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Abstract

A multimode optical fiber with a D-shaped cross section has already been proved to

constitute a privileged system to image wavefunctions of a chaotic system. Nevertheless,

diffraction of light at the fiber input precludes the excitation of individual wavefunctions

and particularly the scar modes we want to investigate. We show that a mechanism of

scar modes selection can be induced by the introduction of a localized gain.

1 Introduction

Since their numerical evidence and their explanation by E. J. Heller[1] as “[. . . ]extra density

surrounding periodic orbits[. . . ]”, scar wavefunctions have been the subject of a great

number of investigations. Different theoretical explanations of these singular wavefunctions

have been proposed [2, 3, 4] and experimental investigations have been developed in parallel

with the emergence of wave chaos experiments[5]. Since 1980, scar wavefunctions have been

observed in various systems with different nature of waves, such as billard wavefunctions of

a chaotic microwave cavity[6] or recently remarkable patterns in surface waves[7]. A nice

and evident way to image the wavefunctions of a chaotic cavity consists in using optical

waves. To the contrary to microwave or elastodynamical experiments, experiments with

optical waves offer a direct visualisation of the wavefunctions. One of the first experiment

with optical waves invoking the properties of classical chaos to explain the behavior of

waves has been proposed by the group of A. D. Stone[8]. Until 2002, no direct observation

of the wavefunctions of a chaotic optical billiard had been realized. Using the formal

analogy between the Helmholtz equation governing the propagation of optical waves and

the Schrödinger equation, we have then proposed an experiment of wave chaos in an optical

fiber. The experiment, simple in its concept, offers a direct access to the spatial distribution

of intensity by imaging the near-field intensity at the fiber output. Using a multimode
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fiber with a truncated transverse cross section, we observed the scarring effect for the first

time in an optical system[9]. The observed pattern was associated to the superposition of

a scar mode with a few generic ergodic modes[10] due to the diffraction at the input of

the fiber that prevents the excitation of individual modes. With the aim to demonstrate

that optical fiber can also constitute an ideal system to investigate pure scar modes, we

propose to exploit the properties of the introduction of a gain medium. In this paper, we

show that an appropriate location of the gain medium can induce a selective amplification

of scar modes. This paper is organized as follows: in section 2, the experimental setup

is described and its relevance in the field of wave chaos is presented. Our main results

about the experimental observation of the typical behavior of wavefunctions in a chaotic

billiard are reported in section 2.2. In order to investigate the scar wavefunctions, we have

developped a selective excitation of scar by the way of optical amplification. Theses recent

studies are described in section 3.

2 Presentation of the experimental system

2.1 Description of the system

The multimode optical fiber used for this work has been designed and fabricated in our

lab. The transverse cross section of the fiber is a truncated disk fabricated from a 1-cm-

diameter preform of silica that has been cut at half its radius and pulled at a temperature

low enough to maintain the D-shaped cross section. The final dimensions of the fiber after

pulling are 120 µm for the diameter and 90 µm for the truncated diameter (see fig. 1).

These dimensions differ from the typical 10-µm-diameter of a single mode optical fiber used

in the field of optical telecommunication. The index of refraction of the silica core nco at

our working wavelength is around 1.458. It is surrounded by a black silicon cladding with

an index of refraction equal to nclad=1.453. As the characteristic dimensions of the fiber

nco = 1.458

nclad = 1.453

R

Dt

Figure 1: Characteristical parameter of the chaotic fiber.

are large compared to the optical wavelength, a collimated light beam that propagates

along the fiber can be approximated, in the geometrical limit, to a ray that reflects on
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the core/cladding interface along the propagation in the fiber. A formal derivation of the

eikonal equation from the 3D Helmholtz equation is given in [11] and justifies the analogy

of our system with a chaotic billiard. Indeed, the evolution of a ray along the fiber (in the

direction of z) can be associated to a time evolution on the transverse cross section of the

fiber (see fig. 2).

z

y

x

Figure 2: Light propagation along the fiber in the geometrical limit of rays.

