
HAL Id: hal-00499531
https://hal.science/hal-00499531

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Demand Quality-Oriented Assistance in
Component-Based Software Evolution
Chouki Tibermacine, Régis Fleurquin, Salah Sadou

To cite this version:
Chouki Tibermacine, Régis Fleurquin, Salah Sadou. On-Demand Quality-Oriented Assistance in
Component-Based Software Evolution. CBSE: Component-Based Software Engineering, Jun 2006,
Västerås, Sweden. pp.294-309, �10.1007/11783565_21�. �hal-00499531�

https://hal.science/hal-00499531
https://hal.archives-ouvertes.fr

On-Demand Quality-Oriented Assistance in

Component-Based Software Evolution

Chouki Tibermacine, Régis Fleurquin, and Salah Sadou

VALORIA, University of South Brittany, France
{Chouki.Tibermacine,Regis.Fleurquin,Salah.Sadou}@univ-ubs.fr

Abstract. During an architectural evolution of a component-based soft-
ware, certain quality attributes may be weakened. This is due to the lack
of an explicit definition of the links between these non-functional charac-
teristics and the architectural decisions implementing them. In this pa-
per, we present a solution that aims at assisting the software maintainer
during an evolution activity on his demand. It requires the definition of
a documentation during development, organized in the form of bindings
between formal descriptions of architectural decisions and their targeted
quality attributes. Through an assistance algorithm, the approach uses
this documentation in order to notify the maintainer of the possible ef-
fects of architectural changes on quality requirements. We also present a
prototype tool which automates our proposals. This tool and the over-
all approach has been experienced on a real-world software in order to
validate them.

1 Introduction

An intrinsic characteristic of software, addressing a real world activity, is the need
to evolve in order to satisfy new requirements. Maintenance is now, more than
ever, an inescapable activity, the cost of which is ever increasing (between 80 %
and 90 % of the software total cost [5, 19]). Among the maintenance activities,
the checking of functional and non-functional non regression of a software, after
its evolution, is one of the most expensive. It consists in checking the existence
of the newly required service or property after modification, on the one hand,
and in verifying that the other properties and/or services have not been altered
on the other hand. This checking is done during the regression testing stage.
When problems are found, a rework on the software architecture is required.
This involves a sequence of iterations of the maintenance activities, which make
undoubtedly its cost grow more and more.

In this paper, we present an approach which helps to reduce the number
of these necessary iterations, in the context of component-based software. It
consists of warning the software developer of the possible loss of some quality
attributes during an architectural evolution, well before starting regression tests.
Under the assumption that the architecture of an application is determined
by quality requirements such as, maintainability, portability or availability [1],
we propose to formally document links between quality attributes and their

2 Authors Suppressed Due to Excessive Length

realizing architectural decisions. Thus, we automate the checking of these quality
properties after an architectural change has been made.

In the next section, we show, through a system architecture, how some quality
requirements can be mapped into architectural decisions and how problems can
rise when evolving this architecture. We present, in section 3, the principles of our
approach which helps to resolve the problem pointed in the section before. The
proposed solution is based on a documentation, which is introduced in section 4.
An algorithm which uses this documentation and assists the maintenance activity
is discussed and illustrated by an example in section 5. A prototype tool for
evolution assistance, and the validation of the approach are then presented in
section 6. Before concluding and presenting the perspectives, we discuss some
related works in section 7.

2 Illustrative Example

Along this paper, we use a simple imaginary example which represents a Museum
Access Control System (MACS)1. Figure 1 provides an overview of its architec-
ture. The system receives as input the necessary data for user authentication
(Authentication component). After identification, the data is sent to the access
control component (AccessCtl). The latter consults an authorization database
(the component AuthDataStore) to check if the user2 is authorized to enter the
museum or not. Then, it adds other data elements (entrance hour, the visited
gallery in the museum, etc.) to the received data flow and sends it to the Logging
component. The component AdminService allows the administration of the
database abstracted by the component AuthDataStore. The Logging component
provides an interface for persistent local logging. This interface is used by the
archiving data store component (ArchivDataStore) which provides an interface
to a data retrieval service component (DataRetrievalService).This component
implements an interface which allows local supervision of the museum and query-
ing of logs. The two components AdminService and DataRetrievalService ex-
port their interfaces via the same component DataAdminRetrieval. After local
archival storage, the data is transmitted (by the component ServerTrans) via
the network to the central server of the organization responsible for the museum
security for central archival storage.

