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Frontier estimation with kernel regressionon high order momentsStéphane Girard(1), Armelle Guillou(2) & Gilles Stup�er(2)
(1) Team Mistis, INRIA Rhône-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier cedex, France

(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,67084 Strasbourg cedex, FranceAbstract. We present a new method for estimating the frontier of a multidimensionalsample. The estimator is based on a kernel regression on high order moments. It is assumedthat the order of the moments goes to in�nity while the bandwidth of the kernel goes tozero. The consistency of the estimator is proved under mild conditions on these two pa-rameters. The asymptotic normality is also established when the conditional distributionfunction decreases at a polynomial rate to zero in the neighborhood of the frontier. Thegood performance of the estimator is illustrated on some �nite sample situations.AMS Subject Classi�cations: 62G05, 62G20.Keywords: Frontier estimation, kernel estimation, consistency, asymptotic normality.1 IntroductionLet (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X, Y ) such that theircommon density has a support de�ned by S = {(x, y) ∈ Ω× R; 0 ≤ y ≤ g(x)} , where Ω isa compact subset of Rd. The unknown function g is called the frontier. We address theproblem of estimating g. In Girard and Jacob (2008), an estimator is introduced basedupon kernel regression on high power-transformed data. In the particular case where Ygiven X = x is uniformly distributed it is proved that this estimator is asymptoticallyGaussian with the minimax rate of convergence for Lipschitzian frontiers. Compared tothe numerous extreme-value based estimators (Gardes (2002), Ge�roy (1964), Girard andJacob (2003a, 2003b, 2004), Girard and Menneteau (2005), Menneteau (2008)), projectionestimators (Jacob and Suquet (1995)), or piecewise polynomial estimators (Korostelev and1



Tsybakov (1993), Korostelev et al. (1995), Härdle et al. (1995)) this estimator does notrequire a partition of the support S. When the conditional distribution of Y given X is notuniform, this estimator is still convergent (Girard and Jacob (2008), Theorem 1) but su�ersfrom a strong bias on �nite sample situations (Girard and Jacob (2008), Table 1). Undermonotonicity assumptions, the frontier can also be interpreted as the endpoint of Y given
X ≤ x. Speci�c estimation techniques have been developed in this context, see for instanceDeprins et al. (1984), Farrel (1957), Gijbels et al. (1999) or Aragon et al. (2005), Cazals etal. (2002), Daouia and Simar (2005) for the de�nition of robust estimators.In this paper, an estimator based on a kernel regression on high order moments of the variableof interest Y is introduced. More precisely, the estimator is given by

1

ĝn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ̂(a+1)pn
(x)

µ̂(a+1)pn+1(x)
− (pn + 1)

µ̂pn
(x)

µ̂pn+1(x)

] (1)where (pn) is a nonrandom sequence such that pn → ∞, a > 0 and
µ̂pn

(x) =
1

n

n∑

i=1

Y pn

i Khn
(x −Xi)is a kernel estimator of the conditional moment mpn
(x) = E(Y pn |X = x). Classically, Kis a probability density function on R

d, Khn
(u) = h−d

n K(u/hn) and (hn) is a nonrandompositive sequence such that hn → 0. Note that µ̂pn
(x) is the empirical counterpart of themoment µpn

(x) = E(Y pn Khn
(x −X)), itself a smoothed version of the conditional moment

mpn
(x), namely

µpn
(x) =

∫

Ω

Khn
(x− t)mpn

(t)f(t) dtwhere f is the probability density function of X . From a practical point of view, the use ofa small window-width hn allows to select the pairs (Xi, Yi) such that Xi is close to x whilethe use of the high power pn gives more weight to the Yi close to g(x). Moreover, similarlyto Girard and Jacob (2008), the kernel regression enables us to avoid the partitioning of
S. Let us also highlight that, compared to the estimator suggested in the further work ofGirard and Jacob (2008), Section 6, our proposition (1) does not require the knowledge of theconditional extreme-value index. Moreover, it bene�ts from an explicit formulation which isnot the case of estimators de�ned by optimization problems (Girard et al. (2005)) such aslocal polynomial estimators (Hall et al. (1998), Hall and Park (2004), Knight (2001)). Theasymptotic properties of the estimator (1) are investigated under two di�erent assumptions.The �rst one is nonparametric, it is only assumed that

(NP ) Given X = x, Y is positive and has a �nite right endpoint g(x).We shall show in Section 3 that, under (NP ), the estimator ĝn(x) converges in probabilityto g(x) without any parametric assumption nor on the distribution of X neither on the dis-2



tribution of Y given X = x. Remark that, although our estimator ĝn(x) is based on a kernelregression, classical results do not apply (see for instance Ferraty and Vieu (2005), Theo-rem 6.11) since the condition pn → ∞ induces technical di�culties. The second assumptionis parametric, the cumulative distribution function of Y given X = x is assumed to be givenby
(P ) F (y|x) = 1− (1 − y/g(x))α(x), ∀ y ∈ [0, g(x)].Here, α(x) is an unknown positive function driving the behavior of the distribution tail of

Y given X = x in the neighborhood of its endpoint g(x). If α(x) < 1 then the density of
Y given X = x tends to in�nity as y → g(x) whereas it tends to 0 in the case α(x) > 1.The intermediate case α(x) = 1 corresponds to the uniform distribution already investigatedin Girard and Jacob (2008) where the density has a jump at the endpoint. In the generalcontext of extreme-value theory (see for instance Embrechts et al. (1997)), the conditionaldistribution of Y given X = x is said to belong to the Weibull max-domain of attractionwith conditional extreme-value index −1/α(x). In Section 4, the estimator is proved to beasymptotically Gaussian under (P ). As expected, the asymptotic variance depends on thetail behavior of the conditional distribution of Y given X = x through the quantity α(x).Some simulations are proposed in Section 5 to illustrate the e�ciency of our estimator andto compare it with some estimators of the frontier estimation literature, particularly the oneof Girard and Jacob (2008). Auxiliary results are postponed to Appendix A and proved inAppendix B.2 Construction of the estimatorTo motivate the construction of our estimator of g(x), let us �rst focus on the parametricsetting (P ). Let x ∈ Ω and consider the conditional moment

mpn
(x) = pn

∫ ∞

0

tpn−1F (t|x) dt = α(x) gpn(x) B(pn + 1, α(x)) (2)where F = 1− F and B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt is the Beta function. Therefore
mpn

