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Abstract

In this paper a coupled Euler–Bernoulli model of laminated piezoelectric beams is proposed. It is characterized by accounting for the
influence of 3D distribution of mechanical stresses and strains through corrected electromechanical constitutive equations. In particular,
the hypothesis of vanishing transverse (width direction) normal stress typical of standard beam models is weakened by imposing van-
ishing stress resultants. This integral condition is enforced by adopting a mixed variational principle and Lagrange multiplier method.
Explicit expressions for the beam constitutive coefficients are given and the sandwich and bimorph piezoelectric benders are studied in
details. The model is assessed through comparisons with standard models and 3D finite element results, showing an important enhance-
ment of standard beam theories.

� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

After the intensive research efforts dedicated to the field
of smart structures in the last 15 years, the use of piezoelec-
tric materials in engineering applications is now widely dif-
fused. In particular, piezoelectric laminated composites are
used in the field of active and passive vibration and shape
control, in sensors and actuators, in measuring instru-
ments, in medical apparatus, in micro-electromechanical

composites can be found (see [2,3] for reviews on the sub-
jects). They can be classified in those attempting to solve
exact 3D electromechanical problems [4–6], those concen-
trating on the derivation of plate models [3] and those
reducing to the solution of one-dimensional beam prob-
lems. In early works actuating [7] and sensing [8] functions
of piezoelectric materials have been studied separately.
The current trend is toward the formulation of com-
pletely coupled models taking into account the two-fold
systems [1]. electromechanical coupling and introducing both electric

All
The design of devices including active piezoelectric
materials requires, as a preliminary step, an efficient mod-
elling of the electrical, mechanical and coupling properties
of the host structure, the piezoelectric elements and their
interactions. For this reason, a great number of research
works dealing with structural modelling of piezoelectric
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and mechanical degrees of freedom [9–14]. Coupled elec-
tromechanical modelling is necessary for several reasons.
On one hand it has been shown that if some electrical
effects are discarded, significant errors are introduced also
in purely mechanical properties [15]. On the other hand,
when piezoelectric composites are integrated in truly elec-
tromechanical systems, as in passive shunt damping (see
e.g. [16–18]), an accurate knowledge of both the electric
and mechanical properties of the devices are important in
the design process.
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Fig. 1. Generic cross-section of a layered piezoelectric beam having layers
with different widths.
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A number of works focus on the analysis of two-layer
bimorph and three-layer sandwich benders. Simple electro-
mechanical models for their constitutive behavior are given
in [19–22], under the standard Euler–Bernoulli hypotheses.
More recently, He [5] and Lim and He [6] propose a three-
dimensional approach to two-layer bimorphs and three-
layer sandwiches. They combine state form formulation
of 3D piezoelectricity with asymptotic methods to get an
analytical solution for the thickness distribution of the elec-
tromechanical fields as a function of the midplane motion.
Essentially, they develop an electromechanical plate theory
via an asymptotic approach.

A crucial point is to develop models with a good trade-
off between accuracy and complexity. Many interesting and
rigorous works have been dedicated to increase the model
accuracy by introducing additional state variables to
describe higher order effects with shareable and layerwise
theories (see e.g. [9,23]). However, especially for vibration
control applications [17,24,25], the basic induced strain
Euler–Bernoulli model presented in [7] and its extensions
for including the two-fold electromechanical coupling are
still the most popular because of their simplicity.

Some recent papers [26–28] pointed out that available
beam models overlook some fundamental phenomena. In
particular, the 1D theories are based either on a plane-
stress or on a the plane-strain condition where the actual
stress and strain states of a layered beam with thickness
polarized ceramics are more complex.

The present paper is dedicated to discuss the problems
related to 3D effects in beam modelling of piezoelectric
laminates and consequently develop a corrected electro-
mechanical Euler–Bernoulli beam model. The weakness
of the available theories and the motivations for the present
work are illustrated in details in Section 2. The modelling
approach we propose is presented in Section 3. It adopts
a mixed variational formulation where the standard
plane-stress and plane-strain assumptions are replaced by
integral constraints on transverse normal stress. In Section
4, the main results are specialized for sandwich and bimo-
rph piezoelectric benders. In particular, handy analytical
formula for the corrected bending stiffness, coupling coeffi-
cients, and piezoelectric capacitance are provided. Section
5 focuses on the numerical validation of the proposed
model by 3D finite element analysis and on comparisons
with standard 1D theories for the cases of sandwich and
bimorph beams. In this framework, a detailed discussion
of the influence of the different hypotheses on the beam
constitutive coefficients is carried out. Section 6 is left for
conclusions.

2. Problem statement and objectives

In beam modelling of piezoelectric laminates, the
hypotheses of uniaxial stress state is usually accepted (see
e.g. [7,11,15,19–23,25,29]). In these references, it is assumed
that the stress tensor is in the form (see Fig. 1 for the ref-
erence orientation)
T ¼ T 11e1 � e1 ð1Þ
and the transverse normal stresses in the beam width direc-
tion, T22, are neglected. This hypothesis is accepted also in
more accurate 2D approaches which develop either analyt-
ical or numerical solutions in the e1–e3 plane (i.e. axis-
thickness plane) under the plane-stress assumption. The
motivations for the neglecting transverse stress are in gen-
eral similar to those reported explicitly in [12]:

‘‘Stresses T33 and T22 can be considered of the order of
any loading forces possibly imposed in the x3- and x2-
directions. Since in our structure we are not considering
significant loading forces in these directions, stresses T33

and T22 can be disregarded, T33 = T22 = 0’’.

The reasoning above is physically grounded in the theory
of single-layer elastic and piezoelectric beams. However,
when beams composed of multiple layers are considered,
the relations between axial and transverse (along the width)
deformations can be different layer by layer and transverse
stress can be non-negligible also if transverse loads are not
present. In particular, in thickness-polarized piezoelectric
layers, the deformations induced by an applied electric
potential are isotropic in the e1–e2 plane. On the contrary,
in elastic layers, an axial extension is usually associated to
a transverse shrinking by the classical Poisson effect. When
elastic and piezoelectric layers are bonded together, these
different behaviors must be reconciled and non-negligible
transverse stresses T22 arise.

Other authors (see e.g. [11]) assume a plane-strain con-
dition by setting to zero the displacement along the width
direction. For layered piezoelectric beams this hypothesis
does not correspond to any physical situation and, as
shown in the following sections, it introduces several inac-
curacies on the estimate of the electromechanical constitu-
tive coefficients.

Beckert and Pfundtner [27] show that the actual stress
and strain state of a layered beam with thickness polarized
ceramics is typically three-dimensional, being in between
the plane-stress and plane-strain conditions. In their paper,
they study the strain transfer from piezoelectric to elastic
layers by taking into account the effect of the transverse



1 Here and henceforth the term dynamic is used in its etymological sense
(e.g. related to force, power) to indicate the state variables which expend
power on the kinematic fields.

2 S = sym(5u) on B and u = u0 on ouB; E = �5u on B and u = u0 on
ouB.
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stress and the influence of the bonding layer. They compare
the results obtained for the axial bending induced by an
applied potential when assuming three different conditions
on the transverse strains and stresses: (i) plane-strain; (ii)
plane-stress with a stress distribution of the type (1); (iii)
free-bending, which is realized when the layered beam is left
free to bend in the transverse direction. Numerical results
show that the latter condition is in better agreement with
3D finite element solutions. However, the analysis in [27]
is limited to relatively thin piezoelectric layers and it focuses
mainly on the strain transfer analysis. In particular, the
effect of the transverse deformations and stresses on purely
electrical properties of the composite systems, such as the
equivalent piezoelectric capacitance, is not considered.

More recently, in the framework of 2D and 3D model-
ling of piezoelectric bimorphs, Wang [28] discussed the
correctness of performing numerical simulation for plates
in the cylindrical bending condition, arguing that, due to
the in-plane isotropy of the piezoelectric effect, the plane-
strain condition cannot be realized in practice. By com-
paring 3D and 2D numerical results, he showed that the
plane-strain hypothesis can lead to significative errors in
the estimate of the mechanical displacement induced by
an applied electric potential.

In general, not enough attention has been paid to the dif-
ference between the plane-stress and plane-strain conditions
and the real three-dimensional stress and deformation state.
For this reason, the errors between three-dimensional
numerical results and estimates from simple beam models
were often entirely imputed to neglecting the quadratic con-
tribution of the electric potential [5,6]. A first discussion of
this point can be found in [26], where the effect of the trans-
verse bending is investigated by FE numerical simulations.

From the above literature review it seems that an accu-
rate electromechanical Euler–Bernoulli beam model is still
missing and that the consequences of neglecting 3D effects
on the strain and stress distribution are not fully under-
stood. The present paper is aimed at filling this gap. In
the following, an Euler–Bernoulli model where the beam
constitutive coefficients correctly account for the influence
of transverse stresses and strains is established. To this
end, the peculiar geometry of a laminated beam is exploited
and ad-hoc hypotheses on the stress distribution are
included in the formulation through a mixed approach.
This work develops a previous one by the authors [30] by
adding an extensive numerical validation and by consider-
ing improved assumptions, which describe more faithfully
the stress and strain distributions for beams having layers
with different widths.