2.1 Some Architectural Decisions and their Rationale

The architecture, described in Figure 1, was designed taking into account quality
requirements defined in the NFRs (Non-Functional Requirements) specification.
We present some of these requirements and their architectural mappings.

1 This software system is not a real-world component-based one. We just defined a
few years ago within a development project a formal specification of it. We think
that it is simple to present and to use as an illustrative example.

2 Users of the museum are visitors, exhibition organizing committee members, museum
administrative and service employees

Title Suppressed Due to Excessive Length 3

DataAdminRetrievalDataManagement

MACS

DataRetrievalService

MuseumSupervision

AdminService

AccessAdmin

Archiving
AccessCtrl

LocalArchiving
Transmission

Logging ServerTransAuthentication AccessCtl

AccessAuth

CentralServerArchivingUserAuthentication

LogsQuerying

ArchivDataStoreAuthDataStore

AuthDBAdmin

TransmissionArchivingAccessCtrl
AccessCtlDup LoggingDup

Fig. 1. A Simplified architecture of a Museum Access Control System

1. ”The system should be easily maintained.” (We mark this maintainability
quality attribute QA1.) This is ensured by the layered pattern [20], which
can be seen if we decompose the system’s architecture vertically. (We mark
this architectural decision AD1.)

2. ”The software system should be portable over different environments. It can
serve different applications for museum supervision or access control data
administration.” (This portability property is marked QA2.) To reach this
portability level, a façade component -with analogy to façade objects [7]-
was designed as front to MACS’s internals. In Figure 1, this is performed
by the component DataAdminRetrieval. All communications from client
applications to access MACS’s data management services transit by this
component. (We mark this architectural decision AD2.)

3. ”The access control functionality should be more available for service em-
ployees.” (We mark this availability property QA3) In the bottom of Fig-
ure 1, the sequence of components AccessCtl and Logging is duplicated.
This redundancy scheme (marked AD3) is a mean to make the system fault
tolerant and thus fulfills the availability requirement. If one of the two com-
ponents (AccessCtl or Logging) fails, the sequence below (AccessCtlDup
and LoggingDup) takes over the process. In this degraded mode of the sys-
tem functioning, the component AccessCtlDup authorizes the access only to

4 Authors Suppressed Due to Excessive Length

service employees. Logs remain in the state of the component LoggingDup

and are not persistent in the ArchivDataStore component. Then, the data
is transmitted to the central server.
The sequence of these duplicates is organized as a pipeline [20]. (We mark
this decision AD4.) In a pipeline each filter (component) has only one ref-
erence to the downstream component. This guarantees a certain level of
maintainability (minimal coupling, QA1) required for such emergency so-
lution. This pattern also guarantees a certain level of performance defined
in the NFRs specification, but not detailed here. We mark this last quality
attribute QA4.
The developers have introduced a data abstraction component (DataRetriv-
alService), which abstracts details of the underlying databases. This archi-
tectural decision is marked AD5. Indeed, this traditional practice fulfills the
first attribute (QA1).

2.2 Some Evolution Scenarios and their Consequences

Let us assume that the maintenance team receives two change requests that
must be tackled urgently. As a consequence, changes are made without taking
into account the associated design documentation. The first request imposes
that henceforth some data should be directly transmitted to the central server.
That is, a part of information about service employees should be directly sent
to the ServerTrans component after identification. This gives the system more
(time and space) performance. Thus, the system maintainers decide to create a
link between AccessCtl component and ServerTrans component; and between
AccessCtlDup and ServerTrans components. (We mark this change ACG1.) In
the last case, the AccessCtlDup component finds itself with two links. The first
one with the LoggingDup component for the data flow that is not affected by
the modification and the second one with the ServerTrans component for the
data that is directly transmitted to the central server. This modification makes
the system lose the benefits of the pipeline structure (breaks AD4). Therefore,
the initial level of maintainability (QA1) of the system is now weakened.

While the first change request has a non-functional goal, the second change
is of functional nature. It asks to add a new component representing a no-
tification service: DB UpdateNotification. This component notifies the client
applications, subscribed to its services, when updates are done on the archiv-
ing database. This new component exports a publish/subscribe interface via the
port that provides the interface DataManagement. It implements a publish on-
demand interaction pattern and uses directly the component ArchivDataStore.
This change (marked ACG2) makes the system lose the benefits of the façade
pattern guaranteed by the component DataAdminRetrieval (AD2) and conse-
quently weakens the availability quality attribute QA2.

