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Abstract In this article we show that there is a strong connection betwdecision tree
learning and local pattern mining. This connection allowga solve the computationally
hard problem of findingoptimal decision trees in a wide range of applications by post-
processing a set of patterns: we use local patterns to cohsatglobal model. We exploit the
connection between constraints in pattern mining and caings$ in decision tree induction
to develop a framework for categorizing decision tree ngrionstraints. This framework
allows us to determine which model constraints can be puséegly into the pattern mining
process, and allows us to improve the state-of-the-art tfnah decision tree induction.

Keywords Decision tree learning, Formal concepts, Frequent itemégihg, Constraint
based mining

1 Introduction

Decision trees are among the most popular predictive madelshave been studied from
many perspectives. However, no general framework existeitigtrain the induction of de-
cision trees and guarantee an exact result with respect tgitkn constraints. On the other
hand, the topic of exhaustively (i.e exactly) determinifigpatterns satisfying certain con-
straints has been studied extensively in the ardagaafl pattern mining/ Agrawal, Mannila,
Srikant, Toivonen, & Verkamo, 1996; Zaki, Parthasarathyin@ra, & Li, 1997a; Han, Pei,
& Yin, 2000). A natural question is hence if we can exploit txperience in local pattern
mining for the discovery of decision trees under constgaifihis question will be addressed
in this article.

Our main starting point is that many decision tree learnirapfems can be formulated
asqueriesof the following canonical form:

argmin f(T') subject top(T), (Canonical Decision Tree Learning Query)
T

i.e, we are interested in finding the best tree(s) accordirgtinctionf (7'), among all trees
which fulfill the constraints specified in the formutdT).
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For instance, the following questions could be of interesefdecision tree user:

— Which tree has the smallest error? In this cA&E) is an error function that we wish to
minimize.

— Which is the smallest tree with sufficiently high accuracg?His case the (ranking)
function f(T") should prefer smaller trees among sets of sufficiently ateurees. Al-
ternatively, we can reformulate the problem in a Bayesi@mgg(Buntine, 1992; Chip-
man, George, & McCulloch, 1998).

— Which tree is least sensitive to noise in the class label$® dduld require that every
leaf of a decision tree has at least a significant majoritgcl@he latter can be seen as a
constraintp(7)) on the trees of interest.

— Which tree preserves privacy best by being well-balancdd® Would impose a con-
straintyp(7') on the trees of interest (Friedman, Schuster, & Wolff, 20@&chanava-
jjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007).

— Which tree incurs the smallest amount of classificationg&&or example, it can be
desirable that the expected costs for classifying exantde®t exceed a certain prede-
fined threshold value (Turney, 1995).

— Which tree is mosjustifiable from an expert’'s perspective, by satisfying predefined
constraints on the predictions that can be made by the treeth§tance, one could
wish to enforce that certain examples are never miscladsdiecertain tests are always
executed in a given order.

Observe that some of these problem settings are convehtiarthe sense that they are
formalizations of the problem of finding models of good pog#isie accuracy. Other problems
are less conventional, the main focus being on the syntaxegbtedictive model.

Many algorithms have been proposed to address these lggmmublems. Most common
are the algorithms that rely on the principle of top-downuaiibn through heuristics (for
example C4.5 (Quinlan, 1993) amhRT (Breiman, Friedman, Olshen, & Stone, 1984)).
These algorithms do not explicitly minimize a global optzation criterion, but rely on the
development of a good heuristic to obtain reasonable swoisitiin practice, for each new
problem setting that was studied, a new heuristic was pegpwsthe literature.

To the best of our knowledge, no framework has been proposechvencapsulates
the large number of decision tree learning problems listexv@ and no general algorithm
is known for answering the canonical decision tree quencthixaThe question that we
study in this paper is how pattern mining techniques canritorie to the development of
a framework and an algorithm for this task. As such, our waltes the LeGo approach
(Knobbe, Céemilleux, Rirnkranz, & Scholz, 2008; Bringmann, Nijssen, & Zimmermann
2009), in that it studies how local pattern mining technigean be used to build global
models.

The benefit of an exact algorithm is that we do not need to dpveéw heuristics to
deal with many types of learning problems and constraints.af¢ sure that its result is
the best that one can hope to achieve according to the predediptimization criterion
and constraints; no fine-tuning of heuristics is necesddeynce, the results of an exact
algorithm can also be used to determine how well an existewgiktic decision tree learner
approximates a global optimization criterion.

The development of aexactalgorithm for learning decision trees has seldom been
considered because many decision tree learning problegnknamwn to be NP-complete
(Hyafil & Rivest, 1976). Therefore an efficient algorithm file general case most likely
does not exist. This theoretical result however does nolyittyat the problem is intractable
in all cases. Many frequent itemset mining algorithms hasenbapplied successfully de-



Fig. 1 The Hasse diagram of a part of an itemset lattice for it¢ms—A, B, - B, C, ~C'}; binary decision
tree A(B(C(L,1),1),C(l,I)) is marked in this diagram

spite the exponential nature of the itemset mining probl€his is an indication that, on
some datasets, exact decision tree induction may still &silfke if we can do this by using
itemset mining results. We will provide evidence that foeasonable number of datasets,
exact decision tree induction is indeed practically felasily taking this approach. An im-
portant technical contribution is that we show that decigiees can also be learned from
the condensed itemset representatiotladed itemsetdasquier, Bastide, Taouil, & Lakhal,
1999). This observation allows us to obtain better pracfiesformance.

The article is organized as follows. In Section 2, we intrmalbasic notions on decision
trees and itemsets and we focus on their relationships.dtidde3, we discuss related work
on both exact decision tree learning and itemset mining eleti8n 4, we propose a frame-
work for constraining decision trees and show how the fraorkwan be used in practice. In
Section 5 we introduce the DL8 algorithm which uses locatlgras to construct our global
model. Section 5 also gives some optimizations for DL8. latia 6, we evaluate the per-
formance and the effect of different constraints handledunalgorithm. We conclude in
Section 7.

2 Itemsets, Decision Trees and their Relationships

Let us first introduce some terminology concerningguent itemsetand decision trees
before studying the relationships between these domains.

ItemsetsLet Z = {iy,i2,...,im} be a set of items and €2 = {¢,ts,...,tn} be a bag
of transactions, where each transactigns an itemset such thaf C Z. A transactior,,
contains a set of items C T iff I C ¢,. The transaction identifier set (TID-se#){(I) C
{1,2,...n} ofanitemsef C 7 isthe set of identifiers of all transactions that contaimiet
I. The frequency of an itemsétC 7 is defined to be the number of transactions that contain
the itemset, i.efreq(I) = |t:d(I)|; the support of an itemset isipport(I) = freq(I)/|D].
An itemset/ is said to be frequent if its support is higher than a giveegholdminsup;
this is written assupport(I) > minsup (Or, equivalentlyfreq(I) > minfreq).

A useful property of itemsets is that they constitute adatti



Definition 1 A completelattice is a partially ordered set in which any two elements have a
unique least upper bound and a unique greatest lower bound.

In this case the partial order is defined by the subset ralstiip C on the elements in the
set2”. The least upper bound of two sets is computed by the intéose() operator, the
greatest lower bound by the union)(operator. The lower bound of this lattice is@; the
higher boundT is the sefZ.

Part of a lattice is depicted in Figure 2 inHasse diagramwhere we assumeé =
{A,-A, B,~B,C,~C}; we only depict itemsets in which an itehand its negation do
not occur together. Edges denote a subset relation betve¢srssts are depicted as nodes.
On top of the lattice is the lower bound which correspond$igoempty sed (level 0); the
higher bound{ A, -A, B, -B,C,~C} is not depicted as it includes items as well as their
negations. There is an edge between a node in a given level aade in the next level if
the set of the former is strictly included in the set of thédatind if the size of the two sets
only differs by one item.

Fig. 2 An example tree

Decision treesAn example of a decision tree is given in Figure 2. A decisie® aims at
classifying a set of examples by sorting them down the tree.|€aves of the tree provide
the classifications of examples (Quinlan, 1993). Each nbtieedree specifies a test on one
attribute of an example and each branch of a node corresporaie of the possible out-
comes of the test. We assume that all tests are Boolean;inanylattributes are transformed
into Boolean attributes by mapping each possible value teparate attribute. Numerical
attributes are discretized and binarized beforehand (thkkyhen be calledfeature§. The
input of a decision tree learner is hence a binary magiixvhereB;; contains the value of
featurei of examplej.

A common way to represent a decision tree is as a set of rulemlg®, 1993). Each
leaf of the tree corresponds to a rule. Our example tree caedresented in the following
way:

if A=1andB = 1then predict 1
if A=1andB = 0andC = 1 then predict 1



if A=1andB = 0andC = 0 then predict 0
if A=0andC = 1 then predict 0
if A=0andC = 0 then predict 1

Hence we can see decision tree learning as finding a set sfwiile certain properties that
allow the set to be represented as a tree.

The link between Decision Trees and Items&tmain observation in the LeGo framework
(Knobbe et al., 2008) is that there is a link between ruleg@digtive models and patterns
in pattern mining. Assume that we are given an attributegébleB in which all features
are binary. We can transform tabieinto a transactional fornb such that; = {i| B;; =

1} U{—i| B;; = 0}. Thus, every feature value is mapped to a positive a negative item
—i. The head of a rule, for instance,

A=1landB =0andC =1

can now be transformed into an itemget, - B, C'}. Transactions in which the head of the
rule is true correspond to transactions in which the iterissedntained. Hence the decision
tree of Figure 2 can equivalently be represented by a sgtaie$ association rules

{A,B} —1
{A,-B,C} —1
{A,-B,-C} -0
{-4,C} =0
{-4,-C} —1

A class association rule — ¢ (Liu, Hsu, & Ma, 1998) consists of an itemseand a class
valuec.

The problem of learning a decision tree is now a problem offfigd set of class associ-
ation rules. As we are usually interested in finding accurates, we can reduce this further
to a problem of finding itemsets, that is, class associatitesrwithout heads: assume we
compute the frequendyeq.(I) of an itemset for each class separately, we can associate
to each itemset the class label for which its frequency ibddg,

c(I) = argmax freq.. (I),
ceC

as this will minimize the prediction error for the exampleghe leaf. Given a decision tree
T, we denote the set of itemsets corresponding to leavésibys(T); in our example,

leaves(T) = {{A, B},{A,-B,C},{A,-B,~C},{-A,C},{-A,-C}};
itemsets corresponding to internal nodes are denotedibynal(T), in our example,
mternal(T) = {@, {A}7 {A7 "B}};

Finally, all itemsets that correspond to paths in the tree denoted withpaths(T) =
internal(T) U leaves(T).