3. Beam model

Under the quasi-electrostatic approximation, the kine-
matic state of a 3D piezoelectric continuum is determined
by the vector field u and a scalar field u, representing the
mechanical displacement and the electric potential with
respect to a grounded reference configuration B. In the lin-
ear theory, the corresponding generalized deformations are
the mechanical strain tensor S = Sym($u) and the electric
field vector E = �$u; the associated generalized forces
are the Cauchy stress tensor T and the electric displacement
vector D. By adopting a deductive approach, reduced mod-
els of a given structure are derived from the three dimen-
sional description by assuming specific distributions of
the state fields. The beam model presented below is derived
by a 3D mixed variational formulation for piezoelectricity.
The mixed approach let us specify hypotheses both on the
kinematic (u,u) and dynamic1 (T,D) mechanical and elec-
tric fields. As shown in the following, a careful choice of
the assumed distributions for the mechanical stress and
the electric displacement allows for correcting standard
models by keeping the same elementary hypotheses on
the mechanical displacement and the electric potential.

3.1. 3D mixed variational formulation

Let us consider a three dimensional piezoelectric contin-
uum B on which the following external actions are applied:
body forces b on the bulk B, surface forces f0 and surface
charges q0 on the parts ofB and oqB of the boundary oB,
mechanical displacement u0 and electric potential u0 on the
parts ouB and ouB of oB. Let be Vu and Vu the functional
spaces of kinematically compatible mechanical displace-
ment and strain pairs (u,S) and electric potential and elec-
tric field pairs (u,E).2 Moreover let be VT and VD the
spaces of admissible symmetric stress tensors T, and elec-
tric displacement vectors D. The solution of the problem
of three dimensional piezoelectricity is characterized by
rendering stationary the following functional (Hellinger–

Prange–Reissner functional of piezoelectricity) over the
space V ¼Vu �Vu �VT �VD

H½ðu;SÞ; ðu;EÞ;T;D�

¼
Z
B

ðFðT;DÞ � T � SþD � Eþ b � uÞdB

þ
Z

ofB

f0 � udSþ
Z

oqB

q0udS: ð2Þ

The scalar valued function FðT;DÞ is a piezoelectric inter-
nal energy density defined by [31]

FðT;DÞ ¼ 1

2
sDT � T� 1

2
bTD �Dþ gT �D; ð3Þ

where sD is the fourth order elastic compliance tensor for
null electric displacement, bT the second order dielectric
constants tensor for null mechanical stress, g the third or-
der piezoelectric coupling tensor.

The equations of 3D linear piezoelectricity are equiva-
lent to the Euler equations of the Hellinger–Prange–Reiss-
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ner functional (2): the mechanical and electrical balance
equations and natural boundary conditions are the Euler
equations corresponding to variations of u and u; the con-
stitutive equations to variations of T and D. The essential
boundary conditions are included in the definition of the
admissible displacement and electric field. The interested
reader can found further details about the mixed varia-
tional formulation in [32–34].

3.2. Geometry

Consider a multilayered straight-axis piezoelectric beam
which is composed by stacking up n rectangular cross-
section piezoelectric and elastic layers with width ai and
thickness hi (see Fig. 1). We denote by A the beam
axis, by S the beam cross-section, and by Si the cross sec-
tional part occupied by the ith layer. Moreover, we regard
the rectangular cross-section Si as the Cartesian pro-
duct of a thickness-segment Ti oriented along the stacking
direction and a perpendicular width-segment Wi. The
overall beam thickness and width are defined as
T ¼ [iTi and W ¼ [iWi, respectively. A global Carte-
sian reference frame C ¼ fo; e1; e2; e3g, oriented in such a
way that e1 is aligned along the beam axis, e2 along
the cross sectional width and e3 along the cross sectional
thickness, is fixed once for all and the corresponding coor-
dinates are denoted by (x,y,z). Moreover, n local reference
frames Ci ¼ foi; e1; e2; e3g, with oi ¼ oþ �zie3, are intro-
duced, and the local coordinates are denoted by (x,y,zi)
where zi ¼ z� �zi and the local origin is chosen so as to
satisfyZ
Ti

zi dz ¼ 0:

Let be I ¼ f1; . . . ; ng and Ie and Ip the subset of I col-
lecting the indices corresponding to elastic and piezoelec-
tric layers, respectively. In order to account for a beam
composed of layers with different dimensions, for each x

and y, we define Iðx; yÞ as the subset of I collecting only
the indices associated to the layers intersected by the z-line
of coordinates (x,y). Moreover, we partition also the set
Iðx; yÞ in the set of the indices corresponding to elastic
layers, Ieðx; yÞ, and in the set of indices corresponding to
piezoelectric layers, Ipðx; yÞ.

The following geometric and material properties are
assumed: (i) each layer is materially homogeneous and
either orthotropic or transversely isotropic with respect to
an axis oriented along the stacking direction (in particular
the piezoelectric layers are polarized along the thickness);
(ii) the upper and lower surfaces of the piezoelectric layers
are covered by a conductive layer with negligible mechan-
ical properties, the lateral ones are bared; (iii) the electrodes
of the piezoelectric layers are connected in parallel one to
each other, and the whole beam is electrically accessible
only through two external electric terminals; (iv) the
cross-section of the laminate is assumed to be symmetric
with respect to the e3-axis (see Fig. 1). For each piezoelec-
tric layer, we define a constant xi = ±1 which determines
the electric connection scheme between the electrodes of
the ith layer and the external terminals (xi = 1 in-phase
connection, xi = �1 counter-phase connection).

Dealing with a laminated beam, in addition to the stan-
dard beam geometrical hypothesis (i.e. that the ratio
lengthðAÞ=diameterðSÞ is high), we assume also that for
each lamina both the ratios lengthðAÞ=lengthðWiÞ and
lengthðWiÞ=lengthðTiÞ are high.

Considering a beam of finite length l, the present analy-
sis will account for the following external actions: (i) a
force distribution on the beam bases having a force resul-
tant F ¼ Ne1 þ T e3 and a moment resultant M ¼ �Me2;
(ii) a body force per unit of volume b(x,y,z) having cross
sectional force and moment resultants bR(x) = bN(x)e1 +
bT(x)e3 and mR(x) = �bM(x)e2, respectively; (iii) either a

voltage V or a total charge Q imposed at the electric termi-
nals of the piezoelectric layers.

3.3. Hypotheses

When deducing structural models from the mixed varia-
tional formulation presented above, the system mechanical
and electrical equilibrium equations are determined by the
hypotheses on the kinematic fields (mechanical displace-
ment and electric potential). On the other hand, the corre-
sponding constitutive prescriptions are influenced by the
hypotheses on the dynamic fields (mechanical stress and
electric displacement). We fully exploit this property in
order to introduce the effect of 3D stresses and strains
and of the induced electric potential in a simple Euler–
Bernoulli model of laminated piezoelectric beams. In the
following, we list the adopted assumptions on the distribu-
tions of the electromechanical fields and, successively, we
comment about their meaning in the mixed variational
setting.
3.3.1. Assumptions on the distribution of the

electromechanical fields

Euler–Bernoulli models of piezoelectric beams are usu-
ally based on the following hypotheses on the mechanical
displacement and electric potential:

(K1) Mechanical displacement. Basic equivalent-single-
layer Euler–Bernoulli kinematics:
uðx; y; zÞ ¼ ðuðxÞ � zw0ðxÞÞe1 þ wðxÞe3; ð4Þ

where u(x) and w(x) are the beam axis displacements
along e1 and e3, respectively.

(K2) Electric potential. Layerwise linear distribution of the
electric potential, which, when the different layers are
electrically interconnected in parallel (either in-phase,
xi = 1, or in counter-phase, xi = �1), is given by the
following expression� �

uðx; y; zÞ ¼ 1

2
þ xi

zi

hi
V ; ð5Þ
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where V is the electric potential difference across the
two external electric terminals.

Unfortunately, a model deduced from a standard varia-
tional principle with the kinematic hypotheses above will
lead to systematic errors in the estimate of the constitutive
coefficients of a piezoelectric laminate. The three dimen-
sional distribution of the electromechanical fields will not
be correctly simulated, mainly because: (i) the hypothesis
(4) on the mechanical displacement implies that the beam
cross-sections remain rigid (in [35] the analog problem on
plates theory is discussed); (ii) the hypothesis (5) on the
electric potential enforces the quadratic part of the elec-
tric potential to vanish also in bent piezoelectric layers
and neglects the so called ‘‘induced electric potential’’
[10,15,13].

In this paper, we retain the hypotheses (K1) and (K2) on
the mechanical and electrical kinematic fields. However,
differing from standard modelling approaches, we embed
them in the mixed variational setting. In this framework,
we assume the following additional conditions on the
dynamic fields (e.g. mechanical stress and the electric
displacement).

