
HAL Id: hal-00499395
https://hal.science/hal-00499395v1

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of Model Migration Tools
Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dimitris

Kolovos, Kelly Garcés, Richard F. Paige, Fiona A.C. Polack

To cite this version:
Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dimitris Kolovos, Kelly Garcés, et al..
A Comparison of Model Migration Tools. Proc. of Models 2010 Foundation Track, Oct 2010, Oslo,
Norway. To appear. �hal-00499395�

https://hal.science/hal-00499395v1
https://hal.archives-ouvertes.fr


A Comparison of Model Migration Tools

Louis M. Rose1, Markus Herrmannsdoerfer2, James R. Williams1, Dimitrios S.
Kolovos1, Kelly Garcés3,4, Richard F. Paige1, and Fiona A.C. Polack1

1 Department of Computer Science,
University of York, UK.

{louis, jw, dkolovos, paige, fiona}@cs.york.ac.uk
2 Institut für Informatik,

Technische Universität München, Germany.
herrmama@in.tum.de

3 AtlanMod (EMN-INRIA)
Nantes, France.

4 ASCOLA (LINA-INRIA)
Nantes, France.

kelly.garces@mines-nantes.fr

Abstract. Modelling languages and thus their metamodels are sub-
ject to change. When a metamodel evolves, existing models may no
longer conform to the evolved metamodel. To avoid rebuilding them from
scratch, existing models must be migrated to conform to the evolved
metamodel. Manually migrating existing models is tedious and error-
prone. To alleviate this, several tools have been proposed to build a mi-
gration strategy that automates the migration of existing models. Little
is known about the advantages and disadvantages of the tools in differ-
ent situations. In this paper, we thus compare a representative sample of
migration tools – AML, COPE, Ecore2Ecore and Epsilon Flock – using
common migration examples. The criteria used in the comparison aim to
support users in selecting the most appropriate tool for their situation.

1 Introduction

When a metamodel evolves, existing models may no longer conform to the struc-
tures and rules of the metamodel [4]. To avoid rebuilding existing models from
scratch, these models are migrated to conform to the evolved metamodel. Man-
ual migration is tedious and error-prone, and so migration needs to be auto-
mated [11]. Building an automated migration strategy (even if desirable in prac-
tice) is non-trivial, as it has to correctly migrate an arbitrary set of models.

Recently, many different tools for building a migration strategy have become
available. Each tool has strengths and weaknesses. However, little is known about
how the tools compare in practice and so tool selection is difficult.

In this paper, we compare four model migration tools, selected from those
described in Section 2. Following the systematic process outlined in Section 3,
the tools are applied to two examples to facilitate their comparison. Section 4
reports our experiences in using each of the tools, highlighting their strengths



and weaknesses using nine criteria that we deem important for model migration.
From this comparison, Section 5 synthesises advice and guidelines to help users
in identifying the most appropriate model migration tool for their situation.

2 Related Work

Model transformation. Model migration can be implemented in a general-
purpose programming language (such as Java), or in a model-to-model (M2M)
transformation language, such as QVT [19] (the current OMG standard), ATL
[15] or Xtend (of the popular openArchitectureWare framework1).

[17] identifies different kinds of model transformations, and in particular two
categories of relationship between source and target metamodel: exogenous and
endogenous. In the former, the source and target metamodels differ, and the
target model is constructed entirely by the transformation. In the latter, source
and target metamodels are the same, and so the target model can be initialised
to be the same as source model before the transformation. In model migration,
source and target metamodels differ, and hence endogenous transformations can-
not be used. Consequently, model migration strategies are often specified with
exogenous model-to-model transformation languages, and must contain sections
for copying from original to migrated model those model elements that have not
been affected by metamodel evolution.

Model migration. As was first argued by Sprinkle [22], model migration is
best served by a language that combines properties of exogenous and endoge-
nous model transformation: we need to be able to specify the transformation
from a source metamodel to a different target metamodel, but only for the
metamodel elements for which a migration is required. Rose et al. [20] classify
model migration approaches into the following categories:

Manual specification approaches provide transformation languages to manu-
ally specify the model migration. These transformation languages try to reduce
the effort for building a migration strategy by providing mechanisms that are
specific for model migration. For instance, the approaches described in [18, 21,
23] extend an exogenous transformation language to automatically copy model
elements whose metamodel definition has not changed. While manual specifica-
tion fosters correctness of the model migration, it also requires the most effort
to build a migration strategy.

