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Abstract In this article we show that there is a strong connection between decision tree
learning and local pattern mining. This connection allows us to solve the computationally
hard problem of findingoptimal decision trees in a wide range of applications by post-
processing a set of patterns: we use local patterns to construct a global model. We exploit the
connection between constraints in pattern mining and constraints in decision tree induction
to develop a framework for categorizing decision tree mining constraints. This framework
allows us to determine which model constraints can be pusheddeeply into the pattern mining
process, and allows us to improve the state-of-the-art of optimal decision tree induction.

Keywords Decision tree learning, Formal concepts, Frequent itemsetmining, Constraint
based mining

1 Introduction

Decision trees are among the most popular predictive modelsand have been studied from
many perspectives. However, no general framework exists toconstrain the induction of de-
cision trees and guarantee an exact result with respect to the given constraints. On the other
hand, the topic of exhaustively (i.e exactly) determining all patterns satisfying certain con-
straints has been studied extensively in the area oflocal pattern mining(Agrawal, Mannila,
Srikant, Toivonen, & Verkamo, 1996; Zaki, Parthasarathy, Ogihara, & Li, 1997a; Han, Pei,
& Yin, 2000). A natural question is hence if we can exploit theexperience in local pattern
mining for the discovery of decision trees under constraints. This question will be addressed
in this article.

Our main starting point is that many decision tree learning problems can be formulated
asqueriesof the following canonical form:

argmin
T

f(T ) subject toϕ(T ), (Canonical Decision Tree Learning Query)

i.e, we are interested in finding the best tree(s) according to a functionf(T ), among all trees
which fulfill the constraints specified in the formulaϕ(T ).
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For instance, the following questions could be of interest for a decision tree user:

– Which tree has the smallest error? In this casef(T ) is an error function that we wish to
minimize.

– Which is the smallest tree with sufficiently high accuracy? In this case the (ranking)
functionf(T ) should prefer smaller trees among sets of sufficiently accurate trees. Al-
ternatively, we can reformulate the problem in a Bayesian setting (Buntine, 1992; Chip-
man, George, & McCulloch, 1998).

– Which tree is least sensitive to noise in the class labels? This could require that every
leaf of a decision tree has at least a significant majority class. The latter can be seen as a
constraintϕ(T ) on the trees of interest.

– Which tree preserves privacy best by being well-balanced? This would impose a con-
straintϕ(T ) on the trees of interest (Friedman, Schuster, & Wolff, 2006;Machanava-
jjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007).

– Which tree incurs the smallest amount of classification costs? For example, it can be
desirable that the expected costs for classifying examplesdo not exceed a certain prede-
fined threshold value (Turney, 1995).

– Which tree is mostjustifiable from an expert’s perspective, by satisfying predefined
constraints on the predictions that can be made by the tree? For instance, one could
wish to enforce that certain examples are never misclassified, or certain tests are always
executed in a given order.

Observe that some of these problem settings are conventional, in the sense that they are
formalizations of the problem of finding models of good predictive accuracy. Other problems
are less conventional, the main focus being on the syntax of the predictive model.

Many algorithms have been proposed to address these learning problems. Most common
are the algorithms that rely on the principle of top-down induction through heuristics (for
example C4.5 (Quinlan, 1993) andCART (Breiman, Friedman, Olshen, & Stone, 1984)).
These algorithms do not explicitly minimize a global optimization criterion, but rely on the
development of a good heuristic to obtain reasonable solutions. In practice, for each new
problem setting that was studied, a new heuristic was proposed in the literature.

To the best of our knowledge, no framework has been proposed which encapsulates
the large number of decision tree learning problems listed above and no general algorithm
is known for answering the canonical decision tree query exactly. The question that we
study in this paper is how pattern mining techniques can contribute to the development of
a framework and an algorithm for this task. As such, our work takes the LeGo approach
(Knobbe, Cŕemilleux, F̈urnkranz, & Scholz, 2008; Bringmann, Nijssen, & Zimmermann,
2009), in that it studies how local pattern mining techniques can be used to build global
models.

The benefit of an exact algorithm is that we do not need to develop new heuristics to
deal with many types of learning problems and constraints. We are sure that its result is
the best that one can hope to achieve according to the predefined optimization criterion
and constraints; no fine-tuning of heuristics is necessary.Hence, the results of an exact
algorithm can also be used to determine how well an existing heuristic decision tree learner
approximates a global optimization criterion.

The development of anexactalgorithm for learning decision trees has seldom been
considered because many decision tree learning problems are known to be NP-complete
(Hyafil & Rivest, 1976). Therefore an efficient algorithm forthe general case most likely
does not exist. This theoretical result however does not imply that the problem is intractable
in all cases. Many frequent itemset mining algorithms have been applied successfully de-
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Fig. 1 The Hasse diagram of a part of an itemset lattice for items{A,¬A, B,¬B, C,¬C}; binary decision
tree A(B(C(l,l),l),C(l,l)) is marked in this diagram

spite the exponential nature of the itemset mining problem.This is an indication that, on
some datasets, exact decision tree induction may still be feasible if we can do this by using
itemset mining results. We will provide evidence that for a reasonable number of datasets,
exact decision tree induction is indeed practically feasible by taking this approach. An im-
portant technical contribution is that we show that decision trees can also be learned from
the condensed itemset representation ofclosed itemsets(Pasquier, Bastide, Taouil, & Lakhal,
1999). This observation allows us to obtain better practical performance.

The article is organized as follows. In Section 2, we introduce basic notions on decision
trees and itemsets and we focus on their relationships. In Section 3, we discuss related work
on both exact decision tree learning and itemset mining. In Section 4, we propose a frame-
work for constraining decision trees and show how the framework can be used in practice. In
Section 5 we introduce the DL8 algorithm which uses local patterns to construct our global
model. Section 5 also gives some optimizations for DL8. In Section 6, we evaluate the per-
formance and the effect of different constraints handled inour algorithm. We conclude in
Section 7.

2 Itemsets, Decision Trees and their Relationships

Let us first introduce some terminology concerningfrequent itemsetsand decision trees
before studying the relationships between these domains.

ItemsetsLet I = {i1, i2, . . . , im} be a set of items and letD = {t1, t2, . . . , tn} be a bag
of transactions, where each transactiontk is an itemset such thattk ⊆ I. A transactiontk
contains a set of itemsI ⊆ I iff I ⊆ tk. The transaction identifier set (TID-set)tid(I) ⊆

{1, 2, . . . n} of an itemsetI ⊆ I is the set of identifiers of all transactions that contain itemset
I. The frequency of an itemsetI ⊆ I is defined to be the number of transactions that contain
the itemset, i.e.freq(I) = |tid(I)|; the support of an itemset issupport(I) = freq(I)/|D|.
An itemsetI is said to be frequent if its support is higher than a given thresholdminsup;
this is written assupport(I) ≥ minsup (or, equivalently,freq(I) ≥ minfreq).

A useful property of itemsets is that they constitute a lattice.
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Definition 1 A completelattice is a partially ordered set in which any two elements have a
unique least upper bound and a unique greatest lower bound.

In this case the partial order is defined by the subset relationship⊆ on the elements in the
set2I . The least upper bound of two sets is computed by the intersection (∩) operator, the
greatest lower bound by the union (∪) operator. The lower bound⊥ of this lattice is∅; the
higher bound⊤ is the setI.

Part of a lattice is depicted in Figure 2 in aHasse diagram, where we assumeI =

{A,¬A, B,¬B, C,¬C}; we only depict itemsets in which an itemi and its negation¬i do
not occur together. Edges denote a subset relation between sets; sets are depicted as nodes.
On top of the lattice is the lower bound which corresponds to the empty set∅ (level 0); the
higher bound{A,¬A, B,¬B, C,¬C} is not depicted as it includes items as well as their
negations. There is an edge between a node in a given level anda node in the next level if
the set of the former is strictly included in the set of the latter and if the size of the two sets
only differs by one item.

Fig. 2 An example tree

Decision treesAn example of a decision tree is given in Figure 2. A decision tree aims at
classifying a set of examples by sorting them down the tree. The leaves of the tree provide
the classifications of examples (Quinlan, 1993). Each node of the tree specifies a test on one
attribute of an example and each branch of a node correspondsto one of the possible out-
comes of the test. We assume that all tests are Boolean; non-binary attributes are transformed
into Boolean attributes by mapping each possible value to a separate attribute. Numerical
attributes are discretized and binarized beforehand (theywill then be calledfeatures). The
input of a decision tree learner is hence a binary matrixB, whereBij contains the value of
featurei of examplej.

A common way to represent a decision tree is as a set of rules (Quinlan, 1993). Each
leaf of the tree corresponds to a rule. Our example tree can berepresented in the following
way:

if A = 1 andB = 1 then predict 1
if A = 1 andB = 0 andC = 1 then predict 1
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if A = 1 andB = 0 andC = 0 then predict 0
if A = 0 andC = 1 then predict 0
if A = 0 andC = 0 then predict 1

Hence we can see decision tree learning as finding a set of rules with certain properties that
allow the set to be represented as a tree.

The link between Decision Trees and ItemsetsA main observation in the LeGo framework
(Knobbe et al., 2008) is that there is a link between rules in predictive models and patterns
in pattern mining. Assume that we are given an attribute-value tableB in which all features
are binary. We can transform tableB into a transactional formD such thattj = {i |Bij =

1} ∪ {¬i |Bij = 0}. Thus, every feature value is mapped to a positivei or a negative item
¬i. The head of a rule, for instance,

A = 1 andB = 0 andC = 1

can now be transformed into an itemset{A,¬B, C}. Transactions in which the head of the
rule is true correspond to transactions in which the itemsetis contained. Hence the decision
tree of Figure 2 can equivalently be represented by a set ofclass association rules:

{A, B} → 1

{A,¬B, C} → 1

{A,¬B,¬C} → 0

{¬A, C} → 0

{¬A,¬C} → 1

A class association ruleI → c (Liu, Hsu, & Ma, 1998) consists of an itemsetI and a class
valuec.

The problem of learning a decision tree is now a problem of finding a set of class associ-
ation rules. As we are usually interested in finding accuratetrees, we can reduce this further
to a problem of finding itemsets, that is, class association rules without heads: assume we
compute the frequencyfreqc(I) of an itemsetI for each classc separately, we can associate
to each itemset the class label for which its frequency is highest,

c(I) = argmax
c′∈C

freqc′(I),

as this will minimize the prediction error for the examples in the leaf. Given a decision tree
T , we denote the set of itemsets corresponding to leaves byleaves(T ); in our example,

leaves(T ) = {{A, B}, {A,¬B, C}, {A,¬B,¬C}, {¬A, C}, {¬A,¬C}};

itemsets corresponding to internal nodes are denoted byinternal(T ), in our example,

internal(T ) = {∅, {A}, {A,¬B}};

Finally, all itemsets that correspond to paths in the tree are denoted withpaths(T ) =

internal(T ) ∪ leaves(T ).
The problem of finding a decision tree can now alternatively also be formulated as fol-

lows. We are interested in finding a set of itemsetsP ⊆ 2I such that

∃T : paths(T ) = P andT = argmin
T

f(T ) subject toϕ(T ).

