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A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY II:
AN APPLICATION TO THE CONSOLIDATION PROBLEM

ANGELA MADEO, FRANCESCO DELL’ISOLA, NICOLETTA IANIRO AND GIULIO SCIARRA

The second gradient model of poromechanics, introduced in Part I, is here linearized in the neighborhood
of a prestressed reference configuration to be applied to the one-dimensional consolidation problem orig-
inally considered by Terzaghi and Biot. Second gradient models allow for the description of boundary
layer effects both in the vicinity of the external surface and the impermeable wall.

The formulated differential problem involves linear pencils of ordinary differential operators on a
finite interval, with boundary conditions depending on the spectral parameter. Taking into account the
dependence of the differential problem on initial stresses a linear stability analysis is carried out. Finally,
numerical solutions are compared with the corresponding classical Terzaghi solutions.

1. Introduction

This paper addresses a geotechnical application of the macroscopic second gradient poroelasticity the-

ory presented in the first part; in particular we aim to treat the well known soil consolidation problem
[Terzaghi 1943]. The consolidation of a soil layer of depth L can be schematically described as follows:
when an external load p

ext. is applied on the surface of the layer, the fluid starts moving from the layer
towards the surface, and it finally leaves the system. While the fluid keeps flowing, the external load is
gradually distributed to the solid skeleton, which starts to deform.

Different theories which model consolidation have been developed in the literature [Biot 1941; Terza-
ghi 1943; Heinrich and Desoyer 1961], however the two due to Terzaghi and Biot are surely the most
widespread ones. Actually, as it was noted also by de Boer [1996], the derivation of the Terzaghi
differential equation [Terzaghi 1923] is obscure and essentially driven by the comparison between the
phenomenon of soil consolidation and that of heat propagation, rather than from the statement of suitable

mechanical principles. On the other hand Biot’s theory seems to be well grounded from the mechanical
point of view, even if directly restricted to the case of linear elasticity, in its earliest presentation [Biot

1941]. The two models collapse one into the other when considering one-dimensional problems; how-
ever, this is not the case when modeling, for instance, the behavior of a saturated porous slab [Mandel

1953] or a saturated porous sphere [Cryer 1963]. In both circumstances Biot’s three-dimensional model
provides time increasing values of the water pressure (and fluid mass density) at the center of the slab (or

sphere) if the Lamé constant µ of the skeleton is different from zero; on the other hand the solution for
µ = 0 coincides with the one derived from Terzaghi’s three dimensional model. This localized pore-fluid
segregation is known in the literature as the Mandel–Cryer effect.
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The occurrence of compaction localization phenomena has recently been discovered by Mollema and
Antonellini [1996], who presented evidence of so called “compaction bands” in outcrops of the Jurassic
Navajo sandstone in the Kaibab monocline, in Utah. These bands are characterized by volume loss due
to microfracturing, but essentially no grain crushing or comminution. Later on, laboratory experiments
have been developed [Olsson and Holcomb 2000; 2003] using triaxial compression tests to reproduce
the formation of these bands. These tests proved that increasing axial stress σ11 initially determines only
homogeneous axial strain �11, however, when a suitable stress threshold has been overwhelmed, tabular
zones associated with nonhomogeneous strain can be detected close to the axial borders of the specimen.
Nonuniform compaction also affects fluid flow in the porous material, being detrimental if permeability
of the compacted material is much reduced with respect to the uncompacted zone.

The second gradient poromechanical model presented in Part I [Sciarra et al. 2008] is capable of
describing fluid mass density boundary segregation even in the one dimensional model. Both in the
vicinity of the external consolidating surface and the impermeable wall, suitable boundary layer effects
can be predicted by the second gradient model. Formation of segregation bands enhances high gradients
of density of the fluid entrapped in the pores of the solid skeleton. This can be explained by means of
nonvanishing hyperstresses at the boundary (see [Sciarra et al. 2008, Equations (32)2–(32)3]); these last
cause the pore pressure to differ from its reference initial value in a transient period, when dissipation
does not yet dominate the evolution process.

Having in mind the classical Terzaghi’s consolidation problem, whose space-time evolution is gov-
erned by the same equation as that of heat conduction, replacing temperature with pore-pressure, we
claim that the second gradient model, presented in [Sciarra et al. 2008], is capable of regularizing the
behavior of the Darcy flow inside the porous medium. Because of second gradient effects, the fluid mass
density diffusion is smoothed. It is self evident that Terzaghi’s theory does not model those phenomena
occurring at the boundaries which oppose the fluid flow, for example, pore closure, solid-fluid capillarity,
etc. The present model tries to macroscopically account for some of them and aims to establish the
preliminary theoretical framework necessary for conceiving and designing any kind of experimental
activity. In this paper it is shown that the overpressure occurring at the impermeable boundary actually
depends on second gradient coefficients; therefore a more detailed analysis of these effects is recognized
to be necessary.

