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SUMMARY

In this paper we solve the synthesis problem of �nding a completely passive electric circuit ana-
log to a vibrating beam. The synthesis problem is of interest when one wants to suppress beam
mechanical vibrations by using distributed piezoelectric transduction. Indeed, an e�ective electrome-
chanical energy transduction is guaranteed when the electric circuit (interconnecting the transducers’
terminals) is resonant at all mechanical resonance frequencies and is able to mimic all the me-
chanical modal shapes. The designed electric circuit behaves as an electric controller of mechanical
vibrations (i.e. an electric vibration damper) once suitably endowed with a set of resistors. Because
of its completely passive nature, it does not require external power units and stands as an economical
means of controlling vibrations. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: passive electric networks; multiport synthesis; electric analogs; smart structures; multimodal
vibrations; piezoelectric transducers; distributed control; passive damping

1. INTRODUCTION: OVERVIEW OF VIBRATION SUPPRESSION STRATEGIES

Extensive vibrations in mechanical systems can reduce the life of a structure and even con-
tribute to its failure. However, by using piezoelectric transducers in conjunction with appro-
priate electric networks, the mechanical vibrational energy can be dissipated, strengthening
the performance and extending the lifetime of the structure.
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Piezoelectrics undergo deformation when an electric �eld is applied across their termi-
nals (motor action, converse e�ect), and conversely produce voltage when strain is imposed
(generator action, direct e�ect) (for a concise description of the piezoelectric e�ect see e.g.
References [1, 2]). Piezoelectricity was discovered by the Curie brothers (Pierre and Jacques
Curie) in 1880, but it took several decades before this phenomenon could be exploited in
real applications. It is reasonable to assess that the �rst use of piezoelectric materials dates
back to the 1940s, during the second World War, as an ultrasonic detector for submarines.
With the discovery of piezoceramics and the consequent development of sophisticated trans-
ducer architectures (for more details on the novel concepts used in the design of piezoelectric
transducers see Reference [3]), the domain of the applications of piezoelectric materials has
expanded considerably. Applications include space systems, aircraft, automotives, machine
tools and medical systems (for more detailed information about new trends in the applica-
tion of piezoelectric transducers for transportation vehicles, see e.g. Reference [4]). Extensive
research e�orts have been devoted to the active and passive vibrational damping of �exible
structures, as undesired structural vibrations strongly a�ect structural performance, lifetime
and reliability.
The so-called ‘electronic damping’ (see References [5–8]) was among the �rst applications

conceived for the developed family of transducers in the �eld of active vibration control. A
set of piezoelectric devices is placed on a host structure to sense and control the mechanical
vibrations. The deformation of the sensing transducers results in electrical signals, which are
conditioned by suitably designed feedback electronics and then applied to actuating transduc-
ers. The actuators convert the applied electrical energy into mechanical energy, transmitting
mechanical control actions to the host structure. Such a concept proved to be e�ective, as
the available actuators can exert forces of several hundred newtons as a response to voltage
signals of several hundred volts, without losing their dielectric properties or undergoing de-
structive strain deformations. Indeed, the most remarkable feature of the modern piezoelectric
transducers is their capability to remain in the linear range in the presence of strains on
the order of 0.1% (see again Reference [3]). The common features of the control devices
described in the framework of ‘electronic damping’ are represented by

• the di�erentiation of the sensing and the actuation systems;
• the localization of PZT actuators at limited, selected sites of the vibrating structure.
Both of these features are limits to controlling e�ciency. The �rst one implies the need for

a co-ordinating active system that controls the actuator action in response to the input from
the sensors. The second feature implies an optimal localization problem (for both actuators
and sensors), the solution of which depends on the particular mechanical vibration mode to be
damped. The previously described vibration damping system is an example of an intelligent
control system. This type of system has the ability to learn about its environment, process the
information to reduce uncertainty, and plan, generate, and execute actions to either control or
reduce to a minimum the undesired motion of all or some of its parts. It generally incorporates
sensors, actuators, a controller, and a power supply unit. Most of the work in literature (see
e.g. Reference [2]) has focused on active control, in which electric power is supplied to the
actuators that exert actions on the host structure to suppress its vibrations. When active control
systems are used, the piezoelectric transducers’ driving requires complex power ampli�ers and
associated precise sensing electronics, resulting in the consumption of a signi�cant amount
of electrical power. Furthermore, the presence of an active controller can cause instability in
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CIRCUIT ANALOG OF A BEAM 169

the closed-loop system, the plant (vibrating structure) of which is naturally passive. Spillover
phenomena can also be introduced, inducing dramatic oscillations of the structure at high
frequencies.
An interesting development of ‘electronic damping’ has been proposed in References [9–12],

where the design of optimal distributed electronic active controllers is addressed. The approach
outlined in Reference [9] includes a distributed array of piezoelectric elements uniformly
positioned over a host structure and a distributed interconnecting (active) electronic circuit.
The piezoelectric layer is employed to measure (sense) the deformation of the �exible structure
and to exert a continuous action at every point. The purpose of the distributed electronic circuit
is to extract the complete state of the plant from the sensors, to optimally condition these
signals, and to feed the actuators at high voltage. The resulting smart structure is able to
e�ciently suppress mechanical vibrations induced by broadband disturbance. Nevertheless,
the intrinsic active nature of the controller and the complexity of the required circuitry may
limit its technical feasibility and exploitation in industrial applications.
In Reference [13] the possibility of damping mechanical vibrations by means of a piezo-

electric transducer positioned on a structural element and shunted with completely passive
electrical circuits is investigated. In particular two di�erent shunting circuits are considered:
a resistive (R) one and a resistive-inductive (LR) one. By placing such an electrical impedance
across the terminals of the piezoelectric transducer, the passive network is capable of damping
structural vibrations. If a simple resistor is placed across the terminals of the transducer, the
piezoelectric element will act as a viscoelastic damper. If the network consists of an inductor–
resistor circuit, the passive network combined with the inherent capacitance of the piezoelec-
tric transducer creates damped electromechanical beating. The resonance can be tuned so that
the piezoelectric element acts as a vibration absorber (parallelling the analysis of mechanical
vibration absorbers exposed in Reference [14]). The method proposed in Reference [13] allows
for an e�cient single-mode control of structural vibrations whenever the resonant circuit is
tuned to the mechanical mode to be suppressed. Nevertheless, the e�ciency of the electrome-
chanical coupling strongly depends on the position of the transducer over the host structure.
Moreover, the technical feasibility of the passive piezoelectric controller proposed in Refer-
ence [13] is limited, since impossibly large inductances are required to produce low-frequency
electrical resonance with the small inherent capacitance of the piezoelectric transducer. Many
e�orts have been devoted to simulating huge inductors by means of active electronic circuits.
In particular, in Reference [15], an implementation method using a digital signal processor
is presented, while in Reference [16] an analog realization exploiting operational ampli�ers
and multipliers is addressed. Nevertheless, when considerable structural vibrations are taken
into account, several drawbacks can appear in these synthetic inductors due to saturation and
non-linearities.
The principles of the ‘piezoelectric shunting’ technique proposed in Reference [13] can