The problem of finding a decision tree can now alternativédp &e formulated as fol-
lows. We are interested in finding a set of itemsets 27 such that

3T : paths(T) = P andT = argmin f(T") subject top(T").
T

Note that we can easily characterize which sets of itemeetesent decision trees.



Lemma 1 Given a set of itemse® C 27, then3T" : paths(T) = P if and only if for every
itemset/ € P either:

(1) thereis nal’ € P such thatl c I’ (in this casel € leaves(T));
(2) there is exactly one item € Z such that/ U {i},I U {—i} € P (in this casel €
internal (T)).

Proof “=-" is straightforward. For " we can observe the following. Every itemsetn

‘P can be converted into a node in a decision tree, as followsdets fulfilling condition
(1) we turn into leaves. Itemsetsfulfilling condition (2) are converted into internal nodes
which are connected to the nodes representing itenisets} and’ U {—i}.

Hence, the problems of finding decision treand sets of itemset8 fulfilling the condi-
tions of Lemma 1 are equivalent. Indeed, the reader can dhemlr example that a s
fulfilling these conditions corresponds to a decision tré@ waths(T) = P.

An important observation that we will exploit is that a lagtiof itemsets can be thought
of as a compact representation of a set of decision treesigtiustrated in Figure 2, where
we have highlighted the decision tree of Figure 2; in prilecgny decision tree over binary
features{ 4, B, C'} consists of a similar set of paths in this lattice. Note thatagsume
that trees never have an item and its negation in one patthaheve hence do not need to
consider the part of the lattice containing such itemsets.

The most basic problem one could be interested in is thatdiffgnan accurate decision
tree. Theaccuracyof a decision tree is derived from the number of misclassedamples
in the leaves:

accuracy(T) = M where error(T) = Z error(I)
| | I€leaves(T)

and error(I) is the number of examples ending up in Idafiot labeled with the majority
class of the examples ih

error(I) = freq(I) — freq.py(I)

For thesizeof a tree we take the size of the geths(T).
An example of a decision tree learning problem is to find the tr

argmin(error(T), size(T)),
T

that minimizes error in the first place and cuts ties betweesstof equal error using the
size function. The exploration of other learning problenil§lve deferred to a later section.

3 Related Work

The results in this article are built on the foundations af tiifferent research areas: decision
tree induction and pattern mining. This section providesarview of the relevant results
which have been obtained in these areas.



3.1 Exact Decision Tree Induction

The search for exact decision trees with respect to a givemigation criterion dates back
to the 1970s, when several algorithms for building suchstrgere proposed. Their appli-
cability was however limited and the development of heitrisee learners, such &»RT
(Breiman et al., 1984) and C4.5 (Quinlan, 1993) became maystlpr. Only recently new
attempts have been made to develop more complete tree igavde will first discuss the
early results using modern terminology for clarification.

Garey (1972) proposed an algorithm for constructing annegdtbinary identification
procedure In this setting, a binary database is given in which evegngle has a different
class label. Furthermore, every example has a weight amy atteibute has a cost. The aim
is to build a decision tree in which there is exactly one leafdvery example; the expected
cost for classifying examples should be minimal.

Meisel and Michalopoulos (1973) studied a setting which @encommon today, in
which multiple examples can have the same class label, andnical attributes are allowed.
To tackle the problem of discretization, an overfitting dem tree is greedily constructed
first. Its tests are collected. Using these tests, the takkiisto find a 100% accurate decision
tree with lowest expected cost, where every test has unitasmsexamples are distributed
according to a previously determined distribution. In 19if&vas shown by Payne and
Meisel (1977) that Meisel’s algorithm can also be appliediftding optimal decision trees
under many other types of optimization criteria, for ins&nfor finding trees of minimal
height or minimal numbers of nodes.

A parallel line of research was explored by Schumacher andils¢1976) and Lew
(1978), who studied the problem of converting decisiondalihto decision trees. A deci-
sion table is a table which contains (1) a row for every pdeskample in the feature space
(including a class attribute) and (2) a probability for gvexample. The aim is to compress
the decision table into a compact representation that altowetrieve the class of an exam-
ple as quickly as possible. An extension was studied by L&¥&), in which it is possible
to specify the input decision table in a condensed form,rfstance, by using wild cards as
attributes.

All these problems were solved by dynamic programming dlgams which bottom-up
consider all subsets of attribute-values of the exampliess@& algorithms are very similar to
the algorithm we will propose (see Section 5). The main diffiee is that we build a lattice
of tests under different types of constraints, point outdhienection to itemset mining, and
employ modern techniques such as closed itemset mining.

More recently, pruning strategies of decision trees hawnstudied by Garofalakis,
Hyun, Rastogi, and Shim (2003). Garofalakis et al.’s alfponican be seen as an application
of the bottom-up algorithm on a greedily constructed tresteiad of a lattice of itemsets.

Related is also the work of Moore and Lee on &Btreedata structure (Moore & Lee,
1998). Both ADtrees and itemset lattices can be used fordapgep the lookup of itemset
frequencies during the construction of decision trees,re/tidtrees have the benefit that
they are computed without frequency constraint. Howeves, is achieved by not storing
specializations of itemsets that are already relativeliseguent; for these itemsets subsets
of the data are stored instead. In our bottom-up proceduseniécessary that all itemsets
that fulfill the given constraints are stored with assoclatéormation. This is not straight-
forwardly achieved in ADtrees.

Recently the problem of learning optimal decision treesdaired interest again. Es-
meir and Markovitch (2007b, 2007a) proposed an any-timerdlgn, which essentially
performs a brute-force enumeration of trees as long as gwithim is not interrupted by



the user. The algorithm attempts to enumerate more progisigions earlier, and prunes
unpromising regions of the search space. However, theitligpdoes not exploit dynamic
programming strategies. It was applied both on conventieaaning problems as problems
with cost constraints.

Blanchard, Scéfer, Rozenholc, and Mler (2007) proposed an algorithm for mining
optimal dyadic decision trees. This algorithm operatesumaerical data. It makes specific
choices with respect to the discretization of the data aedofttimization criterion used.
The optimization criterion includes a regularization paeter which weighs decision tree
size and decision tree accuracy. It is shown that the geratiah error of an optimal tree
is bounded by this parameter, while also in practice theltiegurees are sometimes better
than trees found by traditional tree learners. A dynamigm@mming algorithm is used to
induce the tree. In Section 4.2.2 we show that this algorithmbe seen as one instance of
our algorithm, but that the specific choice of constraint&esat impossible to apply certain
optimizations which are available within our frameworlkeg timost important one being that
closed itemsets cannot be used when inducing dyadic trees.

Other approaches that aim at more completely traversingghee of decision trees are
those that apply variations of genetic algorithms (Turrd®g5), and Markov chain Monte
Carlo sampling approaches (Chipman et al., 1998).

In (Murphy & Pazzani, 1997) an exhaustive enumeration ofisiletc trees on small
datasets was performed in order to determine the validitgeprinciples of Occam’s razor
and oversearch for decision tree learning. In these expeatisnt was found that slightly
larger trees can be found using complete search methodshahthese trees can some-
times perform better than smaller trees found using hecitigtes. Our algorithm allows to
perform similar experiments on a larger scale.

3.2 Pattern Mining

The best-known pattern mining algorithm is the®oRrI algorithm (Mannila, Toivonen,
& Verkamo, 1994; Agrawal & Srikant, 1994; Agrawal et al., B9whose aim is to find
frequent itemsetsSubsequently, a wide variety of algorithms has been pexpos find
this set more efficiently in dense datasets, i.e., binargs#das in which the number of ones
is large. Among these algorithms areEAT (Zaki, Parthasarathy, Ogihara, & Li, 1997b),
FPGROWTH (Han et al., 2000) and LCM (Uno, Kiyomi, & Arimura, 2004)

In many datasets it was found that the number of frequensigsris impractically large,
and methods were investigate to ficmhdensed representatior@ondensed representations
consist of smaller sets of itemsets sufficient to reprodbedull set of itemsets, or allow to
approximate the full set. Well-known exact condensed mpations are thelosed item-
setg(Pasquier et al., 1999) aficte itemsetéBoulicaut, Bykowski, & Rigotti, 2000). Among
the approximative representations are dkeee itemsets (Boulicaut, Bykowski, & Rigotti,
2003).

In this article, we investigate the use of both frequent et and condensed represen-
tations during the construction of decision trees. The fisermdensed representations could
allow us to search for trees more efficiently. Among othees stvow that in many cases we
can limit ourselves to closed itemsets; in other casesniteashown that the itemsets that
are needed during tree construction are alstree.

1 A repository of implementations is available here: http://faminelsinki.fi/



The frequent itemset mining problem was extended towargsr dypes of constraints
than support; several categories of constraints were ifdeghtamong whichmonotonic
anti-monotoni¢ andconvertibleconstraints, and algorithms were introduced to mine item-
sets under these constraints (Pei, Han, & Lakshmanan, 2@dita, Gehrke, Kifer, &
White, 2003; Bonchi & Lucchese, 2007). We can show that tloegéegories can also be
applied in decision tree induction, and that algorithmsmdming patterns under these con-
straints can be used in corresponding settings in decisterniduction.

The use of itemsets in predictive models is a topic that has Istudied extensively.
Well-known algorithms include CBA (Liu et al., 1998), CMARI( Han, & Pei, 2001) and
CAEP (Dong, Zhang, Wong, & Li, 1999); more general overvieas be found in (Knobbe
et al., 2008; Bringmann et al., 2009). In these algorithm#éial set of patterns is mined
first. Subsequently, a set of patterns is selected with sparding weights. Classification is
based on a vote of the selected patterns. The approach theitlpeopose is similar in the
sense that our algorithm can also be applied to select atuftysterns from an initial set of
patterns, which are subsequently interpreted as ruleddssification. The main difference
is that the model that we induce takes the particular shapetrefe, is optimal under well-
defined conditions, and that we can push model constraititeipattern mining process or
even combine these two.

An alternative approach to exploit patterns in classifarats to construct features from
patterns. The selection of patterns can in this case be sdeatare selection, where desir-
able properties are that a set of patterns is chosen thatgssdi covers the data sufficiently,
and correlates with the class attribute. Approaches okihisare discussed in (Yan, Cheng,
Han, & Xin, 2005; Knobbe & Ho, 2006; De Raedt & Zimmermann, 2ZPE&Even though our
approach also selects a subset of patterns satisfyingasiogihstraints, we will however use
the patterns directly in classification models.

4 Constraints on Decision Trees

As stated in the introduction, we are interested in expngsdécision tree learning problems
as queries of the form

argmin f(T") subject top(T),
T

which corresponds to finding the best tree(s) accordingadithctionf(7") among all trees
which fulfill the constraints specified in the formufdT’).