(D1) Mechanical stress. A stress tensor composed of axial
and transverse normal stresses having constant (ra,i)
and linear (fa,i) contributions through the thickness
of each layer
Tðx; y; zÞ ¼ ðr1;iðx; yÞ � zif1;iðx; yÞÞðe1 � e1Þ
þ ðr2;iðx; yÞ � zif2;iðx; yÞÞðe2 � e2Þ ð6Þ
and respecting the following conditions on the
through-the-thickness force (n2) and moment (m2)
resultants of transverse stressesZ8
n2ðx; yÞ ¼
X

i2Iðx;yÞ Ti

Tðx; y; zÞe2 � e2 dz ¼ 0;

m2ðx; yÞ ¼
X

i2Iðx;yÞ

Z
Ti

�zTðx; y; zÞe2 � e2 dz ¼ 0:

>>>><
>>>>:

ð7Þ

(D2) Electric displacement. Layerwise constant distribution

along the thickness direction:
Dðx; y; zÞ ¼ Diðx; yÞe3; ð8Þ

where Di(x,y) is the function giving the e3 component
of the electric displacement in the ith layer.
3.3.2. Comments

The mixed variational approach and the different kine-
matic (K1–K2) and dynamic (D1–D2) hypotheses on the
electromechanical fields could generate confusion and they
deserve some comments and remarks:

• At first sight, the hypothesis (D1) on the transverse
stress appears to be not compatible with hypothesis
(K1), which assumes rigid cross-sections. Moreover,
for bent piezoelectric layers, the hypothesis (D2) of
constant electric displacement appears to be not com-
patible with hypothesis (K2) of linear electric potential.
A deeper understanding of the combined effect of the
different hypotheses can be get by keeping in mind their
role in the mixed variational formulation. In this con-
text, the kinematic hypotheses determine the beam
equilibrium equations. On the other hand, the dynamic
hypotheses control the field distribution used to estimate
the beam constitutive coefficients. Hence, the constitu-
tive coefficients of a model with a poor kinematics (K1
and K2) can account for a more realistic field distribu-
tion, which is specified through the hypotheses on the
dynamic fields (D1 and D2). This property of the mixed
variational formulation is particularly useful when a pri-
ori estimates on the dynamic fields are available.

• The two hypotheses on the dynamic fields (D1–D2)
allow to get a better agreement with 3D models for
two reasons:
(i) Notwithstanding the elementary Euler–Bernoulli

kinematics in hypothesis (K1), the beam constitutive
relations will include the influence of cross-
sectional deformations through hypotheses on trans-
verse stress (D1). Indeed, the influence of a sectional
distension along the thickness will be implicitly
taken into account by enforcing null normal stress
T33 = T(x,y,z)e3 Æ e3. The influence of sectional
extensional deformations along e2 will be introduced
by constraining the admissible transverse normal
stress T22 = T(x,y,z)e2 Æ e2 with the integral condi-
tions (7). These conditions let the cross-sections free
to extend and bend in the transverse direction,
respecting the bonding condition between the differ-
ent layers.

(ii) The linear distribution of the electric potential
assumed in (K2) specifies the electric kinematics only
as a function of the potential difference V. However,
because of the hypothesis (D2), the beam constitu-
tive equations will account for the through-the-
thickness linear contribution to the electric field
(quadratic electric potential), which is associated to
flexural strains.
• The integral conditions (7) on transverse stresses will be
enforced in the mixed variational formulation through
the Lagrange multiplier method. The physical interpre-
tation of the corresponding Lagrange multipliers show
that the conditions (7) introduce the effect of non-uni-
form transverse bending and extension of the beam
cross-sections. Details about this point are given in Sub-
section 3.4.

• The mixed variational approach with the hypotheses
(4)–(8) introduces in a simple way the effects of cross-
sectional deformations and the quadratic contributions
to the electric potential in the beam constitutive equa-
tions. However, the present model is not equivalent to
a model where these effects are introduced directly
through an enriched kinematics in the context of a
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standard variational formulation. In particular, it
neglects the shear-like effects which are present when
two adjacent cross-sections experience different trans-
verse deformations. Moreover, it ignores that, when
the quadratic contribution of the electric potential is
not constant inside a piezoelectric layer, the electric field
and electric displacement become more complex than
those in (5) and (8) since components in the e1–e2 plane
appear.

• In hypothesis (6) the shear terms of the stress tensor are
set to zero. This assumption, although very far from
being verified in a 3D model, does not imply any error
in the resulting Euler–Bernoulli beam model, because:
(i) the displacement field (4) automatically accounts
for an infinite shear stiffness (the cross sections remain
orthogonal to the beam axis); (ii) in orthotropic materi-
als the assumptions on the shear stresses have no influ-
ence on the constitutive relations between normal
stresses and strains, since they are constitutively
uncoupled.

• The hypothesis (7) substitutes an averaged version used
in a previous paper by the authors [30], where the inte-
gral was taken across the entire cross-section instead
that along each thickness segment. The present hypoth-
esis is more accurate in the case of beams composed by
layers with different widths. It imposes the integral con-
dition on the transverse stress at each z-line instead that,
in an averaged sense, on each cross-section. Hence, it
allows the beam to have non-uniform transverse stress
along the width and, consequently, to experience non-
uniform transverse deformations.

The present model, and in particular hypothesis (D1),
relies on the assumption that the beam is composed of a
stack of laminae. In other words, the proposed model is
applicable to beam having the cross-sectional geometry in
Fig. 1, where the thickness hi, the width ai, and the length
li of each layer are such that li� ai� hi. As a rule of
thumb, the results presented in this paper are accurate if
li P aai and ai P ahi with a ’ 5.

3.4. 1D mixed variational formulation with integral

conditions on transverse stress

In a beam model accounting for the hypotheses (4)–(8),
the distributions of the three dimensional state fields
(u,u,T,D) is uniquely determined by the fields

fuðxÞ;wðxÞ; V ; ra;iðx; yÞ; fa;iðx; yÞ;Diðx; yÞg;

where the electric voltage V has been assumed to be con-
stant because the surfaces of the transducers are equipoten-
tial. Here and henceforth, the mute indices a and i are
intended to vary from 1 to 2 and from 1 to n, respectively.

By introducing the hypotheses (4)–(8) into the func-
tional (2), a beam mixed functional

Hbeam½u;w; V ; ra;i; fa;i;Di�
is deduced. It is defined over the functional space of admis-
sible beam state fields (u,w,V,ra,i,fa,i,Di). This space will
be denoted by W.

The integral conditions (7) on transverse stresses can be
conveniently introduced in the variational formulation by
the Lagrange multiplier methods. To this end the following
extended functional is defined:

HK
beam½u;w; ra;i; fa;i;Di; V ; k; l�

¼ Hbeam½u;w; ra;i; fa;i;Di; V � �
Z
A�W

kðx; yÞnyðx; yÞdxdy

�
Z
A�W

lðx; yÞmyðx; yÞdxdy: ð9Þ

The Lagrange multipliers fields k(x,y) and l(x,y) enforce,
along each z-line identified by the coordinates (x,y), the
conditions (7) of vanishing transverse force and moment
resultants. The corresponding variational formulation con-
sists of looking for those beam state fields in W and those
admissible Lagrange multipliers (k,l) rendering stationary
the functional HK

beam.

Remark 1. The Lagrange multipliers k and l are the
transverse analogs of the axial deformations u 0 and w00.
They can be interpreted as constant (k) and linear (l)
contributions to the e2-normal strain throughout the z-line
identified by coordinates (x,y). Note that they explicitly
depend not only on x but also on y.
3.5. Derivation of the beam model

3.5.1. Definitions

For a generic z-line of coordinates (x,y), let us introduce
the following force and moment stress resultants along the
thickness Ti of the generic ith layer intersected by that line

na;iðx; yÞ ¼
Z
Ti

ra;iðx; yÞdz ¼ hira;iðx; yÞ;

ma;iðx; yÞ ¼
Z
Ti

z2
i fa;iðx; yÞdz ¼ h3

i

12
fa;iðx; yÞ

and the force and moment resultants along the whole beam
thickness

naðx; yÞ ¼
X

i2Iðx;yÞ
na;iðx; yÞ;

maðx; yÞ ¼
X

i2Iðx;yÞ
ma;iðx; yÞ �

X
i2Iðx;yÞ

�zina;iðx; yÞ:

Moreover, let us define the charge per unit surface on the
electrodes as

vðx; yÞ ¼ �
X

i2Ipðx;yÞ
xiDiðxÞ:

The total force and moment resultants of axial stress and
the charge per unit line on the entire beam cross section
at the axial point x can be written as



Table 1
Plane-strain constitutive coefficients in the S-E form for the piezoelectric
and elastic layers as a function of the 3D material data given in the T-D
form