Pore fluid segregation is probably the triggering effect for vertical drain or sand volcano formation,
observed after liquefaction [Kolymbas 1998]; these last can indeed be interpreted as bifurcation modes
of consolidation, which, in the case of the second gradient model should correspond to the boundary
layer detected close to the impermeable wall becoming larger and larger. As it is not possible to identify
this bifurcation mode in the case of linearized (small strain) theory, only the limit condition describing
the stability/instability limit is detected. Further developments will be devoted to study of the one-
dimensional nonlinear problem.

From the mathematical point of view the present model, in which both second gradient conservative
(relative to the behavior of the porous solid skeleton) and dissipative (relative to the flow of the saturating

fluid) contributions are taken into account, implies that the newly formulated initial boundary value
problem of consolidation fits in the framework of the theory of linear pencils of ordinary differential
operators on a finite interval with boundary conditions depending on the spectral parameter. We refer
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to the general results presented, for example, in [Shkalikov 1986; Shkalikov and Tretter 1996; Marletta
et al. 2003] for more details on this topic.

2. Linearization of the one-dimensional differential problem

We study here the aforementioned consolidation problem referring to the equations of motion for a
second gradient porous medium as obtained in [Sciarra et al. 2008, Equations (30) and (31)], restricting
our attention to the one-dimensional case. This will allow us to compare our results with the classical ones

due to Terzaghi [1923]. Of course, Equations (30)–(31) can also be applied to treat three-dimensional
problems, so extending classical Biot’s equations.

Clearly, because of the one-dimensional hypothesis, all the gradient and divergence operations appear-
ing in Equations (30) and (31) become simple derivatives with respect to the space variable x , and the

deformation tensor ε simply reduces to its only nonzero component εxx along the x axis. In the following

we will indicate the component εxx simply by ε.
From now on we assume the hypothesis of small deformations in the neighborhood of a suitable solid

skeleton reference configuration. For the sake of simplicity we will therefore use the same notation as

used in [Sciarra et al. 2008] for ε and mf to indicate the corresponding incremental quantities with respect

to the considered small deformation parameter.
In accordance with the aforementioned assumptions and the introduced nomenclature, the quadratic

expression for the Hemholtz free energy density �, in terms of the state parameters (ε, mf , ε
I , m

I

f
) is

adopted as,

� = − p
ext.
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where ε I and m
I

f
indicate the first spatial derivatives of ε and mf , respectively.

The constant coefficients p
ext.
0 , µext.

0 , and m
0
f

account for the state of stress of the solid skeleton, the
chemical potential of the fluid, and the initial apparent density of the fluid before any external perturbation

is applied to the porous system. Moreover, λ and µ are the classical Lamé coefficients, b and M the Biot

parameters, and �, Kss , and Ks f are the second gradient constitutive parameters.
The nonstandard energetic contributions associated with (ε I )2, (m I

f
)2, and ε I

m
I

f
are those responsible

for the presence of hyperstresses in the balance equations of the overall material and the pure fluid. They
allow for describing the compaction/dilatancy localization effects arising in the fluid-filled porous mate-
rial when the fluid remains entrapped in the solid skeleton. In particular Kss and � provide nonvanishing

hyperstress on the solid skeleton and the pure fluid if second gradient coupling is negligible. Following
the interpretation of double forces given in [Sciarra et al. 2008, Section 2], these two constitutive pa-
rameters allow for describing internal actions working on the rate of dilatancy along the outward unit
normal. The coupling coefficient Ks f is labeled as the cocapillarity coefficient in analogy to standard
second gradient theories for capillarity models [Seppecher 1987]. It describes second gradient solid-fluid
interactions and can be assumed as vanishing in contrast with Kss and �, which will be proved to be
positive when positiveness of strain energy density is required (see Equation (2)).
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Values of the Lamé and Biot moduli can easily be recovered from the literature [Coussy 2004]; on the
other hand no identification for the second gradient moduli is available up to now. It is not the purpose of

this paper to set up a constitutive identification based on experiments or mathematical homogenization;
conversely, our aim is that of exhibiting the capability of the model presented in [Sciarra et al. 2008] to
catch compaction/dilatancy effects. Second gradient parameters therefore will be tuned so as to permit
the one-dimensional model to show boundary layer effects for the solid strain and the fluid mass density
in the vicinity of the external surfaces.

Requiring definite positiveness of the energy density � defined in Equation (1), the following condi-
tions on the parameters must hold:

λ + 2µ > 0, M > 0, and Kss > 0, � > 0. (2)

The first two conditions are well known in the framework of the classical Biot poromechanics; the second

ones restrict the constitutive assumptions on the second gradient parameters.