In this section we specialize this formula. We argue that astapplications the con-
straints inp(7T) and the criteria inf(T") have properties that can be exploited. The main
contributions in this section are:

1. We propose a categorization of constraints and critbaa ¢an be used in the above
formula. The aim of this categorization is to introduce tfygets of constraints that will
be exploited in the pattern-based algorithm introducedrtext section. In this dis-
cussion, we will discuss desirable propertiepfimization criteriaf(7), as well as
properties of constraints(T').

2. We show that constraints and criteria with useful praperare commonly used in a
wide range of applications and hence our algorithm can bé usmany applications.
The applications were chosen such that it is possible to eoenpur algorithm to already
existing (and most of the time, heuristic) algorithms in literature.
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In the following, the functiond; = child,(I,T) andIy = childs (I, T) return the itemsets
representing respectively the left-hand and right-harildl cfode of the internal nodé in
binary treer".

4.1 Properties of Constraints and Criteria
4.1.1 Optimisation Criteria

When an optimization criteriofi(7") is specified, this criterion may have properties that we
will refer to asadditivity andstructure independence

Additivity An additiveoptimization criterion is a functioli(T") over a treel” which can be
rewritten as follows:

f(T) = Z fleaf(1)+
Icleaves(T)
Z Jinternal (Iv childy (Ia T)7 childs (L T))v
Icinternal(T)

where functionf..(I) > 0 is aleaf criterionand functionf;,;erna (I, I1, I2) > 0is
aninternal criterion An example of an additive optimization criterionsize in which
fleaf(l) =1 andfinternal(lv Iy, 12) =1
Structure Independence An additive optimization criteriorf(T') is structure independent
if we can rewrite the leaf criteria and internal criteria aBdws: f;,;crna (1, 11, I2) =
/

fz(nte'rnal (tid(I)v tid(Il)v tid(IQ)) andfleaf (I) = fl/eaf (tld(I)), for funCtionSfinternal
and fl’mf over sets of transactions. Hence, the evaluation deperg®orthe transac-
tions covered by the nodes, not on the structure of the tteas® note thatize is also a
structure independent criterion according to our definjtthe reasoning is that the size
of a tree is only determined by the number of partitions iredlioy the tree in the set of

transactions; otherwise the structure of the tree is unitapt

In the next section we will show that many common optimizatioiteria are additive and
that a restriction to such criteria is not very restrictive.

4.1.2 Path Constraints

For constraints we can formulate similar properties as fiterga. In most cases, the con-
straintp(7') is a conjunction of a number of independent constraintsclwban have the
following properties.

Conjunctivity over Paths A conjunctive patftonstraint is a formula over a tree which can
be written as:

¥ conjunctive (T) = /\ L;Dleaf(I) A
I€leaves(T)
N\ Pinternai(l, childi (I, T), childs (I, T)),

Icinternal(T)

where formulap,.. (1) is aleaf constraintand formulay;,ernqi (1, I1, I2) is aninter-
nal constraint
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An example of an internal constraint is that internal nodesufd not havepure class
distributions:
(pinternal(lv I, 12) = (|tld(1)| 7é Igleac)‘( |tZdC([)|) (1)

This internal constraint is special in the sense that it eakesI, not its children, into
account. An example of a leaf constraint is that the numbexafmples not belonging
to a majority class is small:

Prear () = (([tid(I)] — max |tide(I)]) < maz freg). )

An example of an internal constraint in which the left-hamdl aight-hand child are
used, is:

@intsrnal(17]17[2) = (Htld(jlﬂ - |t7'd(12)” > mindif),
which states that an internal node splits examples in bathpooportions.

Structure Independence A structure independertonstrainty sy cture_ing (I') 1S @ con-
junctive path constraint in WhicP;ernai (1, 11, 12) = @lpiernat (tid (1), tid(I1), tid(I2))
andpieaf (I) = @jeqy (tid(1)), for formulasel,;.,.,.; @ande,, Over sets of transactions.
An example of a structure independent path constraimimsmum supportin which

LPleaf(I) = Qinternal (1 11712) = (|t7'd(1)| > minfreq);

it is easy to see that this constraint is computed feafl) only.
Anti-Monotonicity An anti-monotonigonstraint is a formula .+, (I) over paths which
ignores the left-hand and right-hand children of interrades and satisfies:

VI C I/ : Spantim(l) - Soantim(ll)'

Minimum support is an anti-monotonic constraint. The caist in equation (2) is an
example of a constraint which is not anti-monotonic. If ati-amonotonic constraint is
used as leaf constraint, the internal nodes will also satisf constraint. Internal node
constraints can also be anti-monotonic if they only haveiteraset as parameter; for
instance, the impurity constraint (see equation (1)) is-musinotonic; however, note
that this constraint will usually not be used as a leaf camstr Hence, we can distin-
guish internal and leaf anti-monotonic constraints; the type will be denoted with
Pinternal,antims the other Withpleaf,antim-

Constraints of these types can freely be combined. Fomnetaf we are searching for trees

in which leaves are frequent, internal nodes are not purdemes have strong majority

classes, we have a problem in which:

o(T) = A (td(D)] # max |tide(I)])
Icinternal(T)

/\ (((|tad(D)| — max [tide(I)]) < mazfreq) A (|tid(I)| > minfreq)).
Ic€leaves(T) ¢

We can categorize these constraints as follows accorditigetoproperties:
Pinternal(l, 11, I2) = (|tid(I)] # max[tidc(D)]),
Preas (1) = ((Jtid(D)] — max |tide(I)]) < mazfreq) A (|tid(I)] = minfreq),
Pleaf ,antim (1) = ([tid(I)| > minfreq).

Note that some constraints (for exampl&l(1)| > minfreq) may belong to multiple cate-
gories.
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4.1.3 Optimization Constraints

If a constraint can be written as
o(T) = (9(T) <0),

whereg(T') is an integer optimization criterion argdis a threshold value, the constraint is
called an optimization constraint. Properties of optitti@acriteria, such as additivity and
structure independence, extend to optimization consdgain particular, ifg(T") returns a
vector of valuesf can also be a vector of thresholds, each of which should sfiedt

4.2 Showcases

In this section we list several existing decision tree leagproblems. Our aim is to explain
how such problems can be solved exactly and generally inraaréwork. We distinguish
two classes of mining problems.

1. Traditional learning settings in which the focus is priityeon finding highly predictive
trees; these settings differ in the criteria used to meakerpredictive value of a tree and
achieve generalization. We take as examples the treefratgorithms, the Bayesian
learning setting, and dyadic decision tree construction.

2. A learning setting in which the focus is less on accurany, the primary focus is on
finding trees that also satisfy other desirable criteria.ts#e as examples cost-based
tree learning and privacy-preserving tree induction.

By showing such a diverse list and by combining differentisgs, we hope to convince the
reader that our categorization of constraints is very gadraard that the scope of our exact
algorithm is not limited to the applications presented here

4.2.1 Error-based Pruning

In general we are interested in predictors that perform eellnseen data. The idea be-
hind error-based pruning, which was developed as a prunaagaore in the C4.5 algorithm
(Quinlan, 1993), is to estimate the true error rate of a |leafrgthe empirical error. An
internal node is then turned into a leaf if this reduces thererstimate for the node.

The true error is estimated by assuming that the class laife¢lee examples are the
result of sampling with the unknown true error rate. Consedjy, the observed errors are
binomially distributed, and a worst-case estimate on the &rror can be computed from
the observed error. It can be shown that the number of erstira@&ed by this procedure in
a leaf is at leasd.5 higher than the empirical error count. Hence a tree with niaayes is
penalized when compared to a tree with few leaves; impliaithe can think of the error-
based pruning criterion as the sum of error and a penaltyfierthe size of the tree, where
the penalty term per leaf is dependent on the class distribirt the leaf.

In our framework, we can see the pruning measure as an optiovzcriterion. Let us
denote the estimated error of a Igafvith ee(I), then we are minimizing

f(T)= > el
Icleaves(T)

Consequently we can categorize C4.5 error-based pruniagging anadditive, struc-
ture independent optimization criterion.
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In C4.5, pruning is often only applied to an existing treeudlly, this is done in a heuris-
tic fashion: for instance, for each internal node in the tréetested in some order whether
it is beneficial to replace the node by a leaf; additiondiltyng a subtree is sometimes also
considered, in which case an internal node may be replac#telsubtree of one of its chil-
dren if this improves the score. It is not always clear in whicder these operations need
to be performed. Within our framework, we can also formutate problem of pruning an
existing tree, which allows us to solve it in a non-heuristay. Given a predefined tre®,
we are only interested in finding a tré&& which minimizesf,(7”) under the constraint that
every leafl’ in T’ is a subset of a pathin 7. This constraint ipath conjunctive, struc-
ture dependent and anti-monotonic The benefit of starting from an existing tree is that
the search-space of decision trees is significantly résttin this way.

4.2.2 Optimal Dyadic Decision Trees

Similarly to what we aim for in this article, Blanchard et £007) studied how to learn
optimal dyadicdecision trees. Dyadic trees are trees on numerical datdichvthe dis-
cretization is limited to equi-width binning with a numbdrtons that always is a power of
2. Tests are hence always of the kimd> i(r — 1)/2° + I, where([l,r] is the range of the
attributea and0 < i < 2¢ and¢ > 0 are integers; parametéris determined during the
learning procedure. To limit the complexity of this leamiproblem, in (Blanchard et al.,
2007) the problem of learning optimal dyadic decision tngas constrained as follows:

— The optimization criterion is a function
error(T) + X - size(T)

where) is a regularization parameter that is determined on vatidatata. Note that this
function is the sum of two additive optimization functioasd is hence alsadditive;
compared to error-based pruning large trees are punishectlgliin this case.

— The first constraint imposes a threshold on the number of festeach numerical at-
tribute. This is aranti-monotonic, structure dependent, conjunctivepath constraint:

Soleaf(j) = Qinternal (1, 11, I2) = /\ [INI(a)| <k,
a

wherel(a) is the set of items corresponding to tests on attribyute

— The second constraint states that every gatfhich contains a split > v on attribute
a must also contain a split for valud (v — 1)/2| + 1 and2[(v — 1)/2] + [, except
for values! or r of that attribute. We can model this as imernal node constraint
Ginternat(L, T U {i}, T U {=i}) which is true iff: is a test that is allowed in itemsét

— It does not make sense to continue splitting for leaves tbatat contain examples.
Therefore, internal nodes are required to have non-zerpastifHowever, leaves with
zero support are allowed, as they can be necessary to altfawdce fine-grained splits
later on.

