
HAL Id: hal-00499527
https://hal.science/hal-00499527v1

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component-Oriented Substitution Model
Bart George, Régis Fleurquin, Salah Sadou

To cite this version:
Bart George, Régis Fleurquin, Salah Sadou. A Component-Oriented Substitution Model. 9th Inter-
national Conference on Software Reuse (ICSR’06), Jun 2006, Turin, Italy. pp.340-353. �hal-00499527�

https://hal.science/hal-00499527v1
https://hal.archives-ouvertes.fr


A Component-Oriented Substitution Model

Bart George, Régis Fleurquin, and Salah Sadou

VALORIA Lab., University of South Brittany, France
{Bart.George,Regis.Fleurquin,Salah.Sadou}@univ-ubs.fr

Abstract. One of Software Engineering’s main goals is to build com-
plex applications in a simple way. For that, software components must
be described by its functional and non-functional properties. Then, the
problem is to know which component satisfies a specific need in a spe-
cific composition context, during software conception or maintenance.
We state that this is a substitution problem in any of the two cases.
From this statement, we propose a need-aware substitution model that
takes into account functional and non-functional properties.

1 Introduction

Component-oriented programming should allow us to build a software like a
puzzle whose parts would be units ”subjects to composition by a third party”
[17]. Examples of such units are COTS (Components-Off-The-Shelf ), which are
commercial products from several constructors and origins. When one develops
and maintains a component-based software, some problems occur, and we will
notice two main ones: how to select, during conception of such a software, the
most suitable component in order to satisfy an identified need ? And during a
maintenance, if this need evolves, will the chosen component remain suitable, or
shall we replace it ?

We think that these problems are related to a substitution problem. In fact,
when one conceives or maintains an application, some needs appear. And to
describe them, the designer or the maintainer can imagine ideal components.
These are virtual components representing the best ones satisfying these specific
needs. Then the problem is to find the concrete components which are the closest
to the ideal ones. In other words, trying to compose or maintain components
means trying to make concrete components substitute ideal ones.

However, composition doesn’t concern only the functional aspect. Most com-
ponents are ”black boxes” which must describe not only functional, but also non-
functional properties. As every software needs a certain quality, one can’t think
about composing components whose non-functional properties are unknown, and
at the same time hope having its quality requirements satisfied anyway. This is
why substitution must take functional and non-functional properties into ac-
count.

So, how to substitute ? Some may say we just have to use subtyping, as some
object-oriented languages made it a general way of substitution. However, an
ideal component describes more than general needs: it describes the application’s



context, a notion that is absent from objects. Let us explain what we mean by
”context”. If we take a need, modeled by an ideal component, we will try to find a
concrete one to substitute it. Now, let us suppose that we already found a suitable
component. We may need to check if there isn’t another one better than the first
one. However, trying to substitute the old candidate by a new one would be a
mistake, because the key notion isn’t the candidate, but the need it is supposed
to satisfy. Plus, if this need changes, a former candidate may no longer remain
suitable. So substitution of an ideal component by a concrete one is performed
only into the context of the need modeled by the ideal component. This is why
a candidate component can replace another one without any subtyping relation
between them, as every candidate is compared only to the ideal component.

In this paper, we consider a generic component model and a quality model
(section 2), and into this framework we define a component-oriented substitution
model, including substitutability rules for every functional and non-functional
element of our model (section 3). In order to illustrate the possibilities of such
a model, we describe the different substitution cases during the life cycle using
a short application example (section 4). Then, before concluding, we describe
some related works (section 5).

2 Component and quality models

Definitions given in this paper are placed in the following framework: one compo-
nent model, holding a type system such as Java for EJB, and one quality model
such as ISO 9126 standard [12]. In this framework, we suppose the existence of
metrics to measure non-functional properties (such as those defined in [19]), so
that our contribution will focus only on the substitution model definition.

