
i Þ and ðmi; n

K
i ; n

K
i Þ form

the two left-hand bases characterizing both sides of the discontinuity; and
— E4Fdð4ÞCKð4ÞK indicates the jump through the edge.

The last term in the left-hand side of equation (2.26)2 can be found also in
Mindlin (1964) and Germain (1973); it arises when splitting a divergence term
into a divergence on the surface plus a normal derivative term, namely (KPijk,knj),
which is naturally added to the standard Cauchy traction, Sijnj.
3. Linear isotropic constitutive relations
Generalization of Hooke’s law to second gradient materials stems from requiring
the constitutive relation among generalized stresses (S and P) and strains (E and
VE ) to be linear and isotropic. Linearity of the constitutive relations (2.25) with
respect to the strain measures is enforced, as usual, assuming that the stored
elastic energy ~j is a quadratic form of both its arguments

~jðEij ;Eij;kÞZ
1

2
ðCijklEijEkl C2HijklpEij;kElp CGijklpqEij;kElp;qÞ; ð3:1Þ

where the fourth-order tensor C, the fifth-order tensor H, and the sixth-order
tensor G possess, without loss of generality, the symmetries

Cijkl ZCklij ; Hijklp ZHlpijk; Gijklpq ZGlpqijk: ð3:2Þ

Moreover, the symmetry of the Green–Lagrange strain induces the following
additional symmetries:

Cijkl ZCijlk ZCjikl ; Hijklp ZHjiklp ZHijkpl ; Gijklpq ZGjiklpq ZGijkplq: ð3:3Þ

When (3.1) holds, the constitutive relations (2.25) read as follows:

Sij ZCijklEkl CHklpijEkl;p; Pijk ZHijklpElp CGijklpqElp;q: ð3:4Þ

Following standard arguments for material symmetry characterization, a
second gradient material is said to be isotropic if the stored elastic energy
satisfies the following:

~jðEij ;Eij;kÞZ ~jðQhiEhmQmj ;QhiEhm;nQmjQnkÞ; ð3:5Þ

for every orthogonal transformation Q2Orth. The request (3.5) implies the
elasticity tensors to fulfil,

Cijkl ZChmnrQhiQmjQnkQrl ;

Hijklp ZHhmnrsQhiQmjQnkQrlQsp;

Gijklpq ZGhmnrstQhiQmjQnkQrlQspQtq;

9>=
>; ð3:6Þ
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equations (3.6) are determined considering only proper orthogonal transfor-
mations Q2OrthC. However, this is not sufficient to characterize isotropy;
indeed, equations (3.6) must also be fulfilled by every reflection.2

This distinction is not relevant when discussing isotropy of even-order tensors,
(3.6)1,3, but reveals to be crucial when considering odd-order tensors as in (3.6)2.

Requiring the conditions (3.2), (3.3) and (3.6) to be satisfied for every Q2Orth,
we obtain generalized Hooke’s law for isotropic second gradient materials

Cijkl Zldijdkl Cmðdikdjl CdildjkÞ; Hijklp Z 0;

Gijklpq Z c2ðdijdkldpq Cdijdkpdlq CdikdjqdlpCdiqdjkdlpÞCc3ðdijdkqdlpÞ
Cc5ðdikdjldpq Cdikdjpdlq Cdildjkdpq CdipdjkdlqÞCc11ðdildjpdkq
CdipdjldkqÞCc15ðdildjqdkpCdipdjqdkl CdiqdjldkpCdiqdjpdklÞ:

9>>>=
>>>;

ð3:7Þ

Therefore, isotropic linear elastic second gradient materials are completely
described in terms of seven constants; two of them are the standard Lamé
coefficients l and m. In (3.7) a notation similar to that introduced in Suiker & Chang
(2000) was used for the material constants. Remark that

(i) in Suiker & Chang (2000) the equations (3.7) are not explicitly derived; as
long as one needs to consider the boundary conditions (2.26)2,3,4, they must be
derived;

