
HAL Id: hal-00499430
https://hal.science/hal-00499430v1

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Searching and Visualization of Patterns in
Attributed Graphs.

Pierre-Yves Koenig, Faraz Zaidi, D. Archambault

To cite this version:
Pierre-Yves Koenig, Faraz Zaidi, D. Archambault. Interactive Searching and Visualization of Patterns
in Attributed Graphs.. Proceedings of Graphics Interface, May 2010, Canada. pp.113–120. �hal-
00499430�

https://hal.science/hal-00499430v1
https://hal.archives-ouvertes.fr

Interactive Searching and Visualization of Patterns in Attributed Graphs

Pierre-Yves Koenig
CNRS UMR 5800 LaBRI &
INRIA Bordeaux-Sud Ouest
pierre-yves.koenig@labri.fr

Faraz Zaidi
CNRS UMR 5800 LaBRI &
INRIA Bordeaux-Sud Ouest

faraz.zaidi@labri.fr

Daniel Archambault
INRIA Bordeaux-Sud Ouest
& University College Dublin
daniel.archambault@inria.fr

ABSTRACT

Searching for patterns in graphs and visualizing the search results
is an active area of research with numerous applications. With the
continual growth of database size, querying these databases often
results in multiple solutions. Text-based systems present search
results as a list, and going over all solutions can be tedious. In
this paper, we present an interactive visualization system that helps
users find patterns in graphs and visualizes the search results. The
user draws a source pattern and labels it with attributes. Based on
these attributes and connectivity constraints, simplified subgraphs
are generated, containing all the possible solutions. The system is
quite generic and capable of searching patterns and approximate
solutions in a variety of data sets.

Index Terms: H.5.0 [Information Systems]: Information Inter-
faces and Presentation—General G.2.2 [Mathematics of Comput-
ing]: Discrete Mathematics—Graph Algorithms

1 INTRODUCTION

The problem of searching information in databases has been ad-
dressed by many researchers. Representing these search results in
a compact form is an important area of research. In case where
the query is not precise and an approximate solution is required,
the number of solutions returned can be large. Using traditional
List-based Result Visualizationsystems can hinder the efficiency
of choosing an appropriate solution. As an alternative to the list-
based systems, another way to represent solutions is to use a graph-
ical representation of the search results. As argued by North and
North [21], a visualization system can facilitate and empower users
to perform more complex information retrieval tasks. Moreover,
many real world systems can be modeled as graphs, for example,
Social Networks [31], Metabolic Networks [11], and Transport Net-
works [23]. A more natural way to search for information in these
networks is to draw a pattern where the drawing corresponds di-
rectly to the query.

Several approaches exist to search for information in these net-
works. The most common is through a database query language.
As an example, consider an airline network, where the nodes of
the graph are airports and edges represent direct flights [23]. This
graph can have multiple edges where an edge represents a unique
flight on a particular date and time. Attributes are associated with
the nodes and edges of the graph and could include information
such as airline, flight date, departure time, flight duration, and the
cost of the ticket. Attributes associated to nodes of the graph could
include country and region. The attribute region represents the sub-
continents like eastern and western Europe.

A simple query on this database would be to look for all the
flights possible from some city to another, say, Bordeaux to Milano.
The user might choose to take indirect flights with not more than
one stop over. Generating this query is quite simple and the results
can easily be analyzed by a list-based system. On the other hand,
if the user is a tourist, who wants to plan a trip to Europe and visit

its important cities, the user might ask a question such as: Starting
from Bordeaux, find me a tour of four European cities such that
the trip lasts two weeks, a stop in Milano to visit a relative on a
particular date, and the return flight brings me back to Bordeaux.
The table of possible search results can be very large and writing
such a query can be quite cumbersome. Figure 1 represents such
a graphical pattern where nodes represent airports, and the label
Europe is associated to each airport as an attribute of the node.

Figure 1: Pattern for European Tour of four cities from Bordeaux and
visiting Milano. Nodes are numerically labeled for reference.

The problem can also be modeled as a subgraph isomorphism [4]
problem. The goal is to search for a graphG1 in a larger graph
G2 such that there exists a bijection between the vertex set ofG1
and G2. Although subgraph isomorphism is known to be NP-
Complete [5], algorithms exist to solve it in a reasonable amount
of time on real world graphs with attributes [4]. The strict defi-
nition of subgraph isomorphism requires that all edges be present
in the mapping of vertex set ofG1 to vertex set ofG2. Some re-
searchers, however, relax this constraint. The goal of this inexact
matching problem [25] becomes to find a graph that more or less
matches the input graph. Moreover, due to the widespread use of
graphs as models for representing data, the inexact graph matching
problem has attracted lots of research activity [4].

Another approach to solve this problem is to model it as a con-
straint satisfaction problems(CSP) [24, 15]. Given a set of vari-
ables, a finite domain for each variable, and a set of constraints, CSP
problems aim to find an assignment of values to the variables from
the domain such that the assignment satisfies all the constraints.
The graph matching problems has an analogy to CSP problems.
The set of variables in CSPs can be considered as the nodes and
edges in the graph along with their attributes. The constraints can
be translated as restrictions on these nodes and edges. So, for ex-
ample, a node ofG1 can be represented as a variable, the nodes
in G2 as the domain, and the connectivity between nodes inG1 as
restrictions applied to the variables.

