Low-Energy Surface-Phonons on alpha-Quartz (0001)
Wolfram Steurer, A. Apfolter, Markus Koch, Wolfgang E. Ernst, Bodil Holst, Elin Sondergard, Stephen C. Parker

To cite this version:

HAL Id: hal-00499424
https://hal.science/hal-00499424
Submitted on 12 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Low-Energy Surface-Phonons on α-Quartz (0001)

W. Steurer,* A. Apfolter, M. Koch, W. E. Ernst, and B. Holst†

Institute of Experimental Physics,
Graz University of Technology,
8010 Graz, Austria

E. Søndergård
Laboratoire Surface et Interface du Verre,
UMR 125 CNRS/ Saint-Gobain,
39 Quai Lucien Lefranc,
93303 Aubervilliers Cedex, France

S. C. Parker
Department of Chemistry,
University of Bath, Bath BA2 7AY, UK

(Dated: May 29, 2008)

Abstract

Calculated surface-phonon dispersion curves for a dry, a partly hydroxylated, and a fully hydroxylated α-quartz (0001) surface are presented and compared with first low-energy inelastic helium-atom scattering measurements. Qualitative agreement between calculations and the observed Rayleigh-wave dispersion curve is achieved for the dry quartz surface. A signature effect is seen in the calculated phonon dispersion curves for the fully hydroxylated surface.

PACS numbers: 42.70.Ce, 83.10.Rs, 87.10.Tf, 68.49.Bc, 72.10.Di

Keywords: quartz, molecular dynamics, phonons, helium atom scattering
I. INTRODUCTION

Although quartz surfaces are of paramount importance in a variety of technical applications, experimental structural information about the surface of \( \alpha \)-quartz surface is sparse. Several surface-sensitive techniques which are routinely used to investigate conducting surfaces are rendered unfeasible due to the insulating nature of silica. Nonetheless, experimental investigations of the \( \alpha \)-quartz surface have been conducted by atom force microscopy (AFM)\(^1\)\(^2\) and low-energy electron diffraction (LEED)\(^3\)\(^4\), however, no detailed structural information was obtained. In contrast, helium atom scattering (HAS) can provide information at the atomic scale and has proven to be ideally suited for unveiling the quartz surface structure\(^5\). The very first HAS spectra have confirmed the \((1 \times 1)\) pattern previously observed in LEED studies and have unveiled additional weak \((2 \times 2)\) peaks\(^5\). The experimental results were found to be in good agreement with the theoretically predicted reconstruction of the dry \( \alpha \)-quartz surface by de Leeuw et al.\(^6\) and Rignanese et al.\(^7\). In order to account for the observed symmetries in the HAS spectra, however, a model has been proposed in which terraces with step heights that are multiples of \(1/3\) of the unit cell height lead to domains rotated by \(\pm 60^\circ\) relative to each other. An experimental investigation of the surface dynamics of \( \alpha \)-quartz by HAS has been reported recently\(^8\). Thermal attenuation measurements of scattered helium atoms have yielded a value of 0.011 nm for the vibration amplitude at room temperature as well as a first estimate of the surface Debye temperature, \( \Theta_D = 360 \) K.

A number of atomistic simulations have been performed the last years to compensate for the chronic lack of detailed experimental data. These have included both density functional theory (DFT) and interatomic-potential approaches for evaluating the forces on the atoms. Using both methodologies, simulations by Rignanese et al.\(^7\) and de Leeuw et al.\(^6\) have calculated the same surface reconstruction. A recent re-investigation using a hybrid DFT functional has confirmed the predicted structures in both dry and wet conditions\(^9\) and has begun to explore the surface reactivity. The strength of such DFT methods is that they can model chemical reactivity and evaluate the change in surface structure with different external conditions, thereby allowing the surface phase diagram\(^10\) to be predicted. However, these methods still require a large amount of computer time and make it difficult to investigate the properties of large numbers of atoms. In contrast, interatomic-potential approaches can explore the effect of dynamics and system size. Du and de Leeuw\(^11\) have
Figure 1: Projection of a (a) cleaved, (b) reconstructed, (c) partly hydroxylated, and (d) fully hydroxylated quartz surfaces onto the (0001) plane. Under dry conditions, i.e., no water being present, the cleaved quartz (0001) surface (a) relaxes to form the “bridge structure”\textsuperscript{6,7,9} (b) with a reduced surface energy of 1.48 J/m\textsuperscript{2} compared to 4.0 J/m\textsuperscript{2} for the cleaved surface. Further reduction of the surface energy will occur in a wet environment with a surface energy of 0.38 J/m\textsuperscript{2} for the fully hydroxylated surface (d). The partly hydroxylated surface is only of hypothetical use since it results in an increased surface energy of 3.75 J/m\textsuperscript{2} (c) N.B.: Only the topmost layer of atoms is shown. The surface unit cell is indicated by dashed lines in all figure; sketched lines in the background represent the bulk structure.

recently modeled the water-quartz interface using molecular dynamics. Thus, at the present time, interatomic-potential approaches are the most efficient choice for probing the dynamics for large numbers of atoms.