4.2.3 Bayesian Probability Estimation Trees

In (Buntine, 1992),(Chipman et al., 1998),(AngelopoulosC&issens, 2005) a Bayesian
approach was proposed for weighing decision tree size acidide tree accuracy, hence
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providing an alternative strategy for finding trees which both accurate and small. It is
assumed that a prior is given on the structure ofgfidability estimation trees

p(T|D) = H P7Lode(I:T7 D)
Iepaths(T)
where
1, if children(I) =0;
Pooae(I, T, D) = 1 —a(l j—ﬁm)_ﬁ, if Iis aleafinT andchildren(I) # 0;
a1+ 1)) otherwise;

children(I)’

Here children(I) is the number of tests that can still be performed to spliteka@mples

in tid(I); D is the training data, excluding the class labelsand 3 are parameters. In
(Buntine, 1992; Chipman et al., 1998; Angelopoulos & Cuss2a05) the prior only allows
for paths that contain at least a minimum number of examplég;h corresponds to the
anti-monotonic, structure independentminimum support constraint.

The distinguishing feature of density estimation treekas they have class distributions
in the leaves instead of single class labels.

Given the Bayesian setting, in (Buntine, 1992; Chipman ¢t1898; Angelopoulos &
Cussens, 2005) a prior distribution over the parametersdefised, as well as the proba-
bility of the training data given a tree structure and itsapaeters. After rewriting, we can
formulate this optimization criterion as follows:

fo(T) = —log(p(c|T, D)) — log(p(T'|D)).

where

p(c|T, D) =

1 (1769) (Rt 50 )

hereI" is the standard gamma function that extends the factoriedabnumbers; vector
a. is a parameter of the optimization criterion. Vectorepresents the class labels of the
training examples. The overall optimization criteriomfditive and structure dependent

Icleaves(T)

4.2.4 Cost-Sensitive Decision Trees

A benefit of decision trees is that they are easily interjnletanodels that can be used as
guestionnaires. For instance, in the medical domain, sibeciree can be interpreted by a
doctor as a sequence of tests to diagnose a patient; anngsuctampany can interpret it
as a sequence of questions to determine if a person is aldesitastomer. In such cases,
the application of a tree on an example incurs a certain ewsty question might require a
certain amount of money or time to be answered. Furthernifoaeperson is classified in-
correctly, this might induce additional costs, in termsxgected missed revenue, or higher
treatment costs. To induce trees under such cost constraigorithms for decision tree
induction under cost constraints have been proposed (Y,ut885; Esmeir & Markovitch,
2007a).

Formally, these algorithms assume that the following imfation is given:

— ac x c misclassification cost matrig whereQ; ; is the cost of predicting that an
example belongs in clagswhen it actually belongs in clags
— for every attribute, a costtg; for a test on this attribute;
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— for every attribute, a groupg; that it is contained in;
— for every groupy, an additional costg, for the first test on an attribute in this group.

The motivation for having both a cost per group and per atteilis that it is often cheaper
to ask related questions or perform related medical tesistefore later tests in a group of
related tests are usually cheaper.

For a pathl € leaves(T) we can formally define the cost of classifying an example in

tid(I) as follows:
tg()=> tai+ > tqg
i€l ge{giliel}

The expected costs for performing the tests in a tree areftirer.

fum = S Dy,

Icleaves(T) ‘D|

The expected misclassification costs are:

fmqm:ﬁ S S Qe frege(l).

I€leaves(T) ceC

Combining these costs, the following criterion was propoéturney, 1995; Esmeir &
Markovitch, 2007a), which iadditive and structure dependent

fa(T) = ftqg(T) + fma(T).

A possibility which has not been studied in the literatusethie use of costs in path con-
straints. This may also be useful in practice. For instaassume that the cost of a test is
expressed in terms of the time that is needed to perform ghewhile the misclassification
cost is in terms of dollars. Combining these costs in a singéasure would require time
to be expressed in monetary terms, which may be undesirablempractical. An alterna-
tive could be to explicitly search for a tree that minimizgs, (7'), under the constraint that
tq(I) < maatime, for every itemsef € leaves(T). Thisconjunctive, anti-monotoniccon-
straint would allow us to find inexpensive trees that havenbislon prediction times. One
could evaluate such a query for multiple valuesrafztime to come to a well-motivated
trade-off between classification time and misclassificatiosts.

4.2.5 Privacy Preservation

The main motivation behind privacy preserving decisiore tiearning, such as first per-
formed by Friedman et al. (2006), is as follows. Assume westaeredit card company
with a databasé in which good and bad clients are distinguished from eackrofthe
company learns a decision tree on this data, and uses taitteecept or reject customers.
Then regulations may require that the company publishestitbé. How can the company
avoid that the tree provides information about individusdtomers in its database?

By Friedman et al. (2006) the followiregtackwas studied. Assume that an attacker has
public information, such as the address and telephone nuaflze customer, and wishes
to know if this customer is a good customer. How can the comgasure its customers
that the prediction that an attacker obtains from the trémgysublic information, is never
based on less thanindividuals, and hence, can never be traced to one indivmisgiomer?
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This problem can be formalized as follows: we wish to find & frewhich the following
constraint is satisfied for every examplim the data:

Z freq(I'y > k
I'€leaves(T)
(I/ml—publzc)g(tml—publw)

here, T, represents attributes assumed to be publicly availabigbutes inZ,.;yqze
are not publicly available. The constraint expresses tiparicular exampleé may not end
up in a set of leaves containing in total less thaexamples, if we assume that for private
attributes we try both branches when we pass the example tfeatnee. This constraint is
anadditive and structure dependentoptimization constraint, and needs to be applied for
every customer. We will see that such a large number of cainstris hard to deal with in
our framework. However, if we do not wish to make assumptedsut which attributes are
private, and all attributes except the target are assumblicpthe constraint reduces to a
minimum support constraint.

Itis known in the database community that the protectionipiex by thisk—anonymity
is limited (Sweeney, 2002; Samarati, 2001; Machanavaijbtdl., 2007), in particular when
regulations require the class distribution of the decisiea also to be provided. As solution
to address this problem the-diversity principle was proposed. Using our framework, we
can extend—diversity to decision tree learning:

— underk—anonymity the prediction performed by a leaf may be 100% &teuf there
is no diversity in the class labels. To ensure customersattree never performs a 100%
accurate prediction — and hence, every customer could befdahe exceptions to the
prediction of the tree — we could require that the class ifligtion in every leaf has
sufficiently high entropy, i.e.,

: _ gy ((freai(I) freqs(I) freq (1) ,
VI € leaves(T) : Hy(I) = H ( freql( 7 fm;(l) o (D ) > ¢,

here,H (p1,...,pn) computes the entropy of a distribution,

n
H(pi,pa,---,pn) = — »_ pilogpi.
=1

This constraint is @onjunctive, non-anti-monotonic, structure independent
— in addition to a high diversity on class labels, we can alspiire a high diversity for
other attributes by imposing as constraint:

freq(child1(I,T)) freq(childg(I,T))) >
freq(I) 7 freq(I) -

This constraint avoids the following type of leak: in manges the most accurate de-
cision trees are obtained when the supports in the leaveh tha frequency threshold

k. If an attacker knows thig, the attacker could derive how many examples are ap-
proximately in which part of the tree, and could gather anrespion of the values of
attributes used in internal nodes. By requiring tests to éopmed on balanced at-
tributes, some information is leaked; however, this infation is often least useful.

VI € internal(T) : Hin(I) = H <

Observe that these constraints can be hard to optimize ibioation with accuracy. Indeed,
¢—diversity and accuracy are opposing requirements; taaditientropy-based decision tree
learners discourage high entropy in the leaves.
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5 Building Optimal Decision Trees from Lattices

In this section we develop an algorithm for finding decisiges. Given our categorization
of the previous section, these are the requirements foath@ithm:

1. The optimization criterion must be additive.

2. The constraints must be either conjunctive over pathasedbon an additive optimiza-
tion criterion.

3. There should be at least one anti-monotonic path constrai

As seen in the previous section, we decompose a query in iibeviiog components, some
of which may be empty:

— the anti-monotonic leaf constraitcqs antim (1);

— the leaf constraing;.qs (I), which includes the anti-monotonic leaf constraint;
— the internal constraing;,;c,na (1, I1, I2);

— the leaf optimization criteriotf;..s (I);

— the internal optimization criteriof;,,scrnai (1, 11, I2);

— the leaf optimization constraigi.,s (1);

— the internal optimization constraint,;c,nai (1, 11, I2);

— the optimization constraint threshold)

The algorithm, which we called DL8 (Decision Trees from ia#s), is based on the link
between itemset mining and decision tree learning. In thdsien, we first discuss how to
compute trees from itemset lattices. Next, we discuss hawmapute these lattices, where
we consider two options:

1. Building the trees from pre-computed itemsets (thedatis computedeforebuilding
the decision trees).

2. Integrating itemset mining into the decision tree carton (the lattice is computed
while building the decision trees).

Finally, we study how queries can bmwrittento improve the efficiency of their evaluation
in our algorithm.

5.1 Building Decision Trees from Lattices

The algorithm for constructing decision trees from lasicegiven in Algorithm 1. Its main
component is the DL8-RCURSIVE procedure, which is called for an itemset and computes
decision trees for that itemset. The main reasons why DL8dgenefficient than riae
enumeration algorithms are:

— We optimize the left-hand and right-hand branch of a nodetir@independently from
each other, hence avoiding that we enumerate all possibibications of sub-trees for
the left-hand and right-hand branch of a test.

— When we compute a tree for an itemset, we store the resultiearse it later on, hence
avoiding that we compute the same result for other posstalers in which the same
tests can occur in a path.

— We do not recurse the search when the anti-monotone cartsteae not satisfied.

The correctness of this approach follows from the followfiacts.
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Algorlthm 1 DLS(Soleaf,antimv Pleaf s Pinternals fleaf7 finternab Gleaf > Jinternals 0)

1: 7 «DL8-RECURSIVH()
2: Computeargmingp 1 1. f

3:
4: procedure DL8-RECURSIVHI)
5 if DL8-RECURSIVHI) was computed beforthen
6: return stored result
7 end if
8 initialize 7 to be an empty associative array with doméiy. .., 0}
9: if Vieqr (1) then
10: T .tree < leaf (c(I))
11: T.f— fleaf(l)
12: T.g — Gleaf (])
13: if T.g < 6then
14: TTgl=T
15: end if
16: end if
17: forall i € Z do
18: if ‘Pinternal(lv Iu {7’}7 Iu {"Z}) and
19: @leaf,antim(l U {Z}) and Pleaf ,antim (I U {_'Z}) then
20: 71 < DL8-RECURSIVE(I U {i})
21: T3 <« DL8-RECURSIVE(I U {—i})
22: forall Ty € 77,7% € 72 do
23: T.tree < node(i, Ty .tree, Ts.tree)
24: T.f f'mte'rnal(17 Tu {7’}7 Tu {_'Z}) +T.f+Te.f
25: T.9 + Ginternat(I, T U{i}, TU{=i}) +T1.g + To.g
26: if T.g < 0and(7T[T.g]is emptyor T[T.g].f > T.f) then
27: T[Tyl =T
28: end if
29: end for
30: end if
31: end for

32: store7 as the result for and returnZ”
33: end procedure

— We consider queries which are additive and conjunctive, lemtte, we can evaluate
optimization criteria and constraints for the left-hand aight-hand branch of a node in
a tree independently from each other.