be applied to the multimodal control of vibrations (as shown in References [17, 18]), by
using intricate shunting impedances. Such a control methodology seems to present severe
inconveniences: the used inductances are still very high and the damping e�ciency, even for
few modes, is reduced.
In order to overcome these drawbacks without compromising the advantages featured by

passive control, in Reference [19] it is proposed to position on the host structure an array
of piezoelectric elements and to interconnect the electric terminals of each pair of adjacent
transducers via a �oating RL impedance. This strategy creates an archetype of what is known
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as a Piezo-ElectroMechanical structure. The main idea underlying this approach is to �nd how
to get e�ective energy transduction from the mechanical to the electric form, as the electric
form can be easily dissipated or stored. The main advantage of this strategy is the drastic
reduction of employed optimal inductances, thus making conceivable the realization of a truly
passive network. In this way one provides a synthetic support for low-speed electrical signals,
to be e�ectively coupled to mechanical waves. (A precursory work to the aforementioned
technique can be found in Reference [20].) Nevertheless, in this framework a multimodal
control is not yet guaranteed and it is only possible to e�ectively damp one particular vibration
mode.

2. PROBLEM STATEMENT AND OBJECTIVE

The optimization problem of �nding the best distributed passive electric network (piezoelec-
trically coupled to the vibrating host structure) for achieving the most e�ective multimodal
energy transduction has been addressed in Reference [21]. There, it is proven that in or-
der to guarantee the maximum energy transfer between the mechanical and electric systems,
they should be governed by the same partial di�erential equations. This property is often
summarized by stating that the sought optimal distributed network should be the electric
analog of the host structure. Therefore, the analog electrical circuit exhibits the same modal
characteristics as those de�ning the host structure, so that a multiresonance electromechani-
cal coupling can be established. Nevertheless, in Reference [21], no attention is paid to the
suppression of structural vibrations. In Reference [22] the problem of �nding an optimal dis-
tributed electric controller to attenuate propagating waves over any frequency range is tackled.
The results presented in Reference [22] expand on those shown in Reference [21], assess-
ing that the optimal continuous network for beam vibration damping should be governed
by the same partial di�erential equations as the vibrating structure (i.e. elastica equation).
But, at the same time, the network should be endowed with an internal dissipation propor-
tional to the rate of change of the electric curvature (i.e. the second spatial derivative of
electric potential).
The problem of synthesizing a completely passive lumped electrical circuit governed by a

discrete approximation of the elastica equation has been extensively analysed in Reference
[23]. Nevertheless, the proposed circuits have stern practical inconveniences, either due to
negative inductors or multiport transformers. The former are typical active elements needing
to be electronically simulated, and the latter are, in general, very heavy and their weights can
represent a signi�cant part of the mass of the overall smart structure. For a critical analysis of
this control technique and comparisons among the electric controllers proposed in References
[19, 23], see Reference [24].
In this paper we will �nd a completely passive lumped electric circuit analog to a vibrating

beam, that consists only of inductors, capacitors and elementary two-port transformers. The
proposed electric circuit will be synthesized following the subsequent design steps:

• �nite di�erence discretization of the constitutive and balance equations for a vibrating
Timoshenko beam,

• mobility representation of a beam element,

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:167–198
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• synthesis of a four-port grounded circuit¶ (i.e. a four-port network containing only �ve
terminals, one of which is a common ground terminal for all the ports), the admittance
matrix of which parallels the beam element mobility (or mechanical impedance) matrix,

• cascade connection of the so-found networks to simulate the whole beam,
• neglection of beam shear deformability and rotatory inertia terms in the electric analog
to achieve the Euler beam electric analog.

Once the beam electric analog has been designed, the problem of suppression of mechani-
cally forced vibrations will be tackled. Therefore, an optimal multimodal electric dissipation
of the mechanical energy will be achieved by placing suitable resistors on the found analog
circuit.

3. SYNTHESIS OF THE BEAM CIRCUIT ANALOG

The governing equations for the vibrations of a Timoshenko beam are, see Reference [25]:

M ′ + T = I�̇; Ṁ =KM�′

T ′ = �V̇ ; Ṫ =KT (V ′ −�)
(1)

where M indicates the bending moment, T the shear contact action, I the rotatory inertia,
V the de�ection velocity, � the angular velocity of the cross-sections, � the mass per unit
length, KT the shear sti�ness, KM the bending sti�ness, and the superscripts dot and prime
denote, respectively, time and space derivatives.‖

The �rst two partial di�erential equations on the left side of Equation (1) express the
balance of the couple and shear contact actions, respectively, while the other two express the
assumed linear constitutive behaviour.
In order to derive an analog circuit for the beam, let us non-dimensionalize the aforemen-

tioned governing equations introducing the scaling parameters M0, T0, �0, u0, #0 and l. Hence,
the dimensionless set of governing equations becomes:

M0

l
m′ + T0t =

#0
�20

I!̇; M0ṁ=
#0
l

KM!′

T0
l

t′ =
u0
�20

�v̇; T0 ṫ=KT

(u0
l

v′ − #0!
) (2)

where each variable has been non-dimensionalized, and lower case letters indicate dimension-
less quantities.∗∗

Introducing a suitable �nite di�erences approximation for the previous set of equations with
respect to the space variable, it is straightforward to achieve the following set of �rst-order

¶The reason why we are not interested in multiport ungrounded networks lies in the impossibility of guaranteeing
that a certain pair of terminals behaves as a port when interconnected with another pair of terminals.

‖Time will be denoted by �, while x will denote the spatial abscissa.
∗∗Since it does not introduce misunderstandings, dimensionless time and abscissa will be still denoted by � and x
respectively.
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ordinary di�erential equations:

M0

l
mi+1 −mi

�
+ T0ti+1 =

#0
�20

I!̇i+1; M0ṁi=
#0
l

KM
!i+1 −!i

�

T0
l

ti+1 − ti
�

=
u0
�20

�v̇i; T0 ṫ i+1 =KT

(
u0
l

vi+1 − vi
�

− #0!i+1

) (3)

where � indicates the dimensionless spatial sampling step.
Let us explicitly remark that the adopted �nite di�erences schemes alternate between the

forward and the backward rule; this mixed approach will permit us to obtain symmetric higher
order schemes when dealing with higher order governing equations expressed in terms of the
kinematical descriptors, e.g. when determining the �nite di�erence scheme for the elastica
equations.