Note that we can easily characterize which sets of itemsets represent decision trees.
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Lemma 1 Given a set of itemsetsP ⊆ 2I , then∃T : paths(T ) = P if and only if for every
itemsetI ∈ P either:

(1) there is noI ′ ∈ P such thatI ⊂ I ′ (in this caseI ∈ leaves(T ));
(2) there is exactly one itemi ∈ I such thatI ∪ {i}, I ∪ {¬i} ∈ P (in this caseI ∈

internal(T )).

Proof “⇒” is straightforward. For “⇐” we can observe the following. Every itemsetI in
P can be converted into a node in a decision tree, as follows. Itemsets fulfilling condition
(1) we turn into leaves. ItemsetsI fulfilling condition (2) are converted into internal nodes
which are connected to the nodes representing itemsetsI ∪ {i} andI ∪ {¬i}.

Hence, the problems of finding decision treesT and sets of itemsetsP fulfilling the condi-
tions of Lemma 1 are equivalent. Indeed, the reader can checkin our example that a setP
fulfilling these conditions corresponds to a decision tree with paths(T ) = P.

An important observation that we will exploit is that a lattice of itemsets can be thought
of as a compact representation of a set of decision trees. This is illustrated in Figure 2, where
we have highlighted the decision tree of Figure 2; in principle any decision tree over binary
features{A, B, C} consists of a similar set of paths in this lattice. Note that we assume
that trees never have an item and its negation in one path and that we hence do not need to
consider the part of the lattice containing such itemsets.

The most basic problem one could be interested in is that of finding an accurate decision
tree. Theaccuracyof a decision tree is derived from the number of misclassifiedexamples
in the leaves:

accuracy(T ) =
|D| − error(T )

|D|
where error(T ) =

X

I∈leaves(T )

error(I)

anderror(I) is the number of examples ending up in leafI not labeled with the majority
class of the examples inI:

error(I) = freq(I) − freqc(I)(I)

For thesizeof a tree we take the size of the setpaths(T ).
An example of a decision tree learning problem is to find the tree

argmin
T

(error(T ), size(T )),

that minimizes error in the first place and cuts ties between trees of equal error using the
size function. The exploration of other learning problems will be deferred to a later section.

3 Related Work

The results in this article are built on the foundations of two different research areas: decision
tree induction and pattern mining. This section provides anoverview of the relevant results
which have been obtained in these areas.



7

3.1 Exact Decision Tree Induction

The search for exact decision trees with respect to a given optimization criterion dates back
to the 1970s, when several algorithms for building such trees were proposed. Their appli-
cability was however limited and the development of heuristic tree learners, such asCART

(Breiman et al., 1984) and C4.5 (Quinlan, 1993) became most popular. Only recently new
attempts have been made to develop more complete tree learners. We will first discuss the
early results using modern terminology for clarification.

Garey (1972) proposed an algorithm for constructing an optimal binary identification
procedure. In this setting, a binary database is given in which every example has a different
class label. Furthermore, every example has a weight and every attribute has a cost. The aim
is to build a decision tree in which there is exactly one leaf for every example; the expected
cost for classifying examples should be minimal.

Meisel and Michalopoulos (1973) studied a setting which is more common today, in
which multiple examples can have the same class label, and numerical attributes are allowed.
To tackle the problem of discretization, an overfitting decision tree is greedily constructed
first. Its tests are collected. Using these tests, the task isthen to find a 100% accurate decision
tree with lowest expected cost, where every test has unit cost and examples are distributed
according to a previously determined distribution. In 1977, it was shown by Payne and
Meisel (1977) that Meisel’s algorithm can also be applied for finding optimal decision trees
under many other types of optimization criteria, for instance, for finding trees of minimal
height or minimal numbers of nodes.

A parallel line of research was explored by Schumacher and Sevcik (1976) and Lew
(1978), who studied the problem of converting decision tables into decision trees. A deci-
sion table is a table which contains (1) a row for every possible example in the feature space
(including a class attribute) and (2) a probability for every example. The aim is to compress
the decision table into a compact representation that allows to retrieve the class of an exam-
ple as quickly as possible. An extension was studied by Lew (1978), in which it is possible
to specify the input decision table in a condensed form, for instance, by using wild cards as
attributes.

All these problems were solved by dynamic programming algorithms which bottom-up
consider all subsets of attribute-values of the examples. These algorithms are very similar to
the algorithm we will propose (see Section 5). The main difference is that we build a lattice
of tests under different types of constraints, point out theconnection to itemset mining, and
employ modern techniques such as closed itemset mining.

More recently, pruning strategies of decision trees have been studied by Garofalakis,
Hyun, Rastogi, and Shim (2003). Garofalakis et al.’s algorithm can be seen as an application
of the bottom-up algorithm on a greedily constructed tree instead of a lattice of itemsets.

Related is also the work of Moore and Lee on theADtreedata structure (Moore & Lee,
1998). Both ADtrees and itemset lattices can be used for speeding up the lookup of itemset
frequencies during the construction of decision trees, where ADtrees have the benefit that
they are computed without frequency constraint. However, this is achieved by not storing
specializations of itemsets that are already relatively infrequent; for these itemsets subsets
of the data are stored instead. In our bottom-up procedure itis necessary that all itemsets
that fulfill the given constraints are stored with associated information. This is not straight-
forwardly achieved in ADtrees.

Recently the problem of learning optimal decision trees hasgained interest again. Es-
meir and Markovitch (2007b, 2007a) proposed an any-time algorithm, which essentially
performs a brute-force enumeration of trees as long as the algorithm is not interrupted by



8

the user. The algorithm attempts to enumerate more promising regions earlier, and prunes
unpromising regions of the search space. However, the algorithm does not exploit dynamic
programming strategies. It was applied both on conventional learning problems as problems
with cost constraints.

Blanchard, Scḧafer, Rozenholc, and M̈uller (2007) proposed an algorithm for mining
optimal dyadic decision trees. This algorithm operates on numerical data. It makes specific
choices with respect to the discretization of the data and the optimization criterion used.
The optimization criterion includes a regularization parameter which weighs decision tree
size and decision tree accuracy. It is shown that the generalization error of an optimal tree
is bounded by this parameter, while also in practice the resulting trees are sometimes better
than trees found by traditional tree learners. A dynamic programming algorithm is used to
induce the tree. In Section 4.2.2 we show that this algorithmcan be seen as one instance of
our algorithm, but that the specific choice of constraints makes it impossible to apply certain
optimizations which are available within our framework, the most important one being that
closed itemsets cannot be used when inducing dyadic trees.

Other approaches that aim at more completely traversing thespace of decision trees are
those that apply variations of genetic algorithms (Turney,1995), and Markov chain Monte
Carlo sampling approaches (Chipman et al., 1998).

In (Murphy & Pazzani, 1997) an exhaustive enumeration of decision trees on small
datasets was performed in order to determine the validity ofthe principles of Occam’s razor
and oversearch for decision tree learning. In these experiments it was found that slightly
larger trees can be found using complete search methods and that these trees can some-
times perform better than smaller trees found using heuristic trees. Our algorithm allows to
perform similar experiments on a larger scale.

3.2 Pattern Mining

The best-known pattern mining algorithm is the APRIORI algorithm (Mannila, Toivonen,
& Verkamo, 1994; Agrawal & Srikant, 1994; Agrawal et al., 1996), whose aim is to find
frequent itemsets. Subsequently, a wide variety of algorithms has been proposed to find
this set more efficiently in dense datasets, i.e., binary datasets in which the number of ones
is large. Among these algorithms are ECLAT (Zaki, Parthasarathy, Ogihara, & Li, 1997b),
FPGROWTH (Han et al., 2000) and LCM (Uno, Kiyomi, & Arimura, 2004)1.

In many datasets it was found that the number of frequent itemsets is impractically large,
and methods were investigate to findcondensed representations. Condensed representations
consist of smaller sets of itemsets sufficient to reproduce the full set of itemsets, or allow to
approximate the full set. Well-known exact condensed representations are theclosed item-
sets(Pasquier et al., 1999) andfree itemsets(Boulicaut, Bykowski, & Rigotti, 2000). Among
the approximative representations are theδ-free itemsets (Boulicaut, Bykowski, & Rigotti,
2003).

In this article, we investigate the use of both frequent itemsets and condensed represen-
tations during the construction of decision trees. The use of condensed representations could
allow us to search for trees more efficiently. Among others, we show that in many cases we
can limit ourselves to closed itemsets; in other cases, it can be shown that the itemsets that
are needed during tree construction are alsoδ−free.

1 A repository of implementations is available here: http://fimi.cs.helsinki.fi/



9

The frequent itemset mining problem was extended towards other types of constraints
than support; several categories of constraints were identified, among whichmonotonic,
anti-monotonic, andconvertibleconstraints, and algorithms were introduced to mine item-
sets under these constraints (Pei, Han, & Lakshmanan, 2001;Bucila, Gehrke, Kifer, &
White, 2003; Bonchi & Lucchese, 2007). We can show that thesecategories can also be
applied in decision tree induction, and that algorithms formining patterns under these con-
straints can be used in corresponding settings in decision tree induction.

The use of itemsets in predictive models is a topic that has been studied extensively.
Well-known algorithms include CBA (Liu et al., 1998), CMAR (Li, Han, & Pei, 2001) and
CAEP (Dong, Zhang, Wong, & Li, 1999); more general overviewscan be found in (Knobbe
et al., 2008; Bringmann et al., 2009). In these algorithms aninitial set of patterns is mined
first. Subsequently, a set of patterns is selected with corresponding weights. Classification is
based on a vote of the selected patterns. The approach that wewill propose is similar in the
sense that our algorithm can also be applied to select a subset of patterns from an initial set of
patterns, which are subsequently interpreted as rules for classification. The main difference
is that the model that we induce takes the particular shape ofa tree, is optimal under well-
defined conditions, and that we can push model constraints inthe pattern mining process or
even combine these two.

An alternative approach to exploit patterns in classification is to construct features from
patterns. The selection of patterns can in this case be seen as feature selection, where desir-
able properties are that a set of patterns is chosen that is diverse, covers the data sufficiently,
and correlates with the class attribute. Approaches of thiskind are discussed in (Yan, Cheng,
Han, & Xin, 2005; Knobbe & Ho, 2006; De Raedt & Zimmermann, 2007). Even though our
approach also selects a subset of patterns satisfying similar constraints, we will however use
the patterns directly in classification models.

4 Constraints on Decision Trees

As stated in the introduction, we are interested in expressing decision tree learning problems
as queries of the form

argmin
T

f(T ) subject toϕ(T ),

which corresponds to finding the best tree(s) according to the functionf(T ) among all trees
which fulfill the constraints specified in the formulaϕ(T ).