— All constraints and optimization criteria are computedifemsets, independent of the
order of the items in these sets.

— If an anti-monotonic constraint is not satisfied for a pathy &iee which contains this
path cannot be a solution to the query either.

If x is the number of edges in a lattice, the complexity of the @llgm is ©(x), as we
consider every edge in this lattice exactly once.

In our algorithm, we use several data structures. The maan steucture is the one in
which the lattice is stored. For every itemdetve have an associative data structdre
which allows us to associate a tree and its attributes to toved integers. In case no
optimization constraints are specified, this structiireontains at most one tree. Note that
at the implementation level we do not need to store assacis¢es in their entirety: it
is sufficient to only store the roots of these trees, as thérese can be recovered from
the lattice recursively, by searching for the trees assedito the left-hand and right-hand
branch of an internal node.

In more detail, our algorithm works as follows:
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Line 8: For each possible value that the optimization cesstrcan take we will store one
associated tree. Initially, this data structure is emputeNthat we require an optimiza-
tion criterion that is used as optimization constraint teehan integer codomain.

Line 9-14: In case the itemset corresponds to a possiblevesihitialize this leaf and its
statisticsT". f andT.g.

Line 17-31: We iterate over all possible tests to split thenegles further.

Line 19: For a possible test, we determine whether or not watera tree in which this test
is a valid internal node; furthermore we determine if we tadao paths that can be part
of a tree in which the anti-monotonic constraints are setsfi

Line 20-21: If we can satisfy the constraints, we determimgeltest trees for the left-hand
and right-hand branches, independently from each othéh; dals return sets of trees,
each tree associated to a vector of integers, each integersenting a possible value
of one of the optimization constraints for the tree (if we dii have an optimization
constraint, each set contains at most one tree).

Line 22—-29: We consider all combinations of left-hand agthtihand trees.

Line 27: The optimization constraint of the generated tseevialuated; if the best known
tree for this constraint value is improved, we store the rmew.tWe only need to store
intermediate trees for which the optimization constrasmat higher than the threshold
value, as the additivity means that other sub-trees carepah of the final tree.

5.2 Computing Lattices Beforehand

While DL8 is executing, it needs to evaluate constraintetam the data. In this section
we study the following question: assuming that we would li&euse an itemset mining
algorithm beforehand to find the itemsets and their progeiti the data, which constraints
should we use in this itemset miner? In other words, how do ughghe decision tree
mining constraints in the itemset mining process?

First, let us consider why we may be interested in separétimgxecution of DL8 from
the itemset mining process. We believe there could be twapresfor this.

1. There are many optimized itemset mining algorithms; bggithese, we exploit these
optimizations, and reduce implementation efforts.

2. We might consider decision tree construction as one pam iteractive data analysis
process, in which it could be of interest to know in which case can reuse a set of
itemsets to build multiple decision trees.

The main class of constraints used by itemset miners is tes @fanti-monotoniccon-
straints. We can see that if we find all itemsets satisfying ,n:im (I), We find sufficiently
many itemsets to build decision trees for the casedha} ,n:im (1) is the leaf constraint. A
more interesting question is the reverse question: arbedktitemsets needed? The follow-
ing example illustrates that this is not the case. Assumie{tha is a frequent itemset, but
{—A} is not; then no tree will contain a test on featuteas one of the branches resulting
from this test will lead to an infrequent leaf. Consequeritmset{ A}, even though fre-
qguent, is redundant. The following explains how we can dttar&ze the itemsetelevant

to decision trees induction.

If we consider the DL8 algorithm, an itemset= {i1,...,i,} iS needed only if there
is an ordeffig, , ig,, . -, , ] Of the items inI (which corresponds to an order of recursive
calls of DL8-RecURSIVE) such that for none of the proper prefix@s= [iy, ,ir,, . . ., ix,,]

(m < n) of this order:
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— theinserna (', 1" Uik, . }, 1" U{~iy,, ., }) predicate is false;
— the conjunctionpeag, antim (I' U {ik,, 1 }) A Pieaf,antim (I U { iy, ., }) is false.

Definition 2 Let vieqf, antim D€ an anti-monotonic constraint ang, ..., be an internal
constraint. Then theelevanceof an itemset’, denoted byrel (1), is defined by

Pinternat(1), if 1 =10 (Case 1)
true, if 3¢ € I such that
rel([) = rel([ - Z) A Pinternal (I - i, I, I—4U {ﬁi})/\
Pleaf ,antim (I) A (Pleaf,antim(j —iU _‘i) (Case 2)
false, otherwise (Case 3)

Theorem 1 Let £, be the set of itemsets stored By 8, and let£, be the set of itemsets
{I CI|rel(I) = true}. Thenly = Ls.

Proof We consider both directions.

“=":if an itemset is stored by DL8, there must be an order of thens in which each prefix
satisfies the constraints. Then we can repeatedly pick #tetéan in this order to find the
items that satisfy the constraints in case 2 of the defintiore!(1).

“<" if an itemset is relevant, we can construct an order in Whfee items can be added
in the recursion without violating the constraints, asdets. For a relevant itemset there
must be an itemi € I such that case 2 holds. Let this be the last item in the orben t
recursively consider the itemsgét- . As this itemset is also relevant, we can again obtain
an itemi’ € I — 4, and put this on the second last position in the order, anahso o

If we assume that the internal constraint is also anti-mamiof relevancecan also be
used in itemset miners that exploit anti-monotonic comstsa

Theorem 2 If both the internal constraint and the leaf constraint argiamonotonic, item-
set relevance is an anti-monotonic property.

Proof By induction. The base case is trivial: if thhidtemset is not relevant then none of its
supersets is relevant. Assume that for all item$gtsX up to size| X | = n we have shown
that if X’ C X: —rel(X') = —rel(X). Assume that” = X Ui and thatX is not relevant.
To prove thalt” is not relevant, we need to consider evgry Y, and consider whether case
2 of the definition is true for thig:

— If i = j. certainlyY — i = X is not relevant;
— If i #£ 5. We know thatj € X, and given thafX is not relevant, either:
— rel(X — j) = false: in this caserel(Y — j) = rel(X — j U14) = false (inductive
assumption);
— Qleaf,antim (X) = false: in this casepjcqf antim (Y') = false (anti-monotonicity of
Soleaf,antim);
- Qoleaf,antim(x —jU—j) = false: in this Cas&"leaf,antim(y -Jju _‘]) =
Pleaf ,antim (X —juU-ju Z) = false (anti-monotonicity Of@leaf,antim);
— Pinternal,antim (X — j) = false: in this casepinternal, antim (Y — ) =
Pinternal,antim (X —ju Z) = false (anti'monOtoniCity Otpinternal,antim)-
Consequentlyyel(Y') can only befalse.
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It is relatively easy to integrate the computation of rete&in both breadth-first and
depth-first frequent itemset mining algorithms, as longhasarder of itemset generation is
such that all subsets of an itemdedre enumerated befofes enumerated itself.

We implemented two versions of DL8 in which the relevancest@ints are pushed in
the frequent itemset mining process: DL8® ORI, which is based on ARIORI (Agrawal
etal., 1996), and DL8-ELAT, which is based on & AT (Zaki et al., 1997a).

5.3 Computing Lattices on the Fly

The second option is to access the data while building detisees. One reason for doing
this could be to avoid possible overhead caused by tragtbim lattice multiple times.
Another, more important, reason involves the possibibtyse closed itemsets effectively.

The main observation that we exploit to this purpose is thatei are dealing with a
structure independermjuery we can restrict our attention to an even smaller saenfsets
than the relevant itemsets.

The main reason for this is that if two itemsétandI’ cover the same set of examples
(i-e., tid(I) = tid(I')), and the query is structure independent, the tree(s) wefdindoth
itemsets must be the same. To reduce the number of itemaetgdlihave to store, we should
avoid storing such duplicate sets of results.

To ensure that results are re-used between itemsets cge@atly the same examples,
we propose to compute for every itemsetdtesure The closure of an itemset is the
largest itemset that all transactionstid (7) have in common. More formally, letems be
the function which computes

items(tids) = Ngetidsth

for a TID-settids, then theclosureof itemsetl is the itemsettems(tid(I)). An itemset! is
calledclosediff I = items(tid(I)) (Pasquier et al., 1999). tid (1) = tid(I2) it is easy to
see that alsétems(tid(11)) = items(tid(12)).

We can use this observation by modifying DL8: instead of eiséimg decision trees to
itemsets, we associate decision trees to closed itemsetsh#lvige line 5 such that it checks
if a decision tree has already been computed for the clodufeio line 32, we associate
computed decision tree(s) to the closurd afistead of tal itself. We refer to this algorithm
as DL8-Q.0SED.

In practice this means that we build a data structure of did®sensets instead of ordi-
nary itemsets. Lattices of closed itemsets are also knownrasept latticesclosed itemsets
are also known aformal conceptsand have been studied extensively in the literature (Gan-
ter & Wille, 1999). In principle, one could also develop apsteise approach in which one
first computes closed itemsets and subsequently minesaletises. However, in our al-
gorithm we do not only need the closed itemsets; we also reedetationships between
them, i.e., if we add an item to an itemset we need to know wietlosure of the result-
ing itemset is. In other words, we do not only need to know tvenfil concepts, we also
need to know the edges in the Hasse diagram of these iterS¢etsg these edges would
not only increase the memory requirements of our algoritthetermining them in a post
processing step is also not straightforward: &ealgorithm for computing this diagram
would take quadratic time, while also lessverecent algorithms (such as (Baixeries, Sza-
thmary, Valtchev, & Godin, 2009)) require significant cortgiion times. An approach in
which itemsets are mined and decision trees are built atehreegime hence seems more
promising. The remainder of this section is devoted to alirmuof the choices that we made
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in the integrated approach that we used in our experimehts.approach builds on choices
that are commonly made in closed itemset mining algorithms.

The main idea is that during the search, we keep track of these and transactions
that are ‘active’. As parameters to DL8ERURSIVEWe add the following:

— the item: that was last added th

— aset ofactive itemswhich includes item, and represents all tests that can still be added
to the itemsef — ;

— a set ofactive transaction identifieneepresentingid(I — i);

— the set of all itemg’ that are in the closure df — 4, but are not part of the set of active
items.