2.1. Equations of motion. We will now deduce the linearized form of the equations of motion for the

second gradient consolidation problem. In order to do so, it is worthwhile to recall that in the one-
dimensional, linearized problem the following chains of equalities hold:

Fs � I + ∇su = (1 + ε) I, (3)

u being the infinitesimal solid displacement field,

F−1
s

� (1 − ε) I, (4)

and
Js � det Fs = 1 + tr(∇0u) = 1 + ε, (5)

where we recall that all the considered fields in the right hand side of (3)–(5) have to be regarded as
incremental quantities with respect to the small deformation parameter. Taking into account (1) for the
strain energy � and the one-dimensional form of (3) and (5) , the linearized governing equations given
in [Sciarra et al. 2008, Equations (30) and (31)], reduce to
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for the solid skeleton and the pure fluid, respectively. We have denoted by D and α the only nonzero
component of the Darcy and Darcy-like tensors � and �, respectively (see [Sciarra et al. 2008, Equation
(25)]), and by vf − vs the vertical component of the relative velocity. In the absence of inertia forces the
solid momentum conservation law, Equation (6), can be integrated in the form
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= const. := c0. (8)
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Moreover, considering that vf − vs is related to the apparent fluid density mf by means of the linearized
continuity equation ṁf + m

0
f
(vf − vs)

I = 0, (7) can be rewritten, performing a derivative with respect to
the space variable x , as
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f



 + D
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m
0
f

ṁ
I I

f
= 0, (9)

where we have indicated by ṁf the time derivative of mf .
In order to write the linearized governing equations in a dimensionless form, the following quantities

are introduced:

ξ = x

L
, m̃f = mf

m
0
f

, t̃ = t

τ
, with τ = DL

2

M
,

where L is the depth of the solid layer.
According to these definitions, (8) and (9) can be rewritten in their dimensionless form as
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M L2 Ks f ε
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f
+ bε I I − α

DL2
˙̃m I I

f
+ ˙̃mf = 0, (11)

which represent the linearized equations of motion for the consolidation problem. For the sake of sim-

plicity, we will no longer distinguish between mf and m̃f , and, if not specified, mf will indicate the
dimensionless quantity. Moreover, the dimensionless variables ξ and t̃ will be also indicated by x and t

if no confusion can arise.

2.2. Boundary conditions. The constant c0 is deduced from the boundary condition (BC) in x = 0 given

in [Sciarra et al. 2008, Equation (32)1] which, in the linearized form, reads

�
λ + 2µ + b

2
M − p

ext.
0

�

λ + 2µ
ε − bM
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�
Kss + �K

2
s f

�
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(λ + 2µ)L2 m
I I

f
= − �p

ext.

(λ + 2µ)
;

here �p
ext.

represents the incremental external pressure acting on the system, deriving from the lineariza-

tion process (p
ext. = p

ext.
0 +�p

ext.
). In other words, �p

ext.
is the perturbation in the external load applied

on the surface of the soil layer. Comparing this BC with (10) it is easy to recognize that c0 = − �p
ext..

Equations (10) and (11) represent a differential system of the sixth order in the space variable x and of

the first order in time, the integration of which requires therefore six boundary conditions and one initial
condition. In classical poromechanics the Terzaghi consolidation problem does not take into account
second gradient effects, and indeed it can be obtained from (10) and (11) when the second gradient
parameters �, Kss , Ks f , and α are vanishing. Clearly, the problem reduces in this case to a second order

system with respect to the space variable x .
The boundary conditions for the consolidation problem are derived from the general ones deduced in

[Sciarra et al. 2008, Equation (32)]. In particular, since the given problem is one-dimensional, surface
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divergence and surface gradient operations do not contribute to the BCs; moreover no edge Ek of the
boundary exists. Extending the classical BCs stated in the Terzaghi consolidation problem we assume:

• Zero fluid traction in x = 0. This BC states that the surface of the solid layer is kept drained,
meaning that the fluid reaching the surface is continuously removed from the surface itself. This
BC corresponds to the one given in [Sciarra et al. 2008, Equation (32)1] which, in its linearized,
dimensionless form, reduces to

mf − bε − �Ks f

M L2 ε I I − �

M L2 m
I I

f
+ α

DL2 ṁf =
m

0
f
�µext.

M
= 0, (12)

where �µext. represents the incremental chemical potential. In other words we have assumed the
linearization µext. = µext.

0 + �µext.. Assuming that the fluid is continuously removed from the
surface of the layer, this implies a restriction to the case �µext. = 0.

• Impermeable soil in x = L . With this BC we assume that the relative velocity is equal to zero in
x = L , implying vf − vs = 0. Using Equation (7), which holds everywhere in the interval [0, L], the

impermeability of the layer x = L can be rewritten in its dimensionless form as

−m
I

f
+ bε I + �Ks f

M L2 ε I I I + �

M L2 m
I I I

f
− α

DL2 ṁ
I

f
= 0. (13)

• Zero double force for the overall system in x = 0 and x = L . These BCs are those ones given in
[Sciarra et al. 2008, Equation (32)2], and can be rewritten in their linearized dimensionless form as

m
I

f
+

(Kss + �K
2
s f

)

�Ks f

ε I = 0.

We remind that the overall double forces are the contact forces introduced in the second gradient
model, which work on the rate of pore opening/pore shrinkage. With the assumption of vanishing
double forces on the boundary of the porous material, we claim that no external source of double

force exists; internal double forces, on the contrary, allow for capturing the effects of pressure
gradient concentration in the neighborhood of the external and impermeable surfaces [Holcomb
and Olsson 2003].