Operator-based approaches, such as [12, 25], provide coupled operators that
allow metamodel changes and model migration strategies to be specified to-
gether. By capturing recurring co-evolution patterns as operators, these ap-
proaches avoid the need to specify identity rules, reusing recurring combinations
of metamodel evolution and model migration through coupled operations.

Metamodel matching approaches automatically generate an exogenous model
transformation from the difference between two metamodel versions. Because

1 http://www.openarchitectureware.org/



an exogenous transformation is generated, model elements that have not been
affected by co-evolution must be considered. Unlike manual specification, boiler-
plate code for automatic copying is automatically generated. Cicchetti [1] was the
first to report a metamodel matching approach, noting that some categories of
change cannot be automatically migrated. Garcés et al. [7] provide a potentially
more expressive approach that allows the matching strategy to be parameterised.

Comparison. Apart from the above categorisation based on theoretical aspects
of existing model migration approaches, no work compares model migration
tools. However, several papers compare model transformation languages. Czar-
necki and Helsen [2] present a feature model to classify transformation languages
according to their technical properties. Mens and van Gorp [17] present func-
tional and non-functional requirements for transformation languages. Taentzer
et al. [24] compare the graph transformation languages AGG, TGG, VIATRA,
and VMTS using the well-known object to relational transformation example.
Gronmo et al. [9] compare the transformation languages CGT, AGG, and ATL
using a complex refactoring example. These comparisons are used here to derive
criteria for the comparison of model migration tools.

3 Comparison Method

In this section, we present the approach used to compare the model migra-
tion tools. The comparison is based on practical application of the tools to the
co-evolution examples presented in Section 3.1. The selection of tools for the
comparison is described in Section 3.2. To contextualise the conclusions drawn
in this paper, Section 3.3 describes the process used to carry out the comparison.

3.1 Co-Evolution Examples

To compare migration tools, two examples of co-evolution were used. The first is
a well-known problem in the model migration literature and was used to test the
comparison process, as discussed in Section 3.3. The second is a larger example
taken from a real-world model-driven development project, and was identified
as a potentially useful example for co-evolution case studies in [13].

Petri Nets. The first example is an evolution of a Petri net metamodel, previ-
ously used in [1, 7, 21, 25] to discuss co-evolution and model migration.

In Figure 1(a), a Petri Net comprises Places and Transitions. A Place

has any number of src or dst Transitions. Similarly, a Transition has
at least one src and dst Place. In this example, the metamodel in Fig-
ure 1(a) is to be evolved to support weighted connections between Places and
Transitions and between Transitions and Places.

The evolved metamodel is shown in Figure 1(b). Places are connected to
Transitions via instances of PTArc. Likewise, Transitions are connected
to Places via TPArc. Both PTArc and TPArc inherit from Arc, and therefore
can be used to specify a weight.



(a) Original metamodel. (b) Evolved metamodel.

Fig. 1. Petri nets metamodel evolution (taken from [21]). Shading is irrelevant.

GMF. The second example is taken from the Graphical Modeling Framework
(GMF) [8], an Eclipse project for generating graphical editors for models. The
development of GMF is model-driven and utilises four domain-specific metamod-
els. Here, we consider one of those metamodels, GMF Graph, and its evolution
between GMF versions 1.0 and 2.0.

The GMF Graph metamodel (not illustrated) describes the appearance of
the generated graphical model editor. The metaclasses Canvas, Figure, No-
de, DiagramLabel, Connection, and Compartment are used to represent
components of the graphical model editor to be generated. The evolution in
the GMF Graph metamodel was driven by analysing the usage of the Figu-

re#referencingElements reference, which relates Figures to the Diag-
ramElements that use them. As described in the GMF Graph documentation2,
the referencingElements reference increased the effort required to re-use
figures, a common activity for users of GMF. Furthermore, referencingEl-
ements was used only by the GMF code generator to determine whether an
accessor should be generated for nested Figures.

In GMF 2.0, the Graph metamodel was evolved to make re-using figures more
straightforward by introducing a proxy [5] for Figure, termed FigureDesc-

riptor. The original referencingElements reference was removed, and an
extra metaclass, ChildAccess, was added to make more explicit the original
purpose of referencingElements (accessing nested Figures).