2.1 The generic model

Our goal is not to give yet another definition of what a component is, or what
non-functional properties are. It is to define a component-oriented substitution
that we can apply on many existing component and quality models. That is
why we prefer to give generic models, on which we can apply our substitution
concepts.

The generic component model includes component artifacts, representing
the component’s architectural elements, which are common to most existing com-
ponent models, and which have non-functional properties. As shown in figure 1,
we chose to keep three kinds of component artifacts: components themselves, in-
terfaces, and operations. A component contains provided and required interfaces,
and interfaces contain operations. In the remaining of the paper, we refer to can-

didate component and substitutable component when the first one tries to
substitute the second one. Their elements are called respectively candidate el-

ements and substitutable elements. When we find the best candidate for the
substitution, we say the substitutable component or element can be replaced

by this candidate.



Fig. 1. Our generic model

Beside the component model, we define a generic quality model. Its elements
are quality characteristics (such as those from ISO 9126 [12]), and metrics. We
use existing metrics to evaluate and compare non-functional properties (see [9]
for a survey). But why metrics ? In the literature, several methods for defining
and evaluating non-functional properties already exist (see [1] for a survey). But
such methods usually focus on one specific property, or family of properties, for
example quality of service, which is only a part of the whole software quality.
Metrics may be applied to many families of properties, and allow comparisons.
This is why we think that in our case, metrics represent the best method for
comparing different non-functional properties.

A component’s quality properties are based on our generic quality model. We
start by describing elements of this quality model in the next subsection, before
introducing their link with the elements of the component model.

2.2 Elements of the quality model

This quality model is composed of two elements: quality characteristics which
represent non-functional properties, and metrics, which measure these charac-
teristics (see left part of Figure 1). For the remaining of this paper, we consider
that a metric may measure several quality characteristics (as proposed in the
IEEE standard 1061-1998 [11]), but each characteristic is measured by only one
metric. Elements of the quality model are defined as follows:

Quality characteristics: A quality characteristic, or simply characteristic,
represents a given quality property, preferably a fine-grained attribute (such as
latency), because of our statement that only one metric can measure such a
characteristic.



Metrics: A metric holds a set of quality characteristics it measures. It also holds
a set of artifact types on which it can be calculated (for example: {component,
interface}), the result’s type, and its unit. The metric’s variance explains the
relation between the metric’s result and the evaluated quality characteristic. For
example, if a metric calculates an execution time, the variance stipulates that
the lower the value is, the better it is.

Two metric values are comparable only if they are from the same metric. So
having two ”comparable metric values” M1 and M0 means that we have the
same metric M , and we try to compare the value of M on the candidate artifact
A1 with the value of M on the substitutable artifact A0. Having two comparable
metric values M1 and M0, we can check if M1 is superior to M0 according to the

variance. For example, if the metric type is an integer representing the execution
time in milliseconds, then its variance is decreasing. In this case, if M1 is greater
than M0 according to integer comparison, M1 is in fact inferior to M0 according
to M ’s variance.

2.3 Non-functional specifications

A component artifact is linked to a quality element using a non-functional

specification (noted NFS). An artifact may be related to several quality ele-
ments, so several NFSs belong to only one artifact. An NFS describes the effect
of a quality characteristic on the artifact it belongs to, and uses the metric ap-
plied on the latter. Several NFSs of a same component artifact may share the
same metric, but not the same characteristic.

In Figure 1, the resultValue attribute of an NFS is given by the metric’s
measurement on the artifact. In the case of an ideal component, this attribute
value is given by the application’s designer.

Two NFSs are comparable if the artifacts they belong to are of the same kind
and comparable (see next subsection for comparison definitions), and if they refer
to the same characteristic. Two NFSs are equal if they are comparable and their
resultValue attributes are equal.

2.4 Artifacts

The main element of our generic component model is the artifact. All artifacts,
whatever their kind is, have a quality field, which is a set of NFSs. Two artifacts’
quality fields are comparable if, for each NFS of one quality field, there is at
least one comparable NFS in the other quality field. Two quality fields are equal
if for at least one NFS of one quality field, there is an equal NFS in the other
quality field, and vice versa.