Here we present atomistic simulations of surface-phonon dispersion curves for the surface of $\alpha$-quartz (0001) and compare them with low-energy HAS measurements. Calculations are performed for a dry surface without hydroxyl groups\textsuperscript{6,7,9}, a partly hydroxylated surface with vicinal OH groups, and a fully hydroxylated surface with geminal OH groups. These surface reconstructions (see Fig. 1) are of great interest since the dry one corresponds to the initial state after sample preparation, the hydroxylated surface is known to be the most stable one, and the partially hydroxylated describes an intermediate state. Water molecules will be present even under ultra-high-vacuum (UHV) conditions and will be absorbed by the hydrophilic dry surface\textsuperscript{24}. Depending on the partial pressure of water in the UHV chamber, it is expected that with time the quartz surface gradually changes its surface structure. Our simulations show different behavior of the surface-phonon dispersion curves for the three investigated surfaces. A signature effect is predicted for the $\bar{K} - \bar{M}$ orientation between the dry and the fully hydroxylated surface. This effect suggests surface-phonon measurements
Figure 2: Measured time-of-flight spectra for different incident angles along the (a) $\bar{\Gamma} - \bar{M}$ and (b) $\bar{\Gamma} - \bar{K}$ azimuth. The spectra have been converted from flight time to energy transfer scale. The incident energy was $22.0 \pm 0.2$ meV and the surface temperature was $T_s = 300$ K. Bold arrows mark strong phonon peaks. In addition to the diffuse elastic peak at $\Delta E = 0$, a dispersive surface phonon and a Einstein-like mode at $\approx 6$ meV can be clearly seen. For sake of clarity the spectra are vertically offset by 2000 counts (a) and 600 counts (b), respectively. A representative spectrum (corresponding to $\theta_i = 41.6^\circ$) is shown in full scale in the inset.

by HAS as a novel method for determining the amount of OH groups on crystalline silica surfaces. The Rayleigh-wave dispersion curve is clearly observed in the experimental HAS results. Qualitative agreement between simulations and measurements is achieved for the dry surface.

II. CALCULATIONAL DETAILS

We used the METADISE$^{12}$ for generating slabs of different thicknesses ranging from 3 to 6 nm. The structures for the (0001) quartz surfaces when dry and fully hydroxylated have
been described previously\textsuperscript{6}, and were later confirmed by electronic structure simulations\textsuperscript{7,9}. The vibrational frequencies (phonons) were generated using the lattice dynamics treatment of solids\textsuperscript{13}. The normal modes were assumed to be harmonic. The solution of the equations of motion leads to a simple eigenvector equation from which the vibrational frequencies can be extracted. The only issue is that the periodic nature of the solid must be taken into account by including the dependence of the displacements and second derivatives upon the wavevector, $k$. This approach is coded in PARAPOCS\textsuperscript{14}, which has been used successfully for silicates. Predicting the thermal contraction of siliceous zeolites\textsuperscript{15} and identifying mode-softening in the high pressure amorphisation transition in quartz\textsuperscript{16} are just two examples to be mentioned. The quality of three interatomic potentials was investigated for quartz by comparison of thermodynamic, vibrational, elastic and structural properties as a function of temperature and pressure with experiment\textsuperscript{17}. It was found that the vibrational dispersion curves were best modeled by the shell model potential of Sanders, Leslie and Catlow\textsuperscript{18}. Thus, given the good agreement of both surface structure and phonon frequencies, we used this potential along with the modifications for the hydroxylated surface\textsuperscript{19}. This potential is characterised by the use of full valence charges for silicon, with two and three body short range contributions. The polarisability is modeled by assigning core and shell positions, connected by a harmonic spring to each oxygen atom.