The so-called D-shaped billiard, as soon as the truncated diameter is larger than half the

radius, has been proved to be a fully chaotic billiard by Bunimovich[12] and Ree[13]. If

the optical fiber can be seen as a wave billiard, it also constitutes an interesting analogous

quantum system. Indeed, the propagation of the field along the fiber is described by the

Helmholtz equation. In the weak guidance regime, i.e. for a small difference of indices

between the core and the cladding [(nco −nclad)/nclad ≪ 1], a given polarization is nearly

perfectly preserved along the propagation thus enabling to use the scalar form of the

Helmholtz equation:

(∆ + ∂zz)ψ(r, z) + n(r)2k2
0
ψ(r, z) = 0 (1)

with k0 the vacuum wavenumber and n(r) the index of refraction in the medium. In the

paraxial approximation, this equation reduces to the following form:

iβco∂zφ(r, z) = [−
1

2
∆ + V (r)]φ(r, z) (2)

where βco = ncok0 and φ(r, z) is deduced from ψ(r, z) = φ(r, z)eiβcoz. The paraxial

approximation is associated to the propagation of light close to the optical axis and is

fulfilled as soon as the angle of the guided ray is much smaller than the cutoff angle θmax

which is given by sin θmax =
√

1− (nclad/nco)2.

Equation 2 is then formally equivalent to a pseudo-time independent Schrödinger equation.

As a consequence, the D-shaped fiber appears to be an ideal wave chaos paradigm of a

quantum chaos experiment.
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2.2 Typical results

The experimental setup is conceptually simple. A beam from a Helium-Neon laser source

at λHe/Ne = 628nm is collimated and enlarged so that its size becomes large enough com-

pared to the transverse size of the fiber to be in a quasi-plane wave illumination. The main

parameter of the experiment is then the angle θ between the beam and the optical axis

at the fiber entrance. Indeed, this angle governs the value of the transverse wave number

in the fiber κt by the way of the simple relation κt = k0ncosinθ and, as a consequence

the modes that will be excited and guided in the fiber. At the output of the fiber, one

can image either the near-field (NF) intensity using a microscope objective or the far-field

(FF) intensity in the focal plane of a suitable lens. Typical observations associated to a

value of the transverse wave number κt = 36/R are presented in figure 3. As diffraction

occurs due to the finite aperture of the fiber, several transverse wavenumbers around the

main transverse wavenumber κt contribute so that more than one hundred modes are su-

perposed at the output of the fiber. The NF figure shows a speckle pattern: the intensity

(a) (b)

x

y ky

kx

Figure 3: Near-field intensity (a) and Far-field intensity (b) for κt = 36/R.

is statistically uniformly distributed over the whole cross section of the fiber. This figure

is associated to the superposition of several modes each with a speckle-like behavior as

predicted by M. V. Berry[2]. A nice experimental evidence of Berry’s conjecture is given

by the FF intensity figure. In this figure, the intensity tends to fill a ring, whose mean

radius is centered on the input transverse wavenumber κt and its width is determined by

the number of contributing modes. This illustrates that the field is constituted by the

random superposition of a great number of plane waves each with a fixed transverse wave

number but with random directions: the field of these generic so-called speckle modes can

then be seen as a real Gaussian random variable.

If the speckle modes are the generic observed modes, we have also experimentally investi-

gated the series of scar modes associated to the shortest unstable periodic orbit that is the

2-bounce periodic orbit along the axis of symetry of the fiber’s cross section. In the optical

context, scar modes along the 2-bounce periodic orbit (PO) can be described as the modes

4



of an unstable dielectric Fabry-Perot cavity. One can expect to observe a constructive

interference effect building upon this periodic orbit if the following quantization condition

for the value of the transverse wavenumber is fulfilled:

κtL = 2πp+
π

2
+ ∆ϕ (3)

where L is the length of the periodic orbit, p an integer, π/2 is a phaseshift due to the

existence of a self focal point on the 2-bounce periodic orbit, and ∆ϕ is the phaseshift due

to reflection at the core/cladding interface.

By solving the eq. 3, one obtains quantized values of the transverse wavenumber associ-

ated to scar eigenmodes along the 2-bounce PO. For a very precise illumination launch

along the direction of the 2-bounce PO with an angle associated to the wavenumber of the

scar mode of order p = 4, we have successfully excited a few modes around the scar mode.

The NF and FF intensity observed at the output of the fiber are presented in figure 4.

(b)(a)

y

x

ky

kx

Figure 4: Near-field intensity (a) and Far-field intensity (b) associated to a superposition of
few modes around a scar mode of order p = 4 with κt = 10.35/R.