Regardless of the search method used to solve the search prob-
lem, our focus is the formulation of the query and representation of
the solutions. Instead of finding and enumerating all approximate
isomorphisms, which can be costly, we present a visualization of

simplified areas of the large graph that contains all of these inex-
act matches. The algorithm takes as input a graph pattern drawn
manually by the user containing optional and required edges. The
only restrictions we impose on this pattern is that the nodes must
be a single, connected component after all optional edges are re-
moved. Our system presents all solutions in a series of subgraph
visualizations where the user can easily browse the different possi-
ble solutions to pick the most suitable.

Our primary contribution is an interactive system that can be
used to help solve this inexact graph matching problem. Secondly,
our system maps attributes using spatial position, color, and shape
to reduce visual complexity and facilitate the reading of patterns
in the graph. Finally, our interactive system does not enumerate
over all patterns found in the graph or attempt to find a globally
minimal solution. Instead, it presents the set of solutions in an in-
teractive system that can be browsed and modified manually, thus
reducing the overall execution time of the search process. Note that
a database query might execute faster to return the search results
but browsing hundreds of records can be difficult. Currently, the
system is implemented as a set of searching algorithms on a graph,
but the search process could be replaced by a database query to de-
crease query time. This approach remains out of scope of this paper
as generating database queries from visual interfaces has been ad-
dressed by other researchers such as Madurapperumaet al [20].

The next section contains the related work. In section 3, we for-
malize the problem and explain the different types of attributes and
constraints. Section 4 presents the proposed system. Finally, we
present different case studies in section 5 to show the effectiveness
of the proposed system.

2 PREVIOUS AND RELATED WORK

Related work can be classified into four areas. Pattern recogni-
tion places an emphasis on subgraph topology while CSP problems
place an emphasis on graph attributes. Research has also been un-
dertaken in the visual analytics and the graph drawing community
to help illustrate patterns in the context of graphs. Finally, some
work has also been done on visual query interfaces for databases.

2.1 Pattern Recognition

Pattern recognition algorithms for inexact matching find solutions
that are global minima, but they suffer from high computational
requirements [4]. Most of the algorithms are designed to calculate
the matching cost on an explicit model of errors. These errors could
be, for example, missing nodes or edges in the suggested solution.
These models do not incorporate optional edges. Thus, allowing an
indirect flight as an optional path to connect to a destination node
even though a direct flight exists, would be difficult to input in this
type of system.

Another approach to defining a matching cost is to use a set of
graph edit operations, such as node insertion, and assign costs to
each operation. The goal is to find the cheapest sequence of oper-
ations to match an input pattern [8]. These methods require a cost
function for optional edges, which may vary between problems and
users. For example, a user may prefer direct flights. Thus, high
costs would be associated with indirect flights. On the other hand,
a user may want to spend less money, even if the stop over of a
connection is very long.

The objective of our system is the same as a pattern recognition
algorithm with the exception that optional edges are allowed. Ad-
ditionally, we do not attempt to find a single optimal solution, but
several solutions which can be browsed by a user through a visu-
alization system. As we do not attempt to compute this optimal
solution, we gain in terms of time complexity over these types of
approaches. However, the essence of our approach shares many
commonalities with approaches in this research area. Our system

uses attributes and connectivity constraints to reduce the set of pos-
sible solutions. Since we have several attributes that can be defined
on the graph, either locally on particular nodes/edges or on the posi-
tion of the node in the target graph, we use them to eliminate nodes
or edges from the set of possible solutions.

2.2 Constraint Satisfaction Problems

Another way to solve the given problem is through CSP approaches.
The classical method for solving CSP problems is backtrack-
ing [14]. This class of methods performs a depth-first search of the
space of potential CSP solutions [26]. Despite the wide use of these
methods, the time complexity for most nontrivial problems is expo-
nential. Moreover, if CSP approaches are to be adapted to search
for patterns in graphs, the node connectivity needs to be modeled as
a constraint on pairs of nodes, further increasing the complexity of
the backtracking method. Techniques such as arc consistency [18]
and k consistency [7] can be used to reduce the number of solutions
that these backtracking methods explore. However, the methods
still remain computationally expensive.

These methods can be used to produce an optimal solution, sub-
ject to the constraints imposed by the user. However, mapping con-
straints to the edges that connect pairs of nodes in a graph is cum-
bersome, because each constraint must be declared separately for
each attribute. As we do not attempt to find a globally minimal so-
lution, our approach offers reduced computational complexity. In-
stead, the user can browse the solution space to select one or more
inexact matches that conform to their needs.

2.3 Graph Pattern Visualization and Interactive Graph
Mining

Research in the domain of interactive and visual graph mining
is attracting lots of interest as data sets are rapidly growing in
size. Systems like [22, 29, 27] help users to visualize large size
graphs, organize these graphs, and interact with them for mining
purposes. These systems are not designed to address the inexact
graph matching problem, and, thus, would require some customiza-
tion to present solutions to these problems.

A number of contests have focused on the problem of finding
graph patterns in a larger graph.The 2003 Graph Drawing Con-
test [3] focused on how to display a smaller subgraph pattern, or
graph motif, in the context of a larger graph. Two systems, both of
which are described below, claimed a prize in the contest.

Holleis et al. [10] creates what they call a summary graph, sim-
ilar to a quotient graph in the graph drawing and visualization lit-
erature, that presents the patterns found and their interconnections.
Their system places each pattern found into its own node of the
summary graph. Two nodes of the summary graph are connected
if the patterns are connected. Each found pattern and the summary
graph is drawn independently, presenting an overview of the motifs
and how they are interrelated.