(x)

mpn+1(x)
=

1

g(x)

(
1 +

α(x)

pn + 1

) (3)which leads to the equation
1

g(x)
=

1

apn

[
((a+ 1)pn + 1)

m(a+1)pn
(x)

m(a+1)pn+1(x)
− (pn + 1)

mpn
(x)

mpn+1(x)

]
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for all a > 0. On the basis of this result, the estimator of g(x) is built in two steps. First,the conditional moment mpn
(x) is replaced by its smoothed version µpn

(x), and we set
1

Gn(x)
:=

1

apn

[
((a+ 1)pn + 1)

µ(a+1)pn
(x)

µ(a+1)pn+1(x)
− (pn + 1)

µpn
(x)

µpn+1(x)

]
.Second, µpn

(x) is estimated by the corresponding empirical moment µ̂pn
(x). Plugging µ̂pn

(x)in 1/Gn(x) leads to the expression (1) of the estimator 1/ĝn(x) of 1/g(x). In the sequel, itis assumed that
(K) The kernel K is bounded and its support is included in B the unit ball of Rd.Note that (K) implies that ∀ q ≥ 1,

∫

B

Kq(x) dx < ∞. The following regularity assumptionsare introduced:
(A1) ∀x ∈ Ω, ∃y0 ∈ (0, 1) such that sup

y∈[y0, 1]

sup
u∈B

∣∣∣∣
F (g(x− hnu)y|x− hnu)

F (g(x)y|x) − 1

∣∣∣∣ → 0 as
n → ∞.

(A2) ∃δf , εf , ηf > 0 such that ∀x, y ∈ Ω, ‖x− y‖ < δf ⇒ |f(x) − f(y)| ≤ εf‖x− y‖ηf .
(A3) ∃δg, εg, ηg > 0 such that ∀x, y ∈ Ω, ‖x− y‖ < δg ⇒ |g(x)− g(y)| ≤ εg‖x− y‖ηg .
(A4) ∃δα, εα, ηα > 0 such that ∀x, y ∈ Ω, ‖x− y‖ < δα ⇒ |α(x)− α(y)| ≤ εα‖x− y‖ηα .Clearly, assumptions (P ) and (A4) imply (A1). Finally, for any real-valued function γ on R

d,the oscillation of γ between two points x and x− hnu, u ∈ B, is de�ned by
∆γ

n(x, u) = γ(x− hnu)− γ(x).3 ConsistencyIn this section, the consistency of ĝn(x) is established in the nonparametric context (NP ).To this end, the �rst step is to prove that (3) still holds, up to an error term, when mpn
(x)is replaced by µpn

(x).Proposition 1. Let x ∈ Ω such that f(x) > 0, and assume that (NP ), (K) and (A1 −A3)hold. If pn hηg
n → 0, then

µpn
(x)

µpn+1(x)
=

1

g(x)
(1 + o(1)).This result is a straightforward consequence of Lemma 1ii) and iii). The second step consistsin showing that µpn

(x) can be replaced by its empirical counterpart µ̂pn
(x). In fact, de�ningfor the sake of simplicity

m1, pn
(x) = pn

∫ 1

0

ypn−1F1(y|x) dy (4)where F1(y|x) := F (g(x) y|x), a slightly more general result can be established:4



Proposition 2. Assume that (NP ), (K) and (A1 − A3) are satis�ed. Let x ∈ Ω such that
f(x) > 0, and pick c > 0 and k ≥ 0. If nm1, cpn+k(x)h

d
n → ∞ and pn h

ηg
n → 0 as n → ∞,then

µ̂cpn+k(x)

µcpn+k(x)
= 1 + oP(1).Proof. Let, for all 1 ≤ j ≤ n,

Unj =
Y cpn+k
j Khn

(x−Xj)

nµcpn+k(x)
.The desired result is then tantamount to ∑n

j=1 Unj
P−→ 1 as n → ∞. Let us highlight that,for all n, the (Unj)1≤j≤n are positive independent random variables, and ∑n

j=1 E(Unj) = 1.According to Chow and Teicher (1997, Corollary 2 p. 358), it is enough to show that, for all
ε > 0, ∑n

j=1 E(Unj1l{Unj≥ε}) → 0 as n → ∞. Remark that the Unj can be rewritten as
Unj =

Vnj Khn
(x−Xj)

nMcpn+k(x)where
Vnj =

Y cpn+k
j

max
u∈B

gcpn+k(x− hnu)
and Mcpn+k(x) =

µcpn+k(x)

max
u∈B

gcpn+k(x− hnu)
.The (Unj)1≤j≤n being identically distributed, it is equivalent to prove that, for all ε > 0,

1

Mcpn+k(x)
E(Vn1 Khn

(x−X)1l{Vn1 Khn (x−X)≥εnMcpn+k(x)}) → 0.Let then ε > 0 and notice that
Vn1 Khn

(x−X) ≥ εnMcpn+k(x) ⇔ hd
n Vn1 Khn

(x−X) ≥ εnMcpn+k(x)h
d
n. (5)The left-hand side of the second inequality is positive and bounded by maxRd K. In view ofLemma 1ii), condition nm1, cpn+k(x)h

d
n → ∞ is equivalent to nhd

nµcpn+k(x)/g
cpn+k(x) → ∞.Besides, pn hηg

n → 0 and (16) in the proof of Lemma 1ii) imply that
max
u∈B

gcpn+k(x− hnu)

gcpn+k(x)
→ 1so that nMcpn+k(x)h

d
n → ∞ as n → ∞. As a consequence, the right-hand side of (5) goesto +∞, so that