Even if several modes are excited (around thirty modes), the intensity tends to localize

along the direction of the 2-bounce PO emphasizing the main contribution of the p = 4-

scar mode in the superposition. In the FF figure, two symmetric peaks are observed and

show that mainly one transverse wave number propagates along a well-defined direction

i.e, the direction of the 2-bounce PO.

3 Selection of individual optical scars

The previous results have revealed the optical fiber as an ideal system to study the spatial

behavior of waves in a chaotic billiard. Nevertheless, the plane wave illumination condition

does not permit to excite only one mode of the fiber due to the ineluctable diffraction
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induced by the finite aperture of the fiber. As a consequence, looking for an individual scar

mode appears to be a hard task. A mechanism of modes selection can be found in some

recents investigations in the field of wave propagation in disordered media. Numerical

simulations have shown that the lasing modes of a random laser can be the localized

modes of the passive disordered system[14]. The lasing effect on a given localized mode

is controlled by localizing the gain on the selected mode. Resting on these results, we

propose to use a localized gain to perform a selection of the scar modes. If a passive

optical fiber with a D-shape constitutes a powerful experimental system for studying wave

chaos, multimode D-shaped fibers are also above all widely used to achieve optical power

amplifiers [15] in which a telecom signal (called the signal) is amplified at the cost of an

ancillary signal (called the pump). Usually the optical index of the Erbium or Ytterbium

doped-core is higher than the index of the surrounding D-shaped cladding. The signal

propagates in a single mode doped core, and, by guiding the pump, the multimode fiber

only plays the role of an energy reservoir. By some appropriate modifications of the

fabrication process, it is possible to obtain a negligible index mismatch between the small

active region and the multimode fiber 1, at least sufficiently low to ensure that no guided

mode exists inside the doped area. Then, the signal and the pump propagate on the modes

of the entire section of the multimode D-shaped fiber. The crucial point is the location of

the doped area: to ensure an efficient amplification of the 2-bounce scar modes, the overlap

of the doped region with the scar modes has to be maximized. We choose to introduce

the doping element on the self-focal point of the 2-bounce PO that also corresponds to a

maximum of intensity for most of the 2-bounce PO scar modes. In the following, we present

realistic numerical simulations of such a chaotic fiber with an Ytterbium-doped region. The

simulation is based on the Beam Propagation Method we already used successfully for

simulating optical amplification [16]. We show how localized gain may selectively amplify

a family of scar modes.

In this kind of system, optical amplification occurs due to the transfer of energy from an

optical pump wave at the wavelength, λp = 980nm in our case, to the signal to be amplified

at the wavelength λs = 1020nm. Ytterbium is a four-level system that permits to use

different wavelengths for the pump and the signal preventing direct signal reabsorption.

As a consequence, Ytterbium in a silica matrix can be treated as a three energy-level

system with a metastable third energy level.

Using the evolution equations of the population density, one can easily obtain the

1The actual fiber has been fabricated in our institute by W. Blanc, in collaboration with P. Oupicky from
Plasma Institute of Physics in Turnov (Rep. Czech)

6



following expressions for the evolution of the pump and signal intensities[17]:

dIp
dz

= −σpaN1(z)Ip(z) (4)

dIs
dz

= σsa(ηsN2 −N1)Is(z) (5)

where Ip and Is are respectively the intensity of the pump and of the signal, σsa the

absorption cross section of the signal, σpa the absorption cross section for the pump and

η = σse/σsa with σse is the emission cross section of the signal. As soon as the intensity

of the signal Is is low compared to the intensity of the pump Ip, the eq. 4 only depends

on Ip and the two equations are partially coupled so that they can be treated separately.

This case is fulfilled in our simulation where the initial signal power Ps0 = 100mW and

the pump power equals to Pp0
= 6W .

The Bpm algorithm is modified to take equations (4,5) into account to simulate the cou-

pled evolutions of the pump and the signal. To make an efficient transfer of energy from

the pump to the signal, one has to maximize the number of excited pump modes: a focused

laser beam at the pump wavelength is therefore launched in the multimode core. A great

number of modes of the D-shaped core are thus excited and the overlap of their field with

the doped area is responsible for the energy transfer from the pump to the signal. In pre-

vious works, we have shown that the chaotic D-shaped geometry is an efficient shape for

this purpose[18]. The evolution of the pump along the fiber follows an early exponential

decay due to absorption in the doped area that tends to saturate as soon as the pump

power is no longer able to fulfill the population inversion condition ηsN2 −N1 > 0.