Klukaset al. [12] describe an interactive system where the user
draws a small graph pattern on a panel to the right of the screen. The
pattern is found in the larger target graph and emphasized in context
using spatial position and color. The emphasis via spatial position
is accomplished through a modified force-directed algorithm.

In this contest, the example graphs were quite small, consisting
of a few hundred nodes and edges. Additionally, the nodes and
edges had relatively few attributes, consisting of one or two pieces
of information at most. Our system differs from the solutions pre-
sented above, as we consider larger graphs with more attributes.
Thus, showing context is more complicated without greater lev-
els of simplification to the large graph. Additionally, we focus on
approximate matching of edges attributing them as optional or re-
quired to handle the inexact graph matching problem.

The Social Network and Geospatial Challenge of the2009 VAST
Challenge[9] focused on finding a small pattern representing the

Figure 2: Block diagram of the proposed system. The interactive query allows the user of the system to draw the source graph. Candidate set
construction finds potential candidates in the target graph. Candidate layout draws the collection of solutions in a way that accentuates structures
similar to the drawn source graphs and maps visual attributes. Finally, the solutions are presented to the user and they can be edited manually
using the Tulip interface.

communication between actors in an espionage organization in a
larger graph. The fictitious scenario involved confirming a pattern
of communication between the actors in the organization. These
actors communicated using a social networking tool named Flitter.
Many solutions to this task were submitted, including ours [28], but
most of these systems were tailored directly to the problem posed
by the challenge committee and were not general systems. Also,
attributes beyond topological information, such as geospatial con-
straints, were not really considered when finding the pattern. It was
only afterward, when multiple solutions were found, that these con-
straints were applied by the participants as a post-process to filter
the solution set.

2.4 Interactive Visual Query Generation
Research in the domain of generating queries for databases through
visual interfaces has interested many researchers. The most im-
portant reason being that visual interfaces seem to be a more natu-
ral way for humans to query databases as compared to using some
query language. The readers are recommended to refer to several
papers on the topic [16, 17, 19, 20] for further information. How-
ever, these papers generally do not focus on searching for approxi-
mate patterns in graphs.

3 PROBLEM FORMALIZATION

The input to the visualization system consists of two graphs. The
source graph,Gs= (Ns,Es), is the graph pattern sought by the user.
The target graph,Gt = (Nt ,Et), is the graph in which the source
graph will be found. Both the source and target graphs can be mod-
eled asG= (N,E,A) consisting of:

• a finite set of nodesN.

• a finite set of edgesE ⊆ N×N with loops and multiple edges.

• a finite set of attributesA associated withN andE, having a
finite set of domain.

The source graph has an additional parameterT:

• type T, for each edge, which can take boolean values repre-
senting if the object is required or optional.

Required elements of the source graph are nodes and edges that
must appear in the pattern.Optional edges of the source graph
may be present in a solution, but do not eliminate the solution as a
candidate. Any edge that is not present inGs may be present inGt ,
but it is filtered out by the system when presenting solutions. In our
system, the setsT andA apply locally on the source graph. Each
attribute value represents a unary constraint on either a node or an
edge. As an example, in Figure 1, a node of the pattern must have
the value Bordeaux (departure and arrival node). In our approach,

we constrain our source graphs to consist of a single, connected
component using only the elements ofT labeledRequired.

4 PROPOSED SYSTEM

The proposed system comprises of four steps as shown in Figure 2.
Each of these steps is explained in detail in the following sections.

4.1 Interactive Query Generator

The interactive query generator serves three main purposes. The
first purpose is to enable the user to generate queries through a vi-
sual interface. The idea is to let the user draw a pattern of nodes
and edges annotated with attributes. The second purpose is to al-
low the user to specify a visual encoding of attributes on nodes
(like geographical position mapped to color) and the desired layout
(position of nodes on the screen to create a mental map). This vi-
sual encoding is used to display various search results that can be
further explored by the user. The third objective is the automatic
extraction of node-connectivity constraints to determine how the
nodes must be connected to each other defining the pattern to be
searched. These constraints eventually help to reduce the number
of candidate solutions of a given pattern.

The interactive query generator is a graph drawing tool, actually
the Tulip software interface [1], allowing the user to draw a pattern.
The user can further assign desired attribute values to the nodes and
the edges. The interface of the query generator is shown in Figure 3.
The visual encoding includes shape, position, and color and is used
when presenting different possible solutions to the user.

The next step is to extract constraints from the graph. We de-
fine two types of constraints onN andE of graphGs: connectivity
constraintsandattribute constraints. Connectivity constraints are
imposed by the edges of source graph where they define how the
nodes of this source graph must be connected to each other. For
example, looking for an edge between two nodes is an example of
a connectivity constraint. In the air traffic network, this edge might
be a constraint that a direct flight must exist between two cities for
the solution to be considered.Attribute constraints are the con-
ditions defined on either edges or on nodes ofGs. An attribute is
required to have a certain value or be within a range of values. Con-
tinuing with our airport example, possible attributes for nodes are
the city names, chosen as departure and arrival cities or ticket fares
associated to edges representing particular flights. Connectivity and
attribute constraints play an important role in reducing the number
of possible solutions. The next section presents how our algorithm
uses this information to find candidate solutions.

4.2 Constructing and Filtering Candidate Sets

Our solution involves creating a set of possible candidates for each
node of the source graph, and then iteratively removing elements
from these sets based on connectivity and attribute constraints.