In the first call to DL8-ReCURSIVE, all items and transactions are active. At the start of
each recursive call (before line 5 of DL8ERURSIVE is executed) we scan each active
transaction, and test if it contains the last added itefor each active transaction that con-
tains itemi, we determine which other active items it contains. We ussesitan to compute
the frequency of the active items, and build the new set df@dtansaction identifiers
tid(I). Those active items of which the frequency equals that, afre added to the clo-
sureC. If it turns out we have encountered this closure before,etern the corresponding
previously computed result. Otherwise, we now build a nemo§active items. For every
item we determine ifcqr antim (I U{4}), Qieaf,antim (I U{—i}) and the internal constraint
Ginternal (L, T U{i}, [ U {—d}) are true; if so, we add the item to the new set of active items.
In line 17 we traverse the set of active items. In line 20 andh&lupdated sets of active
transactions and active items are passed to the recurdiseRBycomputing the closure of
every itemset, we traverse the Hasse diagram of closedétems

Our approach for maintaining sets of active transactiorekis to the idea of main-
taining projected databases that is implemented anA& (Zaki et al., 1997a) and FP-
GROWTH (Han et al., 2000). In contrast to these algorithms, we knowur case that we
have to maintain projections that contain both an itexnd its negatior:. As we know that
[tid(I)| = |tid(I U%)| + |tid (I U —i)|, itis less beneficial to maintain TID-sets as IDLEAT,
and we prefer a solution in which we call DL8ERURSIVE with the set of active transac-
tionstid(I —4) instead oftid(I). We project a transaction set by reordering the transagtion
in an array. Consequently, the memory use of our algorithdeisrmined by the amount of
memory that is needed to store the database and the closeskiewith associated infor-
mation. Per closed itemset we only store the associatieg @rfor later retrieval; to reduce
memory demands, we do not store support values, edges obbsetiagram, or TID sets.
A tree in the associative array is only represented by itsmode, as any subtrees can be re-
covered recursively from information associated to ottensets. The information that we
store for every itemset is hence only determined by the opdition criteria that are used;
if we assume the query given, the information stored perstdris constant. Consequently,
the memory use i8(|D| + |S|), where|S]| is the size of a data structure storing all closed
itemsets.

Even though we hence attempt to limit the memory requiredusyatgorithm, it should
be repeated that the number of closed itemsets can be exj@irethe size of the database;
in practice the complexity remains high.

5.4 Efficiency improvements

A common trick to improve the efficiency of constraint-basedrch is to rewrite constraints
or to add redundant constraints. For instance, both in relsefevoted to constraint pro-
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gramming and to database systems it is common to rewriteéespuer a form which can be
more efficiently evaluated. While some systems —databagersg for instance— attempt to
optimize certain queries, in many cases such optimizasiatili a manual effort that is un-
dertaken by a programmer. A similar observation can alsodmerfor decision tree learning
gueries. The aim of this section is to suggest the use of qemjting to improve the over-
all efficiency of our algorithm. We illustrate this for twosles that can be performed by our
algorithm. We leave the topic of general query optimizatisrfuture work.

Finding the Smallest Most Accurate Tréet us consider the following query:

argrrqlén(ermr(T), size(T)) subject top(T) = VI € paths(T) : freq(I) > minfreq

Te

We can optimize this query further by the following simplesebvation: if a tree contains an
internal node which is pure, we can remove the tree belowntesnal node to obtain a tree
that is equally accurate but smaller. Hence, in the smathest accurate tree we will never
have pure internal nodes. We can pose this as an additi@tkindant internal constraint,
and push this in the mining process. In the following theomenshow that this constraint
on the global model can even be relaxed further to pruneiaddititemsets during the local
pattern mining step.

Definition 3 For a given itemsef, let us sort the frequencies in the classes in descending
order,freq; > ... > freq,, (hencefreq, is the frequency of the majority class). L@tnfreq
be the minimum frequency used to build the lattice. An itemisealmost-puref (minfreq—

Yi freq; (1)) > fregs(1).

Theorem 3 If freq(I) > minfreq, almost — pure(I) = true and classk is the majority
class inI, then for allI’ > I such thatfreq(I') > minfreq, classk is the majority class of
r.

Proof Let class 1 be the majority class in the examplestid(I). Thenfreq(I) > minfreq <
S freq;(I) > minfreq < freqi > (minfreq — > i, freq;(I)). Sincel is almost-pure
we know that(minfreq — >_7"_ o freq;(I)) > freqgo(I) > 0 & Vi,2 < i < n, freg; <
minfreq.

For classk (k # 1) to be the majority class il with I’ O I andfreq(I') > minfreq, the
number of examples of clagsin I’ should be higher than the minimum number of exam-
ples from clasd that will still be in I’. This number is at leagtninfreq — >, freq;(I)).

So, fork (k # 1) to be the new majority class iff, we must havefreq, > (minfreq —

S o freq; (1)) which contradicts the definition of loose-purity fbrtherefore class$ must
be the majority class if'.

Intuitively, the previous theorem states that if the fregmeof the examples belong-
ing to the second majority class is low enough, splittingttee again will never increase
its global accuracy. Hence, if we are searching for accuaatesmall trees, we can pose
the (redundant) constraint that every internal node shoatde almost-pure to obtain the
correct result.

Finding the Smallest Sufficiently Accurate TrAesume we wish to answer the following

query:
argmin size(T') subject tap(T)
TeT
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Table 1 Dataset description

Dataset | #Ex | #Features|| Dataset | #Ex | #Features

anneal 812 36 pendigits | 7494 49
a-credit 653 56 p-tumor | 336 18
balance 625 13 segment | 2310 55
breast-w 683 28 soybean | 630 45
chess 3196 41 splice 3190 3466
diabetes 768 25 thyroid 3247 36
g-credit 1000 77 vehicle 846 55
heart-c 296 35 vote 435 49
ionosphere| 351 99 vowel 990 48
mushroom | 8124 116 yeast 1484 23

where

»(T) = error(T) < mazerror A size(T) < mazsize A
(VI € paths(T) : freq(I) > minfreq).

In principle we could maintain for every itemset a set of $reé size O(mazerror x
mazsize), but such an approach demands the computation of a very nargéer of trees
for every itemset.

Assume now that we execute the following query:

argmin error(T) subject top(T)
TeT

where
p(T) = size(T) < mazsize A (VI € paths(T) : freq(I) > minfreq).

Then we can observe that to answer this query, DL8 will findefeery possible size up to
the maximum size, the most accurate tree of that size. Weasily enodify DL8 in line 2
to answer our original query, as it suffices to find the smatteg in this set which satisfies
the accuracy constraint.

6 Experiments

The aim of this section is to answer the following questions :

1. How does an exact tree learner, such as DL8, compare td-&meein heuristic learner
in terms of the compromise between size and accuracy?

2. What is the influence of DL8’'s mandatory constraint (th@freq constraint) on the
accuracy of the trees it learns?

3. How well does DL8 perform on non-traditional tree leaghgmoblems, such as learning
decision trees under cost or size constraints?

With respect to efficiency, we aim to answer the following sfiens:

4. How much do the constraints on the trees help the locapeattining phase?
5. How much does restricting the search to closed itemsgtoie the overall efficiency?
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The experiments were performed on UCI datasets (Asunciom®&rian, 2007). Numerical
datasets were discretized usingeWA's (Witten & Frank, 2005) unsupervised discretization
method with an equal-frequency repartition and a numbeirsf équal to 4 before applying
the learning algorithms. We limited the number of bins inesrtb limit the number of
created features. Table 1 gives a brief description of thasd#s that we used in terms
of the number of examples and the number of attributes afterization (features). All
experiments were performed on Intel Pentium 4 machines iwiletween 1GB and 4GB
of main memory, running Linux. DL8 and the frequent itemséatars were implemented
in C++.

6.1 Quality Evaluation

In this section we determine the performance of DL8 when mgitiees under constraints.
Thus, we aim at answering Questions (1), (2) and (3). Notenhiédnplementation of alter-
native exact decision tree learners is available. As a lees& evaluate our results, we
decided to use J48, the Java implementation of the heudstitsion tree learne€4.5
(Quinlan, 1993) in VEKA. Without guaranteeing an exact solutidt¥.5 supports some
constraints, such as a minimum support on nodes after a gglith corresponds to the
anti-monotonic “frequency” constraint in our cas&4.5is known to generalize well and
give good test accuracy results on many machine learnirtyers.

To answer Question (1) and, in particular, to evaluate tharacy of the trees computed
by DL8 on test data, we obviously cannot optimize the tesasetiracy directly (and thus
we cannot guarantee better results on test data): we neguinoize regularized measures
on the training data if we wish to avoid overfitting. When gsthe standard error function
(error) for C4.5 we letC4.5continue splitting as long as the training set error is reduc
and the frequency constraint is not violated. When usingelaced-error functionfg) the
default pruning criterion ifC4.5is applied.

We used a stratified 10-fold cross-validation to computérhiaing and test accuracies
of both systems and a corrected two-tailed t-test (Nadeate8g®, 2003) with a signifi-
cance threshold of 5% to compare the test accuragigglicates that no significant differ-
ence was observed, indicates that J48 is significantly better,that DL8 is significantly
better.

As explained in Section 5, the bottleneck of our algorithrthis itemset mining phase
and the in-memory construction of the lattice which is pdrthis phase. Therefore, the
application of our algorithm is limited by the amount of memavailable for the construc-
tion of this lattice. In the following experiments, unlesesified differently, theninfreq
threshold used for DL8 for each dataset is the lowest one wielese for the given dataset
without running out of memory.

6.1.1 Heuristic versus Exact Decision Tree Learning

The main alternative for our approach is the heuristic aggno Results for the heuristic
approach can provide us a lower-bound on the accuracy thdtecachieved on the datasets
that we use in this article. Similarly, in order to study tHéeets of constraints that we
will use later in our experiments, it is of interest to deterenthe accuracies that DL8 is
able to achieve when using the least restrictive constossible, which we assume to
be theminfreq = 2 threshold used in J48. Results for this setting, when apglte 1,
optimization criterion, are given in Table 2 for those datasvhere the use of this support
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Table 2 Comparison of J48 (with pruning, without constraints) andRWith pruning, without constraints)

Train acc. Test acc. Test significance Size

Datasets| DL8 | J48 | DL8 | J48 Disc.| J48 NoD. | Disc. | NoD. J48 | DL8
anneal | 0.87 | 0.86 | 0.82 0.82 0.88 0 - 444 | 456
balance| 0.89 | 0.89 | 0.80 0.80 0.79 0 0 724 | 65.4
breast-w| 0.98 | 0.97 | 0.96 0.96 0.95 0 0 15.6 18.0
diabetes| 0.92 | 0.84 | 0.71 0.74 0.73 0 0 69.0 | 135.2
heart-c | 0.97 | 0.90 | 0.77 0.78 0.80 0 0 316 | 50.2
p-tumor | 0.67 | 0.60 | 0.40 0.40 0.40 0 0 81.2 | 105.2
yeast| 0.75 | 0.68 | 0.50 0.53 0.56 - - | 186.0 | 307.2

threshold is feasible for DL8. We used this pruning criterés both DL8 and J48 overall
achieve the best test-set accuracy for this criterion (notve here).