The lack of knowledge during evolution about the reasons which have led the
initial architects to make such decisions, may easily lead to break some architec-
tural decisions and consequently affect the corresponding quality attributes. The
two simple examples above illustrate how can we lose such properties. This is

Title Suppressed Due to Excessive Length 5

often noticed during regression testing. Thus, it is necessary to perform changes
on the architecture another time, and to iterate, frequently, for many times. Sev-
eral similar remarks have been noticed by our industrial partner when evolving
one of its complex system (a cartographic converter from different binary files
and spatial databases to SVG (Scalable Vector Graphics) format, for using them
in a Geographic Information System -GIS-). We didn’t present this system as
an illustrative example in this paper for reasons of brevity and simplicity.

3 Principles of the Approach

Our approach aims at solving the problems quoted in the previous section. It
consists in making explicit and formal the reasons behind architectural decisions.
The choice of a formal language to specify this documentation guarantees not
only the unambiguity of descriptions but also allows the automation of some
operations, like the preservation of architectural choices throughout the devel-
opment process of a component-based software [23].

Based on the assumption that architectural decisions are determined by the
quality information stated in the requirements specification, we propose to main-
tain the knowledge of the links binding quality attributes to architectural deci-
sions. This knowledge is of great interest for maintainers on two accounts:

ArchitecturalConstraint
+name
+description
+body
+profile: ACLProfiles

InternalArchitecturalElement

+target

QualityAttribute
+id
+name
+description
+degreeOfCriticality

ArchitecturalTactic
+id
+description

EvolutionContract
+id
+description

1

1..*

1

* *

1+ad

+qa

ArchitecturalDecision
+id
+description1..*1..*

1..*

*

ArchitecturalChange

affects

*

*

appliesTo

1..* *

+at

+ec

generates

*

*

<<enumeration>>

ACLProfiles
+xAcme
+UML2
+Fractal
+CCM
+Standard

*

0..1

ISO9126Characteristic
+name
+description

+subCharacteristic
normalizedAs

*1

formalizedAs

ExternalArchitecturalElement

Component Interface Operation

*

*

attachedTo

* *1 1

+relatedDecision

*

*

Fig. 2. Structure of Contracts

– Preservation of Quality Attributes: it will be possible to warn the devel-
oper, at each architectural maintenance stage, of the potential deterioration
of some quality attributes;

6 Authors Suppressed Due to Excessive Length

– Architecture Comprehension: it is easier to understand a specific ar-
chitecture when we already know its motivations. Starting from the speci-
fication of a targeted evolution, it becomes possible to identify the related
architectural artifacts.

In the remaining of this paper, we use some terms which we define as follow-
ing:

Quality Attribute (QA): a quality characteristic targeted by one of the state-
ments in the non-functional requirements specification;

Architectural Decision (AD): a part of the software architecture that tar-
gets one or several QAs;

Architectural Tactic (AT): a couple composed of an AD and a QA defining
the link between one architectural decision and one quality attribute;

Evolution Contract (EC): a set of ATs defined for a given software.

These definitions are illustrated in Figure 2. An architectural decision may
have several related decisions, which are present in different ATs. For example,
AD3 (replicated components) in section 2 has one related decision which is AD4
(pipeline). Indeed, if AD3 is removed from MACS architecture, AD4 will also
disappear. As explained in section 4.2, an architectural decision is formalized
as an architectural constraint. Each constraint is specified using an architec-
tural predicate language, called ACL. This language has several profiles ded-
icated to existing architecture/component models, for example xAcme [26] or
CORBA Component Model [14] (more details are given in section 4.2). A con-
straint targets an internal architectural element. Internal architectural elements
are architectural abstractions present in the metamodel of the used architec-
ture or component description language (e.g. a component, a connector or an
interface). An architectural change is applied on one or many internal architec-
tural elements. It can affect or generate one or several architectural decisions. A
QA corresponds to an ISO/IEC 9126 [9] characteristic or sub-characteristic (e.g.
maintainability, portability or usability). Each QA has a degree of criticality (in-
spired from Kazman’s QA scores and Clements’s QA priorities [3]). The value
of this degree, specified by developers, stipulate the importance of this quality
attribute in the architecture. It takes values between 1 and 100. The sum of
values of all these degrees should be at most 100. Starting from non-functional
requirements (NFRs), we may extract one or several QAs. Each one is attached
to several external architectural elements. These elements represent the common
externally visible architectural concepts present in existing component models
(component, interface and operation). These external architectural elements are
a subset of internal architectural elements.

4 Capturing Architecture Decisions and their Rationale

in Contracts

Based on the structure presented above, to document an architecture, we need
a language for defining evolution contracts and a tool set to edit and interpret
this documentation.