• Zero fluid double force in x = 0 and in x = L . These BCs are those ones given in [Sciarra et al.
2008, Equation (32)3]. They can be rewritten in their linearized dimensionless form as

m
I

f
+ Ks f ε I = 0. (14)

The assumption on fluid double forces can be interpreted similarly to that considered for the overall
double forces. In this case no external double forces are exerted on the fluid boundary, but internal dou-
ble forces, associated with pressure gradient concentration, account for internal capillarity and wetting
phenomena.
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3. Initial boundary value problem

The differential Equations (10) and (11) can be reduced to a unique differential equation introducing an
auxiliary function V (x, t) which satisfies the relationships

ε = Ks f �

(λ + 2µ) L2 V
I I + bM
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V, (15)
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bM
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In such a way, Equation (10) is identically satisfied, while (11) can be rewritten, after some straightfor-
ward calculations, as
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on the other hand, the boundary conditions given in (12)–(14) read
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V
I = 0 at x = 0, L , V

I I I = 0 at x = 0, L , V
V = 0 at x = L . (19)

Finally, the initial condition (corresponding to the instant in which the external load is applied) is
deduced assuming that the apparent Lagrangian fluid density is vanishing for t = 0+. For instance,
mf

�
x, t = 0+�

= 0; this initial condition states, similarly to in classical consolidation, that, at the instant
in which the external load is applied there is no instantaneous variation of the fluid density mf inside the
soil layer. In terms of the auxiliary function V the initial datum reads as

V (x, 0+) := Vin = − �p
ext.

bM

1
C4 (π0) + k6

, (20)

where (16) with mf = 0 has been solved using BCs given in (19).
All the coefficients appearing in the governing equation, (17), as well as in the initial and boundary

conditions, (20) and (19), depend on the constitutive parameters, the solid initial stress p
ext.
0 , and the

increment of the external force �p
ext.; their expressions are listed in Appendix A.

It must be remarked that the expression for the energy density � assumed in (1) would not allow
the linearized differential problem to explicitly depend on the initial solid stress p

ext.
0 and on the initial

chemical potential µext.
0 . In fact, considering (1) we can write, in dimensionless form,

∂�

∂ε
= 1

λ + 2µ
p

ext.
0 + (1 + k6)ε − bk5mf ,

∂�

∂mf

=
m

0
f

λ + 2µ
µext.

0 + k5mf − bk5 ε, (21)

so that there are no linear terms (in ε and mf ) involving p
ext.
0 and µext.

0 coming from ∂�/∂ε and ∂�/∂mf .

On the other hand the dependence of the differential system (17)–(19) on p
ext.
0 is due to so called geomet-

rical nonlinearities; as matter of fact it is the presence of Fs in the balance of the total momentum (see
[Sciarra et al. 2008]) which even in linearized problems implies a nontrivial dependence of the governing

equations on p
ext.
0 (see the term εp

ext.
0 in (10)).
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Considering the linearity of the differential problem and the nonhomogeneity appearing in the BC,
given in Equation (18), we will look for a solution V (x, t) in the form

V (x, t) = V̄ (x) + W (x, t), (22)

where V̄ (x) is the solution of the stationary problem

C1V̄
V I − C2V̄

I V + C4V̄
I I = 0, (23)

with nonhomogeneous BCs

�1V̄
I V − �2V̄

I I + �4V̄ = − �6 at x = 0, (24)

V̄
I = 0 at x = 0, L , V̄

I I I = 0 at x = 0, L , V̄
V = 0 at x = L , (25)

while the deviation W (x, t) is the solution of the initial boundary value problem (IBVP)

C1W
V I − C2W

I V − C3Ẇ
I V + C4W

I I + C5Ẇ
I I − C6Ẇ = 0, (26)

with homogeneous BCs

�1W
I V − �2W

I I − �3Ẇ
I I + �4W + �5Ẇ = 0 at x = 0, (27)

W
I = 0 at x = 0, L , W

I I I = 0 at x = 0, L , W
V = 0 at x = L , (28)

and nontrivial initial condition

W (x, 0+) := Win = Vin − V̄ (x) . (29)

For the sake of simplicity we will no longer specify the dependence of the coefficients Ci and �i on the
prestress parameter p

ext.
0 .

It is easy to prove that the solution of the stationary problem given by (23)–(25) when �4 �= 0 is given

by

V̄ (x) = − �6

�4
, �4 �= 0, (30)

while if �4 = 0 the stationary solution V̄ (x) exists if and only if �6 = 0; in this case a family of constant

solutions of the stationary problem arises, so that we can write V̄ (x) = K , and �4 = �6 = 0, where K
is an undetermined constant. On the basis of the preliminary study of the stationary solution V̄ (x) we
can state that, according to the assumption (22), a solution of the given problem for the variable V exists
if and only if �4 �= 0 or �4 = �6 = 0. We will now restrict our attention to the case �4 �= 0 and will
analyze the case �4 = 0 later.