In this section we specialize this formula. We argue that in most applications the con-
straints inϕ(T ) and the criteria inf(T ) have properties that can be exploited. The main
contributions in this section are:

1. We propose a categorization of constraints and criteria that can be used in the above
formula. The aim of this categorization is to introduce the types of constraints that will
be exploited in the pattern-based algorithm introduced in the next section. In this dis-
cussion, we will discuss desirable properties ofoptimization criteriaf(T ), as well as
properties of constraintsϕ(T ).

2. We show that constraints and criteria with useful properties are commonly used in a
wide range of applications and hence our algorithm can be used in many applications.
The applications were chosen such that it is possible to compare our algorithm to already
existing (and most of the time, heuristic) algorithms in theliterature.
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In the following, the functionsI1 = child1(I, T ) andI2 = child2(I, T ) return the itemsets
representing respectively the left-hand and right-hand child node of the internal nodeI in
binary treeT .

4.1 Properties of Constraints and Criteria

4.1.1 Optimisation Criteria

When an optimization criterionf(T ) is specified, this criterion may have properties that we
will refer to asadditivityandstructure independence.

Additivity An additiveoptimization criterion is a functionf(T ) over a treeT which can be
rewritten as follows:

f(T ) =
X

I∈leaves(T )

fleaf (I) +

X

I∈internal(T )

finternal (I, child1(I, T ), child2(I, T )),

where functionfleaf (I) ≥ 0 is a leaf criterionand functionfinternal (I, I1, I2) ≥ 0 is
an internal criterion. An example of an additive optimization criterion issize, in which
fleaf (I) = 1 andfinternal (I, I1, I2) = 1.

Structure Independence An additive optimization criterionf(T ) is structure independent
if we can rewrite the leaf criteria and internal criteria as follows: finternal (I, I1, I2) =

f ′
internal (tid(I), tid(I1), tid(I2)) andfleaf (I) = f ′

leaf (tid(I)), for functionsf ′
internal

andf ′
leaf over sets of transactions. Hence, the evaluation depends only on the transac-

tions covered by the nodes, not on the structure of the tree. Please note thatsize is also a
structure independent criterion according to our definition; the reasoning is that the size
of a tree is only determined by the number of partitions induced by the tree in the set of
transactions; otherwise the structure of the tree is unimportant.

In the next section we will show that many common optimization criteria are additive and
that a restriction to such criteria is not very restrictive.

4.1.2 Path Constraints

For constraints we can formulate similar properties as for criteria. In most cases, the con-
straintϕ(T ) is a conjunction of a number of independent constraints, which can have the
following properties.

Conjunctivity over Paths A conjunctive pathconstraint is a formula over a tree which can
be written as:

ϕconjunctive(T ) =
^

I∈leaves(T )

ϕleaf (I) ∧

^

I∈internal(T )

ϕinternal (I, child1(I, T ), child2(I, T )),

where formulaϕleaf (I) is a leaf constraintand formulaϕinternal (I, I1, I2) is aninter-
nal constraint.
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An example of an internal constraint is that internal nodes should not havepure class
distributions:

ϕinternal (I, I1, I2) = (|tid(I)| 6= max
c∈C

|tidc(I)|). (1)

This internal constraint is special in the sense that it onlytakesI, not its children, into
account. An example of a leaf constraint is that the number ofexamples not belonging
to a majority class is small:

ϕleaf (I) = ((|tid(I)| − max
c∈C

|tidc(I)|) ≤ maxfreq). (2)

An example of an internal constraint in which the left-hand and right-hand child are
used, is:

ϕinternal (I, I1, I2) = (||tid(I1)| − |tid(I2)|| ≥ mindif ),

which states that an internal node splits examples in balanced proportions.
Structure Independence A structure independentconstraintϕstructure ind (T ) is a con-

junctive path constraint in whichϕinternal (I, I1, I2) = ϕ′
internal (tid(I), tid(I1), tid(I2))

andϕleaf (I) = ϕ′
leaf (tid(I)), for formulasϕ′

internal andϕ′
leaf over sets of transactions.

An example of a structure independent path constraint isminimum support, in which

ϕleaf (I) = ϕinternal (I, I1, I2) = (|tid(I)| ≥ minfreq);

it is easy to see that this constraint is computed fromtid(I) only.
Anti-Monotonicity An anti-monotonicconstraint is a formulaϕantim (I) over paths which

ignores the left-hand and right-hand children of internal nodes and satisfies:

∀I ⊆ I ′ : ϕantim (I) → ϕantim (I ′).

Minimum support is an anti-monotonic constraint. The constraint in equation (2) is an
example of a constraint which is not anti-monotonic. If an anti-monotonic constraint is
used as leaf constraint, the internal nodes will also satisfy the constraint. Internal node
constraints can also be anti-monotonic if they only have oneitemset as parameter; for
instance, the impurity constraint (see equation (1)) is anti-monotonic; however, note
that this constraint will usually not be used as a leaf constraint. Hence, we can distin-
guish internal and leaf anti-monotonic constraints; the one type will be denoted with
ϕinternal,antim , the other withϕleaf ,antim .

Constraints of these types can freely be combined. For instance, if we are searching for trees
in which leaves are frequent, internal nodes are not pure andleaves have strong majority
classes, we have a problem in which:

ϕ(T ) =
^

I∈internal(T )

(|tid(I)| 6= max
c∈C

|tidc(I)|)

^

I∈leaves(T )

(((|tid(I)| − max
c∈C

|tidc(I)|) ≤ maxfreq) ∧ (|tid(I)| ≥ minfreq)).

We can categorize these constraints as follows according totheir properties:

ϕinternal (I, I1, I2) = (|tid(I)| 6= max
c∈C

|tidc(I)|),

ϕleaf (I) = ((|tid(I)| − max
c∈C

|tidc(I)|) ≤ maxfreq) ∧ (|tid(I)| ≥ minfreq),

ϕleaf ,antim (I) = (|tid(I)| ≥ minfreq).

Note that some constraints (for example|tid(I)| ≥ minfreq) may belong to multiple cate-
gories.
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4.1.3 Optimization Constraints

If a constraint can be written as

ϕ(T ) = (g(T ) ≤ θ),

whereg(T ) is an integer optimization criterion andθ is a threshold value, the constraint is
called an optimization constraint. Properties of optimization criteria, such as additivity and
structure independence, extend to optimization constraints. In particular, ifg(T ) returns a
vector of values,θ can also be a vector of thresholds, each of which should be satisfied.

4.2 Showcases

In this section we list several existing decision tree learning problems. Our aim is to explain
how such problems can be solved exactly and generally in our framework. We distinguish
two classes of mining problems.

1. Traditional learning settings in which the focus is primarily on finding highly predictive
trees; these settings differ in the criteria used to measurethe predictive value of a tree and
achieve generalization. We take as examples the tree-pruning algorithms, the Bayesian
learning setting, and dyadic decision tree construction.

2. A learning setting in which the focus is less on accuracy, and the primary focus is on
finding trees that also satisfy other desirable criteria. Wetake as examples cost-based
tree learning and privacy-preserving tree induction.

By showing such a diverse list and by combining different settings, we hope to convince the
reader that our categorization of constraints is very general and that the scope of our exact
algorithm is not limited to the applications presented here.

4.2.1 Error-based Pruning

In general we are interested in predictors that perform wellon unseen data. The idea be-
hind error-based pruning, which was developed as a pruning measure in the C4.5 algorithm
(Quinlan, 1993), is to estimate the true error rate of a leaf given the empirical error. An
internal node is then turned into a leaf if this reduces the error estimate for the node.

The true error is estimated by assuming that the class labelsof the examples are the
result of sampling with the unknown true error rate. Consequently, the observed errors are
binomially distributed, and a worst-case estimate on the true error can be computed from
the observed error. It can be shown that the number of errors estimated by this procedure in
a leaf is at least0.5 higher than the empirical error count. Hence a tree with manyleaves is
penalized when compared to a tree with few leaves; implicitly, one can think of the error-
based pruning criterion as the sum of error and a penalty termfor the size of the tree, where
the penalty term per leaf is dependent on the class distribution in the leaf.

In our framework, we can see the pruning measure as an optimization criterion. Let us
denote the estimated error of a leafI with ee(I), then we are minimizing

fp(T ) =
X

I∈leaves(T )

ee(I).

Consequently we can categorize C4.5 error-based pruning asapplying anadditive, struc-
ture independent optimization criterion.
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In C4.5, pruning is often only applied to an existing tree. Usually, this is done in a heuris-
tic fashion: for instance, for each internal node in the treeit is tested in some order whether
it is beneficial to replace the node by a leaf; additionally,lifting a subtree is sometimes also
considered, in which case an internal node may be replaced bythe subtree of one of its chil-
dren if this improves the score. It is not always clear in which order these operations need
to be performed. Within our framework, we can also formulatethis problem of pruning an
existing tree, which allows us to solve it in a non-heuristicway. Given a predefined treeT ,
we are only interested in finding a treeT ′ which minimizesfp(T ′) under the constraint that
every leafI ′ in T ′ is a subset of a pathI in T . This constraint ispath conjunctive, struc-
ture dependent and anti-monotonic. The benefit of starting from an existing tree is that
the search-space of decision trees is significantly restricted in this way.

4.2.2 Optimal Dyadic Decision Trees

Similarly to what we aim for in this article, Blanchard et al.(2007) studied how to learn
optimal dyadicdecision trees. Dyadic trees are trees on numerical data in which the dis-
cretization is limited to equi-width binning with a number of bins that always is a power of
2. Tests are hence always of the kinda ≥ i(r − l)/2ℓ + l, where[l, r] is the range of the
attributea and0 ≤ i ≤ 2ℓ andℓ ≥ 0 are integers; parameterℓ is determined during the
learning procedure. To limit the complexity of this learning problem, in (Blanchard et al.,
2007) the problem of learning optimal dyadic decision treeswas constrained as follows:

– The optimization criterion is a function

error(T ) + λ · size(T )

whereλ is a regularization parameter that is determined on validation data. Note that this
function is the sum of two additive optimization functions,and is hence alsoadditive;
compared to error-based pruning large trees are punished directly in this case.

– The first constraint imposes a threshold on the number of tests for each numerical at-
tribute. This is ananti-monotonic, structure dependent, conjunctivepath constraint:

ϕleaf (I) = ϕinternal (I, I1, I2) =
^

a

|I ∩ I(a)| ≤ k,

whereI(a) is the set of items corresponding to tests on attributea;
– The second constraint states that every pathI which contains a splita ≥ v on attribute

a must also contain a split for value2⌊(v − l)/2⌋ + l and 2⌈(v − l)/2⌉ + l, except
for valuesl or r of that attribute. We can model this as aninternal node constraint
ϕinternal (I, I ∪ {i}, I ∪ {¬i}) which is true iffi is a test that is allowed in itemsetI.