1

Mcpn+k(x)
E(Vn1 Khn

(x −X)1l{hd
n Vn1 Khn (x−X)≥εnMcpn+k(x)hd

n}
) = 0eventually, and the result is proved.As a consequence of the two previous results, we have:Theorem 1. Suppose that (NP ), (K) and (A1 −A3) hold. If nm1, (a+1)pn
(x)hd

n → ∞ and
pn h

ηg
n → 0, then ĝn(x)

P−→ g(x) as n → ∞. 5



Proof. Note that m1, (a+1)pn
(x) ≤ (a + 1)m1, pn

(x), which implies nm1, pn
(x)hd

n → ∞.Thus, Lemma 1iii) entails nm1, pn+1(x)h
d
n → ∞ and nm1, (a+1)pn+1(x)h

d
n → ∞ as n → ∞.We can then apply Proposition 2 to rewrite the frontier estimator as:

1

ĝn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ(a+1)pn
(x)

µ(a+1)pn+1(x)
(1 + oP(1))− (pn + 1)

µpn
(x)

µpn+1(x)
(1 + oP(1))

]
.(6)From Proposition 1, we have

µpn
(x)

µpn+1(x)
→ 1

g(x)
and µ(a+1)pn

(x)

µ(a+1)pn+1(x)
→ 1

g(x)as n → ∞. Replacing in (6), the conclusion follows.4 Asymptotic normalityWe now establish the asymptotic distribution of ĝn(x) under the assumption (P ). The para-metric model enables us to compute a more precise asymptotic expansion of µpn
(x)/µpn+1(x)than under the nonparametric assumption, see Proposition 1.Proposition 3. Let x ∈ Ω such that f(x) > 0, and assume that (P ), (K) and (A2 − A4)hold. If pn hηg

n → 0, then
µpn

(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]
+O

(
hηg
n +

hηα
n

pn

)
.Proof. Remark that, retaining notations of Lemma 2, we have

Ln(pn + 1, x, u)

Ln(pn, x, u)
= 1 +

∆g
n(x, u)

g(x)
− ∆α

n(x, u)

pn
+ O

(
h
ηg
n

pn
+

hηα
n

p2n

)uniformly in u ∈ B. Using the expansion of µpn
(x) provided by Lemma 2ii) with q = 1 thenyields

µpn
(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]

×


1 +

∫

B

Ln(pn, x, u)

[
∆α

n(x, u)

pn
− ∆g

n(x, u)

g(x)

]
K(u)du

∫

B

Ln(pn, x, u)K(u)du

+O

(
h
ηg
n

pn
+

hηα
n

p2n

)

 .To conclude, from Lemma 2i), Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B so that

∫

B

Ln(pn, x, u)

[
∆α

n(x, u)

pn
− ∆g

n(x, u)

g(x)

]
K(u)du

∫

B

Ln(pn, x, u)K(u)du

= O

(
hηg
n +

hηα
n

pn

)which entails
µpn

(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]
+O

(
hηg
n +

hηα
n

pn

)and completes the proof of Proposition 3. 6



As a straightforward consequence, we obtain a control of the bias introduced by replacing
mpn

(x) by µpn
(x). If pn hηg

n → 0, then
1

Gn(x)
=

1

g(x)
+ O

(
hηg
n +

hηα
n

pn

)
. (7)Let us now turn to the random term:Theorem 2. Suppose (P ), (K) and (A2 − A4) hold. Let x ∈ Ω such that f(x) > 0. If

n p
−α(x)
n hd

n → ∞ and pn h
ηg
n → 0 then

vn(x)

(
ĝn(x)

Gn(x)
− 1

)
d−→ N

(
0,

‖K‖22 V (α(x), a)

f(x)

)
, as n → ∞where vn(x) =

√
n p

−α(x)/2+1
n h

d/2
n , ‖K‖22 =

∫

B

K2(x) dx and
V (α(x), a) =

α(x) + 1

a2 Γ(α(x))

[
2−α(x)−2 − 2

(a+ 1)α(x)+1

(a+ 2)α(x)+2
+ 2−α(x)−2(a+ 1)α(x)

]
.Proof. Our goal is to prove that the sequence of random variables

ξn(x) =
g(x)

‖K‖2

√
f(x)

V (α(x), a)
· vn(x)

(
1

ĝn(x)
− 1

Gn(x)

)converges in distribution to a standard Gaussian random variable. The �rst step consists touse Lemma 3 in order to linearize ξn(x):
ξn(x) =

[
ζ(1)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(2)n (x) +

(
1 +

apn
pn + 1

)(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(3)n (x)

]

× un, a(x)(1 + o(1)).Now, Proposition 2 yields
ξn(x) = un, a(x)

[
ζ(1)n (x) + oP(ζ

(2)
n (x)) + oP(ζ

(3)
n (x))

]
(1 + o(1))and to conclude the proof, it is su�cient to establish that

un, a(x) ζ
(1)
n (x)

d−→ N (0, 1), (8a)
un, a(x) ζ

(2)
n (x)

d−→ N (0, C2), (8b)
un, a(x) ζ

(3)
n (x)

d−→ N (0, C3), (8c)where C2 and C3 are positive constants. Note that in fact, (8b) and (8c) are strongerthan what is necessary, but their proofs are similar to (8a). In all the sequel, we set:
Z