Let us now describe the different kinds of artifacts:



Operations. An interface’s operation is defined by its signature, also called a
type. An operation’s type is defined by the set of its parameters’ types (α1, ... ,
αn)1 and its result’s type β. It is noted (α1, ... , αn) −→ β.

Two operations are comparable if their signatures are comparable. Two oper-
ation signatures T and U are comparable if they are equal modulo the renaming
of the type names, or if there exists a type substitution relationship V so that
V .T equals to U , or T equals to V U , modulo the renaming of the type names.

For example, α −→ α equals to β −→ β if we rename α by β, but α −→ α

is not equal to β −→ γ.
And if we consider Java’s Object type, signature Object −→ Object may be

replaced by Integer −→ Integer if we let Integer substitute Object. It corre-
sponds to Zaremski and Wing’s exact and generalized signature matching for
functions [20].

Two operations are equal if their signatures are equal modulo the renaming
of the type names, and if their quality fields are equal.

Interfaces. A component’s interface is defined by a set of operations.
A candidate provided interface PI1 is comparable to a substitutable provided

interface PI0 if for each operation of PI0 there exists a comparable operation
in PI1. A candidate required interface RI1 is comparable to a substitutable
required interface RI0 if for each operation of RI1, there exists a comparable
operation in RI0. Two interfaces (provided or required) are equal if their quality
fields are equal and if, for each operation of one interface, there exists an equal
operation in the other interface, and vice versa.

Components. A software component is defined by a set of provided interfaces
and a set of required interfaces.

A candidate component C1 is comparable to a substitutable component C0

if for each provided interface of C0 there exists a comparable provided interface
of C1, and for each required interface of C1, there exists a comparable required
interface of C0. If C1 is not comparable to C0, it can not pretend to substitute
C0.

3 Our substitution model

For each NFS, we attach a weight (or comparison weight) noted ComparisonS ,
and a penalty noted PenaltyS (S being the NFS). These two values define the
NFS’s importance for the artifact it belongs to. The higher these two values
are, the more important this NFS is, in the whole substitutable component. If a
substitutable artifact owns an NFS and a candidate artifact owns a comparable
one with a superior value, the candidate’s chances increase proportionally with
the comparison weight. Else, the penalty will be used to sanction this lack. A

1 For reasons of simplicity, in the current version of our model we do not take into
account parameters’ order.



candidate component may also bring his own new NFSs that the substitutable
component doesn’t have. These new elements will be evaluated by the ideal
component designer.

The substitution distance, or distance, is defined using these weights,
penalties, and NFS’ resultValues. This distance will inform on the substitutabil-
ity of an NFS or an artifact. The best candidate for substitution is the one with
the lowest distance. If the distance is negative, the candidate element can be con-
sidered as ”better” (in terms of quality) than the substitutable one, according
to the current context. If the distance is positive, then the candidate is worse. If
the distance equals to 0, then the two compared elements are ”equivalent” each
to the other, but it doesn’t mean that they are equal.

For each component, there is a maximal distance for substitution, fixed by
its designer. Let us consider a component C1, a candidate for the substitution of
another component C0. If the substitution distance between C1 and C0 is bigger
than the maximal distance associated to C0, then C1 will be rejected.

3.1 Substitution distance between artifacts

Here, we will define a calculus that will give the distance separating a candi-
date component C1 from a substitutable component C0 in a given context. This
context is defined by the weight and the penalty allocated to the NFSs of C0’s
artifacts. So, before talking about distance between artifacts, let us present the
distance between their quality fields.

We will suppose that there exists a relation MINx∈E f(x), which selects an
element x from the set E so that the function f(x) has the lowest value.