– It does not make sense to continue splitting for leaves that do not contain examples.
Therefore, internal nodes are required to have non-zero support. However, leaves with
zero support are allowed, as they can be necessary to allow for more fine-grained splits
later on.

4.2.3 Bayesian Probability Estimation Trees

In (Buntine, 1992),(Chipman et al., 1998),(Angelopoulos &Cussens, 2005) a Bayesian
approach was proposed for weighing decision tree size and decision tree accuracy, hence



14

providing an alternative strategy for finding trees which are both accurate and small. It is
assumed that a prior is given on the structure of theprobability estimation trees:

p(T |D) =
Y

I∈paths(T )

Pnode(I, T, D)

where

Pnode(I, T, D) =

8

>

<

>

:

1, if children(I) = 0;
1 − α(1 + |I|)−β , if I is a leaf inT andchildren(I) 6= 0;
α(1+|I|)−β

children(I)
, otherwise;

Herechildren(I) is the number of tests that can still be performed to split theexamples
in tid(I); D is the training data, excluding the class labels;α and β are parameters. In
(Buntine, 1992; Chipman et al., 1998; Angelopoulos & Cussens, 2005) the prior only allows
for paths that contain at least a minimum number of examples,which corresponds to the
anti-monotonic, structure independentminimum support constraint.

The distinguishing feature of density estimation trees is that they have class distributions
in the leaves instead of single class labels.

Given the Bayesian setting, in (Buntine, 1992; Chipman et al., 1998; Angelopoulos &
Cussens, 2005) a prior distribution over the parameters wasdefined, as well as the proba-
bility of the training data given a tree structure and its parameters. After rewriting, we can
formulate this optimization criterion as follows:

fb(T ) = − log(p(c|T, D)) − log(p(T |D)).

where

p(c|T, D) =
Y

I∈leaves(T )

„

Γ (
P

c αc)
Q

c Γ (αc)

« „

Q

c Γ (freqc(I) + αc)

Γ (freq(I) +
P

c αc)

«

;

hereΓ is the standard gamma function that extends the factorial toreal numbers; vector
αc is a parameter of the optimization criterion. Vectorc represents the class labels of the
training examples. The overall optimization criterion isadditive and structure dependent.

4.2.4 Cost-Sensitive Decision Trees

A benefit of decision trees is that they are easily interpretable models that can be used as
questionnaires. For instance, in the medical domain, a decision tree can be interpreted by a
doctor as a sequence of tests to diagnose a patient; an insurance company can interpret it
as a sequence of questions to determine if a person is a desirable customer. In such cases,
the application of a tree on an example incurs a certain cost:every question might require a
certain amount of money or time to be answered. Furthermore,if a person is classified in-
correctly, this might induce additional costs, in terms of expected missed revenue, or higher
treatment costs. To induce trees under such cost constraints, algorithms for decision tree
induction under cost constraints have been proposed (Turney, 1995; Esmeir & Markovitch,
2007a).

Formally, these algorithms assume that the following information is given:

– a c × c misclassification cost matrixQ whereQi,j is the cost of predicting that an
example belongs in classi, when it actually belongs in classj;

– for every attributei, a costtqi for a test on this attribute;
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– for every attributei, a groupgi that it is contained in;
– for every groupg, an additional costtqg for the first test on an attribute in this group.

The motivation for having both a cost per group and per attribute is that it is often cheaper
to ask related questions or perform related medical tests. Therefore later tests in a group of
related tests are usually cheaper.

For a pathI ∈ leaves(T ) we can formally define the cost of classifying an example in
tid(I) as follows:

tq(I) =
X

i∈I

tqi +
X

g∈{gi|i∈I}

tqg.

The expected costs for performing the tests in a tree are therefore:

ftq(T ) =
X

I∈leaves(T )

freq(I)

|D|
tq(I).

The expected misclassification costs are:

fmq(T ) =
1

|D|

X

I∈leaves(T )

X

c∈C

Qc,c(I)freqc(I).

Combining these costs, the following criterion was proposed (Turney, 1995; Esmeir &
Markovitch, 2007a), which isadditive and structure dependent:

fq(T ) = ftq(T ) + fmq(T ).

A possibility which has not been studied in the literature, is the use of costs in path con-
straints. This may also be useful in practice. For instance,assume that the cost of a test is
expressed in terms of the time that is needed to perform the test, while the misclassification
cost is in terms of dollars. Combining these costs in a singlemeasure would require time
to be expressed in monetary terms, which may be undesirable and unpractical. An alterna-
tive could be to explicitly search for a tree that minimizesfmq(T ), under the constraint that
tq(I) ≤ maxtime, for every itemsetI ∈ leaves(T ). Thisconjunctive, anti-monotoniccon-
straint would allow us to find inexpensive trees that have bounds on prediction times. One
could evaluate such a query for multiple values ofmaxtime to come to a well-motivated
trade-off between classification time and misclassification costs.

4.2.5 Privacy Preservation

The main motivation behind privacy preserving decision tree learning, such as first per-
formed by Friedman et al. (2006), is as follows. Assume we have a credit card company
with a databaseD in which good and bad clients are distinguished from each other. The
company learns a decision tree on this data, and uses this tree to accept or reject customers.
Then regulations may require that the company publishes this tree. How can the company
avoid that the tree provides information about individual customers in its database?

By Friedman et al. (2006) the followingattackwas studied. Assume that an attacker has
public information, such as the address and telephone number of a customer, and wishes
to know if this customer is a good customer. How can the company ensure its customers
that the prediction that an attacker obtains from the tree using public information, is never
based on less thank individuals, and hence, can never be traced to one individual customer?
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This problem can be formalized as follows: we wish to find a tree in which the following
constraint is satisfied for every examplet in the data:

X

I′∈leaves(T )
(I′∩Ipublic)⊆(t∩Ipublic)

freq(I ′) ≥ k :

here,Ipublic represents attributes assumed to be publicly available; attributes inIprivate

are not publicly available. The constraint expresses that aparticular examplet may not end
up in a set of leaves containing in total less thank examples, if we assume that for private
attributes we try both branches when we pass the example downthe tree. This constraint is
anadditive and structure dependentoptimization constraint, and needs to be applied for
every customer. We will see that such a large number of constraints is hard to deal with in
our framework. However, if we do not wish to make assumptionsabout which attributes are
private, and all attributes except the target are assumed public, the constraint reduces to a
minimum support constraint.

It is known in the database community that the protection provided by thisk−anonymity
is limited (Sweeney, 2002; Samarati, 2001; Machanavajjhala et al., 2007), in particular when
regulations require the class distribution of the decisiontree also to be provided. As solution
to address this problem theℓ−diversity principle was proposed. Using our framework, we
can extendℓ−diversity to decision tree learning:

– underk−anonymity the prediction performed by a leaf may be 100% accurate if there
is no diversity in the class labels. To ensure customers thata tree never performs a 100%
accurate prediction – and hence, every customer could be oneof the exceptions to the
prediction of the tree – we could require that the class distribution in every leaf has
sufficiently high entropy, i.e.,

∀I ∈ leaves(T ) : Hl(I) = H

„

freq1(I)

freq(I)
,
freq2(I)

freq(I)
, . . . ,

freq
c
(I)

freq(I)

«

≥ ℓ;

here,H(p1, . . . , pn) computes the entropy of a distribution,

H(p1, p2, . . . , pn) = −
n

X

i=1

pi log pi.

This constraint is aconjunctive, non-anti-monotonic, structure independent.
– in addition to a high diversity on class labels, we can also require a high diversity for

other attributes by imposing as constraint:

∀I ∈ internal(T ) : Hin (I) = H

„

freq(child1(I, T ))

freq(I)
,
freq(child2(I, T ))

freq(I)

«

≥ ℓ.

This constraint avoids the following type of leak: in many cases the most accurate de-
cision trees are obtained when the supports in the leaves reach the frequency threshold
k. If an attacker knows thisk, the attacker could derive how many examples are ap-
proximately in which part of the tree, and could gather an impression of the values of
attributes used in internal nodes. By requiring tests to be performed on balanced at-
tributes, some information is leaked; however, this information is often least useful.

Observe that these constraints can be hard to optimize in combination with accuracy. Indeed,
ℓ−diversity and accuracy are opposing requirements; traditional entropy-based decision tree
learners discourage high entropy in the leaves.
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5 Building Optimal Decision Trees from Lattices

In this section we develop an algorithm for finding decision trees. Given our categorization
of the previous section, these are the requirements for thisalgorithm:

1. The optimization criterion must be additive.
2. The constraints must be either conjunctive over paths or based on an additive optimiza-

tion criterion.
3. There should be at least one anti-monotonic path constraint.

As seen in the previous section, we decompose a query in the following components, some
of which may be empty:

– the anti-monotonic leaf constraintϕleaf ,antim (I);
– the leaf constraintϕleaf (I), which includes the anti-monotonic leaf constraint;
– the internal constraintϕinternal (I, I1, I2);
– the leaf optimization criterionfleaf (I);
– the internal optimization criterionfinternal (I, I1, I2);
– the leaf optimization constraintgleaf (I);
– the internal optimization constraintginternal (I, I1, I2);
– the optimization constraint threshold(s)θ.

The algorithm, which we called DL8 (Decision Trees from Lattices), is based on the link
between itemset mining and decision tree learning. In this section, we first discuss how to
compute trees from itemset lattices. Next, we discuss how tocompute these lattices, where
we consider two options:

1. Building the trees from pre-computed itemsets (the lattice is computedbeforebuilding
the decision trees).

2. Integrating itemset mining into the decision tree construction (the lattice is computed
while building the decision trees).

Finally, we study how queries can berewritten to improve the efficiency of their evaluation
in our algorithm.

5.1 Building Decision Trees from Lattices

The algorithm for constructing decision trees from lattices is given in Algorithm 1. Its main
component is the DL8-RECURSIVEprocedure, which is called for an itemset and computes
decision trees for that itemset. The main reasons why DL8 is more efficient than näıve
enumeration algorithms are:

– We optimize the left-hand and right-hand branch of a node in atree independently from
each other, hence avoiding that we enumerate all possible combinations of sub-trees for
the left-hand and right-hand branch of a test.

– When we compute a tree for an itemset, we store the result, andreuse it later on, hence
avoiding that we compute the same result for other possible orders in which the same
tests can occur in a path.

– We do not recurse the search when the anti-monotone constraints are not satisfied.