3.1. Synthesis of the analog circuit via the voltage–velocity analogy

Once a �nite di�erences approximation for the mechanical impedance matrix of a beam
element has been found, one well-established synthesis technique (see e.g. Reference [23])
requires paralleling the velocity with the voltage, and the contact actions with the currents.
The velocities at the beam element ends are regarded as across variables and the contact
actions as through variables.
The correspondence between the mechanical variables in Equation (3) and the electrical

variables describing the analog network is:

(V1; I1)←→
(
V0�0
#0

�i ;− I0
M0

Mi

)
; (V3; I3)←→

(
V0�0
#0

�i+1;
I0
M0

Mi+1

)

(V2; I2)←→
(
V0�0
u0

Vi;− I0
T0

Ti

)
; (V4; I4)←→

(
V0�0
u0

Vi+1;
I0
T0

Ti+1

) (4)

where V0 and I0 denote, respectively, a characteristic voltage and current.
By means of this analogy, the impedance matrix representation for the beam element par-

allels the admittance matrix representation for the analog four-port grounded network. The
dimensionless mechanical impedance matrix of a beam element (see e.g. Reference [26]) is
de�ned by: 

−m̃i

−t̃i
m̃i+1

t̃i+1

 = z
m(�)


!̃i

ṽi

!̃i+1

ṽi+1


where •̃ denotes a one-sided Laplace transform,†† and � denotes the dimensionless Laplace
variable.‡‡

††Unless explicitly assumed, we set the initial conditions to zero.
‡‡The dimensionless Laplace variable � is related to the dimensional one s by: �= s�0.
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From Equations (3), one can immediately obtain:

zm(�)=




1
�

KM#0
(�l)M0

0 −1
�

KM#0
(�l)M0

0

0
1
�

KTu0
(�l)T0

+ �
�u0(�l)
T0�20

1
�

KT#0
T0

−1
�

KTu0
T0(�l)

−1
�

KM#0
(�l)M0

1
�

KTu0
M0

1
�

(
KM#0
(�l)M0

+
KT#0(�l)

M0

)
+ �
I#0(�l)
M0�20

−1
�

KTu0
M0

0 −1
�

KTu0
T0(�l)

−1
�

KT#0
T0

1
�

KTu0
(�l)T0




(5)

The dimensionless mechanical impedance matrix zm(�) in Equation (5) can be decomposed
in the Foster canonical form as follows, see Reference [27]:

zm(�)=
1
�
zm0 + �zm∞ (6)

with the residue matrices de�ned by:

zm0 =



KM#0
(�l)M0

0 − KM#0
(�l)M0

0

0
KTu0
(�l)T0

KT#0
T0

− KTu0
T0(�l)

− KM#0
(�l)M0

KTu0
M0

KM#0
(�l)M0

+
KT#0(�l)

M0
−KTu0

M0

0 − KTu0
T0(�l)

−KT#0
T0

KTu0
(�l)T0



zm∞ =



0 0 0 0

0
�u0(�l)
T0�20

0 0

0 0
I#0(�l)
M0�20

0

0 0 0 0


In order to synthesize an analog circuit for the entire transversely vibrating beam, it is

su�cient to cascade connect a number of elementary analog networks of the beam element,
thus assuring the compatibility of the displacement �eld and the equilibrium of the contact
actions.
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Figure 1. Analog circuit of a beam element utilizing the voltage–velocity analogy.

Y0

Y∞

Figure 2. Realization of the analog circuit as the parallel connection of two elementary networks.

Therefore, a synthesis problem faced in this paper can be stated as:

Problem 1
Find a four port grounded network, the dimensionless admittance matrix of which is equal to
the dimensionless impedance matrix zm, given in Equation (6).

Hence, we are looking for an electrical circuit (see Figure 1) whose admittance matrix
Y(s) is

1
s

I0
V0�0

zm0 + s
I0�0
V0
zm∞

where s represents the dimensional Laplace variable. The strategy developed to solve the
addressed synthesis problem consists of the following steps:

1. synthesis of an inductive network whose admittance matrix Y0(s) is equal to 1=s(I0=V0�0)zm0 ,
2. synthesis of a capacitive network whose admittance matrix Y∞(s) is equal to s(I0�0=V0)zm∞,
3. parallel connection of the aforementioned electrical networks (see Figure 2) for the design
of the circuit, the admittance matrix of which is Y(s).

In order to guarantee that the analog network is reciprocal, it is necessary to require
the symmetry of the admittance matrix Y(s), which yields the following condition on the
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Y∞

C1

C2

Figure 3. Realization of the network Y∞(s).

scaling parameters:

u0T0 =#0M0 (7)

This condition, from a mechanical point of view, establishes that the characteristic work done
by the bending moment M0 on the rotation #0, is equal to the characteristic work done by
the shear contact action T0 on the displacement u0: Therefore, the scaling parameters cannot
be chosen independently when one wants to design electric networks constituted only by
reciprocal elements. Furthermore, introducing the parameters � and �, de�ned by:

�=
KT

KM

u20
#20

; �=
KT (�l)2

KM

the residue at zero becomes:

zm0 =
KM#0
(�l)M0


1 0 −1 0

0 �
√
�� −�

−1 √
�� 1 + � −√��

0 −� −√�� �


The capacitive network can be designed as two capacitors connected at the second and

third terminals of the grounded network as shown in Figure 3; the capacitance of these two
elements are given by:

C1 =
I0
V0

�u0
T0�0

(�l); C2 =
I0
V0

I#0
M0�0

(�l)

Therefore, the ratio of the two capacitances is given by:

C1
C2
=

�
I

u20
#20
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The design of the inductive circuit is much more involved, since the residue in zero is not
diagonal. It is well known (see e.g. References [28, 29], regarding the synthesis of one-element
type networks) that Y0(s) is realizable as the admittance of an n-port network constituted only
by inductors and containing only n + 1 terminals, one of which is a common terminal for
all the ports, if and only if the residue matrix zm0 is dominant

§§ and each of the o�-diagonal
terms is non-positive.¶¶ One can easily verify that zm0 is not dominant and that some of the
o�-diagonal elements are positive. Therefore, even if the realization of Y0(s) is not unique,
it is impossible to synthesize it without using ideal transformers. In what follows, we will
synthesize the considered network with a single two-port transformer. Towards this goal, we
decompose zm0 as the sum of the two following matrices:

zm0 =
KM#0
(�l)M0


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

+
KM#0
(�l)M0


0 0 0 0

0 �
√
�� −�

0
√
�� � −√��

0 −� −√�� �

 (8)

By means of this decomposition, the synthesis problem has been drastically reduced to the
design of a three-port grounded network, whose admittance matrix is:

Yred0 =
1
s

I0
V0�0

KM#0
(�l)M0


�

√
�� −�

√
�� � −√��

−� −√�� �


In fact, the �rst term on the RHS of Equation (8) can be immediately synthesized as an
inductor interconnecting the �rst and the third terminals (see Figure 4). The value of the
inductance is equal to:

L1 =
V0�0M0

I0KM#0
(�l)

Multiplying the inductance L1 by the capacitance C1 we get:

C1L1 =
�
KM

u20
#20
(�l)2

§§A real matrix is said to be dominant if each of its main-diagonal elements is not less than the sum of the absolute
values of all the other elements in the same row.

¶¶If one is not restricting to n + 1 terminals the following results are known: (i) a dominant matrix, with any
distribution of signs in the o�-diagonal terms, may always be realized with only inductors; (ii) paramountcy
is a necessary (and su�cient, for the three-port case) condition for the matrix for its realizability without
transformers.
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Figure 4. A �rst step towards the synthesis of Y0(s).