Distance between artifacts’ quality fields. Let us consider a substitutable
artifact A0, a comparable candidate one A1, and their quality fields (denoted
QA1

and QA0
). The substitution distance between these quality fields (denoted

QD) is defined as follows:

QD(QA1
, QA0

) =
∑

S0∈QA0

QDSpec(QA1
, S0) -

∑
S1∈QA1

QDBonus(S1, QA0
)

with:

QDSpec(QA1
, S0) = ComparisonS0

* (resultV alueS0
−V ariance resultV alueS1

)
if ∃ S1 in A1 that is comparable to S0; else, PenaltyS0

.

and:

QFBonus(S1, QA0
) = 0 if ∃ S0 ∈ QA0

that is comparable to S1; else, a value
given by C0’s designer.

To measure the distance between the quality fields, we try to find for each
S0 a comparable NFS S1 in A1 (there can be only one, as NFSs of a same
artifact cannot share the same characteristic). Substituable NFSs without any



comparable S1 are taken into account through their penalty value PenaltyS0
.

Candidate NFSs without any comparable S0 are taken into account through a
value given by C0’s designer.

resultV alueS0
−V ariance resultV alueS1

is a subtraction between resultV alueS0

and resultV alueS1
depending on their metric’s variance. For example, if its

type is integer or float and variance is increasing, the measurement will equal
to: resultV alueS0

- resultV alueS1
. If variance is decreasing, it will equal to:

resultV alueS1
- resultV alueS0

.

Distance between incomparable artifacts. If two artifacts are incompara-
ble, there will not be any substitution distance measurement between them.

Distance between comparable operations. Let us consider a substitutable
operation O0 and a comparable candidate operation O1. The substitution dis-
tance between them (denoted OpD) is defined as follows:

OpD(O1, O0) = QD(QO1
, QO0

)

As long as O1 and O0 are comparable, the distance between them is in fact
the distance between their quality fields.

Distance between comparable provided interfaces. Let us consider a sub-
stitutable provided interface I0, a comparable candidate provided interface I1,
and their sets of operations OpsI1 and OpsI0 . The substitution distance between
I1 and I0 (denoted PID) is defined as follows:

PID(I1, I0) =
∑

O0∈OpsI0

MINO1∈OpsI1
OpD(O1, O0) -

∑
O1∈OpsI1

POBonus(O1,

I0) + QD(QI1 , QI0)

with:

POBonus(O1, I0) = 0 if ∃ O0 ∈ OpsI0 that is comparable to O1; else, a value
given by C0’s designer.

To measure the distance between the interfaces, we take into account only the
lowest found distance for each O0. Candidate operations without any comparable
O0 are taken into account through a value given by C0’s designer.

Distance between comparable required interfaces. Let us consider a sub-
stitutable required interface I0, a comparable candidate required interface I1, and
their sets of operations OpsI1 and OpsI0 . The substitution distance between I1

and I0 (denoted RID) is defined as follows:

RID(I1, I0) = -
∑

O0∈OpsI0

MINO1∈OpsI1
OpD(O1, O0) -

∑
O0∈OpsI0

ROBonus(I1,

O0) - QD(QI1 , QI0)



with:

ROBonus(I1, O0) = 0 if ∃ O1 ∈ OpsI1 that is comparable to O0; else, a value
given by C0’s designer.

The principle of distance between required interfaces is the same as for pro-
vided ones, except that it is symmetrical. For provided interfaces, it is better to
have I1 providing better quality than I0, whereas for required interfaces, it is
better to have I1 requiring less quality than I0.

Distance between comparable components. Let us consider a substitutable
component C0, a comparable candidate component C1, their sets of provided
interfaces PIntC1

and PIntC0
, and their sets of required interfaces RIntC1

and
RIntC0

. The substitution distance between C1 and C0 (denoted CD) is defined
as follows:

CD(C1, C0) =
∑

PI0∈PIntC0

MINPI1∈PIntC1
PID(PI1, PI0) +

∑
RI1∈RIntC1

MINRI0∈RIntC0
RID(RI1, RI0) -

∑
PI1∈PIntC1

PIBonus(PI1, C0) -
∑

RI0∈RIntC0

RIBonus(C1, RI0) + QD(QC1
, QC0

)

with:

PIBonus(PI1, C0) = 0 if ∃ PI0 ∈ PIntC0
that is comparable to PI1; else, a

value given by C0’s designer.

and:

RIBonus(C1, RI0) = 0 if ∃ RI1 ∈ RIntC1
that is comparable to RI0; else, a

value given by C0’s designer.