The correctness of this approach follows from the followingfacts.
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Algorithm 1 DL8(ϕleaf ,antim , ϕleaf , ϕinternal , fleaf , finternal , gleaf , ginternal , θ)

1: T ←DL8-RECURSIVE(∅)
2: ComputeargminT∈T T.f
3:
4: procedure DL8-RECURSIVE(I)
5: if DL8-RECURSIVE(I) was computed beforethen
6: return stored result
7: end if
8: initializeT to be an empty associative array with domain{0, . . . , θ}
9: if ϕleaf (I) then

10: T.tree ← leaf (c(I))
11: T.f ← fleaf (I)
12: T.g ← gleaf (I)
13: if T.g ≤ θ then
14: T [T.g] = T
15: end if
16: end if
17: for all i ∈ I do
18: if ϕinternal (I, I ∪ {i}, I ∪ {¬i}) and
19: ϕleaf ,antim (I ∪ {i}) and ϕleaf ,antim (I ∪ {¬i}) then
20: T1 ← DL8-RECURSIVE(I ∪ {i})
21: T2 ← DL8-RECURSIVE(I ∪ {¬i})
22: for all T1 ∈ T1, T2 ∈ T2 do
23: T.tree ← node(i, T1.tree, T2.tree)
24: T.f ← finternal (I, I ∪ {i}, I ∪ {¬i}) + T1.f + T2.f
25: T.g ← ginternal (I, I ∪ {i}, I ∪ {¬i}) + T1.g + T2.g
26: if T.g ≤ θ and (T [T.g] is emptyor T [T.g].f > T.f ) then
27: T [T.g] = T
28: end if
29: end for
30: end if
31: end for
32: storeT as the result forI and returnT
33: end procedure

– We consider queries which are additive and conjunctive, andhence, we can evaluate
optimization criteria and constraints for the left-hand and right-hand branch of a node in
a tree independently from each other.

– All constraints and optimization criteria are computed foritemsets, independent of the
order of the items in these sets.

– If an anti-monotonic constraint is not satisfied for a path, any tree which contains this
path cannot be a solution to the query either.

If κ is the number of edges in a lattice, the complexity of the algorithm is Θ(κ), as we
consider every edge in this lattice exactly once.

In our algorithm, we use several data structures. The main data structure is the one in
which the lattice is stored. For every itemsetI we have an associative data structureT

which allows us to associate a tree and its attributes to a vector of integers. In case no
optimization constraints are specified, this structureT contains at most one tree. Note that
at the implementation level we do not need to store associated trees in their entirety: it
is sufficient to only store the roots of these trees, as the subtrees can be recovered from
the lattice recursively, by searching for the trees associated to the left-hand and right-hand
branch of an internal node.

In more detail, our algorithm works as follows:
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Line 8: For each possible value that the optimization constraint can take we will store one
associated tree. Initially, this data structure is empty. Note that we require an optimiza-
tion criterion that is used as optimization constraint to have an integer codomain.

Line 9–14: In case the itemset corresponds to a possible leaf, we initialize this leaf and its
statisticsT.f andT.g.

Line 17–31: We iterate over all possible tests to split the examples further.
Line 19: For a possible test, we determine whether or not we create a tree in which this test

is a valid internal node; furthermore we determine if we create two paths that can be part
of a tree in which the anti-monotonic constraints are satisfied.

Line 20–21: If we can satisfy the constraints, we determine the best trees for the left-hand
and right-hand branches, independently from each other; both calls return sets of trees,
each tree associated to a vector of integers, each integer representing a possible value
of one of the optimization constraints for the tree (if we do not have an optimization
constraint, each set contains at most one tree).

Line 22–29: We consider all combinations of left-hand and right-hand trees.
Line 27: The optimization constraint of the generated tree is evaluated; if the best known

tree for this constraint value is improved, we store the new tree. We only need to store
intermediate trees for which the optimization constraint is not higher than the threshold
value, as the additivity means that other sub-trees cannot be part of the final tree.

5.2 Computing Lattices Beforehand

While DL8 is executing, it needs to evaluate constraints based on the data. In this section
we study the following question: assuming that we would liketo use an itemset mining
algorithm beforehand to find the itemsets and their properties in the data, which constraints
should we use in this itemset miner? In other words, how do we push the decision tree
mining constraints in the itemset mining process?

First, let us consider why we may be interested in separatingthe execution of DL8 from
the itemset mining process. We believe there could be two reasons for this.

1. There are many optimized itemset mining algorithms; by using these, we exploit these
optimizations, and reduce implementation efforts.

2. We might consider decision tree construction as one part of an interactive data analysis
process, in which it could be of interest to know in which cases we can reuse a set of
itemsets to build multiple decision trees.

The main class of constraints used by itemset miners is the class ofanti-monotoniccon-
straints. We can see that if we find all itemsets satisfyingϕleaf ,antim (I), we find sufficiently
many itemsets to build decision trees for the case thatϕleaf ,antim (I) is the leaf constraint. A
more interesting question is the reverse question: are all these itemsets needed? The follow-
ing example illustrates that this is not the case. Assume that {A} is a frequent itemset, but
{¬A} is not; then no tree will contain a test on featureA, as one of the branches resulting
from this test will lead to an infrequent leaf. Consequently, itemset{A}, even though fre-
quent, is redundant. The following explains how we can characterize the itemsetsrelevant
to decision trees induction.

If we consider the DL8 algorithm, an itemsetI = {i1, . . . , in} is needed only if there
is an order[ik1

, ik2
, . . . , ikn

] of the items inI (which corresponds to an order of recursive
calls of DL8-RECURSIVE) such that for none of the proper prefixesI ′ = [ik1

, ik2
, . . . , ikm

]

(m < n) of this order:
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– theϕinternal (I
′, I ′ ∪ {ikm+1

}, I ′ ∪ {¬ikm+1
}) predicate is false;

– the conjunctionϕleaf ,antim (I ′ ∪ {ikm+1
}) ∧ ϕleaf ,antim (I ′ ∪ {¬ikm+1

}) is false.

Definition 2 Let ϕleaf ,antim be an anti-monotonic constraint andϕinternal be an internal
constraint. Then therelevanceof an itemsetI, denoted byrel(I), is defined by

rel(I) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ϕinternal (I), if I = ∅ (Case 1)

true, if ∃i ∈ I such that
rel(I − i) ∧ ϕinternal (I − i, I, I − i ∪ {¬i})∧

ϕleaf ,antim (I) ∧ ϕleaf ,antim (I − i ∪ ¬i) (Case 2)

false, otherwise (Case 3)

Theorem 1 Let L1 be the set of itemsets stored byDL8, and letL2 be the set of itemsets
{I ⊆ I|rel(I) = true}. ThenL1 = L2.

Proof We consider both directions.
“⇒”: if an itemset is stored by DL8, there must be an order of the items in which each prefix
satisfies the constraints. Then we can repeatedly pick the last item in this order to find the
items that satisfy the constraints in case 2 of the definitionof rel(I).
“⇐”: if an itemset is relevant, we can construct an order in which the items can be added
in the recursion without violating the constraints, as follows. For a relevant itemset there
must be an itemi ∈ I such that case 2 holds. Let this be the last item in the order; then
recursively consider the itemsetI − i. As this itemset is also relevant, we can again obtain
an itemi′ ∈ I − i, and put this on the second last position in the order, and so on.

If we assume that the internal constraint is also anti-monotonic, relevancecan also be
used in itemset miners that exploit anti-monotonic constraints.

Theorem 2 If both the internal constraint and the leaf constraint are anti-monotonic, item-
set relevance is an anti-monotonic property.

Proof By induction. The base case is trivial: if the∅ itemset is not relevant then none of its
supersets is relevant. Assume that for all itemsetsX ′, X up to size|X| = n we have shown
that if X ′ ⊂ X: ¬rel(X ′) ⇒ ¬rel(X). Assume thatY = X ∪ i and thatX is not relevant.
To prove thatY is not relevant, we need to consider everyj ∈ Y , and consider whether case
2 of the definition is true for thisj:

– If i = j. certainlyY − i = X is not relevant;
– If i 6= j. We know thatj ∈ X, and given thatX is not relevant, either:

– rel(X − j) = false: in this caserel(Y − j) = rel(X − j ∪ i) = false (inductive
assumption);

– ϕleaf ,antim (X) = false: in this caseϕleaf ,antim (Y ) = false (anti-monotonicity of
ϕleaf ,antim );

– ϕleaf ,antim (X − j ∪ ¬j) = false: in this caseϕleaf ,antim (Y − j ∪ ¬j) =

ϕleaf ,antim (X − j ∪ ¬j ∪ i) = false (anti-monotonicity ofϕleaf ,antim );
– ϕinternal,antim (X − j) = false: in this caseϕinternal,antim (Y − j) =

ϕinternal,antim (X − j ∪ i) = false (anti-monotonicity ofϕinternal,antim ).
Consequently,rel(Y ) can only befalse.
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It is relatively easy to integrate the computation of relevance in both breadth-first and
depth-first frequent itemset mining algorithms, as long as the order of itemset generation is
such that all subsets of an itemsetI are enumerated beforeI is enumerated itself.

We implemented two versions of DL8 in which the relevance constraints are pushed in
the frequent itemset mining process: DL8-APRIORI, which is based on APRIORI (Agrawal
et al., 1996), and DL8-ECLAT, which is based on ECLAT (Zaki et al., 1997a).

5.3 Computing Lattices on the Fly

The second option is to access the data while building decision trees. One reason for doing
this could be to avoid possible overhead caused by traversing the lattice multiple times.
Another, more important, reason involves the possibility to use closed itemsets effectively.

The main observation that we exploit to this purpose is that if we are dealing with a
structure independentquery we can restrict our attention to an even smaller set of itemsets
than the relevant itemsets.

The main reason for this is that if two itemsetsI andI ′ cover the same set of examples
(i.e., tid(I) = tid(I ′)), and the query is structure independent, the tree(s) we findfor both
itemsets must be the same. To reduce the number of itemsets that we have to store, we should
avoid storing such duplicate sets of results.

To ensure that results are re-used between itemsets covering exactly the same examples,
we propose to compute for every itemset itsclosure. The closure of an itemsetI is the
largest itemset that all transactions intid(I) have in common. More formally, letitems be
the function which computes

items(tids) = ∩k∈tids tk

for a TID-settids, then theclosureof itemsetI is the itemsetitems(tid(I)). An itemsetI is
calledclosediff I = items(tid(I)) (Pasquier et al., 1999). Iftid(I1) = tid(I2) it is easy to
see that alsoitems(tid(I1)) = items(tid(I2)).

We can use this observation by modifying DL8: instead of associating decision trees to
itemsets, we associate decision trees to closed itemsets. We change line 5 such that it checks
if a decision tree has already been computed for the closure of I; in line 32, we associate
computed decision tree(s) to the closure ofI instead of toI itself. We refer to this algorithm
as DL8-CLOSED.

In practice this means that we build a data structure of closed itemsets instead of ordi-
nary itemsets. Lattices of closed itemsets are also known asconcept lattices; closed itemsets
are also known asformal concepts, and have been studied extensively in the literature (Gan-
ter & Wille, 1999). In principle, one could also develop a step-wise approach in which one
first computes closed itemsets and subsequently mines decision trees. However, in our al-
gorithm we do not only need the closed itemsets; we also need the relationships between
them, i.e., if we add an item to an itemset we need to know what the closure of the result-
ing itemset is. In other words, we do not only need to know the formal concepts, we also
need to know the edges in the Hasse diagram of these itemsets.Storing these edges would
not only increase the memory requirements of our algorithm,determining them in a post
processing step is also not straightforward: a naı̈ve algorithm for computing this diagram
would take quadratic time, while also less naı̈ve recent algorithms (such as (Baixeries, Sza-
thmary, Valtchev, & Godin, 2009)) require significant computation times. An approach in
which itemsets are mined and decision trees are built at the same time hence seems more
promising. The remainder of this section is devoted to an outline of the choices that we made
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in the integrated approach that we used in our experiments. This approach builds on choices
that are commonly made in closed itemset mining algorithms.