GMF provides a migrating algorithm that produces a model conforming to
the evolved Graph metamodel from a model conforming to the original Graph
metamodel. In GMF, migration is implemented using Java. The GMF source
code includes two example editors, for which the source code management system
contains versions conforming to GMF 1.0 and GMF 2.0. For the comparison of
migration tools described in this paper, the migrating algorithm and example

2 http://wiki.eclipse.org/GMFGraph_Hints



editors provided by GMF were used to determine the correctness of the migration
strategies produced by using each model migration tool.

3.2 Compared Tools

For the comparison in this paper, we selected one tool from each of the three
categories – manual specification, operator-based and metamodel matching ap-
proaches – described in Section 2. We included a further tool from the manual
specification category, Ecore2Ecore, as it is distributed with the Eclipse Mod-
eling Framework, arguably the most widely used modelling framework. Each of
these tools is discussed briefly below. Section 4 describes each tool in more detail.

AtlanMod Matching Language (AML) [7, 6] is a model matching tool,
which can be used as a metamodel matching migration tool. AML provides
heuristics that the user combines to specify a metamodel matching strategy. A
migrating ATL transformation is automatically generated by matching original
and evolved metamodels.

COPE [12] is an operator-based migration tool. COPE provides a library of
co-evolutionary operators. Each co-evolutionary operator specifies both a meta-
model evolution and a corresponding model migration strategy. For example,
the “Introduce Reference Class” operator from COPE evolves the metamodel
such that a reference is replaced by a class and migrates models such that links
conforming to the reference are replaced by instances of the reference class.

Ecore2Ecore [14] is a manual specification migration tool that is part of
the Eclipse Modeling Framework (EMF). Migration is specified with a mapping
model and hand-written Java code. Ecore2Ecore has been used in real-world
projects, such as the Eclipse MDT UML2 project [3], to manage co-evolution.

Epsilon Flock [21] (subsequently referred to as Flock) is a manual specifica-

tion migration tool. Flock is a domain-specific transformation language tailored
for model migration. In particular, Flock automatically copies from original to
migrated model all model elements that have not been affected by metamodel
evolution. Flock is built atop Epsilon3 [16], an extensible platform providing
inter-operable programming languages for model-driven development.

3.3 Comparison Process

The comparison of migration tools was conducted by applying each of the four
tools (Ecore2Ecore, AML, COPE and Flock) to the two examples of co-evolution
(Petri nets and GMF). The developers of each tool were invited to participate in
the comparison. The authors of COPE and Flock were able to participate fully,
while the authors of Ecore2Ecore and AML were available for guidance, advice,
and to comment on preliminary results.

We began the comparison by allocating responsibility for using each tool on
the examples to a different person. Because the authors of Ecore2Ecore and AML
were not able to participate fully in the comparison, two colleagues experienced

3 http://www.eclipse.org/gmt/epsilon



in model transformation and migration stood in. To improve the validity of the
comparison, each tool was used by someone other than its developer. Other than
this restriction, the tools were allocated arbitrarily.

Table 1. Summary of comparison criteria.

Name Description

Construction Ways in which tool supports the development of migration strategies

Change Ways in which tool supports change to migration strategies

Extensibility Extent to which user-defined extensions are supported

Re-use Mechanisms for re-using migration patterns and logic

Conciseness Size of migration strategies produced with tool

Clarity Understandability of migration strategies produced with tool

Expressiveness Extent to which migration problems can be codified with tool

Interoperability Technical dependencies and procedural assumptions of tool

Performance Time taken to execute migration

The comparison was conducted in three phases. In the first phase, we iden-
tified criteria against which the tools would be compared. In the second phase,
we used the first example of co-evolution (Petri nets) to familiarise ourselves
with the migration tools and to assess the suitability of the comparison criteria.
In the third phase, the tools were applied to the larger example of co-evolution
(GMF) and conclusions were drawn from our experiences. Table 1 summarises
the comparison criteria used in this paper. Further criteria could develop as a
result of further experimentation in the future. The next section presents, for
each criterion, observations from applying the migration tools to the co-evolution
examples.

4 Comparison Results

By applying the method described in Section 3, four model migration tools were
compared. This section reports similarities and differences of each tool, using
nine criteria. Each subsection considers one criterion. The complete solutions
are available online4.