Figure 3: The interactive query generator. The interactive query gen-
erator is a graph drawing tool, actually the Tulip software interface [1],
that allows the user to draw the pattern. The tool allows the user to
specify node shapes, colors, and positions manually. These nodes
are the nodes of Gs, and the visual attributes assigned here will be
used in the presentation of the solutions as described in section 4.3

4.2.1 Constructing Node Candidate Sets

In the first step of the algorithm, for each node inGs, we construct a
set of candidate nodes fromGt that fulfill all the attribute constraints
of that particular node inGs. For example, as shown in Figure 1, the
node labeled Bordeaux represents an attribute constraint where the
nodes label should beBordeaux. While constructing the candidate
set for this node, only the nodes having this label will be retained.
In this case, the airport labeled Bordeaux will be the only node
in the first candidate set. Similarly, the candidate set for the node
labeledMilano will contain only one node. The candidate sets for
nodes labeled1,2,3will contain airports from the region Europe as
in the given example, and this region constraint is the only attribute
specified by the user for the nodes. Initializing the candidate sets
requiresO(|A||Ns||Nt |) time in the worst case, as we need to check
to see if every element ofNt belongs to one of the candidate sets
of Ns andA is the number of attributes associated to node and/or
edges. As|A| and|Ns| are usually small, this step of the algorithm
is fairly efficient.

4.2.2 Finding Patterns from S

The next step is to iteratively eliminate nodes from these candidate
sets based on connectivity constraints. First we find a minimum
spanning tree using Prim’s algorithm fromGs, considering only the
nodes and edges attributed asrequired. As GS is constructed using
only required edges, there must exist at least a spanning tree ofGs
composed entirely of required elements, which we callRT. In the
European tour example,RT would be a pass of the cycle.

Continuing with the European tour example, the nodes and edges
arerequired in this example. But it may be the case that the user
might need to cut their trip short after Milano due to financial con-
straints. In this case, they might also be interested in return flights
from Milano directly to Bordeaux. The edge representing this flight
is an optional edge as the pattern searched does not necessarily re-
quire this edge, but the edge brings additional information to the
user which might be useful. This optional edge would never be
present inRT.

Next, we select the candidate set with the smallest cardinality
and call this setS, which in our current example, can be either Bor-
deaux or Milano as the candidate sets of both these nodes contain
exactly one element. For each node in the smallest candidate set,

we construct a subgraph as described below.
Starting from the root ofRT, we perform a breadth-first search in

Gt to find all possible instances ofRT. From each element ofS, we
look at the adjacent neighboring vertices inGs. All nodes that are
part of a candidate set directly adjacent to a node inSare added to
the subgraph associated with the node inS. We repeat the process
for all the other nodes ofRT. In the current example, if we start
with the candidate set for the node Bordeaux, we look at the nodes
adjacent to Bordeaux in the candidate set ofnode 1(see Figure 7).
The nodes that are not directly connected to Bordeaux, are removed
from the candidate set ofnode 1. We continue for all nodes in the
order defined byRT.

While considering the connectivity of nodes, we filter out edges
that violate any attribute specified by the user on the edges. For
example, if the user does not want to take a flight that costs more
than some specified amount of money, the edge will not be consid-
ered. Returning to the example, when we look for nodes directly
connected to Bordeaux in the candidate set ofnode 1, we only con-
sider the edges that conform to all the attributes associated with the
edges ofGs.

As a result of this step, we obtain a subgraph ofGt as shown in
Figure 8. In this subgraph, for each node inGs, we have identified
the possible candidate nodes fromGt . A number of solutions can
be extracted from this subgraph as all the possible routes are pre-
sented to the user. Recall that if the cardinality of setS is more than
1, we will obtain several subgraphs, each representing a set of pos-
sible solutions. The number of subgraphs generated for the three
different data sets are mentioned in Figure 13 where each subgraph
contains several solutions. The breadth-first search ofGt is the most
expensive step as every node of|Nt | can be a part of|Ns| candidate
sets. Thus, this step can takeO(|S|(|Ns||Nt |+ |A||Et |)) time.

4.2.3 Filtering Solutions and Node Splitting

Once we obtain subgraphs containing sets of possible solutions, we
filter by local connectivity and attribute constraints. For example,
each node in Figure 7 must have at least degree two. Not only
do the candidate nodes need this degree, but they also need to be
connected to the right two candidate sets ofGS. The algorithm
begins by computing, for each node inGs, the required connections
for all candidate sets. Next, for each node in each subgraph, the
algorithm checks that it is adjacent to all sets required byGs. If it
is not adjacent, then the node is removed from the candidate set for
this subgraph. The process is repeated until no more nodes can be
removed.

Let Gmax = (Nmax,Emax) be the largest subgraph inS. As it is
possible to remove a constant number of nodes from the candidate
sets in each iteration on a particular subgraph, the loop can execute
at mostO(|Ns||Nmax|) times. Thus, in the worst case, this step can
takeO(|S||Ns|

2|Nmax|
2 + |S||Ns|

2|Nmax||A||Emax|) time. It is pos-
sible that|Nt | = |Nmax|, but this would imply that nearly all nodes
in Gt are candidates in a subgraph ofS, or that hardly any filtering
occurred. Frequently, we have observed that|Nt |>> |Nmax|. Also,
|S| and|Ns| are generally small.