Title Suppressed Due to Excessive Length 7

4.1 Evolution Contract Organization

In order to specify textually ECs, we use an XML representation which conforms
to the structure presented in Figure 2. The following listing illustrates an example
of such specification.

<evolution-contract id = "000001">

<architecture-tactic id = "000100">

<description>

This tactic ensures the Portability quality requirement by

using a Facade Design Pattern

</description>

<quality-attribute id = "001000" name = "Portability"

characteristic = "Portability">

<description>

The software system should be portable

over different environments. It can

serve different applications for museum

supervision or access control

data administration

</description>

</quality-attribute>

<architecture-decision id = "010000">

<description>

Facade design pattern

</description>

<formalization profile = "Fractal">

<!--Here we edit the ACL constraint-->

</formalization>

</architecture-decision>

</architecture-tactic>

</evolution-contract>

This simple example illustrates a simple EC composed of only one of the ATs
presented in section 2. This AT concerns the façade design pattern AD associated
to the portability QA. The formalization element of this EC contains the
formal definition of the AD which is described in the next section.

4.2 AD Definition Language

In order to formalize architectural decisions, we proposed a predicate lan-
guage called ACL (Architectural Constraint Language). This language is based
on a slightly modified version of UML’s Object Constraint Language [15], called
CCL (Core Constraint Language), and on a set of MOF metamodels. Each meta-
model represents the architectural abstractions used at a given stage in the
component-based development process. A couple formed by CCL and a given
metamodel represents an ACL profile. Each profile can be used at a stage in the
development process. We defined ACL profiles for xAcme, UML 2 [16], CORBA

8 Authors Suppressed Due to Excessive Length

components, Enterprise JavaBeans [21] and many others. CCL navigates in the
architecture’s metamodel in order to define constraints on its elements.

Instead of presenting the grammar of ACL, we preferred to illustrate it
through the description of two AD examples from section 2.1. We describe this
ADs using the standard profile of ACL, which is composed of CCL and of a
generic architecture metamodel called ArchMM [23]. This metamodel is used
as an intermediate representation when transforming ACL constraints from one
profile to another.

The listing below describes the constraint enforcing the façade architectural
pattern in the component MACS.

context MACS:CompositeComponent inv:

let boundToDataManagement:Bag=MACS.port.interface

->select(i:Interface|i.kind = ’Provided’

and i.name = ’DataManagement’).port.binding

in

((boundToDataManagement->size() = 1)

and (boundToDataManagement.interface

->select(i:Interface|i.kind = ’Provided’).port.component.name

->includes(’DataAdminRetrieval’)))

This constraint states that the DataManagement provided interface of MACS
component must be bound internally to one and only one interface. The latter
corresponds to the provided interface of DataAdminRetrieval component.

The following constraint concerns the replicated components stated by AD3.

context MACS:CompositeComponent inv:

let startingPort:Port=MACS.port->select(p:Port|

i.name=’UserAuthentication’) in

let startingComponent:Component=startingPort.getInternalComponent() in

let endingPort:Port=MACS.port->select(p:Port|

i.name=’CentralServerArchiving’) in

let endingComponent:Component=endingPort.getInternalComponent() in

let paths:OrderedSet=MACS.configuration

.getPaths(startingComponent,endingComponent) in

paths.size() = 2 and paths->first()->excludesAll(paths->last())

This constraint uses two operations from ArchMM. The first one (getIntern-
alComponent()) returns the subcomponent attached to a given port of a compos-
ite component. The second operation (getPaths(c1:Component,c2:Component))
returns an ordered set of all the paths between the components given as pa-
rameters. The returned paths are also represented by ordered sets of compo-
nents. A returned path excludes the parameter components. The constraint
states that it must exist two distinct paths between the component attached to
UserAuthenticationport and the component attached to CentralServerArch-
iving port.

Title Suppressed Due to Excessive Length 9

The two-level expression nature of ACL guarantees the homogeneity of con-
straints defined in different stages of the development process. Indeed, only meta-
models change from one stage to another; the core constraint language remains
the same. This has been of great interest when we performed transformations of
constraints from one stage to another in order to automatically preserve archi-
tectural decisions [24].