To measure the distance between the components, we take into account only
the lowest found distance for each PI0 and for each RI1. Candidate provided
(resp. substitutable required) interfaces without any comparable PI0 (resp. RI1)
are taken into account through a value given by C0’s designer.

4 Substitution in practice

Now let us take the example of an application that requires a Digital Video
(”DV”) camera component, with an interface for video stream and another one
for camera control. It must also conform to the DV standard. This video camera
example is taken from [3].



Fig. 2. Example of quality model.

4.1 Modeling an ideal component

The above requirements could be expressed by an ideal component called
videoCamera. The latter contains a provided interface videoStream (with an
operation outputV ideoF low), a provided interface cameraControl (with basic
operations such as on, record and eject2), and a required interface DV Format

(with an operation inputDV F low that asks for a DV tape).
The needs are not just about functional part, but also about non-functional

properties and their respective importance. For example, we suppose that a high
level of reliability for record and eject operations is required (so that the camera
does not crash while recording, nor refuse to eject a video tape). We also assume
that a high image quality, such as a 1 million pixels (1 MPixels) screen resolution,
is required for videoStream interface. According to the quality model of Fig-
ure 2, we use the following characteristics: reliability and imageQuality. Their
respective metrics are: MeanT imeToFailure (MTTF ) and screenResolution.
Then we attach to the ideal component several NFSs. To each operation of
the cameraControl interface, we attach an NFS using reliability characteris-
tic (onReliability for on operation, recordReliability for record operation, and
ejectReliability for eject operation). To videoStream interface, we attach the
NFS cameraResolution, using the characteristic imageQuality.

Finally, the designer fixes expected resultV alues, weights and penalties for
each NFS, and also fixes a maximal distance for the ideal component videoCamera.
On Figure 3, we see that the expected value for cameraResolution is 1 mil-
lion pixels, and the expected values for NFSs using reliability characteristic
vary from operation to operation. The values required for recordReliability and
ejectReliability are higher than those for onReliability. The penalties attached
to cameraResolution, recordReliability and ejectReliability are very high in or-
der to enforce candidate components to contain these NFSs. cameraResolution

2 For simplicity and brevity reasons, we limit this provided interface to only three
operations.



Fig. 3. Example of ideal component: videoCamera.

has a low comparison weight, which means that a big difference on the image
quality is not very important. However, recordReliability and ejectReliability

have higher weights, which means that a big difference on the reliability measure-
ments of record and eject is very important. The maximal distance is fixed at a
low level, so that the lack of one of these three NFSs in a candidate component
will hardly be accepted.

4.2 Component lifecycle and substitution cases

Now that our ideal component is modeled, we can look for the best concrete
candidate one to substitute it. Here are the different substitution cases:

First composition. Trying to plug a component into an application (in order
to satisfy a given need) means trying to make this concrete component substitute
the ideal one (corresponding to this need). Let us take the video camera example.
Now that we modeled an ideal camera component, we have to check which
concrete camera is the best candidate to substitute it.

First, according to our substitution model, a candidate must meet all the
functional requirements, i.e. it must have all the ideal component’s provided
services (interfaces and operations), and must not bring more required ones.
Otherwise, it will be rejected even if it has a higher quality. For example, let us
consider a V HSCamera component meeting all functional requirements, except
one (it requires VHS tapes instead of DV ones). No matter its quality, we need a
camera that requires only DV tapes, and this candidate adds a required interface,
so it is rejected.



Fig. 4. Example of rejected candidate: fluidCamera.