(n, c, j)
k (x) = Y cpn+j

k Khn
(x − Xk), so that µcpn+j(x) = E(Z(n, c, j)(x)). To prove (8a),remark that ζ(1)n (x) can be expanded as the sum of independent and centered random vari-
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ables: ζ(1)n (x) =
∑n

k=1 S
(1)
n, k(x) with

S
(1)
n, k(x) =

1

n

[
Z

(n, 1, 0)
k (x), Z

(n, 1, 1)
k (x), Z

(n, a+1, 0)
k (x), Z

(n, a+1, 1)
k (x)

]
A(1)

n (x), (9)
A(1)

n (x) =
[
a
(1)
n, 0(x), a

(1)
n, 1(x), a

(1)
n, 2(x), a

(1)
n, 3(x)

]t
,

a
(1)
n, 0(x) = −1,

a
(1)
n, 1(x) =

µpn
(x)

µpn+1(x)
,

a
(1)
n, 2(x) =

(
1 +

apn
pn + 1

)
µpn+1(x)

µ(a+1)pn+1(x)
,

a
(1)
n, 3(x) = −

(
1 +

apn
pn + 1

)
µpn+1(x)µ(a+1)pn

(x)

µ2
(a+1)pn+1(x)

,where At stands for the transposed matrix of A. In order to use Lyapounov's central limittheorem (see e.g. Billingsley, 1979, p. 312), it remains to prove that
1

[Var(ζ
(1)
n (x))]3/2

n∑

k=1

E|S(1)
n, k(x)|3 −−−−→

n→∞
0, (10)which requires to control Var(ζ(1)n (x)) and E|S(1)

n, k(x)|3. The variance can be rewritten as
nVar(ζ(1)n (x)) = w(pn, pn)(x) − 2

(
1 +

apn
pn + 1

)
µpn+1(x)

µ(a+1)pn+1(x)
w(pn, (a+ 1)pn)(x)

+

(
1 +

apn
pn + 1

)2 µ2
pn+1(x)

µ2
(a+1)pn+1(x)

w((a+ 1)pn, (a+ 1)pn)(x)where
w(spn + t, upn + v)(x) =

[
−1,

µspn+t(x)

µspn+t+1(x)

]
Mn(s, t, u, v)(x)

[
−1,

µupn+v(x)

µupn+v+1(x)

]tand Mn(s, t, u, v)(x) is the 2× 2 covariance matrix de�ned by
Mn(s, t, u, v)(x) =


 E(Z(n, s, t)(x)Z(n, u, v)(x)) E(Z(n, s, t)(x)Z(n, u, v+1)(x))

E(Z(n, s, t+1)(x)Z(n, u, v)(x)) E(Z(n, s, t+1)(x)Z(n, u, v+1)(x))


 .Since Lemma 2iii) provides an asymptotic expansion of the matrix Mn(s, t, u, v)(x), it istherefore su�cient to compute an asymptotic expansion of µspn+t(x)/µspn+t+1(x). UsingProposition 3 and tedious computations lead to

Var(ζ(1)n (x)) = a2‖K‖22 f(x) Γ2(α(x) + 1)V (α(x), a)
1

n

1

hd
n

g2pn(x) p−α(x)−2
n (1 + o(1)). (11)Now, focusing on the third moment, Hölder's inequality yields

n3
E|S(1)

n, 1(x)|3 ≤ 4E|a(1)n, 0(x)Z
(n, 1, 0)
1 (x) + a

(1)
n, 1(x)Z

(n, 1, 1)
1 (x)|3

+ 4E|a(1)n, 2(x)Z
(n, a+1, 0)
1 (x) + a

(1)
n, 3(x)Z

(n, a+1, 1)
1 (x)|3.

8



The next step consists in applying Lemma 4 to each term of the right-hand side of thisinequality. To this end, let us consider the functions
H

(1)
n, 0(u) = −1,

H
(1)
n, 1(u) = α(x)u,

H
(1)
n, 2(u) =

(
1 +

apn
pn + 1

)
gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
,

H
(1)
n, 3(u) = −

(
1 +

apn
pn + 1

)
gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
· α(x)u
a+ 1

,and note that there exist two sequences of measurable functions (χn, 1) and (χn, 2) uniformlyconvergent to 0 on [0, 1] such that
max
u∈B

∣∣∣a(1)n, 0(x) + a
(1)
n, 1(x) g(x − hnu) y

∣∣∣ ≤ |H(1)
n, 0(y)|(1 − y) +

|H(1)
n, 1(y)|+ χn, 1(y)

pn
,

max
u∈B

∣∣∣a(1)n, 2(x) + a
(1)
n, 3(x) g(x − hnu) y

∣∣∣ ≤ 1

gapn(x)

[
|H(1)

n, 2(y)|(1 − y) +
|H(1)

n, 3(y)|+ χn, 2(y)

pn

]
.Since gapn(x)µpn+1(x)/µ(a+1)pn+1(x) → (a + 1)α(x) as n → ∞, the functions H

(1)
n, j , j ∈

{0, 1, 2, 3} are bounded on [0, 1], uniformly in n, and thus Lemma 4 entails that
E|S(1)

n, 1(x)|3 = O(n−3 g3pn(x) p−3−α(x)
n h−2d

n ). (12)Combining (11) and (12), convergence (10) follows from the condition np
−α(x)
n hd

n → ∞ andtherefore (8a) holds.Proofs of (8b) and (8c) are similar since ζ
(2)
n and ζ

(3)
n can be rewritten as

ζ(2)n (x) =
1

n

n∑

k=1

[
Z

(n, 1, 0)
k (x), Z

(n, 1, 1)
k (x)

] [
a
(2)
n, 0(x), a

(2)
n, 1(x)

]t

ζ(3)n (x) =
1

n

n∑

k=1

[
Z

(n, a+1, 0)
k (x), Z

(n, a+1, 1)
k (x)

] [
a
(3)
n, 0(x), a

(3)
n, 1(x)