4.1 Constructing the migration strategy

Facilitating the specification and execution of migration strategies is the pri-
mary function of model migration tools. This section reports the process for and
challenges faced in constructing migration strategies with each tool.

AML. An AML user specifies a combination of match heuristics from which
AML infers a migrating transformation by comparing original and evolved meta-
models. Matching strategies are written in a textual syntax, which AML compiles

4 http://github.com/louismrose/migration_comparison



to produce an executable workflow. The workflow is invoked to generate the mi-
grating transformation, codified in the Atlas Transformation Language (ATL)
[15]. Devising correct matching strategies was difficult, as AML lacks documen-
tation that describes the input, output and effects of each heuristic. Papers
describing AML (such as [7, 6]) discuss each heuristic, but mostly in a high-level
manner. A semantically invalid combination of heuristics can cause a runtime
error, while an incorrect combination results in the generation of an incorrect
migration transformation. However, once a matching strategy is specified, it can
be re-used for similar cases of metamodel evolution. To devise the matching
strategies used in this paper, AML’s author provided considerable guidance.

COPE. A COPE user applies coupled operations to the original metamodel
to form the evolved metamodel. Each coupled operation specifies a metamodel
evolution along with a corresponding fragment of the model migration strategy.
A history of applied operations is later used to generate a complete migration
strategy. As COPE is meant for co-evolution of models and metamodels, reverse
engineering a large metamodel can be difficult. Determining which sequence of
operations will produce a correct migration is not always straightforward. To
aid the user, COPE allows operations to be undone. To help with the migration
process, COPE offers the Convergence View which utilises EMF Compare to
display the differences between two metamodels. While this was useful, it can,
understandably, only provide a list of explicit differences and not the semantics
of a metamodel change. Consequently, reverse-engineering a large and unfamiliar
metamodel is challenging, and migration for the GMF Graph example could only
be completed with considerable guidance from the author of COPE.

Ecore2Ecore. In Ecore2Ecore model migration is specified in two steps.
In the first step, a graphical mapping editor is used to construct a model that
declares basic migrations. In this step only very simple migrations such as class
and feature renaming can be declared. In the next step, the developer needs to
use Java to specify a customised parser (resource handler, in EMF terminology)
that can parse models that conform to the original metamodel and migrate them
so that they conform to the new metamodel. This customised parser exploits
the basic migration information specified in the first step and delegates any
changes that it cannot recognise to a particular Java method in the parser for
the developer to handle. Handling such changes is tedious as the developer is
only provided with the string contents of the unrecognised features and then
needs to use low-level techniques – such as data-type checking and conversion,
string splitting and concatenation – to address them. Here it is worth mentioning
that Ecore2Ecore cannot handle all migration scenarios and is limited to cases
where only a certain degree of structural change has been introduced between
the original and the evolved metamodel. For cases which Ecore2Ecore cannot
handle, developers need to specify a custom parser without any support for
automated element copying.

Flock. In Flock, model migration is specified manually. Flock automatically
copies only those model elements which still conform to the evolved metamodel.
Hence, the user specifies migration only for model elements which no longer



conform to the evolved metamodel. Due to the automatic copying algorithm,
an empty Flock migration strategy always yields a model conforming to the
evolved metamodel. Consequently, a user typically starts with an empty mi-
gration strategy and iteratively refines it to migrate non-conforming elements.
However, there is no support to ensure that all non-conforming elements are
migrated. In the GMF Graph example, completeness could only be ensured by
testing with numerous models. Using this method, a migration strategy can be
easily encoded for the Petri net example. For the GMF Graph example whose
metamodels are larger, it was more difficult, since there is no tool support for
analysing the changes between original and evolved metamodel.

4.2 Changing the migration strategy

Migration strategies can change in at least two ways. Firstly, as a migration
strategy is developed, testing might reveal errors which need to be corrected.
Secondly, further metamodel changes might require changes to an existing mi-
gration strategy.

AML. Because AML automatically generates migrating transformations,
changing the transformation, for example after discovering an error in the match-
ing strategy, is trivial. To migrate models over several versions of a metamodel
at once, the migrating transformations generated by AML can be composed by
the user. AML provides no tool support for composing transformations.