III. EXPERIMENTAL SETUP

For the experiments presented here, a Z-cut, polished and twin-free 10 $\times$ 10 $\times$ 1 mm$^3$ $\alpha$-quartz sample was used. The sample was first cleaned in a soap solution and then annealed to 1025$^\circ$ for 72 h under a pressure of 2 bar of oxygen in order to eliminate residual scratches from the polishing process. The long annealing time also assures that the investigated sample is free of hydroxyl groups. AFM images of the sample, which were obtained right after the annealing treatment, show steps/terraces with terrace lengths of 200 nm and a high number of defect sites such as pit holes\textsuperscript{5}. The cleaned sample was then transferred to the helium scattering apparatus\textsuperscript{20} in Graz using a transport container under an argon atmosphere. Before starting experiments the surface was exposed to an initial cleaning \textit{in situ}. The cleaning was carried out by heating the sample to about 370$^\circ$ for 2 hours under a high partial pressure of $O_2$ to burn away carbon contaminates. The experiments were
all carried out with a base pressure in the $10^{-9}$ mbar range. For a detailed description of the cleaning procedure we refer to a previous publication\textsuperscript{5}. For the HAS experiments a monochromatic beam was created by supersonic expansion through a 10 µm nozzle. The central part of the beam was selected by a 400 µm skimmer. The beam energy was 22.0 meV with a spread of $\delta E/E \approx 2\%$ for all experiments. The scattered helium atoms were measured using a magnetic-sector mass spectrometer mounted 1618 mm from the sample surface. The scattering angle was kept fixed at 90° and the crystal was rotated in the scattering plane (the plane containing the incident beam, the surface normal and the final beam) with incident angles between 29.6° and 49.6°, see Fig. 2. The reflectivity of the surface was found to be very low, presumably because of the before-mentioned high number of defect sites on the surface. The thus required very long recording times of 10,000 s per spectrum put a constraint on the number of spectra that could be measured. In order to assure stable conditions during the long recording times and to prevent water molecules from condensating on the surface, all experiments were performed with the sample at room temperature. All TOF plots presented herein are converted to an energy-transfer-scale for the abscissa, and to the differential reflection coefficient for the ordinate, respectively. TOF data was obtained at a bin width of 5 µs.

IV. RESULTS AND DISCUSSION

For the sake of preparing a framework for a meaningful discussion of the calculated phonon curves, experimental results are presented first. In Fig. 2, time-of-flight measurements are presented in an energy-transfer scale along the $\bar{\Gamma} - \bar{M}$ and $\bar{\Gamma} - \bar{K}$ azimuth. Each curve shows, at $\Delta E = 0$ meV, an elastic scattered peak on top of a quite intense multiphonon background, as can be seen from the inset in Fig. 2. The elastic peak is attributed to diffuse scattering from structural defects. The predominance of the elastic peak gives further evidence that the density of defect sites was very high on the investigated sample. Phonon peaks (indicated by arrows) are seen in addition to the elastic peak on the phonon creation ($\Delta E < 0$) and annihilation sides ($\Delta E > 0$).

The presence of the multiphonon background further hampers the extraction of the phonon peaks. The low surface Debye temperature $\Theta_D = 360$ K\textsuperscript{8} and the small effective mass of the surface, $M_{\text{surface}} = 20$ a.u.\textsuperscript{8}, make it difficult to obtain data without a
Figure 3: Measured dispersion curves in an extended zone scheme for the two directions: (a) $\Gamma - \bar{M}$, reciprocal lattice vector $G = 14.8$ nm$^{-1}$ and (b) $\bar{\Gamma} - \bar{K}$, $G = 25.63$ nm$^{-1}$. The dashed lines show the scan curves at the indicated incident angles. The filled circles (●) correspond to the peaks marked by arrows in the measured TOF spectra from Fig. 2. $\Delta E > 0$ corresponds to annihilation, and $\Delta E < 0$ to creation events.

deleterious effect from a multiphonon background. This can be understood from the Weare criterion\textsuperscript{21}

$$
\beta = \frac{M_{\text{beam}}}{M_{\text{surface}}} \frac{(E_{iz} + D)T_S}{k_B\Theta_D^2} \leq 0.01,
$$

(1)

where $M_{\text{beam}}$ is the projectile mass, $E_{iz}$ is the perpendicular incident energy, $D$ is the well depth, and $T_S$ is the surface temperature. In order to assure a good signal without a large multiphonon background, $\beta$ should be close to 0.01. With the values for $\Theta_D$ and $M_{\text{surface}}$ from above, and $D = 9.7$ meV\textsuperscript{22}, $\beta = 0.11$ in the present experiments, thus indicating a large multiphonon background. Since the smallest possible energy $E_i$ of the scattering apparatus was already chosen, further decrease of $\beta$ could only be achieved by choosing a lower surface temperature. However, since a smaller temperature also reduces the density of phonon states\textsuperscript{23}, no net effect results from measuring at a lower temperature.