]twith clear de�nitions of the sequences a(j)n, i(x), i = 0, 1, j = 2, 3. Applying Lemma 4 with
H

(2)
n, 0(u) = −1,

H
(2)
n, 1(u) = α(x)u,

H
(3)
n, 0(u) = gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
,

H
(3)
n, 1(u) = −gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
· α(x)u
a+ 1yields E|S(j)

n, 1(x)|3 = O(n−3 g3pn(x) p
−3−α(x)
n h−2d

n ), j = 2, 3. Lyapounov's central limit the-orem then gives the convergence. Theorem 2 is therefore established.From the expansion̂
gn(x)− g(x) = Gn(x)

[
ĝn(x)

Gn(x)
− 1

]
+ [Gn(x)− g(x)],the asymptotic normality of ĝn(x) centered on the true function g(x) is readily obtained:9



Theorem 3. Suppose (P ), (K) and (A2 − A4) hold. Let x ∈ Ω such that f(x) > 0. If
n p

−α(x)
n hd

n → ∞, n p
−α(x)+2
n h

d+2ηg
n → 0 and n p

−α(x)
n hd+2ηα

n → 0, then
vn(x)

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0,

‖K‖22 V (α(x), a)

f(x)

)
, as n → ∞.Let us note that n p

−α(x)
n hd

n → ∞ and n p
−α(x)+2
n h

d+2ηg
n → 0 imply that pn hηg

n → 0. Besides,if we assume that α has greater regularity than g, namely ηα ≥ ηg, then the hypothesesnecessary to apply Theorem 3 can be reduced to n p
−α(x)
n hd

n → ∞ and n p
−α(x)+2
n h

d+2ηg
n → 0.Let x ∈ Ω such that f(x) > 0 and note that the sequences

hn(x) = εα(x)−1
n n−1/(d+ηgα(x)) and pn(x) = εd+ηg

n nηg/(d+ηgα(x))can be chosen to check the assumptions of Theorem 3, where (εn) is an arbitrary sequenceof positive real numbers tending to 0 such that n−δεn → 0 for all δ > 0. With such choices,the rate of convergence vn(x) of the estimator is then nηg/(d+ηgα(x)) up to a εn term. Inthe uniform case (that is, when α is constant equal to 1), the rate of convergence of theestimator is then nηg/(d+ηg), up to the factor εn, which is also the rate of convergence for theParzen estimator studied in Girard and Jacob (2008), Theorem 2. Let us note that this rateof convergence has been shown to be minimax by Härdle et al. (1995) for a particular classof densities with a L1 risk.The asymptotic variance of the estimator also involves the multiplicative factor V (α(x), a).The choice of an �optimal� value for a by minimization of V (α(x), a) is a di�cult task sinceit depends on the unknown value of α(x). One can observe on Figure 1 that, for α(x) ≤ 2,
V (α(x), ·) is a decreasing function and thus large values of a should be preferred.However, both statements above require a precise knowledge of the function x 7→ α(x), whichis often unrealistic. In view of these remarks, it may be of interest to estimate α(x). From (3),the following estimator is considered:

α̂n(x) = (pn + 1)

[
ĝn(x)

µ̂pn
(x)

µ̂pn+1(x)
− 1

]
,and its weak consistency is established under the same assumptions as in Theorem 3.Proposition 4. Under the assumptions of Theorem 3, α̂n(x) = α(x) + OP(pn/vn(x)).Proof. De�ne

αn(x) = (pn + 1)

[
Gn(x)

µpn
(x)

µpn+1(x)
− 1

]and let us focus �rst on the random term
vn(x)

pn
(α̂n(x)−αn(x)) = vn(x)

[
[ĝn(x)−Gn(x)]

µ̂pn
(x)

µ̂pn+1(x)
−Gn(x)

µpn+1(x)

µ̂pn+1(x)
· ζ

(2)
n (x)

µpn+1(x)

]
(1+o(1))10



with notations of Lemma 3. Recall that, from Proposition 1, µpn
(x)/µpn+1(x) → 1/g(x),from Proposition 2, µpn

(x)/µ̂pn
(x)

P−→ 1 and from (7), Gn(x) → g(x) as n → ∞ so that
vn(x)

pn
(α̂n(x)−αn(x)) = vn(x)(ĝn(x)−Gn(x))

[
1

g(x)
+ oP(1)

]
−g(x)vn(x)

ζ
(2)
n (x)

µpn+1(x)
(1+oP(1)).Besides, applying Theorem 2 yields vn(x)(ĝn(x) −Gn(x)) = OP(1). Now,

vn(x)
ζ
(2)
n (x)

µpn+1(x)
=

vn(x)

µpn+1(x)un, a(x)
un, a(x)ζ

(2)
n (x) = OP(1),from (20) and since un, a(x)ζ

(2)
n (x) is asymptotically Gaussian (see (8b)). As a preliminaryconclusion, we have
vn(x)

pn
(α̂n(x)− αn(x)) = OP(1).Turning to the bias term, (7) and Proposition 3 yield

αn(x) = α(x) + (pn + 1)O

(
hηg
n +

hηα
n

pn

)
= α(x) + o(pn/vn(x)),which completes the proof.Meanwhile, the density function f(x) can be estimated with the classical kernel estimator:

f̂n(x) =
1

n

n∑

i=1

Khn
(x −Xi).Since Collomb (1976), it is well-known that f̂n(x)

P−→ f(x) when nhd
n → ∞. By plugging

α̂n(x) and f̂n(x) in the asymptotic variance of Theorem 3, classical arguments thus yield:Corollary 1. Under the assumptions of Theorem 3,
vn(x)

√
f̂n(x)

V (α̂n(x), a)

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0, ‖K‖22

)
, as n → ∞.Pointwise con�dence intervals for the frontier may then be built using this result.5 Numerical experimentsThe behavior of the proposed frontier estimator is investigated on di�erent situations. Inparticular, we examine the case d = 1 where X is uniformly distributed on Ω = [0, 1] and thecase d = 2 where X = (X1, X2) is uniformly distributed on Ω = [0, 1]2.