Figure 5. Direct design of Y0(s).

The synthesis of a network governed by Yred0 is still very tricky; nevertheless, one can
immediately realize that the rank of Yred0 is equal to one, hence it can be decomposed as:

Yred0 =


1√
�
�

−1


(
1
s

I0
V0�0

KM#0
(�l)M0

�
)[
1
√

�
�
− 1
]

and the circuit can be designed (see Reference [27]) as shown in Figure 5, with the inductance
given by:

Lred =
V0�0T0
I0u0

(�l)
KT

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:167–198
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Figure 6. Minimal design of Yred0 (s) (voltage–velocity analogy).

The previous topology can be further simpli�ed by noticing that the turns-ratio of the
�rst and third transformers are equal in absolute value and opposite in sign, as shown in
Figure 6. In order to �nd the turns-ratio of the used transformer and the value of the introduced
inductance, let us �nd the admittance matrix of the network shown in Figure 6 and compare
it to Yred0 : The constitutive relation of the inductor L2 and of the ideal transformer yield:

Ĩ2 =−Ĩ4

− Ṽ �2 − Ṽ4
n

+ Ṽ3 = sL2Ĩ 3

nĨ4 = Ĩ 3

which establish the following admittance matrix:

1
sL2


1=n2 −1=n −1=n2

−1=n 1 1=n

−1=n2 1=n 1=n2


Comparing the aforementioned admittance matrix to Yred0 :

1
sL2

=
1
s

I0
V0�0

KM#0
(�l)M0

�

1
n2
=

�
�

⇒


L2 =

V0�0
I0

1
KT (�l)

M0

#0

n=
#0
u0
(�l)

The inductance Lred is related to L2 by:

L2
Lred

=
1

(�l)2
u20
#20
=
1
n2
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By inspection, one can immediately obtain the following set of relations between all the
parameters so far introduced:

n2C1L1 =
�
KM
(�l)4;

C1
C2

n2 =
�
I
(�l)2;

L1
L2
=

KT

KM
(�l)2 (9)

The previous set of equations provides a group of conditions to be imposed on the employed
circuit elements, completely independent of the arbitrarily chosen scaling parameters. Hence,
it is easily seen that for every possible choice of scaling parameters there are always three
�xed constraints on the circuit elements, which depend only on the physical properties of the
beam and on the sampling step of the mesh.
In order to synthesize the analog circuit for the transversely-vibrating Timoshenko beam,

it is su�cient to cascade connect a number of the found analog circuits for the generic
beam element. Indeed, the electrical cascade connection corresponds exactly to the mechanical
conditions of continuity of the contact actions and the kinematical descriptors over the length
of the beam.
In what follows, we will neglect the shear deformation and the rotatory inertia: these

hypotheses are justi�ed when controlling and damping only low frequency vibrations. For
the Euler beam model, thus obtained, the dimensionless governing equations (2) become:

M0

l
m′ + T0t =0; M0ṁ=

#0
l

KM!′

T0
l

t′ =
u0
�20

�v̇;
u0
l

v′ = #0!
(10)

Deriving the �rst balance equation with respect to space and using the second balance equation,
we get:

M0

l
m′′ + T0

(
lu0
T0�20

�v̇
)
=0

deriving the previous equation with respect to time and making use of the two constitutive
relations in Equation (10) we �nally get the elastica equation:

KM�20
�l4

vIV + �v=0 (11)

From Equation (9), by taking the limit as KT →∞ and I→ 0 we obtain
L2→ 0; C2→ 0

Therefore, for the so-called Euler beam, the analog circuit becomes the circuit depicted in
Figure 7, with

C1L1n2 =
�
KM
(�l)4 (12)

The motion equation of the analog circuit sketched in Figure 7 in terms of the �ux linkage
�i at the generic node i (de�ned as the time integral of the voltage drop across the ith
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Figure 7. Circuit analog of an Euler beam corresponding to the voltage–velocity analogy.

capacitor) can be easily written as:

�i+2 − 4�i+1 + 6�i − 4�i−1 + �i−2
L1C1n2

+ ��i=0

which represents a discrete form of the elastica, once condition (12) is satis�ed.
In order to synthesize the analog circuit for the Euler beam using a �nite di�erence approxi-

mation and exploiting the standard immittance matrices synthesis techniques, it is necessary to
study initially the Timoshenko beam and then set the shear deformability and the rotatory in-
ertia to zero. In fact, as the shear sti�ness goes to in�nity, the impedance matrix representation
becomes impossible.

3.1.1. Constraints. The external constraints applied at the beam ends impose electrical con-
straints on the analog circuit (representing e.g. the electric terminations of the circuit depicted
in Figure 7), which can be easily synthesized. The obtained boundary circuits are to be cascade
connected to the ending modules of the analog network.
For instance, let us consider a simply supported beam, for which the mechanical conditions

to be imposed are:

ṽ(0)=0; m̃(0)=0

ṽ(1)=0; m̃(1)=0

once the beam span has been chosen as the characteristic length for the non-dimensionalization.
The electrical elements to simulate the free and the clamped end are easily found to be, respec-
tively, determined by the following set of equations, once analogy (4) has been established:

Left hinge: V2 = 0; I1 = 0

Right hinge: V4 = 0; I3 = 0

3.2. Synthesis of the analog circuit via the current–velocity analogy

In the previous subsection, the synthesis of the analog network of a beam element has been
performed exploiting the voltage–velocity analogy. In the following subsection, we will change
our perspective and instead parallel the mechanical velocities with electric currents and me-
chanical contact actions with electric voltages. Therefore, contact actions will play the role of
across variables, while velocities will be considered as through variables. The aforementioned
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assumptions are summarized by the following:

(V1; I1)←→
(

I0
M0

Mi;−V0�0
#0

�i

)
; (V3; I3)←→

(
I0
M0

Mi+1;
V0�0
#0

�i+1

)

(V2; I2)←→
(

I0
T0

Ti;−V0�0
u0

Vi

)
; (V4; I4)←→

(
I0
T0

Ti+1;
V0�0
u0

Vi+1

)
In a similar way as what we have done in the previous subsection, let us de�ne the

dimensionless mobility matrix m(�) of the beam element relating the velocities at the two
terminals to the contact actions:




−!̃i

−ṽi

!̃i+1

ṽi+1



=




�
M0(�l)
#0KM

+
1
�

M0�20
#0I(�l)

0 −1
�

M0�20
#0I(�l)

−1
�

T0�20
#0I

0
1
�

T0�20
u0�(�l)

0 −1
�

T0�20
u0�(�l)

−1
�

M0�20
#0I(�l)

0
1
�

M0�20
#0I(�l)

1
�

T0�20
#0I

−1
�

M0�20
u0I

−1
�

T0�20
u0�(�l)

1
�

M0�20
u0I

1
�

(
T0�20

u0�(�l)
+

T0�20(�l)
u0I

)
+ �

T0(�l)
u0KT







m̃i

t̃i

m̃i+1

t̃i+1




(13)

which admits the following Foster canonical form:

m(�)=
1
�
m0 + �m∞ (14)

where the residue matrices are easily derived from Equation (5).
Thus the synthesis problem can be stated as:

Problem 2
Find a four-port grounded network, the dimensionless admittance matrix of which is equal to
the dimensionless mobility matrix m, given by Equation (14).