(ii) without the request of invariance under reflections the fifth-order tensor H
would not vanish, being in the form

Hijklp Z c8ð3ikldjpC3ikpdjl C3jkldipC3jkpdilÞ; ð3:8Þ
which is the form of ‘isotropic’ fifth-order tensor determined by Suiker &
Chang (2000), where isotropy is defined as invariance under linear
transformations in OrthC.
4. Positive definiteness of stored elastic energy
As well known in linear elasticity,3 if the stored elastic energy j is a strictly convex
function of strain, then the solution of the equilibrium equations, in terms of
displacements, is unique up to an infinitesimal rigid displacement field (see
Salençon 1995). A first approach to second-gradient elasticity may start by
assuming that the stored elastic energy is a strictly convex function of strain and
strain-gradient. Investigations will be needed to generalize quasi-convexity and
related arguments.

Assuming j to be a quadratic form of its arguments, the strict convexity is
equivalent to the positive definiteness of the following quadratic form of E and VE:

jZ
1

2
SijðElm;Elm;pÞEij CPijkðElm;Elm;pÞEij;kO0;

2 Every Q2Orth can be obtained as the composition of an element of OrthC either with the

identity matrix (I ) or with an arbitrary reflection; for instance minus the identity (KI ) when
considering an odd dimensional ambient space.
3 Here linearity means that only the linear part of the Green–Lagrange strain tensor with respect to
displacement gradient is retained.
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where S and P are prescribed by equation (3.4). In the case of isotropic materials,
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see equation (3.7), the positive definiteness of j yields inequality constraints on
both first and second gradient constitutive parameters l, m, c2, c3, c5, c11 and c15.

In order to determine these constraints, one can rewrite equation (3.7) in matrix
form, using a Voigt-type representation for the considered tensors. The Sylvester
criterion4 is then applied to check the positive definiteness of the quadratic form j.
To this aim, different equivalent choices for listing the strict components of tensors
E, VE, S and P can be introduced.

As the constitutive coupling H vanishes, the standard Voigt representation for
S and E allows for the independent determination of the constraints mO0 and
3lC2mO0. Then, considering only the relationship between P and VE, the
equations (3.7) can be stated in the following block-diagonal form:

P111

P122

P133

P221

P331

0
BBBBBBBBB@

1
CCCCCCCCCA

ZG1

E11;1

E12;2

E13;3

E22;1

E33;1

0
BBBBBBBBB@

1
CCCCCCCCCA
;

P222

P121

P233

P112

P332

0
BBBBBBBBB@

1
CCCCCCCCCA

ZG1

E22;2

E12;1

E23;3

E11;2

E33;2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

P333

P131

P232

P113

P223

0
BBBBBBBBB@

1
CCCCCCCCCA

ZG1

E33;3

E13;1

E23;2

E11;3

E22;3

0
BBBBBBBBB@

1
CCCCCCCCCA
;

P123

P132

P231

0
BB@

1
CCAZG2

E12;3

E13;2

E23;1

0
BB@

1
CCA;

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:1Þ

where G1 and G2 matrices are defined as follows:

G1d

4c2Cc3C4c5C2c11C4c15 2c2C4c5 2c2C4c5 2c2Cc3 2c2Cc3

2c2C4c5 4ðc5Cc11Cc15Þ 4c5 2c2C4c15 2c2

2c2C4c5 4c5 4ðc5Cc11Cc15Þ 2c2 2c2C4c15

2c2Cc3 2c2C4c15 2c2 c3C2c11 c3

2c2Cc3 2c2 2c2C4c15 c3 c3C2c11

0
BBBBBBB@

1
CCCCCCCA

and

G2d4

c11 c15 c15

c15 c11 c15

c15 c15 c11

0
B@

1
CA:

However, to apply Sylvester’s criterion to matrix G1 may present some difficulties.
To overcome them, the decomposition (2.10) for the tensors P and VE is revealed
to be useful. Indeed, once a suitable linear combination of the strict components of
P and VE is introduced, the constitutive relations (3.7) assume the form

4Sylvester’s criterion states that a matrix M is positive definite iff the determinants associated with

all upper-left submatrices of M are positive.

Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


~P
0 1 ~E

0 1 9>
F. dell’Isola et al.12

 on 22 April 2009rspa.royalsocietypublishing.orgDownloaded from 
111

~P 122 C ~P 133

P̂ 32KP̂ 23

BBB@
CCCAZG1

111

~E 122 C ~E 133

Ê32KÊ 23

BBB@
CCCA;

~P 222

~P 233 C ~P 112

P̂ 13KP̂ 31

0
BBB@

1
CCCAZG1

~E 222

~E 233 C ~E 112

Ê 13KÊ 31

0
BBB@

1
CCCA;

~P 333

~P 223 C ~P 113

P̂ 21KP̂ 12

0
BBB@

1
CCCAZG1

~E 333

~E 223 C ~E 113

Ê 21KÊ 12

0
BBB@

1
CCCA;

>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:2Þ

~P 122K ~P 133 Z 3g2ð ~E122K ~E133Þ; P̂ 32C P̂ 23 Z 6g5ðÊ32 C Ê23Þ;
~P 233K ~P 112 Z 3g2ð ~E233K ~E112Þ; P̂ 13C P̂ 31 Z 6g5ðÊ13 C Ê31Þ;
~P 223K ~P 113 Z 3g2ð ~E223K ~E113Þ; P̂ 21C P̂ 12 Z 6g5ðÊ21 C Ê12Þ;

9>>=
>>; ð4:3Þ

P̂ 11

P̂ 22

P̂ 33

0
BB@

1
CCAZG2

Ê11

Ê22

Ê33

0
BB@

1
CCA; ~P 123 Z 3g2

~E123 ; ð4:4Þ

where

G1d

g1 2g1Kg2 g3

2g1Kg2 4g1Cg2 2g3

g3 2g3 g4

0
B@

1
CA; G2dg5

2 K1 K1

K1 2 K1

K1 K1 2

0
B@

1
CA ð4:5Þ

and

g1d2ðc11C2c15ÞC4c2Cc3 C4c5;

g2d4ðc11 C2c15Þ;g3d
2

3
ð4c5K2c2K2c3Þ;

g4d
8

9
ð3c11K3c15K4c2C2c3C2c5Þ;g5d

4

9
ðc11K c15Þ:

9>>>>=
>>>>;

ð4:6Þ

The use of the introduced decomposition reduces to three the maximal dimension
of the constitutively coupled blocks and renders the application of the Sylvester
criterion feasible. Indeed, positive definiteness of j implies the following conditions
on the constitutive parameters gi:

g1O0; 0!g2!5g1; g4O
5g2

3

5g1Kg2

; g5O0; ð4:7Þ
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which can be also stated in terms of the constitutive parameters ci
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c11O0; K
c11
2
!c15!c11; 5c3 C4c11O2c15;

c5O
c3ð3c11Cc15ÞC2 c211K5c22K6c15c2K2c215Cc11ð2c2 Cc15Þ

� �
4c15K10c3K8c11

:

9>>=
>>; ð4:8Þ

The decomposition proposed for the strict components of the hyperstress P and
strain gradient VE is illustrated in appendix A.

Under the assumption of small strains, Sokolowski (1970), closely following
Mindlin (1964), assumes the stored energy to depend quadratically on the
infinitesimal strain eijdðui; jCuj;iÞ=2 and on the gradient of the curl of
the displacement field kijdui; jZK3ipqup;q j . Two additional constants, h and [,
are hence introduced in his constitutive relations. We remark that, the second-
order tensor kij, which is the only second gradient contribution considered
by Toupin (1962), Mindlin (1964) and Sokolowski (1970), coincides with the linear
part of Ê ij with respect to xdkVuk/1:

kijdui;j Z
vÊij

vx xZ0:
�� ð4:9Þ

However, equations (4.2) and (4.5) show that, even for linear isotropic materials,
the completely symmetric strain gradient ~E is constitutively coupled with the
sym-skew strain gradient Ê.