4. Fourier series solution

The initial boundary value problem given by (26)–(29) is solved using the method of separation of
variables; in other words we assume that W (x, t) = X (x)T (t). A straightforward calculation yields to
the definition of the real eigenparameter λ as λ = Ṫ /T, which leads to T (t) = T0 e

λt . Consequently, the
function X (x) must satisfy the eigenvalue problem

C1 X
V I − C2 X

I V + C4 X
I I = λ

�
C3 X

I V − C5 X
I I + C6 X

�
, (31)
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endowed with the BCs

�1 X
I V − �2 X

I I + �4 X = λ
�
�3 X

I I − �5 X
�
, at x = 0, (32)

X
I = 0 at x = 0, L , X

I I I = 0 at x = 0, L , X
V = 0 at x = L . (33)

This is a nonclassical spectral problem since the BCs also depend on the spectral parameter λ; in the
literature this kind of spectral problem is referred to as a linear pencil �(X) = λ�(X). Many authors
investigate the spectral properties of the differential operators � and � in suitable function spaces in
order to guarantee completeness and orthonormality for the eigenfunction system and discreteness of the
spectrum [Shkalikov 1986; Shkalikov and Tretter 1996; Marletta et al. 2003]. Here we rely on these
general results and numerically determine a subset of the eigenfunction space so as to approach the
requirements of the Parseval equality [Kolmogorov and Fomin 1975].

According to the aforementioned properties of the eigensystem, the solution of the considered IBVP
can be given in Fourier series form as

W (x, t) =
+∞�

k=0

pk Xk(x)eλk t , (34)

where pk denotes the k-th Fourier coefficient, and, in particular, p0 the Fourier coefficient relative to the
null eigenvalue λ = 0 (if any). It is easy to prove that if �4 �= 0 the eigenfunction X0 relative to the null
eigenvalue is the trivial one X0 = 0, so that in Equation (34) k runs now from one to infinity.

The eigenfunctions (Xk)k∈� are orthogonal with respect to the following bilinear form defined, in the
Hilbert space H

3 ([0, L]) × H
3 ([0, L]), as

�Xk, Xh� := α0

�
L

0
Xk Xhdx + α1

�
L

0
X

I

k
X

I

h
dx + α2

�
L

0
X

I I

k
X

I I

h
dx + α3

�
L

0
X

I I I

k
X

I I I

h
dx, (35)

where the coefficients αi are defined as

α0 = �4C6, α1 = �4C5 − C4�5 + �2C6,

α2 = �4C3 − �3C4 + �2C5 − C2�5 + �1C6, α3 = �2C3 − C2�3 + �1C5 − C1�5.

It must be noted that expression (35) is indeed an inner product over the aforementioned function space
if and only if all the coefficients αi are positive definite.

We notice that when the initial stress p
ext.
0 is vanishing the αi coefficients are all positive (assuming

positiveness of the energy �, see (2)), so that (35) always represents an inner product. On the other hand,

it is easy to verify that in the presence of prestress the positiveness of the aforementioned coefficients αi

is guaranteed if and only if p
ext.
0 < λ + 2µ (⇔ �4 > 0).

The explicit form of the Fourier coefficients pk is determined by projecting the initial datum (29) on
the k-th element of the Fourier series according to the inner product (35); in particular we can find

�Win, Xk� = α0Win

�
L

0
Xk dx, (36)

�Win, Xk� =
� +∞�

h=1

ph Xh, Xk

�

=
+∞�

h=1

ph �Xh, Xk� = pk �Xk�2 , (37)
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where we have noted by � · � = � · , · �1/2 the norm induced by the inner product � · , · �. Comparing
Equation (36) with (37) it is easy to recognize that

pk = α0Win

�
L

0 Xk dx

�Xk�2 ,

so that, recalling (34), the final form of the solution is

W (x, t) = α0Win

+∞�

k=1

�
1

�Xk�2

�
L

0
Xk(ξ)dξ

�
Xk(x)eλk t ,

and, according to (22) and (30), the solution for the variable V (x, t) is finally given by

V (x, t) = − �6

�4
+ α0Win

+∞�

k=1

�
1

�Xk�2

�
L

0
Xk(ξ)dξ

�
Xk(x)eλk t . (38)

Finally, the fields ε and mf can be evaluated using (38) with (15) and (16) respectively.