Hence, we are looking for an electrical circuit with admittance matrix Y(s)

1
s

I0
V0�0

m0 + s
I0�0
V0
m∞

The solution of this problem is completely equivalent to the one addressed in the previous
subsection, thus we will not go through all the synthesis details again, but we will only sketch
the used procedure and duplicate the knowledge developed in the last section:

1. synthesis of an inductive network whose admittance matrix Y0(s) is equal to
(1=s)(I0=V0�0)m0,

2. synthesis of a capacitive network whose admittance matrix Y∞(s) is equal to
s(I0�0=V0)m∞,
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Figure 8. Minimal realization of Yred0 (s) (current–velocity analogy).

3. parallel connection of the aforementioned electrical networks for the design of the circuit,
the admittance matrix of which is Y(s).

In order to guarantee that the analog network is reciprocal, it is necessary to require the
symmetry of the admittance matrix Y(s), which again yields Equation (7). The capacitive net-
work can be designed as two uncoupled capacitors connected at the �rst and fourth terminals
of the grounded network. The capacitances of these two elements are given by:

C1 =
I0�0
V0

M0(�l)
#0KM

; C2 =
I0�0
V0

T0(�l)
u0KT

The design of the inductive circuit is fully equivalent to the synthesis problem addressed in
the previous section, since the matrix does not ful�l the necessary conditions for a realization
without using ideal transformers. One may decompose the residue at zero as the sum of two
matrices:

m0 =m10 +m
2
0

where, m10 can be immediately synthesized as an inductor interconnecting the second and the
fourth terminals, whose inductance is:

L1 =
V0
I0

u0�(�l)
T0�0

and m20 can be synthesized by the circuit depicted in Figure 8, where the inductance and the
turns-ratio are given by:

L2 =
V0u0
I0T0�0

I

(�l)
; n=

#0
u0
(�l)

Hence, the following relations between the circuit elements hold, independent of the used
scaling parameters:

C1
C2

n2 =
KT

KM
(�l)2; C1L1n2 =

�(�l)4

KM
;

L1
L2
=

�
I
(�l)2
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Figure 9. Circuit analog of an Euler beam corresponding to the current–velocity analogy.

When the Euler model is adopted, the inductance L2 and the capacitance C2 vanish, and
the analog circuit in Figure 9 is obtained. The governing equation of such a circuit in terms
of the time integral of the current �owing through the �oating inductors, say Qi, is:

Qi+2 − 4Qi+1 + 6Qi − 4Qi−1 +Qi−2
C1n2

+ �QiL1 = 0

3.2.1. Constraints. The circuit topology in Figures 7 and 9 are completely equivalent; nev-
ertheless, the resulting analog circuits of a given constrained Euler beam are di�erent. This
di�erence lies in the boundary modules which, for the two proposed synthesis solutions, result
in totally di�erent circuital constraints. In fact, an electrical node which is short-circuited to
ground for one solution results in an open-circuited terminal for the other, and viceversa.

4. APPLICATION TO MULTIMODAL VIBRATION DAMPING

The need for an electric analog of a vibrating beam arises when one wants to maximize the
electromechanical energy transduction (see References [21, 22]), dispensing with the use of
an external power unit (i.e. in a completely passive way). In fact, as it will be shown in this
section, the smart structure (say PiezoElectroMechanical beam, PEM for short) constituted by
the host structure and an array of equally distributed piezoelectric elements interconnected as
the capacitors of the analog circuits in Figures 7 and 9 (see for instance Figure 10)‖‖ allows
a rapid and e�ective electromechanical energy transduction for every mechanical initial condi-
tion. This e�cient energy transfer is assured by the internal resonance between the vibrating
structure and the interconnecting network. A schematic plot of a simply supported PEM beam
is presented in Figure 11, where the interconnecting network can be either of the presented
analog circuits deprived of the capacitors.
In the previous section, the synthesis problem of �nding a completely passive electric

network analog to a beam has been solved, exploiting two di�erent techniques: the former
based on the voltage–velocity analogy, the latter on the current–velocity analogy. Both of the
proposed solutions employ capacitors, inductors, and ideal two-port transformers.
In this section, a brief description of the two-fold nature (voltage driven actuator and

strain sensor) of a piezoelectric transducer will be furnished. Then, the design of a PEM
will be performed using both of the available circuit analogs from the previous section. The
performances of the resulting controllers will be analysed and compared, stressing the need

‖‖From now on, superscripts v and c will be used to denote results from voltage–velocity and current–velocity
analogy, respectively.
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Figure 10. Sketch of the mechanically fed electric controller.

Figure 11. Schematics of a simply supported PEM beam.

Figure 12. Sketch of a piezoelectric element.

for low inductances for a truly passive realization of the conceived device. Later, a modal
analysis of the resulting structure will be provided for a better understanding of the conceived
system and to assess its e�ectiveness when arbitrary initial conditions are prescribed. Finally,
the synthesis of a dissipative electric network analog to a ‘structurally damped beam’ will be
tackled to e�ciently damp vibrations.
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4.1. Basic model of a piezoelectric transducer

An elementary model of a thin piezoelectric patch (see Figure 12) surface-bonded on a host
beam, considers the transducer to be endowed with a two-fold behaviour:

• from an electrical point of view, it plays the role of a capacitor in parallel connection
(series connection) with a current source (voltage source) driven by the mechanical time
rate deformation;

• from a mechanical point of view, it behaves as a spring with two electrically driven pin
forces applied at the patch ends.

Indeed, denoting the patch length with lp (assumed for the sake of simplicity to be equal
to the grid step �l), the stored charge with Q; the exerted force with Fp, the strain with �p,
and the applied voltage with Vp, the lumped constitutive equations can be written in terms of
voltage and strain as (see e.g. References [1, 2]):

Qp = keeVp + kme�plp

Fp = kmm�plp − kmeVp
(15)

or, in terms of charge and strain as:

Vp = k̂eeQp + k̂me�plp

Fp = k̂mm�plp + k̂meQp

(16)

where the following relations between the constitutive parameters hold:

k̂ee=
1
kee

; k̂me=−kme

kee
; k̂mm=

(
kmm +

k2me

kee

)
From the �rst set of constitutive equations (15) the piezoelectric patch is recognized to elec-
trically behave as a capacitor in parallel connection with a mechanically driven current source
(Norton representation), while the second set (16) interprets the patch as a capacitor in se-
ries connection with a mechanically driven voltage source (Thevenin representation). The
piezoelectric strain �p is related to the mechanical de�ection U ∗∗∗ by the following no-slip
condition:

�p=
h
2
(U ′′)

where h is the beam thickness (considering a rectangular cross section), and (U ′′) is the
average curvature of the beam in the piezoelectrically-covered region. Since, the piezoelectric
elements are adhesively bonded on the beam surface, their exerted forces Fp induce bending
moments applied at the patches ends.