Elastic layers

~c11 ¼
1

s11

1

1� m2
~c12 ¼ m~c11

m = �s12/s11

Piezoelectric layers

~cE
11 ¼

1

sE
11

1

1� ðmEÞ2
~cD

11 ¼ ~cE
11ð1þ c2Þ

~cE
12 ¼ mE~cE

11 ~cD
12 ¼ ~cE

12ð1þ c2=mEÞ

~e31 ¼
d31

sE
11ð1� mEÞ

~�S
33 ¼

1

bT
33

1� 2bT
33d2

31

sE
11ð1� mEÞ

� �

mE ¼ �sE
12=sE

11 c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

31b
T
33

E

ð1þ mEÞ
2 T

vuuuu
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N 1ðxÞ ¼
Z
W

n1ðx; yÞdy; ð10aÞ

M1ðxÞ ¼
Z
W

ðm1ðx; yÞ � �zin1ðx; yÞÞdy; ð10bÞ

qðxÞ ¼
Z
W

vðx; yÞdy ¼ �
X

i2Ipðx;yÞ
xiDiðxÞai: ð10cÞ

Moreover, let us list the fields associated to the axial and
transverse deformations, transverse force and moment
resultants as follows

d1ðxÞ ¼
u0ðxÞ
w00ðxÞ

� �
; d2ðx; yÞ ¼

kðx; yÞ
lðx; yÞ

� �
; ð11Þ

raðx; yÞ ¼
naðx; yÞ
maðx; yÞ

� �
; R1ðxÞ ¼

N 1ðxÞ
M1ðxÞ

� �
: ð12Þ
s11 ð1� mEÞ � 2
d31b33

sE
11

t
Standard Voigt notation for piezoelectric materials is adopted. The con-
stitutive constants sE

11 ¼ 1=Y E, sE
12 ¼ �mE=Y E, d31 and bT

33 refer to the
piezoelectric ceramic and are those usually provided in the datasheets (see
e.g. www.piezo.com); s11 = 1/Y and s12 = �m/Y refer to elastic material;
(YE,mE) and (Y,m) are the in-plane Young and Poisson modulus for the
piezoelectric material (at constant electric field) and for the elastic mate-
rial, respectively.
3.5.2. Euler–Lagrange equations of the mixed functional
By imposing that the mixed functional HK

beam is station-
ary for all the admissible beam state fields (u,w,V,ra,i,
fa,i,Di) and for all the admissible Lagrange multiplier fields
(k,l), we obtain the following Euler–Lagrange equations of
the variational problem.

(a) The beam balance equations and natural boundary
conditions (from variations with respect to u, w,
and V):8
bN ðxÞ þ N 01ðxÞ ¼ 0;

b0MðxÞ � bT ðxÞ þM 00
1ðxÞ ¼ 0;Z

A

qðxÞdxþ Q ¼ 0

>>><
>>>:

ð13Þ
and
½ðN 1 � NÞdu�oA ¼ 0; ð14aÞ
½ðM1 �MÞdw0 þ ðT þM 0

1 þ bMÞdw�oA ¼ 0: ð14bÞ
where in the latter variational expressions for the
boundary conditions du, dw and dw 0 denote arbitrary
admissible variations of u, w and w 0.

(b) The conditions (7) on transverse stresses (from varia-
tions with respect to k and l), which can be rewritten
in the form:
r2ðx; yÞ ¼ 0: ð15Þ

(c) The local (layer by layer) constitutive equations in

terms of axial deformations, transverse deformations
and electric voltage (from variations with respect to
rðaÞi ; fðaÞi , and Di): 8

piezoelectric layers

i 2 Ip

ra;i ¼ ~cE
abeb;i þ ~e3aE3;i;

fa;i ¼ ~cD
abjb;i;

D3;i ¼ �~e3beb;i þ ~�S
33E3;i

><
>: ð16aÞ

elastic layers

i 2 Ie

ra;i ¼ ~cabeb;i;

fb;i ¼ ~cabjb;i:

�
ð16bÞ
The definitions of the constitutive coefficients appear-
ing above are given in Table 1 and
e1;i ¼ u0 � �ziw00; j1;i ¼ w00;
e2;i ¼ k� �zil; j2;i ¼ l;
E3;i ¼ �ðxi=hiÞV
are the constant and linear contributions to the
mechanical axial (e1,i,j1,i) and transverse (e2,i,j2,i)
deformations through the ith layer, while E3;i ¼
�ðxi=hiÞV is the constant part of the e3-component
of the electric field.
Remark 2. In the adopted mixed variational formulation
the hypotheses on the kinematic fields determine the form
of the mechanical equilibrium equations, while the consti-
tutive equations are influenced by the hypotheses on the
dynamic fields. Because of the assumed kinematics, the
mechanical equilibrium equations are those of a standard
Euler–Bernoulli beam, the electric one is the Kirchhoff’s
law at the external electric terminals.

Remark 3. The coefficients appearing in the local constitu-
tive Eq. (16a) show that in piezoelectric layers the constant
contributions to the mechanical deformations (e1,i, e2,i) are
associated to the mechanical stiffnesses at constant electric
field ð~cE

abÞ, while the linear contributions (j1,i,j2,i) are
associated to the stiffnesses at constant electric displacement
ð~cD

abÞ. This is due to the hypothesis (8) of constant electric
displacement, which allows for including the influence
of the induced electric potential in the mechanical stiffness
[15].
3.5.3. Calculation of effective beam constitutive equations

By introducing the constitutive Eq. (16) into the defini-
tions (12) of the through-the-thickness stress resultants

http://www.piezo.com
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and into the expression for the electric charge per unit sur-
face v, we find

r1ðx; yÞ ¼ ~k11ðx; yÞd1ðxÞ þ ~k12ðx; yÞd2ðx; yÞ � ~et
vdðx; yÞV ; ð17aÞ

r2ðx; yÞ ¼ ~k12ðx; yÞd1ðxÞ þ ~k11ðx; yÞd2ðx; yÞ � ~et
vdðx; yÞV ; ð17bÞ

vðx; yÞ ¼ ~evdðx; yÞðd1ðxÞ þ d2ðx; yÞÞ þ ~evV ðx; yÞV ; ð17cÞ
where the stiffness matrices ~k11ðx; yÞ and ~k12ðx; yÞ, the cou-
pling vector ~evdðx; yÞ, and the capacitance per unit surface
~evV ðx; yÞ are given by

~k11ðx; yÞ ¼
½~k11ðx; yÞ�11 ½~k11ðx; yÞ�12

½~k11ðx; yÞ�12 ½~k11ðx; yÞ�22

" #
; ð18aÞ

~k12ðx; yÞ ¼
½~k12ðx; yÞ�11 ½~k12ðx; yÞ�12

½~k12ðx; yÞ�12 ½~k12ðx; yÞ�22

" #
; ð18bÞ

~evdðx; yÞ ¼
X

i2Ipðx;yÞ
xi~e31

X
i2Ipðx;yÞ

xi~e31�zi

� �
; ð18cÞ

~evV ðx; yÞ ¼
X

i2Ipðx;yÞ

~�S
33

hi
; ð18dÞ

with

½~kabðx; yÞ�11 ¼
X

i2Ipðx;yÞ
hi~cE

ab þ
X

i2Ieðx;yÞ
hi~cab;

½~kabðx; yÞ�12 ¼
X

i2Ipðx;yÞ
hi�zi~cE

ab þ
X

i2Ieðx;yÞ
hi�zi~cab;

½~kabðx; yÞ�22 ¼
X

i2Ipðx;yÞ
hi�z2

i ~c
E
ab þ

1

12
h3

i ~c
D
ab

� �

þ
X

i2Ieðx;yÞ
~cab hi�z2

i þ
1

12
h3

i

� �
:

By enforcing the conditions on transverse stress resultants
(15), the constitutive Eq. (17b) for the transverse stress
resultants can be solved for d2(x,y), giving the generalized
transverse deformations as a function of the axial ones and
the electric voltage

d2ðx; yÞ ¼ �~k�1
11 ðx; yÞ~k12ðx; yÞd1ðxÞ þ ~k�1

11 ðx; yÞ~et
vd ðx; yÞV :

ð19Þ
The substitution of this expression into the constitutive
laws (17) for r1 and v gives the following reduced constitu-
tive equations, where only the axial deformations d1(x) and
the electric voltage V appear:

r1ðx; yÞ ¼ k11ðx; yÞd1ðxÞ � et
vdðx; yÞV ;

vðx; yÞ ¼ evdðx; yÞd1ðxÞ þ evV ðx; yÞV ;
ð20Þ

with

k11ðx; yÞ ¼ ~k11ðx; yÞ � ~k12ðx; yÞ~k�1
11 ðx; yÞ~k12ðx; yÞ;

evdðx; yÞ ¼ ~evdðx; yÞ � ~evdðx; yÞ~k�1
11 ðx; yÞ~k12ðx; yÞ;

evV ðx; yÞ ¼ ~evV ðx; yÞ þ ~evdðx; yÞ~k�1
11 ðx; yÞ~et

vdðx; yÞ:
ð21Þ

Finally, the integration over the cross-sectional width gives
the effective constitutive equations for the cross-sectional
axial force and moment resultants (N1,M1) and the charge
per unit line q

R1ðxÞ ¼ KðxÞd1ðxÞ � et
qdðxÞV ;

qðxÞ ¼ eqdðxÞd1ðxÞ þ eqV ðxÞV ;
ð22Þ

where

KðxÞ ¼
Z
W

k11ðx; yÞdy;

eqdðxÞ ¼
Z
W

evdðx; yÞdy;

eqV ðxÞ ¼
Z
W

evV ðx; yÞdy:

ð23Þ
3.6. Beam equations in the final form

The governing equations of the model derived above are
in the same form of those of a standard electromechanical
Euler–Bernoulli model for piezoelectric beams. They are
given by

• The mechanical and electrical equilibrium equation (13).
The mechanical natural boundary conditions are found
from (14) once the admissible axial and transverse dis-
placement fields, u(x) and w(x), are chosen.