Then, a candidate, like the fluidCamera component on Figure 4, may add
new NFSs unanticipated by the ideal component designer. For example video
flow’s number of frames per second. That corresponds to the metric FPS (for
Frames Per Second), which measures flowPerformance and flowQuality char-
acteristics (all of them are shown in Figure 2). It may be interesting to have a
new NFS using flowQuality characteristic on the outputV ideoF low operation,
but the candidate (fluidCamera) lacks an important NFS. The penalty is so
high that it is rejected.

We can also have candidates providing at the same time some lower qualities,
and other higher ones, than ideal component. In this case, a candidate component
would rather have good ”scores” in the most important NFSs. For example, let
us take a candidate goodImageCamera which has an excellent image quality (2
million pixels instead of 1 million) and an average reliability (2.5 days instead
of 3 for operations record and eject), while candidate reliableCamera shown in
Figure 5 has an average image quality and an excellent reliability. We are not
directly comparing them to find which one is ”better” than the other. We are
comparing each one of them, separately, with the ideal component, in order to
find if it is an acceptable candidate. If we consider this ideal component, and
the distance obtained for each one of the candidates, we can say that both are
acceptable (distance with candidate goodImageCamera would equal to +15),
but the reliableCamera is the best one.

Maintenance. The application now has its camera component, but it could
have a ”better” one. If the needs are the same, the ideal component that models



Fig. 5. Example of accepted : reliableCamera.

them is exactly the same, but we can have new candidates. So we have to compare
each one of them to this ideal component, ignoring the previous candidate. If
the needs change, this implies that the ideal component changes too. Thus, we
must compare each candidate (including previous accepted one) with the new
ideal component. In both cases, we are back to the first composition schema.

5 Related work

We said in introduction that substitutability was a well-known problem in object-
oriented languages which include typing [5] and subtyping [13]. It is also an
industrial problem, as referred in [18], who asks how to make sure that changes
on a component won’t affect existing applications of a component, and try to
answer by setting rules based on subtyping. It was tempting for us to base on
subtyping too, in order to substitute components [16]. But we took critics of
typing [15] and subtyping [17] into account. Especially the one which said that
they were too rigid and too restrictive for componentware, and couldn’t deal
with context. This is why we preferred to try a more flexible approach.

Premysl Brada has explored the notions of deployment context and con-
textual substitutability [4]. A deployment context of a component is a sub-
component that contains the used part of its services (provided and required ser-
vices that are bound to other components). So Brada’s contextual substitutabil-
ity consists in comparing a candidate component with this sub-component,
rather than the whole one. Although these notions seem close to ours, we work
at a different level. Brada’s approach consists in finding an ”architecture-aware”



form of substitutability, his context concerns a concrete component, and depends
on its deployment in global architecture. Our approach is rather ”need-aware”,
and our context considers an ideal component (modeling a need) and a concrete
one which could substitute it.

As we said, our substitution model was inspired by Zaremski and Wing’s spec-
ification and signature matching for library components [20, 21]. Their matching
takes into account some substitution schemes that subtyping doesn’t include.
We were close to this approach, but we went further, by taking context and
non-functional properties into account, and applying our substitution rules on
generic component models. Beside Zaremski’s and Wing’s approach, there are
other notable works in software reuse and component retrieval [14]. For example,
our notion of weights can be compared to Scott Henninger’s tools [10]. These
tools parse a source code, extract ”components” from several keywords, then
put them into a library where a valued network between words and components
is created. So, when we search a word or a component in this library, a weight
is calculated for each component with the nodes’ values, and the selected candi-
date is the one which has the biggest weight. Our approach is at a different level,
because we search and select candidates, not from keywords, but from compo-
nents’ structure. It can be used in such retrieval mechanisms in order to refine
component search, and create more trustable libraries.