The main idea is that during the search, we keep track of thoseitems and transactions
that are ‘active’. As parameters to DL8-RECURSIVEwe add the following:

– the itemi that was last added toI;
– a set ofactive items, which includes itemi, and represents all tests that can still be added

to the itemsetI − i;
– a set ofactive transaction identifiersrepresentingtid(I − i);
– the set of all itemsC that are in the closure ofI − i, but are not part of the set of active

items.

In the first call to DL8-RECURSIVE, all items and transactions are active. At the start of
each recursive call (before line 5 of DL8-RECURSIVE is executed) we scan each active
transaction, and test if it contains the last added itemi; for each active transaction that con-
tains itemi, we determine which other active items it contains. We use this scan to compute
the frequency of the active items, and build the new set of active transaction identifiers
tid(I). Those active items of which the frequency equals that ofI, are added to the clo-
sureC. If it turns out we have encountered this closure before, we return the corresponding
previously computed result. Otherwise, we now build a new set of active items. For every
item we determine ifϕleaf ,antim (I ∪{i}), ϕleaf ,antim (I ∪{¬i}) and the internal constraint
ϕinternal (I, I ∪ {i}, I ∪ {¬i}) are true; if so, we add the item to the new set of active items.
In line 17 we traverse the set of active items. In line 20 and 21the updated sets of active
transactions and active items are passed to the recursive calls. By computing the closure of
every itemset, we traverse the Hasse diagram of closed itemsets.

Our approach for maintaining sets of active transactions isakin to the idea of main-
taining projected databases that is implemented in ECLAT (Zaki et al., 1997a) and FP-
GROWTH (Han et al., 2000). In contrast to these algorithms, we know in our case that we
have to maintain projections that contain both an itemi and its negation¬i. As we know that
|tid(I)| = |tid(I ∪ i)|+ |tid(I ∪¬i)|, it is less beneficial to maintain TID-sets as in ECLAT,
and we prefer a solution in which we call DL8-RECURSIVE with the set of active transac-
tionstid(I − i) instead oftid(I). We project a transaction set by reordering the transactions
in an array. Consequently, the memory use of our algorithm isdetermined by the amount of
memory that is needed to store the database and the closed itemsets with associated infor-
mation. Per closed itemset we only store the associative arrayT for later retrieval; to reduce
memory demands, we do not store support values, edges of the Hasse diagram, or TID sets.
A tree in the associative array is only represented by its root node, as any subtrees can be re-
covered recursively from information associated to other itemsets. The information that we
store for every itemset is hence only determined by the optimization criteria that are used;
if we assume the query given, the information stored per itemset is constant. Consequently,
the memory use isθ(|D| + |S|), where|S| is the size of a data structure storing all closed
itemsets.

Even though we hence attempt to limit the memory required by our algorithm, it should
be repeated that the number of closed itemsets can be exponential in the size of the database;
in practice the complexity remains high.

5.4 Efficiency improvements

A common trick to improve the efficiency of constraint-basedsearch is to rewrite constraints
or to add redundant constraints. For instance, both in research devoted to constraint pro-
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gramming and to database systems it is common to rewrite queries to a form which can be
more efficiently evaluated. While some systems –database systems for instance– attempt to
optimize certain queries, in many cases such optimization is still a manual effort that is un-
dertaken by a programmer. A similar observation can also be made for decision tree learning
queries. The aim of this section is to suggest the use of queryrewriting to improve the over-
all efficiency of our algorithm. We illustrate this for two tasks that can be performed by our
algorithm. We leave the topic of general query optimizationas future work.

Finding the Smallest Most Accurate TreeLet us consider the following query:

argmin
T∈T

(error(T ), size(T )) subject toϕ(T ) = ∀I ∈ paths(T ) : freq(I) ≥ minfreq

We can optimize this query further by the following simple observation: if a tree contains an
internal node which is pure, we can remove the tree below thisinternal node to obtain a tree
that is equally accurate but smaller. Hence, in the smallestmost accurate tree we will never
have pure internal nodes. We can pose this as an additional, redundant internal constraint,
and push this in the mining process. In the following theoremwe show that this constraint
on the global model can even be relaxed further to prune additional itemsets during the local
pattern mining step.

Definition 3 For a given itemsetI, let us sort the frequencies in the classes in descending
order,freq1 ≥ . . . ≥ freqn (hencefreq1 is the frequency of the majority class). Letminfreq

be the minimum frequency used to build the lattice. An itemset I isalmost-pureif (minfreq−
Pn

i=2 freqi(I)) > freq2(I).

Theorem 3 If freq(I) ≥ minfreq , almost − pure(I) = true and classk is the majority
class inI, then for allI ′ ⊃ I such thatfreq(I ′) ≥ minfreq , classk is the majority class of
I ′.

Proof Let class 1 be the majority class in the examplest = tid(I). Thenfreq(I) ≥ minfreq ⇔
Pn

i=1 freqi(I) ≥ minfreq ⇔ freq1 ≥ (minfreq −
Pn

i=2 freqi(I)). SinceI is almost-pure
we know that(minfreq −

Pn
i=2 freqi(I)) > freq2(I) ≥ 0 ⇔ ∀i, 2 ≤ i ≤ n, freqi <

minfreq .
For classk (k 6= 1) to be the majority class inI ′ with I ′ ⊃ I andfreq(I ′) ≥ minfreq , the
number of examples of classk in I ′ should be higher than the minimum number of exam-
ples from class1 that will still be in I ′. This number is at least(minfreq −

Pn
i=2 freqi(I)).

So, fork (k 6= 1) to be the new majority class inI ′, we must havefreqk ≥ (minfreq −
Pn

i=2 freqi(I)) which contradicts the definition of loose-purity forI; therefore class1 must
be the majority class inI ′.

Intuitively, the previous theorem states that if the frequency of the examples belong-
ing to the second majority class is low enough, splitting thetree again will never increase
its global accuracy. Hence, if we are searching for accurateand small trees, we can pose
the (redundant) constraint that every internal node shouldnot be almost-pure to obtain the
correct result.

Finding the Smallest Sufficiently Accurate TreeAssume we wish to answer the following
query:

argmin
T∈T

size(T ) subject toϕ(T )
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Table 1 Dataset description

Dataset #Ex #Features Dataset #Ex #Features

anneal 812 36 pendigits 7494 49
a-credit 653 56 p-tumor 336 18
balance 625 13 segment 2310 55
breast-w 683 28 soybean 630 45

chess 3196 41 splice 3190 3466
diabetes 768 25 thyroid 3247 36
g-credit 1000 77 vehicle 846 55
heart-c 296 35 vote 435 49

ionosphere 351 99 vowel 990 48
mushroom 8124 116 yeast 1484 23

where

ϕ(T ) = error(T ) ≤ maxerror ∧ size(T ) ≤ maxsize ∧

(∀I ∈ paths(T ) : freq(I) ≥ minfreq).

In principle we could maintain for every itemset a set of trees of sizeO(maxerror ×

maxsize), but such an approach demands the computation of a very largenumber of trees
for every itemset.

Assume now that we execute the following query:

argmin
T∈T

error(T ) subject toϕ(T )

where

ϕ(T ) = size(T ) ≤ maxsize ∧ (∀I ∈ paths(T ) : freq(I) ≥ minfreq).

Then we can observe that to answer this query, DL8 will find forevery possible size up to
the maximum size, the most accurate tree of that size. We can easily modify DL8 in line 2
to answer our original query, as it suffices to find the smallest tree in this set which satisfies
the accuracy constraint.

6 Experiments

The aim of this section is to answer the following questions :

1. How does an exact tree learner, such as DL8, compare to a well-known heuristic learner
in terms of the compromise between size and accuracy?

2. What is the influence of DL8’s mandatory constraint (theminfreq constraint) on the
accuracy of the trees it learns?

3. How well does DL8 perform on non-traditional tree learning problems, such as learning
decision trees under cost or size constraints?

With respect to efficiency, we aim to answer the following questions:

4. How much do the constraints on the trees help the local pattern mining phase?
5. How much does restricting the search to closed itemsets improve the overall efficiency?
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The experiments were performed on UCI datasets (Asuncion & Newman, 2007). Numerical
datasets were discretized using WEKA ’s (Witten & Frank, 2005) unsupervised discretization
method with an equal-frequency repartition and a number of bins equal to 4 before applying
the learning algorithms. We limited the number of bins in order to limit the number of
created features. Table 1 gives a brief description of the datasets that we used in terms
of the number of examples and the number of attributes after binarization (features). All
experiments were performed on Intel Pentium 4 machines within between 1GB and 4GB
of main memory, running Linux. DL8 and the frequent itemset miners were implemented
in C++.

6.1 Quality Evaluation

In this section we determine the performance of DL8 when mining trees under constraints.
Thus, we aim at answering Questions (1), (2) and (3). Note that no implementation of alter-
native exact decision tree learners is available. As a baseline to evaluate our results, we
decided to use J48, the Java implementation of the heuristicdecision tree learnerC4.5
(Quinlan, 1993) in WEKA. Without guaranteeing an exact solution,C4.5 supports some
constraints, such as a minimum support on nodes after a split, which corresponds to the
anti-monotonic “frequency” constraint in our case.C4.5 is known to generalize well and
give good test accuracy results on many machine learning problems.

To answer Question (1) and, in particular, to evaluate the accuracy of the trees computed
by DL8 on test data, we obviously cannot optimize the test setaccuracy directly (and thus
we cannot guarantee better results on test data): we need to optimize regularized measures
on the training data if we wish to avoid overfitting. When using the standard error function
(error ) for C4.5, we letC4.5continue splitting as long as the training set error is reduced
and the frequency constraint is not violated. When using thereduced-error function (fp) the
default pruning criterion inC4.5is applied.

We used a stratified 10-fold cross-validation to compute thetraining and test accuracies
of both systems and a corrected two-tailed t-test (Nadeau & Bengio, 2003) with a signifi-
cance threshold of 5% to compare the test accuracies;0 indicates that no significant differ-
ence was observed,− indicates that J48 is significantly better,+ that DL8 is significantly
better.

As explained in Section 5, the bottleneck of our algorithm isthe itemset mining phase
and the in-memory construction of the lattice which is part of this phase. Therefore, the
application of our algorithm is limited by the amount of memory available for the construc-
tion of this lattice. In the following experiments, unless specified differently, theminfreq

threshold used for DL8 for each dataset is the lowest one we could use for the given dataset
without running out of memory.