• The beam constitutive equation (22), where the axial
force resultant N1(x), the moment resultant M1(x) and
the electric charge per unit line q(x), are expressed as a
function of the axis elongation u 0(x), the axis curvature
w00(x), and the electric potential difference V. Eq. (22)
can be rewritten in an explicit form as follows:

N 1

M1

q

2
64

3
75 ¼

kNu kNw eNV

kNw kMw �eMV

�eNV eMV eqV

2
64

3
75

u0

w00

V

2
64

3
75; ð24Þ

where the association between the appearing constitu-
tive coefficients and the entries of matrices K(x) and
eqd(x), defined by (23), is immediate.

The present model differs from standard ones for giving
more accurate estimates of the constitutive coefficients
appearing in Eq. (24). This point is fully discussed in the
next sections, where piezoelectric sandwich and bimorph
beams in bending are analyzed in details. For these cases,
explicit analytical expressions for the electromechanical
constitutive coefficients are given in Section 4. Numerical
comparisons with standard models and 3D finite element
results are discussed in Section 5. For a generic piezoelectric
laminate as in Fig. 1, the constitutive coefficients appearing
in Eq. (24) are calculated by Eqs. (23) and (21), considering
the definitions given in Eq. (18) and Table 1.

4. Piezoelectric sandwich beam

In this section, we consider the particular layer arrange-
ment shown in Fig. 2, where two identical piezoelectric
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layers, polarized along the same direction are bonded on a
central elastic layer and are electrically interconnected in
parallel and counter-phase. A beam with this layers config-
uration is called piezoelectric sandwich. It is conceived for
coupling the voltage and the charge at the electric terminals
to the beam bending, without introducing central axis
extension. For this configuration, we provide analytical
expressions of the relevant beam constitutive parameters
appearing in (24). The case of beams having layers of dif-
ferent widths (see Fig. 2) is considered explicitly. For sand-
wich beam with thin piezoelectric layers, simplified
formulas are derived, while the interesting case of a two-
layer bimorph bender is obtained by letting vanish the
thickness of the central elastic layer. For comparisons pur-
poses, we report also the expressions of the constitutive
coefficients obtained by standard approaches which neglect
3D effects. Namely, we consider the model assuming null
transverse deformations (ND), the model assuming
null transverse stresses (NS), and the model assuming null
transverse stresses and neglecting the influence of the
induced potential (NS1).

4.1. Proposed model

4.1.1. Complete expressions

For a piezoelectric sandwich beam, because of the mate-
rial and geometric symmetry, beam extension and bending
are decoupled and the stiffness matrices ~k11 and ~k12 defined
in Eqs. (18) are diagonal. Moreover, due to the electric
interconnection of the two piezoelectric layers, the first
term of the coupling vector ~evd is null, and an imposed elec-
tric potential V induces only a bending moment with a van-
ishing force resultant. Hence, the constitutive Eq. (24) for
the bending moment M1 and the electric charge per unit
line q, being uncoupled from the extensional problem,
assume the simplified form

M1

q

� �
¼

kMw �eMV

eMV eqV

� �
w00

V

� �
: ð25Þ
e2

e3

e1h2

h1 PZT-5H

Aluminum

PZT-5H1

2

3

h1

a1

a2

p

p

V

Fig. 2. Cross-section of a piezoelectric sandwich beam with piezoelectric
layers connected in parallel and in counter-phase. In this geometrically
symmetrical configuration, the electric potential difference and charge are
coupled to pure beam bending. A two-layer bending bimorph is obtained
when h2! 0. The polarization direction of the piezoelectric transducers is
denoted by an arrow and the letter ‘‘p’’.
Moreover, since stiffness matrices are diagonal, the calcula-
tion implied by Eqs. (21) and (23) can be easily carried out
explicitly. The following expressions for the constitutive
coefficients in Eq. (25) are found

kMw ¼ a1K11 1� K2
12

K2
11

� �
þ ða2 � a1Þ

1

12
h3

2~c11ð1� m2Þ; ð26aÞ

eMV ¼ a1~e31ðh1 þ h2Þ 1� K12

K11

� �
; ð26bÞ

eqV ¼
2a1~�

S
33

h1

þ a1ð~e31ðh1 þ h2ÞÞ2

K11

; ð26cÞ

where the stiffness parameters K11, K12 are defined by (see
also Table 1):

Kab ¼
~cE

abh3
1

12
6 1þ h2

h1

� �2

þ 2
~cD

ab

~cE
ab

þ ~cab

~cE
ab

h3
2

h3
1

 !
:

Remark 4. In the stiffness parameters Kab we can distin-
guish between three contributions: the first one, propor-
tional to ~cE

ab, is associated to the flexural stiffness due to
piezoelectric layer extension, the second one, proportional
to ~cD

ab, is due to piezoelectric layers bending, and the third
one, proportional to ~cab, to elastic layer bending.

Remark 5. The electromechanical constitutive coefficients
are equal to those of a piezoelectric sandwich beam having
the width of the piezoelectric layers, except for the mechan-
ical stiffness (26a). The second term in the right hand side
of Eq. (26a) is the additional contribution due to the purely
elastic parts of the beam cross-section.

Remark 6. The numerical evaluation of the beam constitu-
tive constants (26) requires only four piezoelectric material
coefficients (see Table 1): the piezoelectric in-plane Young’s
modulus YE and Poisson’s coefficient mE at constant electric
field, the coupling coefficient d31, and the electric constant
bT

33.
4.1.2. Approximation for thin piezoelectric layers
When the piezoelectric layers are thin with respect to the

central elastic one, the constitutive coefficients (26) can be
approximated by their first order Taylor expansions in
the small parameter

s ¼ h1=h2

and the following simplified expressions are found:3
3 Since the piezoelectric capacitance eqV is singular for s = 0, its
approximation has been found by expanding up to the first order eqV*h1,
the piezoelectric capacitance per unit thickness.
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kðsÞMw ¼ ~c11ð1� mÞ a2h3
2

12
þ s

~cE
11h3

2a1

2
ð1þ m2 � 2mmEÞ; ð27aÞ

eðsÞMV ¼ a1~e31h2ð1� mÞ þ sa1~e31h2 1� mþ 6ðm� mEÞ~c
E
11

~c11

� �
;

ð27bÞ

eðsÞqV ¼
2a1~eS

33

sh2

1þ 6c2 ~cE
11

~c11

s

� �
: ð27cÞ

In the linear approximations above, the contribution to the
mechanical stiffness due to the bending of the piezoelectric
layers is not present and only their membranal behavior is
taken into account. Indeed, the bending stiffness becomes
independent of the mechanical compliances at constant
electric displacement ~cD

11 and ~cD
12. This result proves that

the influence of the induced electric potential is negligible
for thin piezoelectric layers. On the other hand, the effect
of transverse interactions between piezoelectric and elastic
layers is present also in this case, as revealed by the depen-
dence of kðsÞMw and eðsÞMV on the Poisson ratios.

4.1.3. Two-layer bimorph

The constitutive coefficients for the bimorph bender
constituted by two piezoelectric layers connected in parallel
and in counter phase are obtained from expressions (26) by
letting the thickness of the elastic layer (h2) go to zero:

kðbÞMw ¼
4ð2þ c2 þ 2mEÞ
ð4þ c2Þð1þ mEÞ

a1h3
1Y E

3
; ð28aÞ

eðbÞMV ¼
4

4þ c2
a1d31Y Eh1; ð28bÞ

eðbÞqV ¼
2a1

h1b
T
33

1� d2
31Y EbT

33

5þ 2c2 � 3mE

ð4þ c2Þð1� mEÞ

� �
: ð28cÞ
4.2. Standard models

4.2.1. Null transverse stress (NS) models

Many authors assume an uniaxial stress-state in the
form (1) by replacing the integral constraints (7) on the
transverse stress by the hypothesis of pointwise vanishing
transverse stress. Under these conditions, the coefficients
of the constitutive equation (25) for the piezoelectric sand-
wich beam in Fig. 2 are found to be (see [30] for the
detailed derivation):

kðNSÞ
Mw ¼ Y Eð1þ c2Þ a1h3

1

6
þ Y E a1h1ðh1 þ h2Þ2

2
þ Y

a2h3
2

12
;

ð29aÞ
eðNSÞ

MV ¼ �d31Y Ea1ðh1 þ h2Þ; ð29bÞ

eðNSÞ
qV ¼ 2a1

h1

1

bT
33

ð1� d2
31Y EbT

33Þ: ð29cÞ

They account for the bending deformation of the piezoelec-
tric layers and the so-called full electromechanical cou-
pling, by including the stiffness contribution due to the
induced electric potential. Very often the influence of the
induced electric potential is neglected and the bending stiff-
ness is further approximated by

kðNS1Þ
Mw ¼ Y Ea1

h1ðh1 þ h2Þ2

2
þ h3

1

6

 !
þ Y

a2h3
2

12
; ð30Þ

or even by

kðNS2Þ
Mw ¼ Y E a1h1h2

2

2
þ Y

a2h3
2

12
ð31Þ

for very thin piezoelectric layers for which only the mem-
branal behavior is accounted for.