Results

We first study the influence of the doped area for the initial illumination used to perform

the experimental observation of fig. 4. We simulate a plane wave illumination in the

direction of the 2-bounce PO with a transverse wavenumber associated to the scar mode

of order p = 4. In figure 5, we plot the evolution of the power of the signal along the

propagation that clearly shows that the signal is getting amplified along the propagation.

The maximum of amplification (the propagation length zmax for which the gain of the

signal is maximum) is obtained for zmax = 41m.

The near-field and far-field patterns observed at this propagation length are reported in

fig. 6. The NF intensity is very similar to the calculated scar mode of order p = 4. The

dominating contribution of the p = 4-scar mode is emphasized in the FF intensity: two

symetrical peaks centered on the value of the wavenumber associated to the scar mode
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Figure 5: Evolution of the signal power along the propagation.

of order p = 4 appear. Mainly one direction and value of the transverse wavenumber are

selected.
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Figure 6: NF(a) and FF(a) at the length of maximum amplification.

To clearly identify the guided modes along the propagation, we calculate what we call a

pseudo-spectrum of our system. This pseudo-spectrum is derived from a standard semi-

classical procedure developped by Heller[19] and adapted to our numerical algorithm [20].

The pseudo-spectrum is extracted from the Fourier transform of the correlation function

C(z) obtained from the overlap of the initial field ψ0(r) with the propagating field ψ(r, z).

We follow the evolution of the pseudo-spectrum along the propagation by applying the

previous method to shifted windows of length Z = 1.3m evaluated each 0.65m. The figure

?? shows the pseudo-spectrum calculated at the input of the fiber, and around the length

of the maximum gain, zmax.

The initial pseudo-spectrum is centered on the transverse wavenumber κp=4 and broad-

ened due to the diffraction at the fiber entrance. At length zmax, the broadening of the

pseudo-spectrum due to diffraction seems to be limited by the influence of the localized

gain that induces a mechanism of selective amplification of the selected scar. Only the
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Figure 7: NF(a) and FF(a) at the length of maximum amplification.

scar modes of order p = 3 and p = 4 initially excited are amplified along the propagation.

To check the robustness of this scar modes selection process, we launch a spatially inco-

herent initial field, that is, a field resulting from a superposition of transverse wavevectors

with random directions and random moduli up to κt = 33/R. The field propagates along

the fiber and we observe the evolution of the far-field. The figure 8 shows three pictures

of the far-field intensity: at the entrance of the fiber, after 20 m, and for the maximum

gain length zmax.

(b) (c)(a)

Figure 8: Initial incoherent FF(a), after 20 m (b) and for the length corresponding to the
maximum of amplification(c).

Along the propagation, we observe a clear selection of the direction of the transverse

wavenumber along the 2-bounce PO so that for the maximum gain length only two symet-

ric spots dominates the FF pattern. So the spatial incoherent field tends to condensate on

a specific value of the transverse wavenumber leading to a coherent field.

The pseudo-spectrum associated to zmax (fig. 9) shows a succession of quasi-periodic

peaks. The value of the transverse wavenumber of each peak corresponds to the quantified

value of transverse wavenumber for each scar mode up to κt = 33/R. All the scar modes

have been selected and amplified thanks to the localised gain. The weight of each peak is

directly linked to the overlap of the scar modes with the doped area: scar modes of order
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Figure 9: Pseudo-spectrum evaluated at the maximum amplification length for an initial
spatially incoherent field.

2,5 and 7 have indeed a bad overlap with the doped area whereas the scar mode of order

p = 4 has the best overlap. From these results, we can conclude that the localised gain

acts as a scar filter.

4 Conclusion

The optical fiber with a truncated cross section appears to be a good candidate to image

experimentally wave chaos: complementary informations about the field that propagates

in the chaotic billiard are deduced from the NF and FF intensity. The ergodic behavior

of generic modes has been proved experimentally and scar modes have first been observed

in an optical fiber. Due to the inescapable diffraction at the fiber input, the properties

of individual scar modes cannot be easily studied experimentally. To perform a selective

excitation of scar modes in our multimode structure, we have investigated the influence

of a localized gain area on the propagation of a plane-wave illumination. Our numerical

results clearly show that scar modes are selectively amplified. The experimental validation

is in progress and will be the subject of a next publication.
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