5 Using Contracts in Evolution Assistance

In the proposed approach, an AT is perceived as a constraint which has to be
checked for validity during each evolution. An evolution contract may be seen
as a contract, because it documents the rights and the duties of two parties: the
developer of the previous version of the architecture who guarantees the quality
attributes and the developer of the new version who should respect the evolution
contract established by the former. The evolution contract is elaborated during
the development of the first version of the architecture. ATs appear in each
development stage where a motivated AD is made. Thus, the evolution contract
is built gradually and enriched as the project evolves. ATs can even be inherited
from a Software Quality Plan and thus, can emerge even before starting the
software development. Thereafter, this evolution contract can be modified in
respect of the rules below:

– Rule 1: ”a consistent system is a system where each QA is involved in at
least one AT”. This condition ensures that, at the end of the maintenance
process, there is no dangling QA (i.e. with no associated ADs). The breach
of this condition implies de facto the obligation to modify the non-functional
specification;

– Rule 2: ”we should not prohibit an evolution stage. We simply notify, at the
demand by the developer of a change validation, the attempt of breaking one
or more ADs and we specify the affected QAs stated in the evolution con-
tract”. It is of the developer’s responsibility, fully aware of the consequences,
to maintain or not the modification. If this modification is maintained, the
corresponding ATs are discarded. Indeed, The substitution of an architec-
tural decision by another may be done without affecting the targeted quality
attributes. Moreover, we can be brought to invalidate, temporally, a decision
to perform a specific modification;

– Rule 3: ”we can add new ATs to the evolution contract”. Thus, during an
evolution, new architectural decisions can complete, improve or replace old
ones.

The previous rules are illustrated by the simple architectural maintenance
scenario in Figure 3. Consider the previous example presented in section 2. The
evolution contract associated to the MACS component, which contain 6 ATs, is
illustrated in the bottom part of the figure. Note that for reasons of simplicity
we organized the evolution contract by factorizing QAs. Architectural changes

10 Authors Suppressed Due to Excessive Length

are represented at the top of the figure. The minus symbol stipulates that the
corresponding AD has been affected, and the plus symbol shows that the AD is
preserved or enhanced. Forward arrows mean that the architectural maintainer
decides to validate her/his change, however backward arrows mean she/he does
not maintain her/his decision. At the middle of the figure, we illustrate the
evolution of the assistance system, the different warnings that it triggers and
the validation or not of the different intermediate evolution contracts.

Assistance
System

Side

AD1 AD5AD4

AD2

AD3

AD1 AD5 AD1 AD5 AD1 AD5QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

Side
Developer

ACG1 ACG2 ACG3 ACG4

AD4 − AD4 − AD4 − AD4 −

AD4

State

AD4 AD4 AD4 AD4 AD4

AD2

AD3

AD1 AD5

AD6 +

AD2 − AD2 − AD2 −

AD3 − AD3 −

AD3 AD3

AD6

AD3

EC

QA1
QA4

AD2 QA2

AD4 QA1 AD4 AD4QA1

AD2 QA2

AD3 QA3

AD4 QA4

QA1

AD2 QA2

AD3 QA3

AD4 QA4

AD6 QA2

Fig. 3. Assisting the evolution activity with evolution contract

Let us suppose that a software maintainer applies ACG1, which was pre-
sented in section 2, to MACS architecture (second column of figure 3). As stated
in that section, this change affects AD4. The assistance algorithm checks the
ACL constraint present in MACS’s EC which is associated to this decision, and
consequently warn the maintainer that AD4 is altered and that QA1 and QA4
are also possibly affected. Knowing that ACG1 enhances QA4 -AT6(QA4,AD4)
not affected-, the maintainer decides to validate his change. The EC is consid-
ered valid, while there is no QA without associated ADs (see the second table
in the bottom of the figure).After that, the maintainer decides to apply ACG2,
which was also presented in section 2. He is thus notified that AD2 and its as-
sociated QA, namely QA2, are potentially affected. He decides to continue, but
the EC is in this case not valid, as soon as there is one QA (QA2) without
associated AD (see the third table in the bottom of the figure). Later, the main-
tainer tries to apply ACG3. This change consists in removing the LoggingDup

component. Concretely, the system maintainer discovered that data in this com-

Title Suppressed Due to Excessive Length 11

ponent is not consistent with data in the ArchivDataStore component. He is
immediately notified that ACG3 alter AD3 (replicated components) and con-
sequently QA3 (availability property) will be eventually affected. In addition,
this AD has one related decision, namely AD4 which represents the pipeline
pattern. The assistance system, by scanning the EC, warns the maintainer that
AD4 and QA1 (Maintainability) and QA4 (Performance) are also affected. This
time, the maintainer does not keep his changes and undoes the changes made
on the architecture. Note that, the EC is still invalid. Finally, the maintainer
decides to make a new architectural change (ACG4). It consists in removing
the hierarchical connector between the newly added notification sub-component
(DB UpdateNotification) and MACS’s DataManagement port, and adding a
new connector between the former and the component DataAdminRetrieval.
The motivation behind adding this new AD, marked AD6, is to re-ensure the
portability quality characteristic and thus reintroduce QA2 in the EC. In this
case, all QAs have corresponding ADs. The contract is thus considered valid.