The constitutive coefficients kðNS1Þ
Mw and eðNSÞ

MV are those
given by Crawley and Anderson [7] in their Euler–Bernoulli
model. The opportunity of correcting the flexural stiffness
with the expression (29a) which includes the influence of
the induced electric potential is discussed in details in
[10,13,15]. Complete electromechanical constitutive equa-
tions are provided by Smits et al. [19], Park and Moon
[22], and Wang and Cross [21] in their works on cantile-
vered sandwich and bimorph benders. It can be easily
shown that their constitutive coefficients correspond to
kðNS1Þ

Mw , eðNSÞ
MV , and eðNSÞ

qV .

4.2.2. Null transverse deformation (ND) model
In standard beam modelling, the alternative to the uni-

axial stress-state condition (1) is to remove the hypotheses
on the transverse stress T22 and to assume vanishing trans-
verse deformations S22. The corresponding beam model is
obtained by the variational formulation above simply by
removing the additional condition on transverse stress
(7). In this case we find the following expressions for beam
constitutive coefficients (see [30] for further details)

kðNDÞ
Mw ¼ ~cD

11

a1h3
1

6
þ ~cE

11

h1ðh1 þ h2Þ2

2
þ ~c11

a2h3
2

12
; ð32aÞ

eðNDÞ
MV ¼ a1~e31ðh1 þ h2Þ; ð32bÞ

eðNDÞ
qV ¼ 2a1~eS

33

h1

: ð32cÞ

The null transverse deformation (ND) hypothesis, corre-
sponding to the plane-strain condition, has been used by
some authors (see e.g. [11]). In our opinion, it should be
also the assumption made in [6,5] to get the electrically in-
duced tip deflection of cantilevered bimorph and sandwich
beams (so explaining the high discrepancy they found with
respect to the Wang and Cross model [21], which is in
plane-stress).

5. Numerical comparisons

In order to validate the present model and show how it
enhances standard modelling approaches, some numerical
examples are considered. In the following, we analyze
how different models estimate the beam constitutive coeffi-
cients and how they mimic the 3D distribution of the elec-
tromechanical fields. In this context, the results obtained
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with numerical finite element simulations on the three
dimensional models are taken as reference. The cases of
sandwich and bimorph beams with typical cross-sectional
aspect ratios are studied in details. The constitutive proper-
ties of the piezoelectric and elastic materials considered for
the numerical evaluation of expressions (26)–(32) are
reported in Table 2. The 3D FE simulations rely on the full
constitutive matrices for the piezoelectric material reported
in Appendix A. The analysis is based on the Saint-Venant
beam assumptions and the consequence of boundary effects
are not investigated. For this reason, the numerical simula-
tions on the 3D model are performed in the simple bending
conditions, with a suitable distribution of the mechanical
loads on the beam bases (see Fig. 3).

5.1. FEM 3D

In order to validate the proposed modelling approach,
FEM numerical simulations on 3D models of piezoelectric
beams are performed. In particular, the coefficients appear-
ing in the constitutive Eq. (25) are identified by numerical
simulations on a simply-supported sandwich beam in uni-
form bending (see Fig. 3). To this end we consider two dif-
ferent loading conditions for the 3D model:

1. Moment loading (M ¼ M , V = 0). By setting to zero the
electric voltage V, a through-the-thickness linear pres-
sure distribution having null force resultant and moment
resultant M is imposed on the beam bases.
Table 2
Numerical values of the 3D constitutive coefficients required by the
present model for aluminum and the PZT-5H

Elastic layers

Y = 1/s11 = 69 · 109 N/m2 m = �s11/s12 = 0.33

Piezoelectric layers

Y E ¼ 1=sE
11 ¼ 62� 109 N=m2 mE ¼ �sE

11=sE
12 ¼ 0:31

d31 = �320 · 10�12 m/V bT
33 ¼ 1=eT

33 ¼ 2:97� 107 m=F

Complete expressions for the piezoelectric constitutive matrices, used for
3D finite elements simulations, are given in Appendix A.

V

M

Midspan cross-sec

Fig. 3. Simply supported piezoelectric beam in simple bending. For 3D FEM
applied electric potential V; (ii) a pair of applied bending moment M at the h
thickness linear pressure distribution on the beam bases, in order to approxim
2. Voltage loading (M = 0, V ¼ V ). By setting to zero the
pressure on the beam bases, a voltage difference V is
applied at the electric terminals of the beam.

If equivalent loadings are applied to the beam model
characterized by Eqs. (13) and (25), the axis deflection w0

at the midspan point and the electric charge Q at the elec-
tric terminals are related to the applied moment M and
voltage V by:

w0ðM ; V Þ ¼ � l2

8kMw
M � l2eMV

8kMw
V ;

QðM ; V Þ ¼ leMV

kMw
M � l eqV þ

e2
MV

kMw

� �
V :

Hence, the following expressions for the beam constitutive
coefficients are found:

kMw ¼ �
l2

8

M

w0ðM ; 0Þ
; ð33aÞ

eMV ¼ �
l
8

QðM ; 0Þ
w0ðM ; 0Þ

¼ w0ð0; V Þ
w0ðM ; 0Þ

M

V
; ð33bÞ

eqV ¼ �
Q2ðM ; 0Þ
8w0ðM ; 0Þ

1

M
� Qð0; V Þ

l
1

V
: ð33cÞ

These formulas are used to identify the beam constitutive
coefficients kMw, eMV, eqV from the 3D finite element simu-
lations, by detecting w0 and Q for the two loading condi-
tions above.

The numerical simulations are performed by using the
commercial code Ansys 8.0, which contains several 3D
and 2D finite elements with piezoelectric capabilities. The
3D coupled-field solid element SOLID5 with piezoelectric
option, is adopted. The element has 8 nodes and 4 d.o.f.
per node (the three components of the mechanical displace-
ment and the electric potential). A mapped mesh is chosen
and the elements are forced to be brick-shaped. For each
numerical simulation, the element dimensions are adjusted
to get the desired accuracy level, after refinement essays. In
particular, the element thickness is set to have at least 4–5
M

l

tion

numerical simulations, two different loading conditions are considered: (i)
inges. In the latter case the bending moments are applied as through-the-
ate an ideal uniform-bending test.
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elements along the thickness of each layer;4 the element
length is determined to limit the maximum element aspect
ratio to 10–15, which is shown to give accurate results
for the considered loading conditions. Typically, the total
number of used elements is about 5000–10,000, depending
on the cross-sectional geometry. In the FEM model, the
different layers are supposed to be perfectly bonded, by
constraining corresponding displacements at the interface.
The electrodes of the piezoelectric layers are modelled by
assigning a single electric degree of freedom (the electrode
potential) at all the nodes on the corresponding surface; the
corresponding mechanical properties are neglected. The
bending moments on the beam bases are applied by impos-
ing an equivalent through-the-thickness linear distribution
of surface pressure (see also Fig. 3). This choice is aimed at
reducing the boundary effects and to get a better approxi-
mation of an ideal uniform-bending test.

5.2. Constitutive coefficients

In Figs. 4 and 5, considering sandwich and bimorph
benders, the coefficients appearing in the bending-electric
constitutive Eq. (25) are plotted as a function of the thick-
ness ratio between the elastic and the piezoelectric layers.
The plots report the estimates given by the different models
for the bending stiffness kMw, the coupling coefficient eMV,
and the electric capacitance per unit line eqV, as appearing
in Eq. (25).

In Fig. 4, for a fixed value of the thickness of the elastic
layer, the thickness of the piezoelectric layers is varied for
s = h1/h2 going from 0 to 1, when assuming a1 = 10 mm,
a2 = 12 mm, h2 = 2 mm (see Fig. 2). In Fig. 5, for a fixed
thickness of the piezoelectric layers, the thickness of the
elastic layer is varied for g = 1/s = h2/h1 going from 0 to
1, with a1 = a2 = 10 mm, h1 = 0.5 mm. Finite element
results are obtained through expressions (33) for a beam
of length l = 100 mm. By analyzing these plots, the follow-
ing comments can be drawn:

• The values given by the present model are in excellent
agreement with the FE results. In particular, they cor-
rectly follow the dependence of the equivalent electric
capacitance on the thickness ratio between different
layers.

• For thin piezoelectric layers (s < 0.1), the simplified con-
stitutive coefficients given in Equations (27) are in good
agreement with FE results. They were obtained as linear
approximation (first order Taylor expansions in s) of the
full expressions (26) and they provide handy formulas
which can be useful for applications, where the piezo-
electric layers are often very thin with respect to the elas-
tic core.
4 This condition must be satisfied in order to fit, with the adopted 8-node
elements, the actual through-the-thickness distributions of the electrome-
chanical fields (e.g. quadratic electric potential).
• When using standard modelling approaches, major
errors are revealed for the equivalent electric capaci-
tance per unit line eqV. The models with null transverse
stresses (NS) and the model with null transverse defor-
mations (ND) expect two different values, given by
Eqs. (29c) and (32c). Both of them are independent of
the thickness ratio between the different layers. The
FE results show that the actual capacitance, being
always comprised between these two values, can signifi-
cantly differ from both.5 These errors are explained by
keeping in mind that the equivalent capacitance of a
piezoelectric sheet depends on the conditions on
mechanical stresses and strains. The standard models
associate to piezoelectric layers either the value obtained
under the condition of null transverse strain or null
transverse stress. The actual capacitance corresponds
to a more complex stress and strain distribution and dif-
fers from both. In particular, like the distribution of
transverse strains and stresses, it depends on the cross
sectional geometry.