COPE. As mentioned previously, COPE provides an undo feature, meaning
that any incorrect migrations can be easily fixed. COPE stores a history of
releases – a set of operations that has been applied between versions of the
metamodel. Because the migration code generated from the release history can
migrate models conforming to any previous metamodel release, COPE provides
a comprehensive means for chaining migration strategies.

Ecore2Ecore. Migrations specified using Ecore2Ecore can be modified via
the graphical mapping editor and the Java code in the custom model parser.
Therefore, developers can use the features of the Eclipse Java IDE to modify
and debug migrations. Ecore2Ecore provides no tool support for composing mi-
grations, but composition can be achieved by modifying the resource handler.

Flock. There is comprehensive support for fixing errors. A migration strategy
can easily be re-executed using a launch configuration, and migration errors are
linked to the line in the migration strategy that caused the error to occur. If the
metamodel is further evolved, the original migration strategy has to be extended,
since there is no explicit support to chain migration strategies. The full migration
strategy may need to be read to know where to extend it.

4.3 Extensibility

The fundamental constructs used for specifying migration in COPE and AML
(operators and match heuristics, respectively) are extensible. Flock and Ecore2E-
core use a more imperative (rather than declarative) approach, and as such do
not provide extensible constructs.



AML. An AML user can specify additional matching heuristics. This re-
quires understanding of AML’s domain-specific language for manipulating the
data structures from which migrating transformations are generated.

COPE provides the user with a large number of operations. If there is no
applicable operation, a COPE user can write their own operations using an
in-place transformation language embedded into Groovy5.

4.4 Re-use

Each migration tool capture patterns that commonly occur in model migration.
This section considers the extent to which the patterns captured by each tool
facilitate re-use between migration strategies.

AML. Once a matching strategy is specified, it can potentially be re-used
for further cases of metamodel evolution. Match heuristics provide a re-usable
and extensible mechanism for capturing metamodel change and model migration
patterns.

COPE. An operation in COPE represents a commonly occurring pattern
in metamodel migration. Each operation captures the metamodel evolution and
model migration steps. Custom operations can be written and re-used.

Ecore2Ecore. Mapping models cannot be reused or extended in Ecore2Ecore
but as the custom model parser is specified in Java, developers can decompose it
into reusable parts some of which can potentially be reused in other migrations.

Flock. A migration strategy encoded in Flock is modularised according to the
classes whose instances need migration. There is support to reuse code within a
strategy by means of operations with parameters and across strategies by means
of imports. Re-use in Flock captures only migration patterns, and not the higher
level co-evolution patterns captured in COPE or AML.

4.5 Conciseness

A concise migration strategy is arguably more readable and requires less effort
to write than a verbose migration strategy. This section comments on the con-
ciseness of migration strategies produced with each tool, and reports the lines
of code (without comments and blank lines) used.

AML. 117 lines were automatically generated for the Petri nets example. 563
lines were automatically generated for the GMF Graph example, and a further 63
lines of code were added by hand to complete the transformation. Approximately
10 lines of the user-defined code could be removed by restructuring the generated
transformation.

COPE requires the user to apply operations. Each operation application
generates one line of code. The user may also write additional migration code.
For the Petri net example, 11 operations were required to create the migrator
and no additional code. The author of COPE migrated the GMF Graph example
using 76 operations and 73 lines of additional code.

5 http://groovy.codehaus.org/



Ecore2Ecore. As discussed above, handling changes that cannot be declared
in the mapping model is a tedious task and involves a significant amount of
low level code. For the PetriNets example, the Ecore2Ecore solution involved
a mapping model containing 57 lines of (automatically generated) XMI and a
custom hand-written resource handler containing 78 lines of Java code.

Flock. 16 lines of code were necessary to encode the Petri nets example,
and 140 lines of code were necessary to encode the GMF Graph example. In the
GMF Graph example, approximately 60 lines of code implement missing built-in
support for rule inheritance, even after duplication was removed by extracting
and re-using a subroutine.

4.6 Clarity

Because migration strategies can change and might serve as documentation for
the history of a metamodel, their clarity is important. This section reports on
aspects of each tool that might affect the clarity of migration strategies.

AML. The AML code generator takes a conservative approach to naming
variables, to minimise the chances of duplicate variable names. Hence, some of
the generated code can be difficult to read and hard to re-use if the generated
transformation has to be completed by hand. When a complete transformation
can be generated by AML, clarity is not as important.