4.1. The limit case �4 = 0. We have already mentioned that when �4 = 0 (p
ext.
0 = λ+2µ) the stationary

solution V̄ (x) exists if and only if �6 = 0 (⇔ �p
ext. = 0), and it is an undetermined constant K . This

means that, corresponding to a critical value of the prestress p
ext.
0 , no solution can be found if perturbing

the porous system with an external load �p
ext.. The only possible solution is relative to the unloaded

configuration of the porous system (�p
ext. = 0). In this case the solution for V (x, t) is found by solving

the differential problem given by (17), (19), and (20) when �4 = �6 = 0. Separating the variables,
V (x, t) = X (x)T (t), the solution can be found in Fourier series form as

V (x, t) =
+∞�

k=0

pk Xk(x)eλk t . (39)

It must be noticed that when �4 = 0 the inner product (35) reduces to

�Xk, Xh��4=0 := α1

�
L

0
X

I

k
X

I

h
dx + α2

�
L

0
X

I I

k
X

I I

h
dx + α3

�
L

0
X

I I I

k
X

I I I

h
dx,

and it is still well defined over the quotient space of the H
3 ([0, L]) functions, differing at most by a

constant. It follows that the Fourier coefficients pk are now determined on the basis of the reduced form
� · , · ��4=0 of the inner product, according to the identities involving the initial condition Vin = constant,

0 = �Vin, X0��4=0 =
�

p0 X0 +
+∞�

k=1

pk Xk(x), X0

�

�4=0

= p0 �X0, X0��4=0 , (40)

0 = �Vin, Xk��4=0 =
�

p0 X0 +
+∞�

k=1

ph Xh(x), Xk

�

�4=0

= pk �Xk�2
�4=0 , for all k ∈ �, (41)

where we have noted by � · ��4=0 = � · , · �1/2
�4=0 the norm induced by the inner product � · , · ��4=0. Notice

that p0 and X0 = V̄ = K are the Fourier coefficient and the constant eigenfunction corresponding to the
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null eigenvalue λ0 = 0, respectively, while (Xk)k∈� are the remaining eigenfunctions. Since X0 =
constant, Equation (40) reads p0 0 = 0 �⇒ p0 undetermined, moreover, (41) gives pk �Xk�2

�4=0 =
0 �⇒ pk = 0, ∀k ∈ �. According to (39), the solution for V (x, t) is an undetermined constant, so
V (x, t) = p0 X0 := p0 K = constant.

We want to remark that all the Fourier coefficients pk corresponding to nonvanishing eigenvalues turn
to be zero only because the initial condition Vin has been assumed to be constant; if it was not the case,
(41) would have stated the expression for the coefficients pk , and the solution for V (x, t) would have
been known except for a constant K . The fact that a family of constant solutions for V (x, t) arises can be

seen as a sort of bifurcation phenomenon which is triggered when p
ext.
0 reaches the critical value λ+ 2µ.

Finally, we underline that the null eigenvalue λ0 = 0 belongs to the spectrum of the differential problem

only when �4 = 0; in the following section we will show that when �4 > 0 only negative eigenvalues
exist, while if �4 < 0 some positive eigenvalues appear.

5. Numerical results

In this section we will show the numerical solution of the differential problem, given by (17)–(20), for a
particular set of values of the constitutive parameters, which are listed in Table 1. The first gradient pa-
rameters are those relative to a water saturated clay, while the values of the second gradient dimensionless

numbers are chosen in order to let boundary layer effects arise.
Fixing suitable values for the initial external pressure (p

ext.
0 = 4.9 GPa) and for the increment of this

latter (�p
ext. = 1 MPa), so as to guarantee �4 > 0 and �6 �= 0, we look for a numerical solution V (x, t)

given by (38). In particular, we look for a numerical solution X (x) of the differential problem, given by
(31)–(33), in the form

X (x) =
6�

i=1

Ki e
βi (λ)x , (42)

where Ki are the integration constants and βi (λ) are the solutions of the characteristic polynomial asso-
ciated with the differential equation, (31). Consequently, BCs given by (32)–(33) yield

A(λ)v = 0, (43)

where A(λ) is a suitably defined 6 × 6 matrix and v := (K1, ..., K6). We notice that the matrix A(λ)

depends on the eigenparameter λ both because it appears in the differential equation, (31), and in the
boundary condition, (32). It follows that the resulting eigenvalue problem cannot be classified as a
standard eigenvalue problem. The system of algebraic equations, (43), has a nontrivial solution if and
only if det [A(λ)] = 0, which leads to the calculation of the eigenvalues λk (discrete spectrum). For

M(G Pa) λ(G Pa) µ(G Pa) k1 k2 k3 k4

5 2.3 1.5 10−2 10−2 10−2 10−2

Table 1. The values of first gradient elasticity parameters relative to a normally consol-
idated water saturated clay, together with trial values of second gradient dimensionless

parameters.
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Figure 1. Behavior of the fluid mass density mf versus depth x in the vicinity of the
time t = 0+. A segregation of the fluid arises close to the impermeable wall at x = 1.

each eigenvalue λk an eigenfunction Xk(x) is deduced in the form of Equation (42) so that a numerical
solution for V (x, t) can be found according to (38).

The numerical solution for V (x, t) involves a finite number of eigenfunctions N , where the choice of
N is made so as to approach the condition stated by the Parseval equality [Kolmogorov and Fomin 1975].

Once the numerical solution for V (x, t) has been found, we can deduce the corresponding solutions for
the fields ε and mf simply be referring to (15) and (16).