The constitutive relations (4.1), or equivalently (4.2)–(4.4), can be compared
with those of Sokolowski (1970) when assuming small deformations around a zero-
stress reference configuration. If the five constitutive second gradient constants are
chosen according to the following:

c2 Z [ 2hm; c3 ZK2[ 2hm; c5 ZK[ 2hm=2;

c11 Z [ 2ðhC1Þm; c15 ZK[ 2ðhC1Þm=2

)
ð4:10Þ

or

g1 Zg2 Zg3 Z 0; g4 Z 4[ 2ð1KhÞm; g5 Z
2

3
[ 2ð1ChÞm; ð4:11Þ

our constitutive relations are equivalent to the ones derived by Sokolowski (1970).
For the particular case (4.10), the conditions (4.8) reduce to

[ 2O0; K1!h!1; ð4:12Þ
as required in Sokolowski (1970).
5. Warping in torsion of a prismatic second gradient cylinder
This section is devoted to show how second gradient theories modify the elliptic
problem for warping in the torsion of prismatic cylinders. To this aim, the
linearized form of strain measures (2.5) in terms of displacement gradient, and
the balance laws (2.26) near a zero-stress reference configurationwill be considered.
In particular the infinitesimal strain eij is used instead of the Green–Lagrange
strain Eij, while the Piola–Kirchhoff and the Cauchy stress (and hyperstress)
Proc. R. Soc. A
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can be identified. Let us introduce an orthonormal coordinate system {X1,X2,X3}
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for the reference configuration of a prismatic cylinder, in which the X3 axis is
orthogonal to the cross section B. The body forces in the cylinder and the tractions
on the mantle are supposed vanishing as in the standard de Saint Venant problem;
forces can be applied only on the two bases and on their boundaries. As
displacement field for such a cylinder we here postulate the standard displacement
field of the de Saint Venant torsion,

u1 ZKQX2X3; u2 ZQX1X3; u3 ZQwðX1;X2Þ; ð5:1Þ
where Q is the unit angle of torsion. Accordingly, in what follows, we deduce the
balance laws, that the unknown function w(X1,X2) must satisfy, and the boundary
conditions, that one must apply to the bases, for the field (5.1) to be a solution. It is
easy to verify from (5.1) that the only non-vanishing components of strain and
strain gradient are the following:

313 Z 331 ZQðw;1KX2Þ=2; 323 Z 332 ZQðw;2 CX1Þ=2;
313;2 Z 331;2 ZQðw;12K1Þ=2; 323;1 Z 332;1 ZQðw;12C1Þ=2;
313;1 Z 331;1 ZQw;11=2; 332;2 Z 323;2 ZQw;22=2:

9>>=
>>; ð5:2Þ

Using the constitutive relation (3.7), we obtain the corresponding non-vanishing
stresses and hyperstresses

S13 ZS31 ZmQðw;1KX2Þ=2; S23 ZS32 ZmQðw;2CX1Þ=2;
P 113 ZQð2c15w;11Cc2DwÞ; P123 ZP213 ZQð2c15w;12Þ;
P131 ZP311 ZQððc11Cc15Þw;11 Cc5DwÞ;
P132 ZP312 ZQðc11ðw;12K1ÞCc15ðw;12C1ÞÞ;
P223 ZQð2c15w;22Cc2DwÞ;
P231 ZP321 ZQðc15ðw;12K1ÞCc11ðw;12C1ÞÞ;
P232 ZP322 ZQððc11Cc15Þw;22 Cc5DwÞ;
P333 ZQðc2 C2c5ÞDw;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð5:3Þ

where Dwdw,11Cw,22 means the in-plane Laplacian.
Finally, substituting in the linearized form of the balance laws (2.26), we obtain

the following elliptic problem for the warping function w:

mDwKðc11 Cc15Cc5ÞDDw Z 0; in B;