11



� Let us �rst focus on the case d = 1. Three frontiers are considered:
g1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + exp

(
−60

(
x− 1

4

)2
) if x ∈

[
0, 1

3

]

1 + exp

(
− 5

12

) if x ∈
]
1
3 ,

2
3

]

1 + 5 exp

(
− 5

12

)
− 6 exp

(
− 5

12

)
x if x ∈

]
2
3 ,

5
6

]

6x− 4 if x ∈
]
5
6 , 1

]

,

g2(x) =

(
1

10
+ sin(πx)

)[
11

10
− 1

2
exp

(
−64

(
x− 1

2

)2
)]

,

g3(x) =
5

4
− 2x(1− x).Note that g1 is continuous but not di�erentiable at x = 1/3, x = 2/3 and x = 5/6 while g2and g3 are in�nitely di�erentiable.In the parametric setting (P ), two di�erent models for the function α(x) are considered: aconstant function α1(x) = 1.25 and α2(x) = 1.25 + 0.5| cos(2πx)|.In the nonparametric setting (NP ), the simulated model is given by

F (y|x) = C(x)(1 − y/g3(x))
α2(x) + (1−C(x))(1− y/g3(x))

α2(x)+1/4, ∀ y ∈ [0, g3(x)], (13)with C(x) = c + sin(2πx)/16 and c ∈ {1/8, 3/8, 5/8, 7/8}. Let us highlight that (13) canbe seen as a �contamination� of the parametric model (P ): the smaller c is, the larger thecontamination is.The uniform kernel is chosen:
K(x) =

1

2
1l[−1, 1](x)with associated bandwidth h

(m)
n = 2σ̂(X)/n1/(1+α∞) and p

(m)
n = n1/(1+α∞)/

√
ln(n), where

σ̂(X) is the empirical standard deviation of X and α∞ = maxΩ α < ∞ since α is continuousand Ω is a compact subset of R. These sequences are chosen to check the hypotheses ofTheorem 1. Note that the multiplicative constant σ̂(X) has been suggested by Girard andJacob (2008), whereas the constant 2 was empirically chosen. The sample size is �xed to
n = 500.� In the case d = 2, we limit ourselves to a unique model

g(x, y) = 1 + 3g1(x)y/20, and α(x, y) = 1.25 + 0.5| cos(2πx) sin(2πy)|,the kernel being
K(x, y) =

1

4
1l[−1, 1]×[−1, 1](x, y),with bandwidth h

(m)
n = 4

√
σ̂(X1)σ̂(X2)/n

1/(2+α∞) and p
(m)
n = n1/(2+α∞)/

√
ln(n). Thesample size is �xed to n = 1000. 12



In all cases, our moment estimator is computed with a = 15, the constant a having beenchosen after intensive simulations. Our estimator is compared to the two estimators proposedby Girard and Jacob (2008) and Ge�roy (1964). Let us recall that, similarly to ĝn(x), Girardand Jacob's estimator (2008) is based on a kernel regression on high power transformeddata. At the opposite, the estimator in Ge�roy (1964) is based on the extreme values ofthe sample and does not involve any smoothing. For Girard and Jacob's estimator, we set
h
(gj)
n = 4σ̂(X)/

√
n and p

(gj)
n =

√
n/ ln(n) if d = 1, and h

(gj)
n = 4

√
σ̂(X1)σ̂(X2)/n

1/3 and
p
(gj)
n = n1/3/

√
ln(n) when d = 2. The L1− errors associated to each estimator are computedon 500 replications of the initial sample and the minimum, maximum and mean L1− errorsare reported in Table 1.It appears that, in all the considered situations, our moment estimator yields better resultsthan both the estimators of Girard and Jacob (2008) and Ge�roy (1964). For a �xed frontier,all the estimators perform better on the situation α(x) = α1(x) than on the situation α(x) =

α2(x). This behavior is a consequence of α2(x) > α1(x): as α(x) increases, the simulatedpoints tend to move away from the frontier g(x). This phenomenon is illustrated in the case
d = 1 on Figures 2 and 3. On each of the upper panels the best situation is represented,i.e. the replication that yields the smallest L1− error for ĝn in Table 1. Similarly, the worstsituation is depicted on the lower panels, i.e. the replication that yields the largest L1− errorfor ĝn in Table 1. In all cases, ĝn is superimposed to the frontier g.When d = 2, scatter plots (g(Xi), ĝ(Xi)), i = 1, . . . , n are represented on Figure 4, ĝ beingeither our moment estimator or Girard and Jacob's estimator. The best and worst situationsare depicted for these two estimators. It appears that the points associated to the momentestimator are closer to the line y = x than the points associated to Girard and Jacob'sestimator.ReferencesAragon, Y., Daouia, A., Thomas-Agnan, C. (2005). Nonparametric frontier estimation: aconditional quantile-based approach. Journal of Econometric Theory, 21(2):358�389.Billingsley, P. (1979). Probability and measure, John Wiley and Sons.Cazals, C., Florens, J.-P., Simar, L. (2002). Nonparametric frontier estimation: A robustapproach. Journal of Econometrics, 106(1):1�25.Chow, Y.S., Teicher, H. (1997). Probability Theory, Springer.Collomb, G. (1976). Estimation non paramétrique de la régression par la méthode du noyau,PhD thesis, Université Paul Sabatier de Toulouse.13
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(x) and m1, pn

(x) are provided, see (4) for a de�nition.Lemma 1. Suppose that (NP ), (K) and (A1 −A3) hold. Let x ∈ Ω such that f(x) > 0. If
pn h