6 Evolution Assistance Prototype Tool & Validation

In order to validate our approach we developed a prototype tool, called AURES
(ArchitURe Evolution aSsistant), which allows the edition, the validation
and the evaluation of ECs. In addition, it assists the software developer during
an evolution operation. We experienced our approach with our industrial partner
on real-world software system they developed the last year. We present in the
following subsections the prototype tool, its structure and how it operates. After
that, we introduce how we validated our approach.

6.1 AURES Architecture

This tool is organized as in Figure 4 and is composed of the following elements:

EC Editor: This component allows the edition of evolution contracts. It uses
the XMI format of metamodels of the different ACL profiles to guide the
developer in editing her/his architectural constraints. It asks the developer
to introduce the necessary information discussed previously in order to com-
plete and generate the EC.

EC Validator: This component validates an EC with an introduced architec-
ture description. If the EC evaluation returns false, the developer is requested
to correct either the EC or the architecture description; else this component
produces an archive file composed of the architecture description and the
EC files, saved by the Version Handler component.

Evolution Assistant: When a new version of the architecture is submitted,
the EC of the latest version is then checked out from the Version Handler

component. This EC is then reevaluated on the new architecture description.
If the evaluation returns true, the new architecture description is associated
to the EC and then it is saved in the Version Handler component; else the

12 Authors Suppressed Due to Excessive Length

<<artifact>>
ArchMM.xmi

EvaluatorAssistant
Evaluation

Validation Edition
Input

Archictecture
Description

Evaluation
Version

Assistance
Evolution

CheckingOut
Version

Editor

Adding Adding

Evolution

EC

ECEC

EC EC

EC

EC
Acquisition

AURES

EC
Validator

Version
Handler

Fig. 4. A prototype tool for ECs edition and interpretation, and for evolution assistance

architecture evolver is warned that some ADs are altered and that conse-
quently the associated QAs are affected.

EC Evaluator: To evaluate an EC, this component uses a temporary pivot
model and the ArchMM metamodel. The pivot model is a direct instance
of ArchMM, produced by the Description Transformer subcomponent,
from a given architecture description. This subcomponent executes a set of
XSL scripts to make XML transformations of architecture descriptions. For
the moment, the prototype presented in this paper supports architectures
described in the Fractal ADL [2] and in xAcme. However, the pivot model
makes the tool easily extensible. The EC Evaluator is composed of an ACL

Compiler which extends the OCL Compiler[11] and which requires the AD
part of the EC. It also contains an ACL Interpreter, which evaluates ACL
boolean expressions. Note that, this component is used by two other compo-
nents: the EC Validator and the Evolution Assistant. When it is invoked
by the first one, only constraints involving one version of the architecture
are evaluated. However, if it is requested by the second one, all constraints
are evaluated. The latest architecture description is checked out with the EC
and transformed to the pivot model to be evaluated.

6.2 Example of Use

Let us consider one of the evolution scenarios presented in section 2.2. This con-
cerns the addition of a component representing a notification service. Once this

Title Suppressed Due to Excessive Length 13

new architecture description introduced to the Evolution Assistant compo-
nent, the latter checks out the EC corresponding to MACS from the component
Version Handler and then displays a warning report. This report notifies the
architecture evolver that the Façade pattern does not hold anymore and that
the portability property has been affected. The architecture evolver should ei-
ther modify his new architecture description, or the EC and consequently the
NFRs specification.

6.3 Validation of the Approach

We experienced our approach on Alkanet, a GIS developed by our industrial
partner. The project cost has been estimated at 2500 men-hours and its main-
tenance cost at 1400 men-hours. Starting from maintenance logs, we took the
software components that have been the most affected by the maintenance. These
components perform the conversion of different types of data format to SVG.
A team composed of developers, who know the initial NFRs specification, has
documented these components (their initial version) by the necessary evolution
contracts. After that, starting from this documented version of the components,
another group of developers, equivalent to that who has performed the main-
tenance initially, has performed the same set of evolution scenarios as in logs.
They use AURES for validating changes on the components after applying each
scenario. We noticed that the maintenance cost has been reduced by 35 %.
Indeed, we passed from 600 men-hours estimated for the maintenance of the
converter components to 390 men-hours. It is true that the chosen components
are the most complex. For components of less complexity, the gain would be
undoubtedly less. But, the most complex components have the highest main-
tenance costs (Lehman’s 2nd law of system evolution [10]). This allowed us to
extrapolate this result on the whole application without a lot of errors. Accord-
ing to the developers’ declarations, evolution contracts helped them to better
understand the architecture of the software to evolve. Furthermore, automatic
checking of architectural constraints has been of great benefit.