COPE. Migration strategies in COPE are defined as a sequence of opera-
tions. The release history stores the set of operations that have been applied, so
the user is clearly able to see the changes they have made, and find where any
issues may have been introduced.

Ecore2Ecore. The graphical mapping editor provided by Ecore2Ecore al-
lows developers to have a high-level visual overview of the simple mappings
involved in the migration. However, migrations expressed in the Java part of
the solution can be far more obscure and difficult to understand as they mix
high-level intention with low-level string management operations.

Flock clearly states the migration strategy from the source to the target
metamodel. However, the boilerplate code necessary to implement rule inheri-
tance slightly obfuscates the real migration code.

4.7 Expressiveness

Migration strategies are easier to infer for some categories of metamodel change
than others [10]. This section reports on the ability of each tool to migrate the
examples considered in this comparison.

AML. A complete migrating transformation could be generated for the Petri
nets example, but not for the GMF Graph example. The latter contains examples
of two complex changes that AML does not currently support6. Successfully ex-
pressing the GMF Graph example in AML would require changes to at least one

6 http://www.eclipse.org/forums/index.php?t=rview&goto=526894#

msg_526894If



of AML’s heuristics. However, AML provided an initial migration transforma-
tion that was completed by hand. In general, AML cannot be used to generate
complete migration strategies for co-evolution examples that contain breaking

and non-resolvable changes, according to the categorisation proposed in [10].
COPE. The expressiveness of COPE is defined by the set of operations

available. The Petri net example was migrated using only built-in operations.
The GMF Graph example was migrated using 76 built-in operations and 2 user-
defined migration actions. Custom migration actions allow users to specify any
migration strategy.

Ecore2Ecore. A complete migration strategy could be generated for the
Petri nets example, but not for the GMF Graph example. The developers of
Ecore2Ecore have advised that the latter involves significant structural changes
between the two versions and recommended implementing a custom model parser
from scratch.

Flock. Since Flock extends EOL, it is expressive enough to encode both
examples. However, Flock does not provide an explicit construct to copy model
elements and thus it was necessary to call Java code from within Flock for the
GMF Graph example.

4.8 Interoperability

Migration occurs in a variety of settings with differing requirements. This section
considers the technical dependencies and procedural assumptions of each tool,
and seeks to answer questions such as: “Which modelling technologies can be
used?” and “What assumptions does the tool make on the migration process?”

AML depends only on ATL, while its development tools also require Eclipse.
AML assumes that the original and target metamodels are available for com-
parison, and does not require a record of metamodel changes. AML can be used
with either Ecore (EMF) or KM3 metamodels.

COPE depends on EMF and Groovy, while its development tools also require
Eclipse and EMF Compare. COPE does not require both the original and target
metamodels to be available. When COPE is used to create a migration strategy
after metamodel evolution has already occurred, the metamodel changes must
be reverse-engineered. To facilitate this, the target metamodel can be used with
the Convergence View, as discussed in Section 4.1. COPE targets EMF, and
does not support other modelling technologies.

Ecore2Ecore depends only on EMF. Both the original and the evolved
versions of the metamodel are required to specify the mapping model with
the Ecore2Ecore development tools. Alternatively, the Ecore2Ecore mapping
model can be constructed programmatically and without using the original meta-
model7. Unlike the other tools considered, Ecore2Ecore does not require the
original metamodel to be available in the workspace of the metamodel user.

Flock depends on Epsilon and its development tools also require Eclipse.
Flock assumes that the original and target metamodels are available for encoding

7 Private communication with Marcelo Paternostro, an Ecore2Ecore developers.



the migration strategy, and does not require a record of metamodel changes.
Flock can be be used to migrate models represented in EMF, MDR, XML and
Z (CZT), although we only encoded a migration strategy for EMF metamodels
in the presented examples.

4.9 Performance

The time taken to execute model migration is important, particularly once a
migration strategy has been distributed to metamodel users. Ideally, migration
tools will produce migration strategies whose execution time is quick and scales
well with large models.

Fig. 2. Migration tool performance comparison.