∗∗∗The time derivative of U is the velocity de�ection V:
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4.2. PEM beam models

4.2.1. Voltage–velocity analogy. By substituting the surface-bonded piezoelectric transducers
with the capacitors in Figure 7, and by adopting the constitutive relations (15), the following
equations for the mechanically fed analog circuit are derived:

�i+2 − 4�i+1 + 6�i − 4�i−1 + �i−2
Lv
1(nv)2

+ kee ��i + kmelp�̇pi =0

where �pi is the strain at the ith patch and the superscript v indicates voltage–velocity analogy.
When one can assume that the number of patches is su�ciently large, the following gov-

erning equation in terms of a continuously distributed �ux linkage �eld � is obtained:

1
�v(	v)2

�IV + 
 �� + cvmeU̇
′′=0 (17)

where the introduced parameters are given by:


=
kee
(�l)

; 	v=
nv

(�l)
; �v=

Lv
1

(�l)
; cvme= kme

h
2

Taking into account the additional sti�ness and mass of the patches, the governing equation
of the beam piezoelectrically covered is given by:(

KM + kmm(�l)
(
h
2

)2)
UIV + (�+ �p) �U − cvme�̇

′′=0 (18)

where �p denotes the mass per unit length of the piezoelectric covering layer.
Hence, the governing equations of the PEM beam are given by Equations (17) and (18).

Introducing a characteristic displacement U0, �ux-linkage �0; and length and time l and �0;
respectively, the governing equations become:†††

 IV + �v
e
� + �v

eu̇
′′ =0

uIV + �v
m �u− �v

m ̇
′′ =0

where the new parameters are given by:

�v
e =

l4�v(	v)2

�20

; �v
e=

l4�v(	v)2cvmeU0
 0�0l2

�v
m =

l4(�+ �p)(
KM + kmm(�l)

(
h
2

)2)
�20

; �v
m=

l4cvme�0

u0

(
KM + kmm(�l)

(
h
2

)2)
�0l2

In order to guarantee an e�cient multimodal control, it is necessary to tune the electrical
circuit to the mechanical host beam (see Reference [21]) so that:

�v
m= �v

e

†††As previously done, small letters will denote dimensionless quantities.
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which imposes the following relation on the circuit elements:

�v(	v)2
=
(�+ �p)

(KM + kmm(�l)(h=2)2)
(19)

Furthermore, to guarantee the desired e�cient coupling‡‡‡ it is necessary to electrically
parallel the mechanical boundary conditions. Let us underline that the two proposed electrical
circuits yield di�erent electrical boundary conditions with respect to the same mechanical
ones.
It is very useful to choose the scaling quantities U0 and �0 in order to obtain a gyroscopic

coupling, namely:

�v
e=�v

m

which imposes the following relation:

�0
U0
=

√
(�+ �p)



⇒ �v

e≡�v
m=

l2cvme

(KM + kmm(�l)(h=2)2)

√
(�+ �p)




4.2.2. Current–velocity analogy. The results shown in the present subsection stem directly
from those derived in the previous discussion about the voltage–velocity analogy. Therefore,
we will omit all the details and exhibit only the main equations.
By substituting the surface-bonded piezoelectric transducers with the capacitors in Figure 9,

and by adopting the constitutive relations (16), the mechanically fed analog circuit in Figure 10
is found.
By assuming that the number of patches is su�ciently large, by introducing a characteristic

length, time, displacement, and charge (l; �0; U0; Q0) satisfying

Q0
U0
=

√
(�+ �p)

�c

and by tuning the electric system to the mechanical structure, i.e. by choosing

�c(	c)2
=
(�+ �p)

(KM + k̂mm(�l)(h=2)2)
(20)

one obtains the following homogenized governing equations of the PEM beam featuring a
symmetric elastic coupling:

qIV + �c �q+ �cuIV =0

uIV + �c �u+ �cqIV =0
(21)

‡‡‡The coupling e�ectiveness is essentially based on the same spectral properties of the electrical and mechanical
systems.
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where the new parameters are given by:

�c =
l4(�+ �p)

(KM + k̂mm(�l)(h=2)2)�20

�c =
ccme

(KM + k̂mm(�l)(h=2)2)

√(
�+ �p

)
�c

	c =
nc

(�l)
; �c=

Lc
1

(�l)
; ccme=

1
	c


h
2
kme

and the superscript c indicates the considered current–velocity analogy.

4.3. Modal analysis of the current–velocity based PEM model

The circuital connection in Figure 9 establishes a proportional elastic coupling between the
electrical and mechanical system,§§§ while the connection in Figure 7 establishes a not pro-
portional gyroscopic coupling. The proportional elastic coupling allows for the spillover sup-
pression for any given set of mechanical boundary conditions, while the not proportional
gyroscopic coupling leads, in general, to undesired spillover phenomena.
These circumstances suggest exploiting the current–velocity-based PEM model, instead of

the voltage–velocity-based one, to control structural vibration for arbitrarily constrained beams.
Given the mechanical boundary conditions and then synthesizing the analog circuital con-

nections, the modal shapes ’0i (x) and frequency !0i of the uncoupled electrical and mechanical
systems coincide.
In order to determine the electromechanical modal shapes of the coupled system, the fol-

lowing eigenvalue problem has to be addressed:
1
�c (·)IV

�c

�c (·)IV

�c

�c (·)IV
1
�c (·)IV


[
qn

un

]
=!2n

[
qn

un

]
(22)

where both qn and un should satisfy the prescribed boundary conditions.
We verify that the generic electromechanical eigenfunction is given by:[

qn

un

]
=

[
an’0n(x)

bn’0n(x)

]
(23)

§§§By proportional (not proportional) coupling, we mean that the modal shapes of the mechanical structures are
not modi�ed (are modi�ed) by the introduction of the electric network.
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Indeed, substituting Equation (23) in Equation (22) gives the following two-dimensional eigen-
vector problem: [

(!0n)
2 �c(!0n)

2

�c(!0n)
2 (!0n)

2

][
an

bn

]
=!2n

[
an

bn

]

Hence, the coupled modal frequencies are determined as the roots of the characteristic poly-
nomial

Pn(!2)= ((!0n)
2 −!2n)

2 − (�c(!0n)
2)2 =!4n − 2(!0n)2!2n + (!0n)4 − (�c(!0n)

2)2

i.e.:

!2n=(!
0
n)
2 ±

√
(!0n)4 − ((!0n)4 − (�c(!0n)2)2)= (!