For our quality generic model, we were inspired by quality standards like
ISO-9126 [12] and metrics standards like IEEE-1061 [11]. Example of existing
metrics that could be used with our model can be found in [9, 19]. But the qual-
ity part of our model can also be used with quality of service contracts languages
(based on Antoine Beugnard’s fourth level of component contracts [2]), such as
the ones modeled in QML [7] and QoSCL [6]. In particular, our concern about
substituting non-functional properties can be compared to Jan Aagedal’s CQML
language [1], that deals with the substitutability of QoS ”profiles”. However, con-
trary to CQML, which, like most QoS languages, doesn’t take functional aspects
into account, our model combines functional and non-functional ones. And while
Aagedal separates primitive component substitutability and composite compo-
nent one, we deal with contextual substitutability of two components, no matter
their internal structure.

6 Conclusion and future work

We proposed a substitution model including several elements: i) a generic qual-
ity model, able to use existing quality metrics and QoS languages. ii) a generic
component model, able to use existing research and industrial approaches. iii) a
substitution distance, able measure the substitutability of a candidate compo-
nent. We also introduced the notion of ideal component, that models functional
and non-functional conceptual needs and takes composition context into account.

In our current framework, we chose to consider one component model us-
ing existing quality characteristics and metrics from one quality model. There
are two reasons for such a limitation : i) in the actual research and industrial



schemes, composition concerns mainly components that come from a same com-
ponent model; ii) the problem of comparing components from different models
is orthogonal to the substitution problem. Both can be treated separately.

Right now, we have a tool [8] that allows us to check if a component can
substitute another one according to our substitution distance measurement. This
tool aims to help designers to find the best candidates for their needs.

References

1. J. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

2. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components
contract aware. IEEE Computer, 32 (7), 1999.

3. G. Blair and J.-B. Stefani. Open Distributed Processing and Multimedia. Addison-
Wesley, 1997.

4. P. Brada. Specification-Based Component Substituability and Revision Identifica-
tion. PhD thesis, Charles University in Pragues, 2003.

5. L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 97. CRC Press, 2004.

6. O. Defour, J.-M. Jézéquel, and N. Plouzeau. Extra-functional contract support in
components. In Proceedings of 7th International Symposium on Component-Based
Software Engineering (CBSE 7), May 2004.

7. S. Frolund and J. Koistinen. Qml : A language for quality of service specification.
Technical report, Hewlett-Packard Laboratories, Palo Alto, California, USA, 1998.

8. B. George. Substitute tool. http://www-valoria.univ-ubs.fr/SE/Substitute/, 2006.
9. M. Goulao and F. B. e Abreu. Software components evaluation : an overview. In

CAPSI 2004, November 2004.
10. S. Henninger. Constructing effective software reuse repositories. In ACM TOSEM

1997, 1997.
11. IEEE. IEEE Std. 1061-1998 : IEEE Standard for a Software Quality Metrics

Methodology, ieee computer society press edition, 1998.
12. ISO Int. Standards Organisation, Geneva, Switzerland. ISO/IEC 9126-1:2001 Soft-

ware Engineering - Product Quality - Part I : Quality model, 2001.
13. B. Liskov and J. Wing. A behavioral notion of subtyping. In ACM Transactions

on Programming Languages and Systems 1994, 1994.
14. D. Lucrédio, A. Prado, and E. S. D. Almeida. A survey on software components

search and retrieval. In EUROMICRO, 2004.
15. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.

ACM SIGSOFT Software Engineering Notes, 17 (4):40–52, October 1992.
16. J. C. Seco and L. Caires. A basic model for typed components. In ECOOP, 2000.
17. C. Szyperski. Component Software : Beyond Object-Oriented Programming.

Addison-Wesley / ACM Press, second edition, 2002.
18. R. Van Ommering. Software reuse in product populations. IEEE Transactions on

Software Engineering, 31 (7):537–550, july 2005.
19. H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In Metrics 2003, 2003.
20. A. Zaremski and J. Wing. Signature matching : a tool for using software libraries.

In ACM TOSEM 1995, 1995.
21. A. M. Zaremski and J. Wing. Specification matching of software components. In

ACM TOSEM 1997, 1997.