6.1.1 Heuristic versus Exact Decision Tree Learning

The main alternative for our approach is the heuristic approach. Results for the heuristic
approach can provide us a lower-bound on the accuracy that can be achieved on the datasets
that we use in this article. Similarly, in order to study the effects of constraints that we
will use later in our experiments, it is of interest to determine the accuracies that DL8 is
able to achieve when using the least restrictive constraintpossible, which we assume to
be theminfreq = 2 threshold used in J48. Results for this setting, when applying thefp

optimization criterion, are given in Table 2 for those datasets where the use of this support
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Table 2 Comparison of J48 (with pruning, without constraints) and DL8 (with pruning, without constraints)

Train acc. Test acc. Test significance Size
Datasets DL8 J48 DL8 J48 Disc. J48 No D. Disc. No D. J48 DL8

anneal 0.87 0.86 0.82 0.82 0.88 0 - 44.4 45.6
balance 0.89 0.89 0.80 0.80 0.79 0 0 72.4 65.4

breast-w 0.98 0.97 0.96 0.96 0.95 0 0 15.6 18.0
diabetes 0.92 0.84 0.71 0.74 0.73 0 0 69.0 135.2
heart-c 0.97 0.90 0.77 0.78 0.80 0 0 31.6 50.2

p-tumor 0.67 0.60 0.40 0.40 0.40 0 0 81.2 105.2
yeast 0.75 0.68 0.50 0.53 0.56 - - 186.0 307.2

threshold is feasible for DL8. We used this pruning criterion as both DL8 and J48 overall
achieve the best test-set accuracy for this criterion (not shown here).

An important element of our approach is the discretization in binary attributes, which
is not needed in J48. To determine the influence of our discretization on the resulting trees,
we applied J48 both on the original, undiscretized data and the discretized data that was
also used as input to DL8. The table shows that the optimal trees computed by DL8 have a
better training accuracy than the trees computed by J48 withthe same discretization. When
pruned trees are compared to unpruned ones (see Table 3), thetrees are on average 1.75
times smaller for J48 and 1.5 time smaller for DL8. After pruning, DL8’s trees are still
1.5 times larger than J48’s pruned trees. In one case (balance-scale), the tree computed by
DL8 is significantly smaller on average (65.4 nodes) than theone computed by J48 (72.4
nodes) for a similar test accuracy. Furthermore, on the testdata, there is almost no significant
difference (expect for theyeastdataset) between J48 and DL8.

This shows that the quality of the trees computed by DL8 remains competitive with
J48’s one. However, using a simpler heuristic decision treelearner is sufficient to obtain
good test-set accuracy and this might yield smaller trees.

Unfortunately, as can be seen in Table 3, the number of datasets for which a minimum
support threshold of 2 is feasible in DL8 is limited. Using higher thresholds could allow us
to compare our algorithm on a larger number of datasets. The influence of this constraint is
hence studied in the next section.

6.1.2 Frequency Constraint

As the use of a frequency constraint is an important propertyof our approach, we determine
the influence of this constraint.

As a baseline, we first run both J48 and DL8 on all datasets, forthe lowest value for
which the execution of DL8 is feasible. We used the training set error (error ) as optimiza-
tion criterion. Table 3 shows that, when optimizingerror , for both training and test accura-
cies, DL8 is significantly better than J48 on 9 of the 20 datasets, and not worse in the other
cases. Hence, we can confirm that our results of the previous section also apply for other
values of the frequency constraint.

Secondly, we evaluate how different values of this mandatory constraint influence the
accuracy of trees learned by our algorithm. To this aim, Table 3 includes runs of DL8 for
multiple minimum frequencies. We gradually decrease the frequency thresholds both when
usingerror andfp as optimisation criteria. As we lower the support thresholds, we observe
that the training accuracy increases, but the experiments on the 7 datasets for which we
were able to reach aminfreq of 2, indicate that for test set accuracy, low thresholds arenot
always the best option. For example, Figure 3 shows the evolution of the training and test
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Table 3 Comparison of J48 (without pruning, with constraints) and DL8 (without pruning, with constraints)

minfreq Train acc. Test acc. Size
Datasets # % J48 DL8 J48 DL8 Sign J48 DL8

anneal 2 0.2 0.89 0.89 0.82 0.82 0 106.6 87.8
a-credit 40 6.1 0.87 0.89 0.85 0.88 + 6.4 11.0
balance 2 0.3 0.90 0.90 0.82 0.81 0 99.0 114.4
breast-w 2 0.3 0.98 1.00 0.95 0.94 0 31.6 48.0

chess 200 6.2 0.91 0.91 0.91 0.91 0 9.0 8.6
diabetes 2 0.2 0.90 0.99 0.68 0.66 0 200.2 288.4
g-credit 150 15 0.72 0.74 0.71 0.73 0 6.4 7.0
g-credit 100 10 0.73 0.75 0.70 0.70 0 6.4 11.6
heart-c 2 0.6 0.94 1.00 0.76 0.74 0 67.6 74.4

ionosphere 50 14.2 0.83 0.86 0.79 0.84 + 4.0 7.4
ionosphere 40 11.3 0.89 0.89 0.88 0.88 0 5.0 6.8
mushroom 600 7.4 0.92 0.98 0.92 0.98 + 5.0 13.8
pendigits 470 6.3 0.68 0.75 0.67 0.75 + 21.0 21.0
p-tumor 2 0.5 0.63 0.71 0.40 0.36 0 116.4 152.2
segment 150 6.5 0.77 0.86 0.76 0.85 + 15.6 16.8
segment 120 5.2 0.84 0.87 0.84 0.87 + 19.8 25.8
soybean 40 6.3 0.58 0.65 0.57 0.66 + 17.0 20.6
splice 700 21.9 0.74 0.74 0.74 0.73 0 5.0 5.0
thyroid 80 2.4 0.91 0.92 0.91 0.91 0 1.0 13.4
thyroid 40 1.2 0.92 0.92 0.91 0.91 0 9.2 34.4
vehicle 50 5.9 0.63 0.71 0.59 0.67 + 17.0 22.4

vote 10 2.3 0.96 0.98 0.94 0.93 0 4.6 29.6
vowel 65 6.6 0.40 0.47 0.35 0.43 + 19.2 22.6
yeast 2 0.1 0.74 0.82 0.49 0.48 0 501.2 724.2

In these experiments theerror optimization criterion is used. The first two columns give theminfreq thresh-
old in terms of absolute number and percentage of the examples that should be covered by each leaf. The next
columns give respectively the training accuracies, test accuracies and size of the trees built by J48 and DL8
for the givenminfreq threshold. A significance comparison of the test accuracies of both systems (Sign) is
also given.

accuracies of both systems when optimizing the reduced-error functionfp and increasing the
support. As expected, the training accuracies always decrease when the support increases.
However, this behavior is less clear for test accuracies. For example, for the diabetes dataset,
the test accuracies clearly increase with the minimum support. The main explanation for this
is probably that the support constraint acts as a regularization parameter and helps to avoid
overfitting.

These experiments show that when both algorithms try to optimize the same criterion
(here thetraining set error) using the same path constraint (support threshold), the exact de-
cision tree learner DL8 gives better results than the heuristic one. Furthermore, the manda-
tory constraint of DL8 is not necessarily a drawback when looking for decision trees with
high test accuracy.

Until now, the results confirm the intuition that high valuesfor the frequency constraint
can lead to worse accuracies. Indeed, when in Table 4 we compare the performance of
DL8 to J48 on datasets which were not included in Table 2, we observe that the support
threshold can have a strong negative influence on the accuracies achieved. For example, for
thependigitsdataset, the support threshold that we reach for DL8 is470 (compared to2 for
J48) and the test accuracy drops from0.95 for J48 to0.75 for DL8.

In such negative cases, the flexibility of DL8 can be particularly interesting. For exam-
ple, when the lowest minimum frequency threshold for which we could run our algorithm is
much higher than the number of examples in the smallest classof the dataset, we can use a
disjunction of minimum support constraints for each classinstead of the classicalminfreq to
obtain more accurate trees. In this setting, every class is given the same (relative) minimum
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Fig. 3 Evolution of the training and test accuracies of J48 (unpruned and pruned) and DL8 (error andfp

optimization functions) for various minimum frequency thresholds
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Table 4 Comparison of J48 (with pruning, without constraints) and DL8 (with pruning, with constraints)

minfreq Test acc.
Datasets # % J48 DL8

a-credit 40 6.1 0.84 0.88
chess 200 6.2 0.99 0.91

g-credit 150 15 0.71 0.73
ionosphere 50 14.2 0.80 0.84
mushroom 600 7.4 1.00 0.98
pendigits 470 6.3 0.95 0.75
segment 150 6.5 0.95 0.85
soybean 40 6.3 0.82 0.66
splice 700 21.9 0.94 0.73
thyroid 80 2.4 0.91 0.91
vehicle 50 5.9 0.70 0.67

vote 10 2.3 0.96 0.93
vowel 65 6.6 0.53 0.43

In these experiments a pruning criterion was used, a frequency threshold of 2 for J48 and higher values for
DL8.

support constraint. In this way, we allow that a leaf covers asmall number of examples if
all examples belong to the same small class, but we do not allow that a leaf contains a small
number of examples if they belong to many different classes,or to one big class. The results
of these experiments on the negative cases of Table 4 are shown in Table 5. We compare the
training and test set accuracies and the size of DL8 when optimizing thefp criterion and
using the lowest minimum support threshold that we can reachwithin the available memory.
As we can see, the accuracies of DL8 increase significantly inall cases, which shows the
interest of putting such constraints when the class distribution of the data is known before-
hand.

Table 5 Results of DL8 using a disjuncation of frequency constraints

One frequency constraint Disjunction of frequency constraints
Datasets minfreq Train acc. Test acc. Size minfreq Train acc. Test acc. Size

% %
pendigits 6.3 0.75 0.75 21.2 35.0 0.82 0.82 30.8
segment 5.2 0.87 0.86 21.2 22.0 0.91 0.90 33.0
soybean 6.3 0.65 0.66 20.6 35.0 0.80 0.78 38.0
splice 21.9 0.74 0.73 5.0 32.0 0.78 0.79 7.2
vowel 6.6 0.47 0.43 21.8 14.0 0.73 0.65 88.6
yeast 0.1 0.75 0.50 307.2 2.0 0.67 0.52 136.4

In this experimentfp optimization function was used, with the lowest reachable frequency constraints and a
disjunction of class minimum frequency constraints.

6.1.3 Untraditional Tasks

This section aims at answering Question (3). By answering this question, we also aim at
answering another underlying question: when is it more interesting to use an exact algorithm
potentially less efficient and not necessarily more accurate than a heuristic one to learn
decision trees?
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Learning under Size ConstraintsIn (Murphy & Pazzani, 1997), the authors found that a
brute-force enumeration of trees leads can lead to good results for slightly larger trees. To
explore this result in more detail, and again to show the flexibility of our algorithm, we
investigate how much accuracy is affected if we impose exactsize constraints. We use DL8
to compute, for every possible size of a decision tree, the tree with the smallest (pruned)
error that can be achieved, and apply this tree on training and test data under ten-fold cross
validation. For two datasets, the results of such a query aregiven in Figure 4.