It is possible to have a single node belonging to candidate sets of
more than one node. An example is the city of Paris and Dublin in
Figure 8 as both of them are connected to Bordeaux and are present
in candidate sets 1 and 2. To handle the nodes that belong to more
than one candidate set, we split the nodes such that we make mul-
tiple copies of the node. As a result of this step, each node belongs
to a single candidate set. Splitting allows us to place nodes of the
graph into multiple candidate sets. These candidate sets will be
represented as metanodes, during candidate layout.

4.3 Candidate Layout

As mentioned previously, we do not iterate over all solutions to the
subgraph isomorphism problem. Rather, we present a visualization

Figure 4: Mapping the graph to the user-created layout and encod-
ing of Gs to the candidates found by the system. (a) An example
graph where nodes have been associated to several candidate sets.
(b) The candidate graph drawn by the user. (c) Candidate graph
mapped to the layout of Gs. The shape and color of the nodes of Gs

are mapped to polygons situated behind the sets of nodes for easy
identification

where many solutions that originate from a single element ofScan
be visualized simultaneously. In order to facilitate visualization, we
map the candidate sets to a layout that resembles the user generated
input layout ofGs. As an example, in Figure 4, all nodes of graph
in Figure 4(a) are mapped to the layout in Figure 4(b) giving a final
layout presented in Figure 4(c).

For each candidate set, we create a metanode. The diameter of
this metanode is proportional to the number of elements present in
its candidate set. We map the position of each metanode in this
metagraph to the position of its corresponding node inGs that was
determined by the user. The layout of this metagraph is uniformly
scaled by a factor equal to the largest metanode diameter radius.
Subsequently, we apply the algorithm of Dwyeret al [6] to ensure
that no two metanodes overlap.

The algorithm places each node of the candidate set on the diam-
eter of the metanode created in the previous step. Candidate edges
span the gaps between metanodes. As we are free to choose the ori-
entation of this diameter, we choose a line`, as shown in Figure 5
and defined by the following equation:

`= p+ tv⊥ave (1)

wherep is the position of the metanode andt is a scalar value.
The vectorv⊥ave is the vector perpendicular tovavewhere vectorvave
is the average of the vectors between adjacent metanodes and the
current one.

It can happen that|vave| is zero. Figure 6 shows a typical case:
v1 is directly opposite tov2. We resolve this problem by simulta-
neously computingv′ave: the average vector, but with a 180 degree
rotation for any vector with a negative x-component. Let us denote
this series of vectorsv′1 . . .v

′
n. Therefore, we are guaranteed that

|v′ave| is non-zero as all x-components are positive. Also, the orien-
tation ofv′1 is equally as good asv1 in this case, because it does not
matter from which side of the row edges attach themselves. Ifv′ave
is, on average, more orthogonal to the vectorsv1 . . .vn, it is chosen
instead ofvave for ` which occurs when:

n

∑
i=1

|vi ·v
′
ave|<

n

∑
i=1

|vi ·vave| (2)

In this equation, all vectors ofv1 . . .vn along with the vectorsvave
andv′ave have been normalized.

When drawing the source graph, the user of the system can spec-
ify the color and shape of the nodes. Once the layout has been
determined, polygons are added to the background of the layout for
each candidate set. The shape and color of these polygons match

`

v1
v2

v3

vave

v⊥ave

p

Figure 5: Diagram showing how the diameter, where the nodes of a
particular candidate set are placed, is chosen. All vectors to adjacent
nodes are averaged to produce an average vector vave. In this case,
those vectors are v1, v2, and v3. The perpendicular to this vector is
v⊥ave. The point p, the position of the metanode, and v⊥ave are used to
define the line ` which is the diameter on which the nodes are placed.
The line ` is to be as perpendicular as possible to all incident edges
from other metanodes in the drawing.

v1

v2

v
′

1

Figure 6: Incidents where |vave| can be zero. In this case, many of
the unit vectors are directly opposing vectors. We compute the mirror
image of all vectors with a negative x-component as we do here for
v1. The average of these vectors is non-zero since all x-components
are positive. Also, the orientation is equally as good because it does
not matter if edges from adjacent metanodes attach to nodes on the
diameter from the left or right side of the line `.

those chosen by the user as seen in Figure 4. The layout algorithm
described above specifies the size and positions of these nodes.

5 CASE STUDIES

We present three case studies on different data sets. The layout
algorithm, presented in section 4.3, places candidate nodes along
diameters of circles positioned as close as possible to the input lay-
out specified by the user. Also, the shape of the nodes is changed
so that it has the same color and shape of the node inGs, allow-
ing candidate sets to be identified. Only the edges that satisfy all
edge constraints are drawn, and these edges span the space between
metanodes. Figure 13 presents information about the data used and
the execution of our algorithm. All of the case studies were exe-
cuted on a 2.16GHz dual core Pentium IV with 2.0GB of memory,
running Fedora Core 8 with a 2.6.26.8-57 kernel.

5.1 Airline

The air traffic network is a directed and highly multi-edge graph
consisting of individual flights between cities in Europe. As there
exists one edge per flight between two cities, many multiple edges
can exist between two nodes. We have many attributes on the nodes
and edges of this graph, including the departure and arrival time of
the flight and the servicing airline company.

On this data set, we explore a number of possible tours around
Europe. For example, tourists who want to visit important Euro-
pean cities in a limited time. Thus, they may be looking for a loop
that connects several touristic cities, subject to some constraints.
Maybe they need to visit a relative inMilano on a particular day.
They may like to take a certain airline on some flights to maximize
frequent flyer points. Additionally, they have constraints on depar-
ture and arrival times from their base city.