0
n)
2(1± �c)

The constants an and bn can be evaluated as:

!2n = (!
0
n)
2(1 + �c) ⇒ an= bn

!2n = (!
0
n)
2(1− �c) ⇒ an= − bn

If the uncoupled modal shapes ’0n are chosen to be normalized, in the sense that:∫ 1

0
�c(’0n)

2 dx=1

then the absolute value of the constants an and bn are chosen to be equal to 1=
√
2 to have

normalized electromechanical eigenfunctions. Therefore the modal frequency and modal shapes
of the PEM beam are:[

q±
n

u±
n

]
=

 1=√2’0n(x)
±1=
√
2’0n(x)

; (!±
n )

2 = (!0n)
2(1± �c) (24)

4.3.1. Free vibration of a PEM beam. When one wants to consider the free vibration of a
PEM beam, it is useful to exploit the acquired knowledge of the modal shapes of the coupled
systems (24). Expanding the solution in terms of the so-found eigenfunctions, we get:[

q(x; �)

u(x; �)

]
=

∞∑
n=1

c+n (�)

[
q+n (x)

u+n (x)

]
+

∞∑
n=1

c−
n (�)

[
q−
n (x)

u−
n (x)

]

The time evolution of the Fourier coe�cients c±
n (�) is determined by the diagonalized set

of ordinary di�erential equations:

�c±
n (�) + (!

±
n )

2c±
n (�)=0 (25)
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with initial conditions:

c±
n (0) =

∫ 1

0
�c[u(x; 0)u±

n (x) + q(x; 0)q±
n (x)] dx

ċ±
n (0) =

∫ 1

0
�c[u̇(x; 0)u±

n (x) + q̇(x; 0)q±
n (x)] dx

The solution of Equation (25) with the addressed initial conditions is:

c±
n (�)= c±

n (0) cos(!
±
n �) +

ċ±
n (0)
!±

n
sin(!±

n �)

When the initial conditions of the PEM beam consist of a sole deformation according the
kth mechanical modal shape ’0k(x), the initial conditions of the Fourier coe�cients c±

n (�)
become:

c±
n (0) = 0; n �= k

c+k (0) =
1√
2

c−
k (0) =−

1√
2

ċ±
n (0) = 0

Thus, the time evolution of the PEM system becomes:

[
q(x; �)

u(x; �)

]
=


− sin

(
!+k +!−

k

2
�
)
sin
(
!+k −!−

k

2
�
)

+cos
(
!+k +!−

k

2
�
)
cos
(
!+k −!−

k

2
�
)
’0k(x) (26)

which clearly emphasizes the absence of spillover phenomena and, generally speaking, proves
that the distributed electric network, together with the piezoelectric transducers, provides a
beating phenomenon in between the electrical and mechanical subsystems. Furthermore, let us
stress that the ratio of the kth carrier frequency to the kth envelope frequency is independent
of the mode number k.

4.4. Damping structural vibrations

Once an e�ective electromechanical energy transduction is established, it is conceivable to
dissipate the beam energy into a properly inserted set of resistors. Therefore, this subsection
is devoted to the design of an additional resistive network aimed towards multimodal vibration
damping.
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The design procedure will be based on the following steps:

1. completion of Equation (21)1 with a suitable electric dissipation contribution:

qIV + �c �q+ �cuIV +D(q̇) = 0

uIV + �c �u− �cqIV =0
(27)

D being a self-adjoint linear operator acting on the current �eld q̇;
2. introduction of an applied load and statement of an objective functional representing the
key features of the system steady state response,

3. minimization of the cost functional and consequent establishment of the optimal dissipa-
tion operator D,

4. synthesis of a resistive lumped electrical network approximating the so-found operator.

To avoid undesired spillover phenomena in between di�erent vibration modes, we will look
for a dissipative electric network which does not modify the electromechanical eigenfunctions
found in Section 4.3. Therefore, in the present paper the following restrictive assumption on
D is made:

D=f((·)IV ) (28)

f being an analytic function which takes positive values on the real positive axis.¶¶¶ Thus,
the dissipation operator is assumed to be the image of the fourth-order spatial derivative under
a well-behaving operator-valued function (see e.g. Reference [30]). From Equation (28), by
de�nition, it follows that:

D(q̇)=
∞∑
n=1

(
f(�c(!0n)

2)

[∫ 1

0
q̇(x; �)�c’0n(x) dx

]
’0n(x)

)
(29)

Let us consider a generic applied load on the structure, represented by a forcing term p(x; �)
in Equation (27)2:

qIV + �c �q+ �cuIV +D(q̇) = 0

uIV + �c �u+ �cqIV =p
(30)

Considering the modal expansions of p; q and u on ’0n(x)

p(x; �)=
∞∑
n=1

pn(�)’0n(x); q(x; �)=
∞∑
n=1

qn(�)’0n(x); u(x; �)=
∞∑
n=1

un(�)’0n(x)

and taking into account Equation (29), Equation (30) yields the following set of ordinary
di�erential equations for the electrical and mechanical modal coe�cients

(!0n)
2qn + �qn + �c(!0n)

2un +
1
�c f(�c(!0n)

2)q̇n =0

(!0n)
2un + �un + �c(!0n)

2qn =pn

(31)

¶¶¶The positiveness of f(�), when � is positive, assures the passivity of the electric network.
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Therefore, taking the Fourier transform of Equation (31) it is possible to introduce a transfer
function relating the nth modal coe�cient of the applied load to the mechanical evolution
coe�cient:

Hn(!)=
−!2 + (!0n)2 + i(1=�c)f(�c(!0n)

2)!
(−!2 + (!0n)2 + i(1=�c)f(�c(!0n)2)!)(−!2 + (!0n)2)− (�c(!0n)2)2

(32)

where i=
√−1.

The chosen optimality criterion requires the determination of the values of f in order to
minimize the H∞ norm of the aforementioned transfer function, i.e. minimizing the supremum
of |Hn(!)| by appropriate choice of f. A particularly convenient approximate solution‖‖‖ to
the considered optimization problem can be found by using the results in Reference [14]. We
sketch here the main steps of the derivation. The �rst step of this process consists of �nding
the so-called ‘invariant’ frequencies !S

n and !T
n at which:

∀f1; f2: |Hn(!S;T
n )|f=f1 |= |Hn(!S;T

n )|f=f2 |
hence

!S
n =

√
1− �c
√
2
!0n; !T

n =

√
1 +

�c
√
2
!0n

At these particular frequencies, since the internal resonance has already been established, it
happens that:

∀ 	f: |Hn(!S
n)|f= 	f| = |Hn(!T

n )|f= 	f|=
√
2

�c(!0n)2

The second step consists of �nding f by enforcing that the amplitude of the transfer function
at the resonance frequency !0n equals the amplitude attained at the invariant frequencies, i.e.:

|Hn(!0n)|= |Hn(!T
n )| ≡ |Hn(!S

n)|
Thus, for the transfer function in Equation (32), we get:

f(�c(!0n)
2)=
√
2�c�c!0n

Once the optimal expression for f has been established, the dissipative operator is univocally
determined by Equations (28) and (29) to be proportional to the positive square root of the
fourth derivative operator, namely:

D=
√
2
√
�c�c

√
(·)IV (33)

The mathematical properties of the square root of the fourth derivative operator have been
extensively studied in References [31, 32]. In Reference [31], such an operator is introduced
to rigorously describe empirically observed damping rates in vibrating beams. While, in Ref-
erence [32], its mathematical properties are deeply analysed, and it is shown that this operator