ηg
n → 0, theni) m1, pn

(x− hnu) = m1, pn
(x)(1 + o(1)) uniformly in u ∈ B,ii) µpn

(x) = f(x)gpn(x)m1, pn
(x)(1 + o(1)),iii) m1, pn

(x) = m1, pn+1(x)(1 + o(1)).The next result of this section is technical: it provides precise expansions of the smoothedmoment E(Y pn Kq
hn

(X − x)) when pn → ∞, hn → 0 and for all q ≥ 1. It will be useful forthe proof of our next lemmas and of Theorem 2.Lemma 2. Suppose (P ), (K) and (A2 − A4) hold. For all q ≥ 1, u ∈ B, n ∈ N \ {0} and
x ∈ Ω such that f(x) > 0, let

Ln(pn, x, u) =
f(x− hnu) Γ(α(x − hnu) + 1)

f(x) Γ(α(x) + 1)
exp

[
pn

∆g
n(x, u)

g(x)
− ln(pn)∆

α
n(x, u)

]

Λn(q, pn, x) = hd(q−1)
n

E(Y pn Kq
hn
(X − x))

f(x) gpn(x)
.15



If pn hηg
n → 0, theni) Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B.ii) For all q ≥ 1

Λn(q, pn, x)

α(x)B(pn + 1, α(x))
=

∫

B

Ln(pn, x, u)

[
1− pn

2

(
∆g

n(x, u)

g(x)

)2
]
Kq(u) du

− 1

pn

∫

B

Ln(pn, x, u)
∆α

n(x, u)

2
[α(x − hnu) + α(x) + 1]Kq(u) du

+ O

(
h
ηg
n

pn
+

hηα
n

p2n

)
.iii) Moreover, there exist δ1, δ2 ∈ R such that for all q ≥ 1

Λn(q, pn, x)

Γ(α(x) + 1) p
−α(x)
n

=

∫

B

Ln(pn, x, u)

[
1 +

δ1
pn

− pn
2

(
∆g

n(x, u)

g(x)

)2
]
Kq(u) du

− 1

pn

∫

B

Ln(pn, x, u)
∆α

n(x, u)

2
[α(x − hnu) + α(x) + 1]Kq(u) du

+
δ2
p2n

∫

B

Kq(u) du+ o(p−2
n ).Our next lemma consists in linearizing

ξn(x) =
g(x)

‖K‖2

√
f(x)

V (α(x), a)
· vn(x)

(
1

ĝn(x)
− 1

Gn(x)

)appearing in Theorem 2.Lemma 3. Suppose (P ), (K), (A2 −A4) hold and let x ∈ Ω such that f(x) > 0. If pn → ∞then
ξn(x) =

[
ζ(1)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(2)n (x) +

(
1 +

apn
pn + 1

)(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(3)n (x)

]

× un, a(x)(1 + o(1))where νp(x) = µ̂p(x) − µp(x),
ζ(1)n (x) = ζ(2)n (x) +

[
1 +

apn
pn + 1

]
ζ(3)n (x)with ζ(2)n (x) = −νpn

(x) +
µpn

(x)

µpn+1(x)
νpn+1(x),

ζ(3)n (x) =
µpn+1(x)

µ(a+1)pn+1(x)
ν(a+1)pn

(x)− µpn+1(x)µ(a+1)pn
(x)

µ2
(a+1)pn+1(x)

ν(a+1)pn+1(x)and un, a(x) =
1

a‖K‖2 Γ(α(x) + 1)

√
1

f(x)V (α(x), a)

p
α(x)
n vn(x)

gpn(x)
.Finally, the following result provides an asymptotic bound of the third-order moments ap-pearing in the proofs.
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Lemma 4. Suppose (P ), (K), (A2−A4) are satis�ed and pn h
ηg
n → 0 as n → ∞. Let k ∈ N,

(bn, j)n∈N\{0}, 0≤j≤k ∈ R and x ∈ R
d such that there exist m ∈ N and sequences of measurablefunctions (Hn, j), 0 ≤ j ≤ m, uniformly bounded on [0, 1] with

∀ y ∈ [0, 1] max
u∈B

∣∣∣∣∣∣

k∑

j=0

bn, j g
j(x− hnu) y

j

∣∣∣∣∣∣
≤

m∑

j=0

Hn, j(y)

pjn
(1− y)m−j .Let us consider

Sn(x) =
1

n

k∑

j=0

bn, j Z
(n, c, j)
1 (x).Then E|Sn(x)|3 = O(n−3 g3cpn(x) p

−3m−α(x)
n h−2d

n ).Appendix B: Proof of the auxiliary resultsProof of Lemma 1. i) Set
Ipn

(x) :=

∫ 1

0

ypn−1F1(y|x) dyso that m1, pn
(x) = pnIpn

(x). Let ε ∈ (0, 1 − y0) and u ∈ B. The integral Ipn
(x − hnu) isrewritten as:

Ipn
(x − hnu) =

∫ 1

1−ε

ypn−1F1(y|x− hnu) dy


1 +

∫ 1−ε

0

ypn−1F1(y|x− hnu) dy

∫ 1

1−ε

ypn−1F1(y|x− hnu) dy


 ;with

0 ≤

∫ 1−ε

0

ypn−1F1(y|x− hnu) dy

∫ 1

1−ε

ypn−1F1(y|x− hnu) dy

≤ 1− ε
∫ 1

1−ε

[
y

1− ε

]pn−1

F1(y|x− hnu) dy

≤ 1− ε
[
1− ε/2

1− ε

]pn−1 ∫ 1

1−ε/2

F1(y|x− hnu) dy

.