On the training data, in general, if we increase the size of a decision tree, its accuracy
improves quickly at first. Only small improvements can be obtained by further increasing
the size of the tree.

On the test data, the effects are less clear. Increasing the tree size can lead to either
better or worse results. On balance scale, increasing the size of the tree leads to both better
training and test results; the principle of Occam’s razor does not seem to apply in this case.
On the other hand, on heart-cleveland we observe that an increase in tree size does not lead
to significantly better trees on training data, but results in significantly worse trees on test
data. In this case, smaller trees would be preferable. Overall, if results on the training data
are not significantly different, it seems preferable to choose a smaller tree. Furthermore, we
can observe that the figures have a ‘tail’ in which an increasein allowed tree size leads to
increasingly less benefits on the test data.
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Fig. 4 Errors of decision trees as function of tree size

Answering Question (3), figures such as Figure 4 are of practical interest, as they allow
a user to trade-off the interpretability and the accuracy ofa model. Furthermore, when a
weighted sum of accuracy and error is used as optimization criterion, as in dyadic decision
trees, points on this curve correspond to particular choices for these weights, and can easily
be computed by our algorithm.

The two last columns of Table 3 show that the trees computed byDL8, although not
less accurate, can be bigger than the trees computed by J48. To investigate the relationship
between accuracy and size in more detail for a larger number of datasets, we decided to
investigate whether a constraint on size would significantly worsen the performance of DL8.
In Table 6, we show results in which the average size of trees constructed by J48 is taken
as a constraint on the maximal size of trees mined by DL8. The results given by DL8 are
neither significantly better nor significantly worse than those given by J48, in terms of both
size and test set accuracy. Furthermore, imposing the size constraint does not significantly
affect the accuracy in most cases. This is an indication thatfor these datasets, we are in the
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Table 6 Results of DL8 for different size constraints

Dataset minfreq Max size Test acc Size
DL8 J48 DL8 DL8 J48 DL8 DL8

w. size w/o size w. size w/o size
diabetes 2 69 0.75 0.72 0.71 69.0 68.8 135.2
g-credit 100 7 0.70 0.72 0.71 6.7 7.0 6.8
heart-c 10 14 0.80 0.80 0.81 14.0 13.0 22.2
vote 15 4 0.95 0.96 0.95 3.4 3.0 9.2
yeast 2 186 0.53 0.52 0.50 186.0 185.0 307.2

Shown are test accuracies for DL8 using thefp optimization criterion.
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Fig. 5 Comparison of the cost-sensitive decision trees ICET and DL8with various frequency thresholds (the
lower curve, the better)

tails that can be seen in Figure 4, where it makes sense to impose an explicit size constraint,
even when a pruning measure is applied.

Learning under Cost ConstraintsThe second case on which we explore the use of exact
decision tree learners is learning trees under cost constraints. We compare DL8 to ICET (In-
expensive Classification with Expensive Tests) (Turney, 1995), introduced in Section 4.2.4.
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The aim is to induce decision trees which minimizefq(T ) = ftq(T ) + fmq(T ); ICET uses
a genetic algorithm for this purpose. The comparison is madeusing the five well known
datasets from the UCI repository (Asuncion & Newman, 2007) for which test costs are pro-
vided (BUPA Liver Disorders, Heart Disease, Hepatitis Prognosis, Pima Indians Diabetes
and Thyroid Disease). We binarized the input data before using DL8 similarly as in the
previous section. A comparison is given in Figure 5. The figure shows theaverage cost of
classificationgiven by the algorithms as a percentage of thestandard costof classification
for different misclassification costs.

The average cost of classificationis computed by dividing the total cost of applying
the learned decision tree on all test examples by the number of examples in the test set.
The total cost of using a given decision tree on an example occurring in a leafI is tq(I) =
P

i∈I tqi+
P

g∈{gi|i∈I} tqg, i.e. the sum of all tests that are chosen and the misclassification
cost as specified in the misclassification matrixQi,j . Letpc ∈ [0, 1] be the frequency of class
c in the given dataset, i.e, the fraction of the examples in thedataset that belong in classc. Let
T be the total cost of performing all possible tests (countingonly once the additional cost for
the tests in the same group). Thestandard costis T +minc(1−pc) maxi,j Qi,j . The second
term is computed from the frequency of the majority class in the dataset and the highest
misclassification cost that an algorithm can have if examples are incorrectly classified as the
majority class.

In the experiments, we vary the misclassification costs (as specified in the matrixQi,j)
from $10 to $10,000. For the sake of simplicity, we consider simple cost matrices i.e, all
misclassification costs are equal. The lowest frequency threshold we could use for DL8 is2
for the BUPA Liver Disorders dataset,16 for the Heart Disease dataset,5 for the Hepatitis
Prognosis dataset,15 for the Pima Indians Diabetes dataset and55 for the Thyroid Disease
dataset. Note that these supports can be higher than those reported in Figures 3 and 2 because
the syntax dependent optimization criterion means we cannot use the smaller set of closed
itemsets.

The results show a better performance for DL8 for 4 of the 5 datasets. However, for
the ann-thyroid dataset, DL8’s results are worse for high misclassification costs (> 103).
Further investigations revealed that this behavior is the result of the low number of bins
that we used in our discretization, which resulted in an error rate that was close to that of
a majority classifier in this very unbalanced dataset (3 classes with distribution (93, 191,
3488)). Once the same discretization was used, the error rates were more similar to each
other, and the difference in behavior disappeared.

6.2 Efficiency Evaluation

We argued that we can construct decision trees both from itemset lattices as from sets of
closed itemsets; we can do so while mining itemsets, or by post-processing itemsets. In this
section we compare these different versions of DL8 in terms of efficiency.

The applicability of DL8 is limited by two factors: the amount of itemsets that need
to be stored, and the time that it takes to compute these itemsets. To answer Question (4)
we evaluate experimentally how the run time of the pattern mining process is influenced
by the relevance constraint and the support constraint. To answer Question (5) we perform
this comparison for several alternative approaches for constructing decision trees from pat-
terns, one of which operates on concept lattices. A summary of the algorithms can be found
in Table 7. DL8-CLOSED implements the direct mining algorithm of Section 5.3. DL8-
ECLAT extends the ECLAT algorithm (Zaki et al., 1997a) to search for itemsets and build
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Fig. 6 Comparison of the different miners on 8 UCI datasets (1/2)
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Table 7 Properties of the algorithms used in the experiments

Algorithm Uses relevance Closed Builds tree
DL8-CLOSED X X X
DL8-APRIORI X X
DL8-ECLAT X X
APRIORI-FREQ

APRIORI-FREQ+DL8 X
ECLAT-FREQ

LCM-FREQ

LCM-CLOSED X

a decision tree; DL8-APRIORI extends APRIORI with relevance pruning and builds a tree
on the resulting lattice. We also include unmodified implementations of the frequent item-
set miners APRIORI (Agrawal et al., 1996), ECLAT (Zaki et al., 1997a) and LCM (Uno et
al., 2004) in the comparison. These implementations were obtained from the FIMI website
(Bayardo, Goethals, & Zaki, 2004). The inclusion of unmodified algorithms allows us to
determine how much the search space is reduced by the anti-monotonic relevance pruning,
and allows us to determine the trade-off between relevance pruning and trie construction.
In APRIORI-FREQ+DL8 we first run traditional APRIORI to construct an itemset lattice
without relevance pruning; we run DL8 in a second phase on theconstructed lattice.

Results for 8 datasets are shown in Figures 6 and 7. We chose datasets that cover a broad
range of dataset properties, including both datasets with large and small numbers of features
and transactions. In these runs we computed the most accurate tree given only a minimum
frequency constraint. We aborted runs of algorithms that lasted for longer than 1800s.

Answering Question (5), the results clearly show that in allcases the number of closed
relevant itemsets is the smallest, which shows the advantage of using closed itemsets. DL8-
CLOSED is usually faster than DL8-APRIORI or DL8-ECLAT. For the datasets with larger
number of features, such as ionosphere and splice, we found that only DL8-CLOSED man-
aged to run for support thresholds lower than 25%, but still was unable to run for support
thresholds lower than 10%. The differences between closed relevant itemsets and non-closed
relevant itemsets are smaller for higher minimum support values; the overhead of DL8-
CLOSED seems too large in this case.

With respect to Question (4), we can observe that the difference between the number
of relevant itemsets and the total number of frequent itemsets becomes smaller for lower
minimum frequency values (for good examples, consider the zoo data and the diabetes data).
The number of frequent itemsets is so large in most cases, that it is impossible to compute
or store them within a reasonable amount of time or space. In those datasets where we can
use low minimum frequencies (15 or smaller), the closed itemset miner LCM is usually the
fastest; for low frequency values the number of closed itemsets is almost the same as the
number of relevant closed itemsets. Bear in mind, however, that LCM does not output the
itemsets in a form that can be used efficiently by DL8.

In those cases where we can store the entire output of APRIORI in memory, we see that
the additional runtime for storing results is significant. On the other hand, if we perform
relevance pruning, the resulting algorithm is usually faster than the original itemset miner.
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7 Conclusions

We presented DL8, an algorithm for finding decision trees that minimizes an optimization
criterion exactly under a wide range of constraints. This algorithm is based on the relation-
ship between itemsets and decision trees and relies on the construction of an itemset lattice
through standard data mining techniques.

With its very general framework, DL8 allows a user to enforceconstraints that have
never been combined before in a single algorithm. Experiments show that: i) these con-
straints can improve the resulting accuracy of a tree; ii) anexact algorithm can indeed
give significantly better results than a heuristic learner if the optimisation criterion is well-
defined; iii) exact results allow to study the behavior of thetrees with respect to constraints.

The investigation that we presented here may only be a starting point in this direc-
tion; it is an open question how efficient decision tree miners could become if they were
thoroughly integrated with algorithms such as LCM, FP-Growth, or algorithms developed
within the formal concept analysis community for processing (concept) lattices. Our inves-
tigations showed that high runtimes are however not as much aproblem as the amount of
memory required for storing huge amounts of itemsets. A challenging question for future
research is what kind of condensed representations could bedeveloped to represent the in-
formation that is used by DL8 more compactly; an alternativecould be to trade space and
time complexity more carefully.

DL8 can be seen as a relatively cheap type of post-processingon a set of itemsets. In
particular, it does not require access to the training data when the model is constructed,
in contrast to other approaches that use patterns for classification. Hence DL8 suits itself
perfectly for interactive data mining on stored sets of patterns. This means that DL8 might
be a key component of inductive databases (Imielinski & Mannila, 1996) that contain both
patterns and data.
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