• The ND model remarkably overestimates the bending
stiffness and the coupling coefficient. It correctly predicts
the piezoelectric capacitance only for very thin piezo-
electric layers.

• For thin piezoelectric layers, the NS model gives good
estimates of the mechanical stiffness and of the coupling
coefficients. However, it introduces appreciable errors
also on these quantities when thin and moderately thin
elastic layers are considered.

• As previously observed, the errors on the bending stiff-
ness introduced when discarding the influence of the
induced potential (expression (30)), are negligible for
thin piezoelectric layers. On the other hand, although
for thin and moderately thin elastic layers, the errors
with respect to FE results become important, they are
of the same order of magnitude of those implied by
neglecting the influence of transverse stresses.

A special attention must be deserved to the case of the
two-layer bending bimorph obtained when h2! 0, for
which the values given by Smits et al. in [19] are usually
taken as reference. The corresponding constitutive coeffi-
cients for a particular numerical example are reported in
Table 3; the values calculated as in Smits et al. [19] (which
correspond to those of NS model neglecting the influence
of the induced potential) are also marked by a star in
Fig. 5. The comparisons with the 3D FE results shows that
only the present model gives accurate estimates. For piezo-
electric bimorphs, the models assuming null transverse
stresses, which are usually accepted in technical literature,
not only miss the value of the piezoelectric capacitance,
but imply substantial errors also on the bending stiffness
5 For thin piezoelectric layers the capacitance per unit length and per
unit thickness eqV/h1 is considered, so eliminating the singularity of eqV for
s! 0.
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and the coupling coefficient, even if the influence of the
induced potential is taken into account.
In several papers, different models are compared by
analyzing the structural deformations and displacements
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induced by an applied electric potential (actuator effect),
and the voltage difference induced by a given mechanical
deformation under the open-circuit condition (strain sen-
sor effect). We report similar comparisons in Tables 4



Table 5
Induced voltage per unit curvature at null electric charge (�V/
w 0jq=0 = eMV/eqV) for a two-layer bimorph with a1 = a2 = 10 mm,
h1 = 0.5 mm

�V/w00jq=0 (m V) Error (%)

FEM 3D 90.8625
Present (eMV/eqV) 90.8622 �0.0003

Standard NS and NS1 ðeðNSÞ
MV =eðNSÞ

qV Þ 90.8591 �0.0037

Standard ND ðeðNDÞ
MV =eðNDÞ

qV Þ 235.85 +159.57

Comparison between the present model, the ND model, the NS model, the
NS model without the influence of the induced potential (NS1) and the 3D
FEM result. The latter are obtained on a beam of length l = 100 mm in
uniform bending and open circuit condition.

Table 4
Bending curvature per unit voltage (eMV/kMV) at null bending moment
condition for a two-layer bimorph with a1 = a2 = 10 mm, h1 = 0.5 mm

w00=V jM1¼0 ðm�1 V�1Þ Error (%)

FEM 3D (8w0(0,1)/l2) 1.485 · 10�3

Present (eMV/kMV) 1.475 · 10�3 �0.68058

Standard NS ðeðNSÞ
MV =kðNSÞ

MV Þ 1.603 · 10�3 7.95425

Standard NS1 ðeðNSÞ
MV =kðNS1Þ

MV Þ 1.920 · 10�3 29.2958

Standard ND ðeðNDÞ
MV =kðNDÞ

MV Þ 2.100 · 10�3 41.4201

Comparison between the present model, the ND model, the NS model, the
NS model without the influence of the induced potential (NS1) and the 3D
FEM result. The latter is found from the uniform bending test in Fig. 3
with l = 100 mm.

Table 3
Electromechanical constitutive coefficients for a two layer bimorph with a1 = a2 = 10 mm, h1 = 0.5 mm

Stiffness (N m2) Coupling coefficient (N m/V) Capacitance (lF/m)

FEM 3D

56.11 · 10�3 83.33 · 10�6 0.9171

Present

kMw, eMV, eqV 56.16 · 10�3(+0.08%) 82.83 · 10�6(�0.60%) 0.9116(�0.60%)

Standard NS–NS1

kðNSÞ
Mw ; eðNSÞ

MV ; eðNSÞ
qV 61.89 · 10�3 (+10.3%) 99.20 · 10�6(+19.0%) 1.0918(+19.05%)

kðNS1Þ
Mw 51.67 · 10�3(�7.93%)

Standard ND

kðNDÞ
Mw ; eðNDÞ

MV ; eðNDÞ
qV 68.46 · 10�3(+22.0%) 143.8 · 10�6(+72.5%) 0.6097(�33.52%)

Comparison between the values given by the present model, the ND model, the NS model, and the NS model neglecting the influence of the induced
potential (NS1). The coefficients found by finite elements numerical simulations on the 3D model are taken as reference and the corresponding relative
errors are reported in parenthesis.
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and 5. Table 4 details the different estimates found for the
curvature induced by an unit voltage in a two-layer bimo-
rph where the bending moment M1 is null. Table 5 com-
pares those for the electric voltage induced by a given
curvature w00 for a beam in uniform bending under the
open-circuit condition.6 The analysis of these results,
besides confirming the performance of the present model-
ling approach, can also partially explain why the substan-
tial errors shown in Table 3 for the model with null
transverse stress have not been revealed in experimental
and numerical works. Table 4 shows that the curvature
induced by an applied potential difference is proportional
to the ratio between the coupling and the stiffness coeffi-
cients. The NS model which overestimates both the cou-
pling and the stiffness, implies only a minor error7 on
their ratio. On the other hand, the version of the NS model
6 The uniform bending hypothesis allows for assuming that the charge
per unit line q is constant along the beam axis and that the open circuit
condition (null total charge Q) directly implies that charge per unit line is
null. So that the induced voltage is calculated by (25) as.V/w 0jq=0 = �eMV/
eqV.

7 Although being still around 8%, it can be confused with the accuracy
of the experimental data and/or influence of other non-modelled effects, as
non-perfect bonding.
which neglects the induced potential (NS1), while keeping
the same coupling coefficient, underestimates the bending
stiffness and induces much more evident errors in their
ratio. In Table 5, the cancellation-of-errors effect in the
NS model is even more evident: the estimates for the
electric potential induced by a given curvature found by
the proposed model, the NS model, and FE almost coin-
cide. Table 5 shows also that the quadratic contribution
of the electric potential does not have any direct influence
on strain sensing, since the mechanical stiffness does not
play any role in this case. On the other hand, neglecting
the quadratic potential leads to a not correct prediction
of the deformation induced by applied mechanical forces
and, indirectly, of the force sensing effect. In our opinion,
Tables 3–5 can help distinguishing between errors due to
plane-strain and plane-stress hypotheses and the neglect
of the induced potential, as attempted in [26].
5.3. Field distribution

A deeper understanding of the features of the proposed
model and of the limits of standard modelling approaches
can be got by analyzing how they simulate the 3D distribu-
tions of the electromechanical fields. Also in this case, the
3D finite element solutions are taken as reference.



Fig. 6. Contour plot of the 3D FEM results for the transverse stress T22 on the midspan cross section of the simply supported beam in Fig. 3 for applied
unit voltage and null bending moment (V = 1 V, M = 0). Numerical values in N/m2.

Fig. 7. Through-the-thickness distribution of the electromechanical fields for applied unit voltage and null bending moment for the piezoelectric sandwich
beam in Fig. 3 (V = 1 V, M = 0): axial and transverse (width direction) normal stresses T11 and T22, axial and transverse deformations S11 and S22, electric
displacement D3 and electric field E3 along the layers thickness. Legend: (—) present model; (� � �) model with null transverse stress; (- -,) model with null
transverse deformations; (m) 3D finite elements. The distributions are taken at the central z-line of the midspan cross-section of the beam in Figs. 2 and 3,
where h2 = 2 mm, a2 = 12 mm, h1 = 0.4 mm, a1 = 10 mm. For FE numerical simulations, the beam length equals l = 100 mm.
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A typical contour plot of the distribution of the trans-
verse stress T22 obtained with the 3D finite elements is
reported in Fig. 6. It is taken at the midspan cross-section
of the simply-supported sandwich beam in Fig. 3, under the
loading condition V = 1 V, M = 0. It clearly shows that,
for imposed electric potential, important transverse stresses
are induced in the three-layer region. These stresses vanish
in the single-layer regions, with an edge effect around the
ends of the piezoelectric layers.