7 Related Work

Capturing and documenting design rationale is a research challenge, with an in-
creased interest in the software engineering community [22]. Within the context
of software architecture, Tyree and Akerman in [25] discussed the importance
of documenting architecture decisions and making them first-class entities in ar-
chitecture description. They present a template to describe them at a high-level
of abstraction during development. Their paper focuses on the methodological
aspect of describing these templates and not on how they can be used when
evolving an architecture as in our approach. In the architecture evolution field,
Lindvall et al. presented a survey on techniques employed in diagnosing or re-
searching degeneration in software architectures and treating it [8]. Architecture
degeneration is seen as the deviation of the actual architecture from the planned

14 Authors Suppressed Due to Excessive Length

one. Many of the technologies presented in this paper focus on recognition of ar-
chitecture styles and design patterns, and their extraction from code. This helps
to identify deviations by comparing architectures and their properties before and
after an evolution. The authors also discuss visualization techniques of architec-
tural changes to understand software evolution and thus deduce degenerated
portions in the evolved architecture. For treating this degeneration, the authors
present a survey of existing refactoring techniques. Our approach allows the de-
generation identification by checking formal documents (evolution contracts) on
architecture descriptions before and after evolution. It alerts software evolvers
about degenerated components in the architecture and the consequences of this
degeneration on quality requirements. It then assists them by using quality in-
formation to treat this degeneration.

As in software architecture evaluation methods like ATAM or SAAM [3], our
approach forces the architect to create architecture documentation. However,
while these evaluation methods are applied during design to detect if a given
architectural decision is risky or not according to quality requirements; in our
approach, we assume that a posteriori all decisions are non-risky and we care
about their preservation during evolution. Our approach can be seen as a com-
plementary technique to these methods and is used downstream. In this manner,
we may use an evaluation method only during analysis/design stage and avoid
its use after each evolution.

In the literature, non-functional properties (which include quality attributes)
has been supported on the software development through two approaches. The
first one is process-oriented, while the second is product-centric. In the first ap-
proach, methods for software development driven by NFRs are proposed. They
support NFR refinement to obtain a software product which complies to the
initial NFRs [13, 4]. In the second approach, the non-functional information is
embedded within the software product. It is the case in our approach, where evo-
lution contracts, which embed statements of NFRs, are associated to architec-
tural descriptions. In [6], Franch and Botella propose to formalize non-functional
requirement specifications. The statements of these specifications are encapsu-
lated in modules, which are associated to a component definition and to its
implementations. They propose also an algorithm, which allows the selection of
the best implementation for a given component definition. This selection method
can be used when a new implementation is proposed to ensure that the best one
is used. The authors mean by “best”, the implementation that better fits to its
non-functional requirements. In our work, we focus on the architectural (struc-
tural) aspect of components, while they consider the abstract data type view of
components. In addition, in our case, the maintenance is performed on architec-
tural descriptions or component configurations while changes in their approach
are made at a fine-grained implementation level.

Title Suppressed Due to Excessive Length 15

8 Conclusion & Future Work

In early 1990’s, Perry and Wolf presented a model for software architectures.
This model represents software architectures in the form of three basic abstrac-
tions: Elements, Form and Rationale [17]. Elements are architectural entities
responsible for processing and storing data or encapsulating interactions. Form
consists of properties -constraints on the choice of elements- and relationships
-constraints on the topology of the elements-. The Rationale captures the motiva-
tion for the choice of an architectural style, the choice of elements and the form.
While the description of the two first aspects have received a lot of attention by
the software architecture community [12], there has been a little effort devoted to
the last aspect. In this paper, we presented evolution contracts, as a contribution
to the description of the last element in Perry’s model. This evolution contract
leads to make explicit and checkable architectural decisions (Elements and Form
in Perry’s model). Thus, it is possible to assist architectural evolution activity
and prevent the loss of quality attributes (Rationale in Perry’s model). It is,
as we think best, a good practice for documenting software architectures and
design rationale, and thus facilitating software comprehension in maintenance
activities.