An important element of our approach is the discretizatiobinary attributes, which
is not needed in J48. To determine the influence of our digetéin on the resulting trees,
we applied J48 both on the original, undiscretized data heddiscretized data that was
also used as input to DL8. The table shows that the optimasttemputed by DL8 have a
better training accuracy than the trees computed by J48thétkame discretization. When
pruned trees are compared to unpruned ones (see Table 3)edlseare on average 1.75
times smaller for J48 and 1.5 time smaller for DL8. After pngj DL8’s trees are still
1.5 times larger than J48’s pruned trees. In one case (l&koade), the tree computed by
DL38 is significantly smaller on average (65.4 nodes) thanotte computed by J48 (72.4
nodes) for a similar test accuracy. Furthermore, on theltdst there is almost no significant
difference (expect for thgeastdataset) between J48 and DL8.

This shows that the quality of the trees computed by DL8 remabmpetitive with
J48’s one. However, using a simpler heuristic decision leaener is sufficient to obtain
good test-set accuracy and this might yield smaller trees.

Unfortunately, as can be seen in Table 3, the number of datimenhich a minimum
support threshold of 2 is feasible in DL8 is limited. Usingér thresholds could allow us
to compare our algorithm on a larger number of datasets. Atheence of this constraint is
hence studied in the next section.

6.1.2 Frequency Constraint

As the use of a frequency constraint is an important propgrour approach, we determine
the influence of this constraint.

As a baseline, we first run both J48 and DL8 on all datasetsh#towest value for
which the execution of DL8 is feasible. We used the trainieigesror error) as optimiza-
tion criterion. Table 3 shows that, when optimiziegor, for both training and test accura-
cies, DL8 is significantly better than J48 on 9 of the 20 ddatassd not worse in the other
cases. Hence, we can confirm that our results of the prevext®s also apply for other
values of the frequency constraint.

Secondly, we evaluate how different values of this mangatonstraint influence the
accuracy of trees learned by our algorithm. To this aim, abincludes runs of DL8 for
multiple minimum frequencies. We gradually decrease tegufency thresholds both when
usingerror and f, as optimisation criteria. As we lower the support thresbole observe
that the training accuracy increases, but the experimemth® 7 datasets for which we
were able to reach ainfreq of 2, indicate that for test set accuracy, low thresholdshate
always the best option. For example, Figure 3 shows the twnlof the training and test
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Table 3 Comparison of J48 (without pruning, with constraints) andRWithout pruning, with constraints)

minfreq Train acc. Test acc. Size
Datasets # % J48 | DL8 ‘ J48 | DL8 | Sign J48 | DL8
anneal 2 0.2 | 0.89 | 0.89 | 0.82 | 0.82 0 | 106.6 87.8
a-credit 40 6.1 | 0.87 | 0.89 | 0.85 | 0.88 + 6.4 11.0
balance 2 0.3 | 090 | 090 | 0.82 | 0.81 0 99.0 | 114.4
breast-w 2 0.3 | 098 | 1.00 | 0.95 | 0.94 0 31.6 48.0
chess 200 6.2 | 091 | 091 | 091 | 0.91 0 9.0 8.6
diabetes 2 0.2 | 090 | 0.99 | 0.68 | 0.66 0 | 200.2 | 288.4
g-credit 150 15 | 0.72 | 0.74 | 0.71 | 0.73 0 6.4 7.0
g-credit 100 10 | 0.73 | 0.75 | 0.70 | 0.70 0 6.4 11.6
heart-c 2 0.6 | 094 | 1.00 | 0.76 | 0.74 0 67.6 74.4
ionosphere| 50 | 14.2 | 0.83 | 0.86 | 0.79 | 0.84 + 4.0 7.4
ionosphere| 40 | 11.3 | 0.89 | 0.89 | 0.88 | 0.88 0 5.0 6.8
mushroom | 600 74 | 092 | 098 | 092 | 0.98 + 5.0 13.8
pendigits | 470 6.3 | 068 | 0.75 | 0.67 | 0.75 + 21.0 21.0
p-tumor 2 0.5 | 063 | 0.71 | 0.40 | 0.36 0 | 116.4 | 152.2
segment | 150 6.5 | 0.77 | 0.86 | 0.76 | 0.85 + 15.6 16.8
segment | 120 5.2 | 0.84 | 0.87 | 0.84 | 0.87 + 19.8 25.8
soybean 40 6.3 | 0.58 | 0.65 | 0.57 | 0.66 + 17.0 20.6
splice 700 | 21.9 | 0.74 | 0.74 | 0.74 | 0.73 0 5.0 5.0
thyroid 80 24 | 091 | 092 | 091 | 0.91 0 1.0 134
thyroid 40 12| 092 | 092 | 091 | 091 0 9.2 34.4
vehicle 50 59 | 063 | 0.71 | 0.59 | 0.67 + 17.0 22.4
vote 10 23 | 096 | 098 | 0.94 | 0.93 0 4.6 29.6
vowel 65 6.6 | 0.40 | 0.47 | 0.35 | 0.43 + 19.2 22.6
yeast 2 0.1 | 074 | 0.82 | 0.49 | 0.48 0 | 501.2 | 724.2

In these experiments tharor optimization criterion is used. The first two columns give théufreq thresh-
old in terms of absolute number and percentage of the examplesttbuld be covered by each leaf. The next
columns give respectively the training accuracies, testractes and size of the trees built by J48 and DL8
for the givenminfreq threshold. A significance comparison of the test accuradiésth systems (Sign) is
also given.

accuracies of both systems when optimizing the reducext-emction f, and increasing the
support. As expected, the training accuracies always dserehen the support increases.
However, this behavior is less clear for test accuraciesekample, for the diabetes dataset,
the test accuracies clearly increase with the minimum supploe main explanation for this
is probably that the support constraint acts as a regutarizparameter and helps to avoid
overfitting.

These experiments show that when both algorithms try tavopsi the same criterion
(here theraining set erro) using the same path constraint (support threshold), thetebe-
cision tree learner DL8 gives better results than the héuose. Furthermore, the manda-
tory constraint of DL8 is not necessarily a drawback wherkilog for decision trees with
high test accuracy.

Until now, the results confirm the intuition that high valdesthe frequency constraint
can lead to worse accuracies. Indeed, when in Table 4 we gentpa performance of
DL8 to J48 on datasets which were not included in Table 2, weende that the support
threshold can have a strong negative influence on the adesrachieved. For example, for
the pendigitsdataset, the support threshold that we reach for DI48(s(compared te@ for
J48) and the test accuracy drops froms for J48 to0.75 for DL8.

In such negative cases, the flexibility of DL8 can be partidylinteresting. For exam-
ple, when the lowest minimum frequency threshold for whigoweuld run our algorithm is
much higher than the number of examples in the smallest ofab® dataset, we can use a
disjunction of minimum support constraints for each classead of the classicatinfreq to
obtain more accurate trees. In this setting, every classénghe same (relative) minimum
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Table 4 Comparison of J48 (with pruning, without constraints) andRWwith pruning, with constraints)

In these experiments a pruning criterion was used, a frequimeshold of 2 for J48 and higher values for

DL8.

minfreq Test acc.

Datasets #1 % J48 | DL8
a-credit 40 6.1 | 0.84 | 0.88
chess 200 6.2 | 099 | 091
g-credit 150 15 | 0.71 | 0.73
ionosphere| 50 | 14.2 | 0.80 | 0.84
mushroom | 600 7.4 | 1.00 | 0.98
pendigits | 470 6.3 | 095 | 0.75
segment 150 6.5 | 095 | 0.85
soybean 40 6.3 | 0.82 | 0.66
splice 700 | 219 | 094 | 0.73
thyroid 80 24| 091 | 091
vehicle 50 59 | 0.70 | 0.67
vote 10 23 | 096 | 093
vowel 65 6.6 | 053 | 0.43

support constraint. In this way, we allow that a leaf covessrall number of examples if
all examples belong to the same small class, but we do net #ilat a leaf contains a small

number of examples if they belong to many different classet one big class. The results

of these experiments on the negative cases of Table 4 aranxshdwble 5. We compare the
training and test set accuracies and the size of DL8 whemaptig the f,, criterion and

using the lowest minimum support threshold that we can redittin the available memory.
As we can see, the accuracies of DL8 increase significantyl ioases, which shows the
interest of putting such constraints when the class digidh of the data is known before-

hand.

Table 5 Results of DL8 using a disjuncation of frequency constgint

One frequency constraint

Disjunction of frequency constraints

Datasets || minfreq | Trainacc.| Testacc.| Size || minfreq | Train acc.| Testacc.| Size
% %
pendigits 6.3 0.75 0.75 21.2 35.0 0.82 0.82 30.8
segment 5.2 0.87 0.86 | 21.2 22.0 0.91 0.90 | 33.0
soybean 6.3 0.65 0.66 | 20.6 35.0 0.80 0.78 | 38.0
splice 21.9 0.74 0.73 5.0 32.0 0.78 0.79 7.2
vowel 6.6 0.47 043 | 21.8 14.0 0.73 0.65| 88.6
yeast 0.1 0.75 0.50 | 307.2 2.0 0.67 0.52 | 136.4

In this experimentf, optimization function was used, with the lowest reachat#gudency constraints and a

disjunction of class minimum frequency constraints.

6.1.3 Untraditional Tasks

This section aims at answering Question (3). By answeriiggghestion, we also aim at

answering another underlying question: when is it morg@sting to use an exact algorithm
potentially less efficient and not necessarily more aceutiaan a heuristic one to learn

decision trees?
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Learning under Size Constraint® (Murphy & Pazzani, 1997), the authors found that a
brute-force enumeration of trees leads can lead to goodisdeu slightly larger trees. To
explore this result in more detail, and again to show the ifiégi of our algorithm, we
investigate how much accuracy is affected if we impose esiaetconstraints. We use DL8
to compute, for every possible size of a decision tree, the with the smallest (pruned)
error that can be achieved, and apply this tree on trainidgest data under ten-fold cross
validation. For two datasets, the results of such a quergiaes in Figure 4.