To measure performance, we produced Petri net models with a random gen-
erator, varying their size. Figure 2 shows the average time taken by each tool to
execute migration across 10 repetitions for models of different sizes. Note that
the Y axis has a logarithmic scale. The results indicate that, for the Petri nets co-
evolution example, AML and Ecore2Ecore execute migration significantly more
quickly than COPE and Flock, particularly when the model to be migrated con-
tains more than 1,000 model elements. Figure 2 indicates that, for the Petri nets
co-evolution example, Flock executes migration between two and three times
faster than COPE, although the author of COPE reports that turning off vali-
dation causes COPE to perform similarly to Flock.



5 Discussion and Conclusions

The comparison results highlight the similarities and differences between a rep-
resentative sample of model migration approaches. In this section, the differences
are used to consider which tools are better suited to particular model migration
situations.

COPE captures co-evolution patterns (which apply to both model and meta-
model), while Ecore2Ecore, AML and Flock capture only model migration pat-
terns (which apply just to models). Because of this, COPE facilitates a greater
degree of re-use in model migration than other approaches. However, the order
in which the user applies patterns with COPE impacts on both metamodel evo-
lution and model migration, which can complicate pattern selection particularly
when a large amount of evolution occurs at once. The re-usable co-evolution pat-
terns in COPE make it well suited to migration problems in which metamodel
evolution is frequent and in small steps.

Flock, AML and Ecore2Ecore are preferable to COPE when metamodel evo-
lution has occurred before the selection of a migration approach. Because of its
use of co-evolution patterns, we conclude that COPE is better suited to forward-
rather than reverse-engineering.

Through its Convergence View and integration with the EMF metamodel
editor, COPE facilitates metamodel analysis that is not possible with the other
approaches considered in this paper. COPE is well-suited to situations in which
measuring and reasoning about co-evolution is important.

In situations where migration involves modelling technologies other than
EMF, AML and Flock are preferable to COPE and Ecore2Ecore. AML can
be used with models represented in KM3, while Flock can be used with mod-
els represented in MDR, XML and CZT. Via the connectivity layer of Epsilon,
Flock can be extended to support further modelling technologies.

There are situations in which Ecore2Ecore or AML might be preferable to
Flock and COPE. For large models, Ecore2Ecore and AML might execute migra-
tion significantly more quickly than Flock and COPE. Ecore2Ecore is the only
tool that has no technical dependencies (other than a modelling framework).
In situations where migration must be embedded in another tool, Ecore2Ecore
offers a smaller footprint than other migration approaches. Compared to the
other approaches considered in this paper, AML automatically generates migra-
tion strategies with the least guidance from the user.

Despite these advantages, Ecore2Ecore and AML are unsuitable for some
types of migration problem, because they are less expressive than Flock and
COPE. Specifically, changes to the containment of model elements typically
cannot be expressed with Ecore2Ecore and changes that are classified by [11]
as metamodel-specific cannot be expressed with AML. Because of this, it is im-
portant to investigate metamodel changes before selecting a migration tool. Fur-
thermore, it might be necessary to anticipate which types of metamodel change
are likely to arise before selecting a migration tool. Investing in one tool to
discover later that it is no longer suitable causes wasted effort.



Conclusions This paper has compared a representative sample of approaches to
automating model migration, an activity crucial for supporting software evolu-
tion in MDE. The comparison was performed by following a methodical process
and used an example from a real-world MDE project. Some preliminary recom-
mendations and guidelines in choosing a migration tool were synthesised from
the presented results and are summarised in Table 2.

The criteria considered in this paper provide a foundation for further compar-
isons. For example, we recognise the importance of the usability and learnability
of migration tools, and envisage a comprehensive user study (with 100s of users)
for assessing these criteria. Future work will identify further comparison crite-
ria and conduct further experimentation. In particular, we plan to investigate
memory usage and forward-compatibility of tools.

Table 2. Summary of tool selection advice. (Tools are ordered alphabetically).

Requirement Recommended Tools

Frequent, incremental co-evolution COPE

Reverse-engineering AML, Ecore2Ecore, Flock

Modelling technology diversity Flock

Quicker migration for larger models AML, Ecore2Ecore

Minimal dependencies Ecore2Ecore

Minimal hand-written code AML, COPE

Minimal guidance from user AML

Support for metamodel-specific migrations COPE, Flock

Acknowledgement. The work in this paper was supported by the European
Commission via the MADES project, co-funded under the “Information Society
Technologies” 7th Framework Programme (2009-2012). The work of the second
author was funded by the German Federal Ministry of Education and Research
(BMBF), grants “SPES2020, 01IS08045A” and “Quamoco, 01IS08023B”. The
work of the third author was supported by the EPSRC, through the Large-Scale
Complex IT Systems project, “EP/F001096/1”. The authors thank Kenn Hussey
and Marcelo Paternostro for reviewing a draft of this paper.