On the conceptual level, we plan studying: i) reusability, substitution and
extension of ECs, and ii) quality quantification by associating metrics to QAs.
This helps to better assist the maintenance activity. On the tool level, we project
to stabilize the prototype before integrating it in a CASE tool. This would guide,
in a continuous way, the system maintainer. We are also studying the feasibility
of integrating the tool in a Configuration Management System. We limit our
study to CMS dedicated to software architectures, like Mae [18]. Thus we take
advantage from the enhanced control version capabilities of these systems.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 2nd
Edition. Addison-Wesley, 2003.

2. E. Bruneton, C. Thierry, M. Leclercq, V. Quéma, and S. Jean-Bernard. An open
component model and its support in java. In Proceedings of CBSE’04. Held in
conjunction with ICSE’04, Edinburgh, Scotland, may 2004.

3. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures, Meth-
ods and Case Studies. Addison-Wesley, 2002.

4. L. M. Cysneiros and J. C. Sampaio do Prado Leite. Nonfunctional requirements:
From elicitation to conceptual models. IEEE TSE, 30(5):328–350, 2004.

5. L. Erlikh. Leveraging legacy system dollars for e-business. IEEE IT Professional,
2(3), 2000.

6. X. Franch and P. Botella. Supporting software maintenance with non-functional
information. In Proceedings of the First IEEE Euromicro Conference on Software
Maintenance and Reengineering (CSMR’97), pages 10–16, Berlin, Germany, March
1997. IEEE Computer Society.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Sofware. Addison-Wesley Professional Computing Series.
Addison Wesley Longman, Inc., 1995.

16 Authors Suppressed Due to Excessive Length

8. L. Hochstein and M. Lindvall. Combating architectural degenration: A survey.
Information and Software Technology, 47(10):693–707, July 2005.

9. ISO. Software engineering - product quality - part 1: Quality model. International
Organization for Standardization web site. ISO/IEC 9126-1. http://www.iso.org,
2001.

10. M. M. Lehman and J. F. Ramil. Software evolution in the age of component-based
software engineering. IEE Proceedings - Software, 147(6):249–255, 2000.

11. S. Loecher and S. Ocke. A Metamodel-Based OCL-Compiler for UML and MOF.
In Proceedings of the workshop on OCL 2.0 - Industry standard or scientific play-
ground?, 6th International Conference on the Unified Modelling Language and its
Applications, volume 154 of ENTCS, October 2003. Elsevier

12. N. Medvidovic and N. R. Taylor. A classification and comparison framework for
software architecture description languages. IEEE TSE, 26(1):70–93, 2000.

13. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE TSE, 18(6):483–497, June 1992.

14. OMG. Corba components, v3.0, adpoted specification, document formal/2002-06-
65. Object Management Group Web Site: http://www.omg.org/docs/formal/02-
06-65.pdf, June 2002.

15. OMG. Uml 2.0 ocl final adopted specification, document ptc/03-10-14. Object
Management Group Web Site: http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.

16. OMG. Uml 2.0 superstructure final adopted specification, document ptc/03-08-
02. Object Management Group Web Site: http://www.omg.org/docs/ptc/03-08-
02.pdf, 2003.

17. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

18. R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and N. Medvidovic. Mae - a sys-
tem model and environment for managing architectural evolution. ACM TOSEM,
11(2):240–276, April 2004.

19. R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Soft-
ware Technologies, Engineering Processes, and Business Practices. SEI Series in
Software Engineering. Pearson Education, 2003.

20. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

21. Sun-Microsystems. Enterprise javabeans(tm) specification, version 2.1.
http://java.sun.com/products/ejb, November 2003.

22. A. Tang, M. A. Babar, I. Gorton, and J. Han. A survey of the use and documenta-
tion of architecture design rationale. In Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA’05), pages 89–98, Pittsburgh, Penn-
sylvania, USA, November 2005, IEEE CS.

23. C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving architectural choices
throughout the component-based software development process. In Proceedings of
the 5th IEEE/IFIP Working Conference on Software Architecture (WICSA’05),
pages 121–130, Pittsburgh, Pennsylvania, USA, November 2005. IEEE CS.

24. C. Tibermacine, R. Fleurquin, and S. Sadou. Simplifying transformations of ar-
chitectural constraints. In Proceedings of ACM SAC (SAC’06), Track on Model
Transformation, Dijon, France, April 2006. ACM Press.

25. J. Tyree and A. Akerman. Architecture decisions: Demystifying architecture. IEEE
Software, 22(2):19–27, March/April 2005.

26. xAcme: Acme Extensions to xArch. School of Computer Science Web Site:
http://www-2.cs.cmu.edu/ acme/pub/xAcme/, 2001.