ðmwKðc11Cc15 Cc5ÞDwÞ;BnB CdS Zm3ABXBnA; on vB;

NABw;AB Z 0; on vB;

8><
>: ð5:4Þ

where

dSd
c11Cc15

2

v

vs
ðsin 2wðw;22Kw;11ÞC2 cos 2ww;12Þ ð5:5Þ
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and

Figure 1. The conventions used for the abscissa s and the angle w to compute the divergence dS on
the mantle of the cylinder.
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eABd
0 K1

1 0

 !
AB

; NABdðc11Cc15ÞnAnB Cc5dAB: ð5:6Þ

Here, DD means the in-plane double Laplacian, A,BZ1,2 and summation over
repeated indices is understood. The abscissa s along the boundary vB and the angle
w formed between the normal n and the horizontal axis have been chosen
according to figure 1. Let us remark that the term dS introduces in the boundary
conditions (5.4)4 the curvature vw/vs of the curve vB, as one would expect when
considering the general form of the boundary conditions (2.26)2 for the traction.

The obtained elliptic problem does not coincide with the one formulated in
Sokolowski (1970), because the term corresponding there to dS does not contain
the curvature of the boundary vB. Moreover, in Sokolowski (1970) the matrix NAB

is spherical and the boundary condition (5.4)3 reduces to v2w/vn2Z0. This last
circumstance is also related to the more general constitutive equations (4.1) found
in §3. Indeed, Sokolowski (1970) excludes from the analysis the completely
symmetric part of the strain gradient, hence limiting to the particular class of
secondgradientmaterials inwhichhyperstresses reduce to the socalled couple-stress.

In the case of a circular hollow cylinder, the elliptic problem (5.4) has wZ0 as
unique solution and the torsion problem can be easily solved. In this case, the
deformation fields (5.2) as well as the stress fields (5.3) are sensibly simplified.
Indeed, when wZ0, the displacement field (5.1) depends quadratically on the
variables {Xi}, the hyperstress components Pijk result to be constant and the local
equilibrium equations (2.26)1 in the bulk are identically verified. Moreover, the
boundary conditions (2.26)2,3 are verified with vanishing tractions t and double
forces t on the lateral mantle of the cylinder. On the other hand, the tractions and
double forces (2.26)2,3 on the basis BL at X3ZL, as well as the concentrated edge
forces (2.26)4 on the inner and outer circumferences CGL , do not vanish and are
estimated as follows:

t1 ZKmQX2; t 2 ZmQX1; t3 Z 0; in BL;

ta Z 0;aZ 1; 2; 3 in BL;

f1 ZQðc11K c15Þsin w; f2 ZKQðc11K c15Þcos w; f3 Z 0; on CGL :

8>><
>>: ð5:7Þ
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For the circular hollow cross section, the angle w coincides with the circumferential

2

3

1

Figure 2. The second gradient deformation and hyperstress components: ~E 122K ~E 133 and
~P 122K ~P 133. These are constitutively coupled by g2 in equation (4.3)1.

2

3

1

Figure 3. The second gradient deformation and hyperstress components: ~E 123 and ~P 123: These are
coupled by g2 in equation (4.4)2.
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polar coordinate in the basis. The surface tractions, the surface double-forces and
the tractions per unit line given in (5.7) are statically equivalent to a pure torque.

The simplified form of (5.2) and (5.3) for wZ0, allows for the closed form
evaluation of the torsional stiffness, say Kt; to this aim, the stored elastic energy is
written as the following quadratic function of Q:

jZ
1

2

ð
D
ðSijeij CPijkeij;kÞe

1

2
KtQ

2: ð5:8Þ
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With simple calculations one obtains the following:

2

3

1

Figure 4. The second gradient deformation and hyperstress components: Ê 32C Ê 23 and P̂ 32C P̂ 23.
These are coupled by g4 in equation (4.3)2.
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Kt ZmIP C2ðc11K c15ÞA; ð5:9Þ
where IPdpðR4

extKR4
intÞ=2 is the moment of polar inertia, AdpðR2

extKR2
intÞ is

the area of the cross section, Rint and Rext are the inner and outer radii of the
cylinder. Equation (5.9) may represent an effective tool to experimentally estimate
the second gradient constitutive parameter g5Z4(c11Kc15)/9. Moreover, the
analytical solution found could be a valid (patch) test in the development of finite-
element codes for second gradientmaterials. Froman experimental point of view, the
solution with wZ0 can be realized clamping the two bases of a hollow circular
cylinder to two rigid supportswhich undergo a relative rotationQ around theX3 axis.
6. Conclusions
Ageometrically nonlinear theory of second gradient elasticity has been analysed; this
accounts for Green–Lagrange strain and strain-gradient measures as well as for the
Cauchy and Piola–Kirchhoff stress and hyperstress tensors. Owing to a previous
result (Fortuné & Vallée 2001) which links the rotation gradient to the
strain gradient, the most general hyperelastic energy functional must depend on
the strain and on all the components of strain gradient including the completely
symmetric part. Hence, hyperstresses do not limit to couple stresses but include
double forces.

The most general linear elastic constitutive relations for isotropic materials are
also derived; these relations generalize standard Hooke’s law to second gradient
materials. The presented analysis shows that a complete isotropic second gradient
constitutive theory must include five more parameters in addition to the classical
Lamé constants. The conditions for the positive definiteness of the considered
quadratic strain energy are found by means of a novel decomposition of the strain
gradient tensor, graphically shown in appendix A.
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Even in the simple problem of linear torsion formulated in §5, the introduced

2
(a)

(b)

(c)

3

1

2

3

1

2

3

1

Figure 5. The second gradient deformation and hyperstress components: (a) ~E 111 and ~P 111;
(b) ~E 122C ~E 133 and ~P 122C ~P 133; and (c) Ê 32KÊ 23 and P̂ 32KP̂ 23. These are coupled by G1 in
equation (4.2)1.
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constitutive parameters play a relevant role, influencing the warping function and
the torsional stiffness. While the experimental measurement of the second gradient
parameter g5 seems feasible, from the quoted results, it is an open problem the
design of measurement procedures for the remaining four parameters. For
instance, the correction to the bending stiffness found by Anthoine (1998)
under the constitutive assumption of Sokolowski (1970), could be extended to
consider the general constitutive relations proposed here.

The authors thank dott. Giuseppe Ruta for having discussed carefully the content of a first draft of

this paper.
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Appendix A

2
(a)

(b)

(c)

3

1

2

3

1

2

3

1

Figure 6. The second gradient deformation and hyperstress components: (a) Ê 11 and P̂ 11; (b) Ê 22

and P̂ 22; and (c) Ê 33 and P̂ 33: These are coupled by G2 in equation (4.4)1. Remark that Ê 11, Ê 22

and Ê 33 are linearly dependent since the second-order tensor Ê ij is deviatoric.
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A standard technique to visualize strain and stress fields is to display
the deformations of an elementary reference volume (usually a cube) together
with the associated contact forces on its boundary. Here, a similar approach is used
to display the elementary states of strain-gradient and hyperstress, see equations
(4.2)–(4.4).
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The ‘second gradient’ deformations of an elementary cube centred in the
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origin are shown. We choose in the space of strain-gradients a suitable basis; for
each element, say Cijk, of this basis the corresponding displacement is chosen to
be the second-order polynomial ui(X1,X2,X3)Z(CijkXjXk)/2. With these choices
the averages in the cube of all the (first-gradient) deformation fields are
vanishing. Yet, the hyperstress fields are constant in the cube; thus, by equation
(2.26)2, their contribution to the contact forces t is vanishing, and they are
displayed only through the associated contact double-forces t and edge-forces f
on the boundaries of the cube. Grey arrows are used to display the contact
double-forces t, while black arrows are used for the edge-forces f (figures 2–6).
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