In the proposed mixed model, the calculation of the field
distributions used for the evaluation of the internal energy
requires to find: (i) the mechanical displacement fields u(x)
Fig. 8. Through-the-thickness distribution of the electromechanical fields fo
sandwich beam in Fig. 3 ( M = 0.01 N m, V = 0). For testing geometry and p
and w(x) and the electric potential V solving equations
(13)–(14) and (24) for the given loading and boundary con-
ditions; (ii) the corresponding transverse deformations by
Eq. (19). Hence, the distribution of the mechanical stress
and electric displacement is obtained through Eqs. (16)
and (6). The associated distributions of the strain and the
electric potential are found by the 3D constitutive equa-
tions.

The plots in Figs. 7–10 compare the through-thickness
field distributions obtained with the proposed model to
those associated to the 3D finite elements, the NS model,
and the ND model. The distributions are taken at the cen-
r applied bending moment and null electric voltage for the piezoelectric
lot legend refer to Fig. 7.



Fig. 9. Through-the-thickness distribution of the electromechanical fields for applied unit voltage and null bending moment (V = 1 V, M = 0) for a two-
layer bimorph piezoelectric beam (layer arrangement as in Fig. 2 with h2 = 0). The distributions are taken at the central z-line of the midspan cross-section
of the beam in Figs. 2 and 3, where h1 = 0.5 mm, a1 = 10 mm, h2 = 0. For FE numerical simulations, the beam length equals l = 100 mm. For the plot
legend refer to Fig. 7.

8 The hypothesis of vanishing transverse stress resultants in the form (7)
allows also for correctly predicting that the transverse stresses vanish
pointwise in the cross-sectional regions where a single elastic layer is
present. This is an improvement with respect to the model presented by the
authors in [30]. The edge effects are still completely neglected and
the modification of the stress distribution between the single-layer and the
three-layers region is abrupt.

C. Maurini et al. / Computers and Structures 84 (2006) 1438–1458 1455
tral z-line of the midspan cross-section of the sandwich
beam. Referring to the boundary conditions and notation
introduced in Fig. 3, two different loading conditions are
considered, both for the sandwich (Figs. 7 and 8) and
bimorph (Figs. 9 and 10) beams: (i) applied electric poten-
tial with null bending moment; (ii) applied bending
moment with short-circuited electrodes. The analysis of
the field distributions confirms the ability of the proposed
model to correctly mimic the 3D one. It clearly shows that,
for imposed electric potential, axial and transverse stresses
are of the same order of magnitude.8 Hence, it can be stated
that the uniaxial-stress hypothesis is not physically grounded



Fig. 10. Through-the-thickness distribution of the electromechanical fields for applied unit bending moment and null electric voltage for a two-layer
bimorph piezoelectric beam ( M = 0.001 N m, V = 0, layer arrangement as in Fig. 2 with h2 = 0). For testing geometry, refer to Fig. 9, for plot legend to
Fig. 7.
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in this case. The NS model, by assuming null transverse
stress, neglects completely transverse interactions between
different layers. In particular, although different layers are
assumed to be perfectly bonded, the NS model let them free
to slide one on each other along the beam width. On the
other hand, in the ND model the transverse stresses arising
in the piezoelectric layers when an electric potential is
applied, are not correctly transmitted to the elastic one
(dashed line for the distribution of T22). In piezoelectric
beams, blocking Poisson-like transverse strains, in addition
to a well known stiffening phenomenon, leads also to an
overestimate of the axial-electric electromechanical cou-
pling (see eMV plots in Figs. 4 and 5). This effect is caused
by ignoring the elastic energy stored in the transverse
deformations. Moreover, the errors in the distributions of
the mechanical deformations and stresses influence also
the accuracy on the electrical fields. Indeed, by piezoelectric
coupling, they indirectly induce errors in the electric dis-
placement and in the linear contribution to the electric field
(see the plots for D3 and E3). This is the reason why the
electric capacitance per unit line is misestimated by the
NS and ND models.

The phenomena underlined above are still more impor-
tant for the two-layers bending bimorphs, whose field dis-
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tributions for applied bending moment and electric poten-
tial are reported in Figs. 9 and 10. They show that, differing
from what found for sandwich beams with thin piezoelec-
trics, the amplitude of transverse stresses is comparable
to that of axial ones also for applied bending moment
and null electric potential. Moreover, the transverse stres-
ses are of the same order of magnitude throughout the
beam thickness. The NS model, by neglecting these contri-
butions, introduces remarkable inaccuracies in the estimate
of the elastically stored energy, so leading to the errors in
the bending stiffness and in the coupling coefficients
reported in Table 3.
6. Conclusions

In the present paper, beam models of piezoelectric lam-
inates accounting for two-fold electromechanical coupling
were discussed. We noted that some hypotheses on the
stress and strain distributions, although widely accepted
in the technical literature, are not physically grounded.
In particular, finite element numerical simulations on
3D models show that, in piezoelectric laminates, the nor-
mal transverse stresses and strains (transverse meaning
width direction) are not negligible. Hence, neither the
plane-stress nor the plane-strain assumptions are accept-
able. We use a mixed variational formulation to establish
a beam model where the effects of transverse stresses and
strains are taken into account. In the proposed model, the
transverse stresses are supposed to be layerwise linear.
They are determined through integral conditions (null
through-the-thickness force and moment resultants),
which are imposed in the variational formulation through
the Lagrange multiplier method. Moreover, the mixed
approach allows us to straightforwardly include the effect
of the so called induced potential without adding redun-
dant electric degrees-of-freedom. As a main advantage
of the proposed formulation, the beam governing equa-
tions in the final form fit into the format of a standard
electromechanical Euler–Bernoulli model with a single
electric degree of freedom. The effects of the transverse
stresses and strains and of the quadratic contribution to
the electric potential are accounted for in the beam con-
stitutive coefficients, which are suitably corrected. For
sandwich and bimorph benders, simple analytical expres-
sions of the corrected electromechanical constitutive coef-
ficients were provided. Their evaluation requires the
knowledge of few material properties and they can be
promptly used in applications to replace standard
formulas.

The model was validated through comparisons with
standard modelling approaches and results from 3D finite
element numerical simulations in simple bending. A
detailed discussion on the influence and the plausibility of
possible assumptions in beam modelling of piezoelectric
laminates was carried out and a deeper understanding of
the main phenomena is achieved. Focusing on sandwich
and bimorph benders, the comparisons were made in terms
of the estimates of the electromechanical beam constitutive
coefficients and the associated through-the-thickness distri-
butions of the three-dimensional fields. The analysis led to
the following conclusions:

1. The proposed model accurately predicts all the relevant
electromechanical constitutive parameters and correctly
follows the field distributions found by 3D finite element
analysis, independently of the thickness ratio between
piezoelectric and elastic layers.

2. For piezoelectric sandwiches and bimorphs, the stan-
dard models fail to predict the equivalent piezoelectric
capacitance.

3. For piezoelectric sandwiches with thin elastic layers and
for bimorph benders, the standard models introduce
appreciable errors not only on the piezoelectric capaci-
tance, but also on the bending stiffness and the coupling
coefficient.

4. If transverse stresses are neglected, including the effect of
quadratic contribution to the electric potential does not
improve the accuracy on the estimate of the mechanical
stiffness (see Table 3). It improves the prediction of the
actuating and sensing effect only for a cancellation-of-
error phenomenon.

To our opinion further developments of the present
work can include:

• Analysis of special boundary value problems (e.g. canti-
lever beam with applied force or bending moment), to
assess the validity of the present model in presence of
boundary effects.

• Proper introduction of the effect of transverse stresses on
beam models more refined than the Euler–Bernoulli one,
by revisiting the literature on equivalent single-layer
Timoshenko models [15] and layerwise approaches [9]
and by accounting also for influence of the bonding lay-
ers [27].

• Developing a corrected Euler–Bernoulli finite element
for piezoelectric laminates and, after the previous point,
also a generation of more accurate beam elements
including the effect of transverse stresses.

• Studying the effect of transverse stresses and deforma-
tions also in other context as in active constrained layer
damping [23] or in layered beams subjected to thermal
loads.
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Appendix A. Piezoelectric constitutive matrices

Considering the 3D piezoelectric constitutive equations
in the T � E form and standard Voigt notation [31]
(i, j = 1, . . . , 6; h,k = 1,2,3)

Si ¼ sE
ijT j þ dikEk

Dh ¼ djhT j þ eT
hkEk

the following numerical values for the constitutive matrices
are assumed:

½sE�¼

16:13 �5:0 �8:164 0 0 0

�5:0 16:13 �8:164 0 0 0

�8:164 �8:1642 20:0 0 0 0

0 0 0 42:52 0 0

0 0 0 0 42:52 0

0 0 0 0 0 42:26

2
666666664

3
777777775
�10�12 m2

N

½d�¼
0 0 0 0 865:4 0

0 0 0 865:4 0 0

�320:0 �320:0 650:0 0 0 0

2
64

3
75�10�12 m

V

½eT�¼
30:97 0 0

0 30:97 0

0 0 33:64

2
64

3
75�10�9 C

V m

These values are used for the finite element simulations on
the 3D model and contain also those given in Table 2,
which are the only ones required for the presented beam
model. They refer to the material properties of PZT-5H
and are extracted from the datasheets provided by Piezo

System, Inc. (see www.piezo.com).
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