We now show the behavior of the fields ε and mf corresponding to the aforementioned values of the
constitutive parameters, and initial and incremental pressures. In Figure 1 the fluid apparent density mf

versus x is depicted for times in the very close neighborhood of t = 0+. It can be noticed that a critical
depth xcr � 0.8 exists such that the density mf decreases for 0 ≤ x < xcr , while it increases for xcr < x ≤ 1.

This means that the fluid of the upper regions actually leaves the layer, while the fluid contained in the
deeper regions remains entrapped in the pores whose deformation consequently increases the apparent
density mf . When increasing time (see Figure 2), the apparent density mf decreases along the whole
depth of the layer, and finally approaches a constant value. This means that the fluid starts flowing out
also from the deeper regions until the system reaches a new equilibrium and no fluid leaves the layer
anymore. This effect is evidently related to viscosity, which dominates the evolution of the fluid density
as time becomes larger and larger.

As far as the vertical deformation ε is concerned, the same qualitative behavior as that of mf is detected

(see Figure 3 and Figure 4). For times close to t = 0
+

(see Figure 3) the upper regions of the layer undergo

to a vertical compression, which is connected to the fact that less fluid is present in the pores, while the
deeper regions experience a sort of dilatancy which is connected to an over pressurization of the saturating

fluid.
For increasing times (see Figure 4) a general further compression is detected along the whole depth

of the layer (this is due to the fact that the fluid is uniformly flowing along the layer) until the layer does
not deform anymore (equilibrium).
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We remark that the chosen values of the prestress p
ext.
0 are such that �4 > 0 so that the inner product

Equation (35) is well defined. Consequently the solution for V (x, t) (and thus for ε and mf ) can be
numerically evaluated.

It is interesting to notice that when the initial stress p
ext.
0 is such that p

ext.
0 < λ + 2µ (�4 > 0) only

negative eigenvalues λk < 0 have been found, while in the region where �4 < 0 a finite number of positive

eigenvalues arise. In Figure 5 the behavior of the first eigenvalue λ1 is shown when varying p
ext.
0 through

the threshold p
ext.
0 = λ+ 2µ . It is worth noticing that when λ1 passes from negative to positive values,

the solution V (x, t) given in the form of Equation (38) blows up due to the presence of positive time
exponentials; the solution thus experiences an unstable behavior related to the fact that p

ext.
0 reaches a

critical value. This kind of instability is known as geometrical instability since the presence of p
ext.
0 in

the differential problem is due to the geometry of the problem (see Equation (21)).
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Figure 2. Profile of mf for further times. Notice that mf tends to assume a constant
value for t → +∞, approaching equilibrium.

0.0 0.2 0.4 0.6 0.8 1.0

!0.0006

!0.0005

!0.0004

!0.0003

!0.0002

x

Ε

t#0

t#0.02

t#0.1

t#0.25

t#0.5

Figure 3. Profile of the vertical solid strain ε versus x for times close to t = 0+. A
dilatancy of the solid skeleton is detected in the neighborhood of x = 1.
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The linearity of the present model does not allow us to capture solutions associated with unstable
conditions; this is evident when considering that the bilinear form given in (35) is no longer a well
defined inner product.

In order to show the influence of the solid prestress on the behavior of ε and mf we have found solutions

for different values of p
ext.
0 and noticed changes in the solution when approaching the threshold �4 = 0.

Figure 6 shows the behavior of mf when p
ext.
0 progressively approaches the critical value p

ext.
0 = λ + 2µ.

When increasing the value of p
ext.
0 the fluid density decreases in the superficial regions of the layer, while

increasing in the deeper ones. This means that the initial stress increases the capability of the fluid to
flow out from the skeleton matrix close to the external surface, while pumping it in the deeper layers.

Let us now consider the second gradient constitutive parameters and the initial stresses to be vanish-
ing. The resulting differential problem reduces to the classical Terzaghi consolidation problem. More
particularly, Equation (10) reduces to

ε = bM

λ + 2µ + b2 M
mf − �p

ext.

λ + 2µ + b2 M
,

which, substituted in (11), gives

ṁf = am
I I

f
, a = (λ + 2µ)

λ + 2µ + b2 M
. (44)

The Terzaghi consolidation problem thus reduces to the differential equation, Equation (44), together
with the initial datum mf

�
x, 0+�

= 0 and the BCs, (12) and (13), which simplify into

mf = λ + 2µ + b
2
M

λ + 2µ

�
b

�p
ext.

λ + 2µ

�
:= c at x = 0. (45)

and m
I

f
= 0 at x = L , respectively.

It is easy to notice that the BC, (45), and the initial datum, mf

�
x, 0+�

= 0, are not consistent, so the
Terzaghi solution for mf exhibits the well known behavior of the classical unidimensional heat equation.
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Figure 4. Behavior of ε for further times. Notice that the system tends to reach a state

of equilibrium for t → +∞.
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Figure 5. The value of the first eigenvalue λ1 versus the prestress p
ext.
0 .
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Figure 6. mf profile versus depth for t = 0.2 and for different values of the prestress
p

ext.
0 in the neighborhhod of p

ext.
0 = λ + 2µ.