Our source graph, in this example, is a directed cycle of five
nodes as shown in Figure 7. The data set does not have any dates so
we assume that all flights are available on all days. The trip begins
at Bordeauxwhere the first flight must take off after 9:35 in the

Figure 7: Gs for Airline where the user is looking for touristic cities
in Europe and wants to pass through Milano to visit a relative.

Figure 8: Results of the possible touristic destinations in Europe
starting from, and returning to Bordeaux.

morning. The destination of this flight, the green node at the top
of the diagram, is unconstrained. On the next day, from the green
node, we fly toMilano, the yellow hexagon in the diagram. We visit
our relative for two days, and our third flight leaves after 21:00 to an
unconstrained destination. Our fourth flight is to an unconstrained
destination in Europe. Finally, the last flight is constrained to land
at Bordeauxbefore 20:31, so that we are able to get back home
before midnight. The first and last flight of our trip is constrained
to be with a particular carrier, to earn some frequent flyer miles.

In Figure 8, we show the result ofAirline. As we constrain
the first node of the cycle to leave fromBordeaux, we only have a
single candidate for this node. This situation is exactly the same for
Milano. The first leg of our trip can take us to a variety of cities,
as shown in the upper, green node, includingPorto, Dublin, and
Barcelona. From each of these cities, we have a variety of flights to
Milano. Destinations for the third city on our tour includeLisboa,
Firenze, andAmsterdam. Then we have our fourth city followed by
a flight home. These unconstrained airports contain ten and fifteen
cities respectively. In many cases, the graph is constrained enough
so that we can follow the individual cycles. Although edge occlu-
sion does occur between the fourth and fifth cities of our trip, most
of the cycles are relatively easily read through visual inspection of
the diagram.

Figure 9: Gs for the Vast Challenge where the objective is find a
similar pattern in the data set.

Figure 10: One of the 9 possible subgraphs found with various pos-
sible solutions to the pattern searched for the Vast Challenge.

5.2 Vast

In the 2009 VAST Challenge[9], contestants were asked to find
a pattern in a large graph, subject to a variety of constraints. The
nodes of this graph are users of Flitter, a fictitious social networking
program, and edges exist between nodes if they communicate. The
graph is simple and undirected. Once the contest was over, the
ground truth was known, but the initial task was to find this solution
based on the indices provided by the contest organizers.

In the given scenario, anemployeeleaked sensitive information
from an embassy. In order to protect the identity of the employee’s
fearless leader, the information was redirected twice. The first level
of indirection is through threehandlerswhile the second level is
through one or threemiddlemen. Figure 9 shows the pattern of
communication with three middlemen.

The light brown box in the diagram is the employee. The em-
ployee communicates with three handlers which are the green cir-
cles. Each handler has a middleman, the light blue triangles. Fi-
nally, all three middleman connect to a fearless leader, the purple
pentagon. Employees are constrained to have a degree between
thirty-five and forty-five inGt . Handlers have a degree between
twenty-seven and forty-three. The middleman has a degree of be-
tween zero and seven. Finally, the fearless leader has a degree
greater one hundred. Geospatial constraints dictate that the fearless
leader has to reside in the cityKoul and the employee inProuvnov.

The system returns nine subgraphs in total. Four of these sub-
graphs contain valid solutions and the remaining five are empty sub-
graphs because filtering eliminated all solutions. Figure 10 shows
the solution many teams found in the contest. The algorithm started

Figure 11: Gs for Movie where we want to discover rising stars in
cinema.

Figure 12: One of the possible 24 subgraphs returned as a result by
the search for the Movie pattern where a number of up coming stars
can be seen that have performed with famous actors and directors.

its traces intoGt from the fearless leader @irvin. On the other
side of the diagram, three possible candidates exist the employee
@faradzev, @terekhov, and @usdin. These three candidates could
communicate with eight possible handlers in the green circles. As
all three handlers have identical constraints, each circle contains
the same candidates. Finally, the handlers can communicate with
seven different middlemen contained in the light blue triangles. All
of these middlemen communicate with @irvin. Using this diagram,
we can apply less precise constraints, such as a middleman must be
located nearby the city of the fearless leader, to refine the solutions
as given in the problem statement of the contest.

5.3 Movie

Movie is derived from the 2007 InfoVis Contest data set [13]. The
data set consists of a list of movies, containing information such as
the actors list, director, title, any Oscars won, and other informa-
tion. From this data, we constructed an undirected, bipartite graph
without multi-edges. Nodes in this graph are actors, directors, or
movies. Movies are linked only to actors or directors and vice versa.

In Movie database, we test a theory about rising stars. In this
theory, we have a famous actor, who has acted in many movies and
won at least one Oscar. The actor works with a prolific director
on at least one film. In this film, there are many actors who have
acted in very few movies, but will get exposure from this work. A
famous actor works on at least ten movies and has won at least one
Oscar. A prolific director must have directed at least four movies.
Movies are completely unconstrained. Rising stars have acted in at
least two movies and at most five. In our query graph, Figure 11,
the light blue pentagon is the famous actor and the green hexagon is
the prolific director. The purple circle is a common, unconstrained

movie between the two. Finally, the red pentagon is the rising star.
The query returns twenty-four subgraphs. Two are empty due

to constraint filtering. Thus, twenty-two subgraphs contain at least
one solution. In Figure 12, we show a solution. Here,Morgan
Freemanis the famous actor. He worked on many films one of
which wasMillion Dollar Baby with Clint Eastwoodas a director.
Many actors and actresses may have gained exposure from working
on this movie. This data set suggests thatBrian F. O’Byrneand
Jay Baruchelare two such actors. Two other projects withMorgan
Freemancreate other solutions in this data set.