The energy and parallel momentum transfer of all measured phonon peaks are summarized in the extended zone diagram of Fig. 3 for both measured surface orientations. Different labeling is used for strong and weak phonon peaks, dots and open circles, respectively. Experimental scan curves, showing the geometrically allowed parallel momentum transfers ($\Delta K$) corresponding to the energy transfer ($\Delta E$), are plotted as dashed lines.

Atomistic simulations of the $\alpha$-quartz (0001) surface-phonon dispersion curves were performed for three different surface reconstructions. In Fig. 4, calculated surface-phonon
Figure 4: Calculated phonon dispersion curves as a function of the surface wave vector Q along the boundary $\bar{\Gamma} \to \bar{K} \to \bar{M} \to \bar{\Gamma}$ of the irreducible part of the first surface Brillouin zone for a dry (0001) surface showing the “bridge”-reconstruction (a), partly hydroxylated (b), and a fully hydroxylated (0001) surface (c). The zone boundary vectors are $\bar{\Gamma} - \bar{K} = 8.54\, \text{nm}^{-1}$, $\bar{\Gamma} - \bar{M} = 7.4\, \text{nm}^{-1}$, and $\bar{K} - \bar{M} = 3.7\, \text{nm}^{-1}$. Four surface localized modes detached from the bulk continuum (dotted lines) are clearly discernible (5 in case of the partly hydroxylated surface, respectively). The calculated slab was of thickness 3.4 nm (60 layers). The distinct experimental data points from Fig. 3 are shown for comparison ($\bullet$). The calculated slabs had a thickness of 3.5 nm (60 layers).

Spectra are shown for a dry, a partly hydroxylated, and a fully hydroxylated quartz surface together with the experimental data from Fig. 2 folded into the irreducible part of the first Brillouin zone. A number of four to five surface localized modes detached from the bulk continuum is clearly discernible in all depictions. The calculated surface-localized phonon curves show an apparent dependence upon the presence of OH groups at the surface. Most noticeably, the zone-boundary energies at the $\bar{M}$ and $\bar{K}$ point increase with increasing OH concentrations. Furthermore, a strong signature effect is predicted between the dry and the fully hydroxylated surface along the $\bar{K} - \bar{M}$ direction. However, since inelastic HAS experi-
ments along $\bar{K} - \bar{M}$ are much more sophisticated than measuring along principal directions, data points were only obtained along $\bar{\Gamma} - \bar{K}$ and $\bar{\Gamma} - \bar{M}$ in this first HAS investigation. Qualitative agreement between the experimental data points and the calculated phonon curves is achieved for the dry surface, see Fig. 4. Especially along $\bar{\Gamma} - \bar{K}$ the experimental data points coincide with a calculated phonon mode for the dry surface, an agreement which is not seen for the other surface realizations. We do not see any of the low-energy points expected for the dry surface along $\bar{\Gamma} - \bar{K}$ however. This cannot satisfactorily be explained yet and requires further investigations. Indications that hydrolysis of the sample during the experiment was not a relevant process come also from the fact that the sample surface retained a constant He reflectivity over several days. If hydrolysis had taken place to a significant extend, then the OH-groups would have acted as point defects which would have lowered the intensity over time.

V. CONCLUSIONS

In conclusion, we have presented an investigation of low-energy surface-phonon dispersion curves of $\alpha$-quartz (0001) by a combined approach of atomistic simulations and first experimental HAS data. Simulations for the dry surface and the fully hydroxylated surface with geminal OH groups unveil different phonon behavior. A predicted signature effect along the $\bar{K} - \bar{M}$ direction suggests HAS as a sensitive probe for determining OH concentrations at crystalline silica surfaces. Best agreement between the experimental data points and calculated surface-phonon dispersion curves is achieved for the dry quartz surface, indicating that the sample surface was almost free of OH bonds. The study presented here gives impetus to a meticulous investigation of the quartz surface dynamics on both dry and hydroxylated surfaces and opens for new applications of HAS.

Acknowledgments

The authors thank C. Arrouvel and W. Gren for assistance with the simulations. The authors also thank J. R. Manson for many stimulating discussions. One of us (W. S.) is thankful to the University of Bath for hospitality while working on the simulations and to the Austrian Academy of Science for a DOC fellowship. The authors gratefully acknowledge
support from the European Commission, FP6, NEST STREP ADVENTURE program, Project INA, contract number 509014.

* Electronic address: wolfram.steurer@gmail.com
† Present Address: Department of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen, Norway


The hydrophilicity is best seen in the greatly reduced surface energy of the hydroxylated surface compared to the dry surface.