As it will be shown in the following, this discontinuity between the initial datum and the BC is cured by
the second gradient model. The Terzaghi solution given in terms of the fluid mass density mf reads

mf (x, t) = c +
+∞�

k=1

√
2a sin

��π

2
+ kπ

�
x

�
e
λk t , λk = a

�π

2
+ kπ

�2
.

In Figure 7 we show the comparison between the Terzaghi and the second gradient solutions for mf and

ε, respectively (in absence of prestresses), corresponding to the initial condition. The Terzaghi solution
(blue line) tends to a step function due to the discontinuity between the initial datum and the BC; on
the other hand this discontinuity is not present in the second gradient solution (red line). Moreover, we
underline that the second gradient Fourier series solution converges more quickly to its limit compared
with the Terzaghi one.

Figure 8 shows the comparison between the Terzaghi and second gradient solutions for increasing time.

It must be noted that, due to the continuity between the initial datum and the BC, the second gradient
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solution smoothly decreases with respect to the initial datum, while the Terzaghi solution is not able
to describe the behavior of mf close to the external surface. The second gradient allows for describing
compaction of the solid in the vicinity of the external surface, which contrasts instantaneous escape of
the fluid out of the porous skeleton. This effect has been indeed recognized both in experiments and in
situ measurements [Mollema and Antonellini 1996; Holcomb and Olsson 2003; 2000].

6. Concluding remarks

In this paper an application of the second gradient theory of poromechanics to the consolidation problem
is discussed. In particular, we present some results within the hypothesis of small deformations around a
prestressed reference configuration of the solid skeleton. Even in the framework of the linearized theory,
the considered second gradient model gives rise to several interesting questions, concerning both the
mathematical formulation of the problem and the mechanical interpretation of the results.

From the mathematical point of view the problem could be studied within the framework of linear
pencils of ordinary differential operators on a finite interval, with boundary conditions depending on the
spectral parameter. Several applications of this theory to physics and mechanics can be found in the
literature [Tretter 2000; Marletta et al. 2003]; it is our purpose to investigate in the future how the very
special problem we are dealing with can fit within the general theory.

From the mechanical point of view, the results presented also look quite interesting, in particular
concerning the capability of the model to describe fluid segregation. It has to be remarked that second

gradient models, in general, regularize the solutions of evolutionary or equilibrium equations (see, for
example, Figure 8). In the case of their application to phase transition phenomena they allow for the
coexistence of different phases at equilibrium, in the case of strain concentration phenomena for the
description of shear and compaction bands, and in the case of wetting for the description of drop/film
stability. In the first and third instances, the second gradient is necessary to describe capillarity, and in

0.0 0.2 0.4 0.6 0.8 1.0

!0.00004

!0.00002

0

0.00002

0.00004

x

mf

Second Gradient
Terzaghi

Figure 7. Comparison between the classical Terzaghi solution and the second gradient
solution for t = 0+.
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Figure 8. Comparison between the Terzaghi and the second gradient solutions for t = 0.1.

the second plasticity. In the present instance we propose to use second gradient models to describe those
phenomena occurring close to the drained boundary which contrasts fluid flow.

A linear stability analysis provides the limit value of the initial stress, which forces the first eigenvalues

to become at least nonnegative. The goal in the future will be that of identifying which are the buckling
modes, and in particular to corroborate the idea that bifurcated modes of consolidation can interpret
liquefaction phenomena and occurrence of sand boils [Kolymbas 1998].

Appendix A: Coefficients of the differential problem

The constant coefficients Ci and �i appearing in the differential problem given by Equations (17) and
(19) are defined as

C1 = k1k3, C2
�

p
ext.
0

�
= k1 + k3 k5 (k2 + b)2 + k3C4

�
p

ext.
0

�
,

C3 = k4
�
k1 + k3 k5 k

2
2
�
, C4

�
p

ext.
0

�
= 1 − p

ext.
0

λ + 2µ
,

C5
�

p
ext.
0

�
= k4

�
C4

�
p

ext.
0

�
+ k6

�
+ k1 + k3 k5 k

2
2, C6

�
p

ext.
0

�
= C4

�
p

ext.
0

�
+ k6,

with

k1 = Kss

(λ + 2µ) L2 , k2 = Ks f , k3 = �

M L2 ,

k4 = α

DL2 , k5 = M

λ + 2µ
, k6 = b

2
k5.

Moreover, the coefficients appearing in the BC, Equation (18), are defined as

�1 = C1, �2
�

p
ext.
0

�
= C2

�
p

ext.
0

�
, �3 = C3

�4
�

p
ext.
0

�
= C4

�
p

ext.
0

�
, �5 (π0) = C5 −

�
k1 + k3 k5 k

2
2
�
, �6

�
π 0

f

�
= �p

ext.

bM
.
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It must be noticed that the constants k1, . . . , k4 are introduced by the second gradient model, while k5
and k6 are related to the first gradient parameters M , λ, and µ, which represent the Biot bulk modulus

and the Lamé coefficients of the considered material, respectively.
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