6 DISCUSSION

Our approach seems to be fairly generic and works on a very wide
range of data, as seen through our case studies in section 5. The sys-
tem is able to visualize simple and multi-edge, directed and undi-
rected, as well as attributed and weighted graphs. Also, as seen in
Figure 13, the approach executes in less than twenty seconds for
our case studies on a standard machine.

The approach proposed in the system seems to have good perfor-
mance on some simple and interesting patterns. In our examples,
the average number of times the constraint application loop was ex-
ecuted,loop in Figure 13, was at most 4. This value is quite far from
the possible|N|2 iterations that could take place. Additionally,|S|
and the average number of nodes and edges in the subgraphs are
relatively small as attribute filtering helped significantly. Also, it
should be possible to use a database as a back end for our visual-
ization system, which could increase searching speed. However, it
is important to note that even if our problem requires a solution to
subgraph isomorphism to be solved, we remain polynomial as we
do not iterate over all patterns, but present them in a visualization.

Although not enumerating the patterns in the graph has the ad-
vantage of time complexity, if many solutions exist, visual clutter
can occur. A good example is present in Figure 8 where two uncon-
strained sets of cities are linked at the bottom of the diagram.

Currently, the system constraints state that there must exist a
spanning tree of required edges. This spanning tree cannot allow
for the choice of two or more alternative paths to reach a node. Our
search algorithm is currently subject to this constraint, but our visu-
alization algorithm would be able to handle results from this case.
Further work would be required to address this limitation.

The system in its current state has some obvious limitations. The
most important one is its scalability as the number of solutions in-
crease, visualizing all of them at the same time becomes difficult.
As shown in Figure 13, the Movie data set contains a large number
of nodes and edges. Even though the source graph has only four
nodes and three edges, the resultant graph can be large (Figure 12).
As mentioned earlier, there exists an inverse relationship between
the amount of information input to the system to the amount of in-
formation returned as a result. The more constraints we associate
with the source graph, the more focused would be the search results
and thus would be easier to visualize.

7 FUTURE WORK AND CONCLUSION

In this paper, we have presented a system to find and understand
patterns in graphs. One of the strengths of the system is that it
presents solutions to an inexact matching of a pattern where edges
can be optional or required. The mapping of attributes to layout
and color help reduce the visual complexity of the presented solu-
tions. Finally, we provide an interactive system that allows users
to explore sets of matches to a particular pattern and modify them
manually. As a result, even when the source and target pairing ap-
proaches unconstrained subgraph isomorphism, our system is poly-
nomial, because we do not iterate over the solutions to the problem.
Rather, a visualization is used because humans can recognize pat-
terns efficiently [30].

Result Gt Gs |S| |Nmax| |Emax| |Nave| |Eave| loops time
|Nt | |Et | |At | |Ns| |Es| |As| sec

Airline 250 25,953 23 5 5 4 1 41 1,499 41 1,499 2 20.1
VAST 6, 016 29,888 4 8 9 1 9 57 69 13.8 18.0 4.22 0.82
Movie Discovery 166,928 226,523 16 4 3 4 24 72 72 33.0 32.9 3 5.47

Figure 13: The graphs, queries, and execution time of our algorithm during the case studies. Result is the name of the case study. The values of
|Nt |, |Et |, and |At | are the number of nodes, edges, and attributes in the target graph respectively. Similarly, the values |Ns|, |Es|, and |As| are the
corresponding values in the source graph. |Nmax| and |Emax| are the maximum number of nodes and edges in any subgraph of the result. |Nave|
and |Eave| are the average number of nodes and edges in each subgraph produced by the system. The value of loops corresponds to the average
number of times the first step of filtering, described in section 4.2.3, is executed. Time states the running time of the algorithm in seconds from
the time the search is launched to computation of the final drawing.

In future work, we would like to improve the performance of
the filtering algorithms as we believe that the complexity can be re-
duced significantly. Also, it would be interesting to look at ways
of reducing visual clutter of the edges present in our solution as in
our constrained layout case, it may be possible to be more efficient.
Several algorithms exist to reduce edge crossings, a few directly
applicable approaches are discussed in Bauer and Brandes [2], and
would remain an important topic for future work. Finally, formal
user experimentation and testing, especially in terms of interactiv-
ity, would be needed to validate the approach.

REFERENCES

[1] D. Auber. Tulip - a huge graph visualization framework. InP. Mutzel
and M. Jnger, editors,Graph Drawing Software, Mathematics and Vi-
sualization Series. Springer Verlag, 2003.

[2] M. Baur and U. Brandes. Multi-circular layout of micro/macro graphs.
In S.-H. Hong, T. Nishizeki, and W. Quan, editors,Graph Drawing,
volume 4875 ofLNCS, pages 255–267. Springer, 2007.

[3] F. J. Brandenburg, U. Brandes, P. Eades, and J. Marks. Graph drawing
contest report. InProc. of Graph Drawing (GD ’03), volume 2912 of
LNCS, pages 504–508, 2003.

[4] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition.Int. J. Patt. Recog. and A..I, Volume:
18, Issue: 3:265–298, 2004.