‖‖‖Although not technically optimal, the presented solution is very widespread due to its simplicity and appropri-
ateness for experimental works.
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Figure 13. Analog circuit completed with optimally inserted resistors.

coincides with the negative second order derivative operator when special boundary conditions
(called ‘trigonometric’,∗∗∗∗ see Reference [32]) are prescribed. Those boundary conditions are
such to ensure purely trigonometric eigenfunctions for the fourth derivative operator. When
such boundary conditions are met (for instance simply supporting) the dissipative operator is
actually a di�erential operator and by exploiting �nite di�erence approximations it is possible
to synthesize a lumped approximating network. Otherwise, it ‘is not a di�erential operator
and its interpretation is rather obscure’, [32]. Nevertheless, in these circumstances its ap-
proximation with the negative second order derivative seems to be reasonable for suboptimal
solutions.
Restricting our attention to the so-called ‘trigonometric cases’, the �nite di�erence approx-

imation of D yields:

D(q̇) ∼ −
√
2
√
�c�c q̇i−1 − 2q̇i + q̇i+1

�2

which can be synthesized introducing a set of resistors as shown in Figure 13, where the
resistance is:

R=

√
2

�l
ccme

√
�c√

KM + k̂mm(�l)(h=2)2
(34)

By noticing that in Figure 13 the current �owing into the ith transformer is q̇i − q̇i+1 (i.e. the
port with unitary turns-ratio), it is easy to see that the resistor R introducing a symmetric �nite
di�erence approximation of the second-order spatial derivative when computing the voltage
across L1: We explicitly remark that the found optimal circuital topology and resistance do
not depend on the particular mode considered (i.e. its independent of n): as a consequence
the synthesized circuit assures an e�ective multimodal damping.

4.5. Design of a prototype

In order to assess the engineering realizability and the e�ciency of the proposed device, we
will consider a simply supported aluminum beam, the geometry of which is presented in
Table I.
Let us position ten transducers constituted by piezoceramic patches, produced by PiezoSys-

tem, made of lead zirconate titanate [PZT]. The characteristics of these piezoceramic

∗∗∗∗We refer to Reference [31] for the (rather involved) characterization of this class of boundary conditions. This
is a delicate issue: we simply remark that the square root operator of the fourth-order derivative in the case
of boundary conditions relative to a cantilever beam, is not a di�erential operator.
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Table I. Properties and dimensions of the host beam.

Coe�cient Value Units

Length (l) 30 cm
Width (w) 2 cm
Height (h) 2 mm
Young’s modulus (E) 70 GPa
Mass density (�V ) 2700 kg=m3

Table II. Properties and dimensions of the piezoelectric transducers (Piezo
System T110-H4E-602, made of PSI-5H4 piecoceramic).

Coe�cient Value Units

Mass density (�V
p ) 7800 kg=m3

Elastic compliance (sE11) 1:612× 10−2 GPa−1

Piezoelectric constant (d31) −320× 10−12 m=V
Dielectric constant (�T3) 33:63× 10−9 F=m
Thickness (hp) 0.267 mm
Length (lp) 30 mm
Width (wp) 2.273 mm

Table III. Formulas for estimating key parameters of
the PEM beam.

Coe�cient Formula

Beam mass density (�) �Vwh

Piezoelectric mass density (�p) �V
p wp�

Beam sti�ness (KM)
1
12

Ewh3

Piezoelectric sti�ness (kmm)
hpwp

sE11lp

Piezoelectric capacitance (kee)
�T3wplp
hp

(
1− (d31)2

�T3 s
E
11

)

Piezoelectric coupling (kme) −d31wpsE11

transducers are listed in Table II. The relationships between the beam and piezoelectric ma-
terial properties and the key parameters of the PEM are reported in Table III.
The capacitance and coupling coe�cients of the transducers are:

kee =61:3 nF

k̂me =−3:576× 106 V=m
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Figure 14. Time evolution of the �rst electrical and mechanical modal coe�cients.

The sti�ness and mass per unit length of the PEM beam can be evaluated as:

KM + k̂mm(�l)
(
h
2

)2
= 1:34 Nm2

�+ �p =0:15 Kg=m

In the following we will choose the angular frequency of the �rst mode as the frequency
scaling parameter:

!0 =
2

l2

√
KM + k̂mm(�l)(h=2)2

�+ �p
=328:3 rad=s

Hence the dimensionless parameters can be numerically evaluated:

�c =2:467

�c =0:240

From Equations (20) and (34) it is easy to calculate the following values for the optimal
resistance and inductance in the interconnecting network:

Lc
1 = 1:47 H; R=1661 �

assuming that the transformers turns-ratio are equal to one. In Figure 14 the time evolutions
of the �rst electrical and mechanical modes, corresponding to a purely mechanical initial
condition, are sketched, according to Equation (26). Furthermore Figures 15–17 show the
frequency responses of the �rst three modes, when exploiting the optimal dissipative network
presented in Figure 13.

5. CONCLUSIONS

Recent technological developments of piezoelectric transducers have made passive electric
damping of structural vibrations realizable. Therefore, an interesting problem in the theory
of circuits arises: how to electrically interconnect the piezoelectric transducers, placed on the
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Figure 15. Frequency response around the �rst mode. The dashed curve represents the transfer function
when all the piezoelectric elements are left open-circuited.

Figure 16. Frequency response around the second mode. The dashed curve represents the transfer
function when all the piezoelectric elements are left open-circuited.

Figure 17. Frequency response around the third mode. The dashed curve represents the transfer function
when all the piezoelectric elements are left open-circuited.
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structure, using a passive electric network in order to get an optimal damping of mechanical
vibrations.
We refrain from studying optimal positioning problems: i.e. problems in which the actual

placement of the transducers on the host structure is unknown. Instead, we assume that the
array of distributed transducers is uniformly positioned on the structure and that the inter-
connecting network can be described by homogenized models. This class of smart structures
has been studied in References [21, 22], where the e�ciency of analog circuits in obtaining
e�ective electromechanical energy exchanges has been established.
In the present paper, the synthesis problem of �nding a completely passive electric ana-

log of an Euler beam has been tackled. In Section 3, two di�erent analogies are addressed
and comparisons are drawn between the resulting circuits. The designed electric circuits are
constituted only by capacitors, inductors, and ideal transformers; their hardware realization
exploiting truly passive electric elements has been proved when designing a prototype.
The application of the found electric analogs to the multimodal vibrations damping is

proposed in Section 4, where PEM beams are analysed.
Once an e�cient coupling has been established, the completion of those lossless networks

by suitable resistive networks (as shown in Section 4.4) guarantees a performing vibration
attenuation without introducing spillover phenomena. The resulting smart structure is able to
self-damp structural vibrations, dispensing with the use of any external power supply.
Future works will be devoted to the comparison between the performances of homogenized

electric controllers and their lumped approximations and to the design of electric circuits
approximating the square root of the fourth derivative di�erential operator when the prescribed
boundary conditions are not ‘trigonometric’.
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