References

1. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating co-evolution
in MDE. In Proc. EDOC, pages 222–231. IEEE Computer Society, 2008.

2. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Syst. J., 45(3):621–645, 2006.

3. Eclipse. UML2 Model Development Tools project [online]. [Accessed 7 September
2009] Available at: http://www.eclipse.org/modeling/mdt/uml2, 2009.

4. J. Favre. Meta-model and model co-evolution within the 3d software space. In
Proc. ELISA Workshop, pages 98–109, September 2003.



5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley, 1995.

6. K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. A Domain Specific Language for
Expressing Model Matching. In Proc. IDM, Nancy, France, 2009.

7. K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing model adaptation by
precise detection of metamodel changes. In Proc. ECMDA-FA, volume 5562 of
LNCS, pages 34–49. Springer, 2009.

8. R.C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, 2009.

9. R. Grønmo, B. Møller-Pedersen, and G.K. Olsen. Comparison of three model
transformation languages. In Proc. ECMDA-FA, volume 5562 of LNCS, pages
2–17. Springer, 2009.

10. B. Gruschko, D.S. Kolovos, and R.F. Paige. Towards synchronizing models with
evolving metamodels. In Workshop on Model-Driven Software Evolution, 2007.

11. M. Herrmannsdoerfer, S. Benz, and E. Juergens. Automatability of coupled evo-
lution of metamodels and models in practice. In Proc. MoDELS, volume 5301 of
LNCS, pages 645–659. Springer, 2008.

12. M. Herrmannsdoerfer, S. Benz, and E. Juergens. COPE - automating coupled
evolution of metamodels and models. In Proc. ECOOP, volume 5653 of LNCS,
pages 52–76. Springer, 2009.

13. M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth. Language evolution in prac-
tice. In Proc. SLE, volume 5696 of LNCS, pages 3–22. Springer, 2009.

14. K. Hussey and M. Paternostro. Advanced features of EMF. Tutorial at EclipseCon
2006, California, USA. [Accessed 07 September 2009] Available at: http://www.
eclipsecon.org/2006/Sub.do?id=171, 2006.

15. F. Jouault and I. Kurtev. Transforming models with ATL. In Proc. Satellite Events
at MoDELS, volume 3844 of LNCS, pages 128–138. Springer, 2005.

16. D.S. Kolovos. An Extensible Platform for Specification of Integrated Languages for
Model Management. PhD thesis, University of York, United Kingdom, 2009.

17. T. Mens and P. Van Gorp. A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci., 152:125–142, 2006.

18. A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai. Automatic
domain model migration to manage metamodel evolution. In Proc. MoDELS,
volume 5795 of LNCS, pages 706–711. Springer, 2009.

19. OMG. Query/View/Transformation 1.0 Specification [online]. [Accessed 26 April
2010] Available at: http://www.omg.org/spec/QVT/1.0/, 2008.

20. L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. An analysis of approaches
to model migration. In Proc. Joint MoDSE-MCCM Workshop, 2009.

21. L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model migration with
Epsilon Flock. In Proc. ICMT [accepted and to appear], 2010.

22. J. Sprinkle. Metamodel Driven Model Migration. PhD thesis, Vanderbilt University,
TN, USA, 2003.

23. J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, and G. Karsai. Domain model
evolution in visual languages using graph transformations. In Proc. Workshop on
Domain-Specific Visual Languages, 2002.

24. Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan De Lara, Tihamer Leven-
dovszky, Ulrike Prange, and Daniel Varro. Model transformations by graph trans-
formations: A comparative study. In Model Transformations in Practice Workshop
at MoDELS 2005, Montego, page 05, 2005.

25. G. Wachsmuth. Metamodel adaptation and model co-adaptation. In Proc.
ECOOP, volume 4609 of LNCS, pages 600–624. Springer, 2007.