[5] S. A. Cook. The complexity of theorem-proving procedures.In Proc.
of the 3rd Annual ACM Symp. on Th. of Comp., pages 151–158, 1971.

[6] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal.
In Proc. Graph Drawing (GD’05), volume 3843 ofLNCS, pages 153–
164. Springer-Verlag, 2005.

[7] E. C. Freuder. Backtrack-free and backtrack-bounded search. Search
in Artificial Intelligence, pages 343–369, 1988.

[8] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.
volume Volume 13, Number 1, pages 113–129, 2009.

[9] G. Grinstein, C. Plaisant, J. Scholtz, and M. Whiting. The2009 VAST
challenge. InIEEE Proc. on Visual Analytics Science and Technology,
2009.

[10] P. Holleis, T. Zimmermann, and D. Gmach. Drawing graphs within
graphs: A contribution to the graph drawing contest 2003.Journal of
Graph Algorithms and Applications, 9(1):7–18, 2005.

[11] H. Jeong, B. Tomber, R. Albert, Z. Oltvai, and A.-L. Barabási. Large-
scale organization of metabolic networks.Nature, 407:651–654, 2000.

[12] C. Klukas, D. Koscḧutzki, and F. Schreiber. Graph pattern analysis
with PatternGravisto.J. of Graph Algo. and App., 9(1):19–29, 2005.

[13] R. Kosara, T. J. Jankun-Kelly, and E. Chlan, editors.IEEE
InfoVis 2007 Contest: InfoVis goes to the movies, 2007.
www.apl.jhu.edu/Misc/Visualization/index.html (visited 04/03/2010).

[14] V. Kumar. Algorithms for constraint-satisfaction problems: A survey.
Artificial Intelligence Magazine, 13(1):32–44, Spring 1992.

[15] J. Larrosa and G. Valiente. Constraint satisfaction algorithms for graph
pattern matching.Math. Struct. in Comp. Sci., 12(4):403–422, 2002.

[16] W.-S. Li, K. S. Candan, K. Hirata, and Y. Hara. IFQ: A visual query
interface for object-based image retrieval. InCHI ’97: Extended ab-
stracts on Human Factors in Computing Systems, pages 32–33, New
York, NY, USA, 1997. ACM.

[17] Y. Lin, G. Rawlins, and M. Vanheyningen. Pic1: A visual database
interface. volume 8, pages 237–245, 1995.

[18] A. K. Mackworth. Consistency in networks of relations.Artificial
Intelligence, 8(1):99–118, 1977.

[19] A. Madurapperuma, W. Gray, and N. Fiddian. A visual queryinterface
for a customisable schema visualisation system.Database Engineer-
ing and Applications Symposium, International, 0:23, 1997.

[20] A. P. Madurapperuma, W. A. Gray, and N. J. Fiddian. Customisable
visual query interface to a heterogeneous database environment: A
meta-programming based approach (abstract). InBNCOD 15: Pro-
ceedings of the 15th British National Conferenc on Databases, pages
129–130, London, UK, 1997. Springer-Verlag.

[21] M. M. North and S. M. North. An information exploration and visual-
ization approach for direct manipulation of databases. InVCHCI ’93:
Proceedings of the Vienna Conference on Human Computer Interac-
tion, pages 417–418, London, UK, 1993. Springer-Verlag.

[22] J. F. Rodrigues, H. Tong, A. J. M. Traina, C. Faloutsos, and
J. Leskovec. GMine: A system for scalable, interactive graph visu-
alization and mining. InVLDB’2006: Proceedings of the 32nd In-
ternational Conference on Very Large Data Bases, pages 1195–1198.
VLDB Endowment, 2006.

[23] C. Rozenblat, G. Melançon, and P.-Y. Koenig. Continental integra-
tion in multilevel approach of world air transportation (2000-2004).
Networks and Spatial Economics, 2008.

[24] M. Rudolf. Utilizing constraint satisfaction techniques for efficient
graph pattern matching. InSelected papers from the 6th International
Workshop on Th. and App. of Graph Transformations, pages 238–251,
London, UK, 2000. Springer-Verlag.

[25] L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact
matching.IEEE Trans. on Pattern Analysis and Matching Intelligence,
PAMI-3(5):504–519, 1981.

[26] S. C. Shapiro.Encyclopedia of Artificial Intelligence. John Wiley &
Sons, Inc., New York, NY, USA, 1992.

[27] S. J. Simoff, M. H. B̈ohlen, and A. Mazeika, editors.Visual Data
Mining - Theory, Techniques and Tools for Visual Analytics, volume
4404 ofLNCS. Springer, 2008.

[28] P. Simonetto, P. Y. Koenig, F. Zaidi, D. Archambault, F. Gilbert, T. T.
Phan-Quang, M. Mathiaut, A. Lambert, J. Dubois, R. Sicre, M. Brulin,
R. Vieux, and G. Melançon. Solving the traffic and flitter challenges
with tulip. In IEEE Proc. on Visual Analytics Science and Technology,
pages 247–248, 2009.

[29] L. Singh, M. Beard, L. Getoor, and M. Blake. Visual miningof multi-
modal social networks at different abstraction levels. InIV ’07. 11th
International Conference, pages 672–679, 2007.

[30] C. Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, 2004.

[31] S. Wasserman and K. Faust.Social Network Analysis: Methods and
Applications.Cambridge University Press, Cambridge, 1994.