On the training data, in general, if we increase the size af@stbn tree, its accuracy
improves quickly at first. Only small improvements can beagt®d by further increasing
the size of the tree.

On the test data, the effects are less clear. Increasingdhesize can lead to either
better or worse results. On balance scale, increasingzben§ithe tree leads to both better
training and test results; the principle of Occam’s razardoot seem to apply in this case.
On the other hand, on heart-cleveland we observe that asdserin tree size does not lead
to significantly better trees on training data, but resultsignificantly worse trees on test
data. In this case, smaller trees would be preferable. @yviénasults on the training data
are not significantly different, it seems preferable to ceoa smaller tree. Furthermore, we
can observe that the figures have a ‘tail’ in which an incréasglowed tree size leads to
increasingly less benefits on the test data.
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Fig. 4 Errors of decision trees as function of tree size

Answering Question (3), figures such as Figure 4 are of maldtiterest, as they allow
a user to trade-off the interpretability and the accuracg ofiodel. Furthermore, when a
weighted sum of accuracy and error is used as optimizatiterion, as in dyadic decision
trees, points on this curve correspond to particular clsdicethese weights, and can easily
be computed by our algorithm.

The two last columns of Table 3 show that the trees computed g, although not
less accurate, can be bigger than the trees computed by d48:e€Btigate the relationship
between accuracy and size in more detail for a larger numbdatasets, we decided to
investigate whether a constraint on size would signifigamtirsen the performance of DL8.
In Table 6, we show results in which the average size of treastoucted by J48 is taken
as a constraint on the maximal size of trees mined by DL8. €kslts given by DL8 are
neither significantly better nor significantly worse thaogé given by J48, in terms of both
size and test set accuracy. Furthermore, imposing the sizgtraint does not significantly
affect the accuracy in most cases. This is an indicationfdrahese datasets, we are in the
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Table 6 Results of DL8 for different size constraints

Dataset | minfreq | Max size Test acc Size
DL8 J48 DL8 DL8 J48 DL8 DL8
‘ w. size | w/o size ‘ w. size | w/o size
diabetes 2 69 0.75| 0.72 0.71 69.0 68.8 135.2
g-credit 100 7 0.70 0.72 0.71 6.7 7.0 6.8
heart-c 10 14 0.80 | 0.80 0.81 14.0 13.0 22.2
vote 15 4 0.95| 0.96 0.95 3.4 3.0 9.2
yeast 2 186 0.53 | 0.52 0.50 186.0 | 185.0 307.2
Shown are test accuracies for DL8 using jfpeoptimization criterion.
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Fig. 5 Comparison of the cost-sensitive decision trees ICET andWitl8various frequency thresholds (the
lower curve, the better)

tails that can be seen in Figure 4, where it makes sense tas#rgroexplicit size constraint,
even when a pruning measure is applied.

Learning under Cost Constraint$he second case on which we explore the use of exact
decision tree learners is learning trees under cost comistrde compare DL8 to ICET (In-
expensive Classification with Expensive Tests) (Turneg5)9introduced in Section 4.2.4.
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The aim is to induce decision trees which minimjz€T") = fi4(T) + fmq(T); ICET uses
a genetic algorithm for this purpose. The comparison is megieg the five well known
datasets from the UCI repository (Asuncion & Newman, 2007 Which test costs are pro-
vided (BUPA Liver Disorders, Heart Disease, Hepatitis Piagis, Pima Indians Diabetes
and Thyroid Disease). We binarized the input data befoneguBiL8 similarly as in the
previous section. A comparison is given in Figure 5. The ggshlmows theaverage cost of
classificationgiven by the algorithms as a percentage ofstendard cosbf classification
for different misclassification costs.

The average cost of classificatios computed by dividing the total cost of applying
the learned decision tree on all test examples by the nunfbexamples in the test set.
The total cost of using a given decision tree on an examplaerdag in a leafl is tq(I) =
Yicr i+ e (g ity 129, 1-€. the sum of all tests that are chosen and the misclaeténfic
cost as specified in the misclassification ma@ix;. Letp. € [0, 1] be the frequency of class
cinthe given dataset, i.e, the fraction of the examples im#taset that belong in clasd et
T be the total cost of performing all possible tests (countinly once the additional cost for
the tests in the same group). Tétandard cosis 7'+ min.(1 — pc) max; ; Q; ;. The second
term is computed from the frequency of the majority classhim dataset and the highest
misclassification cost that an algorithm can have if examate incorrectly classified as the
majority class.

In the experiments, we vary the misclassification costsgasied in the matrixQ; ;)
from $10 to $10,000. For the sake of simplicity, we considempée cost matrices i.e, all
misclassification costs are equal. The lowest frequen@gtiald we could use for DL8 i
for the BUPA Liver Disorders datasei; for the Heart Disease datasetfor the Hepatitis
Prognosis datasetj for the Pima Indians Diabetes dataset aador the Thyroid Disease
dataset. Note that these supports can be higher than thpmséaein Figures 3 and 2 because
the syntax dependent optimization criterion means we damsethe smaller set of closed
itemsets.

The results show a better performance for DL8 for 4 of the &skts. However, for
the ann-thyroid dataset, DL8’s results are worse for higschassification costsx( 10%).
Further investigations revealed that this behavior is #sult of the low number of bins
that we used in our discretization, which resulted in anrenaite that was close to that of
a majority classifier in this very unbalanced dataset (3selasvith distribution (93, 191,
3488)). Once the same discretization was used, the erms ve¢re more similar to each
other, and the difference in behavior disappeared.

6.2 Efficiency Evaluation

We argued that we can construct decision trees both fromséetattices as from sets of
closed itemsets; we can do so while mining itemsets, or bypagessing itemsets. In this
section we compare these different versions of DL8 in terfedfiziency.

The applicability of DL8 is limited by two factors: the amdunf itemsets that need
to be stored, and the time that it takes to compute these étismBo answer Question (4)
we evaluate experimentally how the run time of the patternimgi process is influenced
by the relevance constraint and the support constraintnwer Question (5) we perform
this comparison for several alternative approaches fostcocting decision trees from pat-
terns, one of which operates on concept lattices. A sumnfahealgorithms can be found
in Table 7. DL8-Q.0SED implements the direct mining algorithm of Section 5.3. DL8-
EcLAT extends the ELAT algorithm (Zaki et al., 1997a) to search for itemsets andtbui
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Table 7 Properties of the algorithms used in the experiments

Algorithm Usesrelevance Closed Builds tree
DL8-CLOSED X X X
DL8-APRIORI X X
DL8-EcLAT X X
APRIORFFREQ

APRIORFFREQ+DL8 X
ECLAT-FREQ

LCM-FREQ

LCM-CLOSED X

a decision tree; DL8-ARIORI extends ARIORI with relevance pruning and builds a tree
on the resulting lattice. We also include unmodified implatagons of the frequent item-
set miners &RRIORI (Agrawal et al., 1996), ELAT (Zaki et al., 1997a) and LCM (Uno et
al., 2004) in the comparison. These implementations wet&mdd from the FIMI website
(Bayardo, Goethals, & Zaki, 2004). The inclusion of unmadifalgorithms allows us to
determine how much the search space is reduced by the antitoroc relevance pruning,
and allows us to determine the trade-off between relevanoeing and trie construction.
In APRIORFFREQ+DL8 we first run traditional &RIORI to construct an itemset lattice
without relevance pruning; we run DL8 in a second phase ogdhstructed lattice.

Results for 8 datasets are shown in Figures 6 and 7. We chtesetiathat cover a broad
range of dataset properties, including both datasets aiifeland small numbers of features
and transactions. In these runs we computed the most aedteatgiven only a minimum
frequency constraint. We aborted runs of algorithms thetetafor longer than 1800s.

Answering Question (5), the results clearly show that ircalies the number of closed
relevant itemsets is the smallest, which shows the advamtbgsing closed itemsets. DL 8-
CLosED s usually faster than DL8-ARIORIor DL8-ECLAT. For the datasets with larger
number of features, such as ionosphere and splice, we ftaanomnly DL8-Q.0SED man-
aged to run for support thresholds lower than 25%, but stif waable to run for support
thresholds lower than 10%. The differences between closexdhre itemsets and non-closed
relevant itemsets are smaller for higher minimum suppoiiess the overhead of DL8-
CLoSED seems too large in this case.

With respect to Question (4), we can observe that the diffezeetween the number
of relevant itemsets and the total number of frequent itésnsecomes smaller for lower
minimum frequency values (for good examples, considerdoetata and the diabetes data).
The number of frequent itemsets is so large in most casest ikdmpossible to compute
or store them within a reasonable amount of time or spacédset datasets where we can
use low minimum frequencies (15 or smaller), the closedst&trminer LCM is usually the
fastest; for low frequency values the number of closed i#mis almost the same as the
number of relevant closed itemsets. Bear in mind, howehat,tCM does not output the
itemsets in a form that can be used efficiently by DL8.

In those cases where we can store the entire outpubp@&idriin memory, we see that
the additional runtime for storing results is significann e other hand, if we perform
relevance pruning, the resulting algorithm is usuallydagtan the original itemset miner.
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7 Conclusions

We presented DL8, an algorithm for finding decision trees thiaimizes an optimization
criterion exactly under a wide range of constraints. Thg®athm is based on the relation-
ship between itemsets and decision trees and relies on tisgraotion of an itemset lattice
through standard data mining techniques.

With its very general framework, DL8 allows a user to enfocomstraints that have
never been combined before in a single algorithm. Experisnehow that: i) these con-
straints can improve the resulting accuracy of a tree; ii)eaact algorithm can indeed
give significantly better results than a heuristic learhéné optimisation criterion is well-
defined; iii) exact results allow to study the behavior oftifees with respect to constraints.

The investigation that we presented here may only be arggapint in this direc-
tion; it is an open question how efficient decision tree nmsnesuld become if they were
thoroughly integrated with algorithms such as LCM, FP-Gigver algorithms developed
within the formal concept analysis community for proceggiconcept) lattices. Our inves-
tigations showed that high runtimes are however not as muymolaem as the amount of
memory required for storing huge amounts of itemsets. Alehging question for future
research is what kind of condensed representations coud@\aoped to represent the in-
formation that is used by DL8 more compactly; an alternativeld be to trade space and
time complexity more carefully.

DL8 can be seen as a relatively cheap type of post-processirggset of itemsets. In
particular, it does not require access to the training ddtannthe model is constructed,
in contrast to other approaches that use patterns for fitzggin. Hence DL8 suits itself
perfectly for interactive data mining on stored sets ofgras. This means that DL8 might
be a key component of inductive databases (Imielinski & Mani996) that contain both
patterns and data.
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