(A1) ensures that x 7→ F 1(y|x) is continuous for all y, so that
sup
u∈B

∣∣∣∣∣

∫ 1

1−ε/2

F1(y|x− hnu)−
∫ 1

1−ε/2

F1(y|x) dy
∣∣∣∣∣ ≤

∫ 1

1−ε/2

sup
u∈B

|F1(y|x− hnu)− F1(y|x)| dywhich converges to 0 by the dominated convergence theorem. Since [1− ε/2

1− ε

]pn−1

→ ∞ as
n → ∞, we therefore get, uniformly in u ∈ B,

Ipn
(x− hnu) =

∫ 1

1−ε

ypn−1F1(y|x− hnu) dy(1 + o(1)).17



Now,
∣∣∣∣∣∣∣∣∣

∫ 1

1−ε

ypn−1F1(y|x− hnu) dy

∫ 1

1−ε

ypn−1F1(y|x) dy
− 1

∣∣∣∣∣∣∣∣∣
≤

∫ 1

1−ε

ypn−1F1(y|x)
∣∣∣∣
F1(y|x− hnu)

F1(y|x)
− 1

∣∣∣∣ dy
∫ 1

1−ε

ypn−1F1(y|x) dy

≤ sup
y∈[y0, 1]

sup
u∈B

∣∣∣∣
F1(y|x− hnu)

F1(y|x)
− 1

∣∣∣∣→ 0as n → ∞ and consequently, Ipn
(x − hnu)/Ipn

(x) → 1 as n → ∞ uniformly in u ∈ B. Theconclusion follows.ii) Recall that
µpn

(x) =

∫

B

f(x− hnu)g
pn(x− hnu)m1, pn

(x− hnu)K(u) du.First, (A2) yields
sup
u∈B

∣∣∣∣
f(x− hnu)

f(x)
− 1

∣∣∣∣ = sup
u∈B

∣∣∣∣
∆f

n(x, u)

f(x)

∣∣∣∣ ≤
εf h

ηf
n

f(x)
−→ 0. (14)Second, (A3) entails

pn sup
u∈B

∣∣∣∣
∆g

n(x, u)

g(x)

∣∣∣∣ ≤ pn sup
u∈B

{
εgh

ηg
n ‖u‖ηg

g(x)

}
= O(pnh

ηg
n ) (15)so that the hypothesis pn hηg

n → 0 gives
ln

[
gpn(x− hnu)

gpn(x)

]
= pn ln

[
1 +

∆g
n(x, u)

g(x)

]
= O(pn h

ηg
n ) → 0 (16)uniformly in u ∈ B as n → ∞. Collecting (14), (16) and i), the dominated convergencetheorem therefore gives ii).iii) Recall that for all ε ∈ (0, 1− y0), Ipn

(x) =

∫ 1

1−ε

ypn−1F1(y|x) dy (1 + o(1)). Since
1 ≤

∫ 1

1−ε

ypn−1F1(y|x) dy
/∫ 1

1−ε

ypnF1(y|x) dy ≤ 1

1− εfor all ε ∈ (0, 1−y0), one has Ipn
(x)/Ipn+1(x) → 1 as n → ∞. Hence,m1, pn

(x)/m1, pn+1(x) →
1 as n → ∞, which completes the proof of iii).Proof of Lemma 2. i) Let us introduce

Qn(x, u) =
f(x− hnu) Γ(α(x− hnu) + 1)

f(x) Γ(α(x) + 1)
.Since Γ is lipschitz on any compact set of ]0, +∞[, the function y 7→ Γ(α(y) + 1) is locallyHölderian with exponent ηα. This is also the case for the function y 7→ f(y) Γ(α(y)+ 1) withexponent min(ηf , ηα). As a consequence, Qn(x, u) → 1 as n → ∞, uniformly in u ∈ B.Moreover, since h

ηg
n pn → 0, we have

sup
u∈B

ln(pn) |∆α
n(x, u)| ≤ εα hηα

n | ln pn| = εα

[
hηg
n pn

]ηα/ηg | ln pn|
p
ηα/ηg
n

−→ 0.18



It was already proved that supu∈B pn |∆g
n(x, u)| → 0 as n → ∞, see (15). As a conclusion,

Ln(pn, x, u) → 1 as n → ∞, uniformly in u ∈ B.ii) By de�nition of the Beta function,
Λn(q, pn, x)

α(x)B(pn + 1, α(x))
=

∫

B

Qn(x, u)
Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x− hnu))

gpn(x− hnu)

gpn(x)
Kq(u) du. (17)Applying Stirling's formula, simple calculations yield

Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x − hnu))
= exp(− ln(pn)∆

α
n(x, u))

(
1−∆α

n(x, u)

2pn
(1 + α(x− hnu) + α(x))

)

+ O

(
hηα
n

p2n

)
, (18)uniformly in u ∈ B. Besides

gpn(x− hnu)

gpn(x)
= exp

[
pn ln

(
1 +

∆g
n(x, u)

g(x)

)]

= exp

[
pn

∆g
n(x, u)

g(x)

] [
1− pn

2

(
∆g

n(x, u)

g(x)

)2
]
+O

(
h
ηg
n

pn

) (19)uniformly in u ∈ B. Replacing (18) and (19) in (17) gives the �rst desired expansion.iii) Now, according to Tricomi and Erdélyi (1951), for all κ and ι, there exist two real numbers
δ1(κ, ι) and δ2(κ, ι) such that

Γ(x+ κ)

Γ(x+ ι)
= xκ−ι

[
1 +

δ1(κ, ι)

x
+

δ2(κ, ι)

x2
+ o

(
1

x2

)]
.Consequently, setting δ1 = δ1(1, α(x) + 1) and δ2 = δ2(1, α(x) + 1), we have

B(pn + 1, α(x)) = Γ(α(x)) p−α(x)
n

[
1 +

δ1
pn

+
δ2
p2n

+ o

(
1

p2n

)]
.Replacing in the expansion ii) and remarking that, from i),

∫

B

Ln(pn, x, u)
δ2
p2n

Kq(u) du =
δ2
p2n

∫

B

Kq(u) du+ o

(
1

p2n

)yields iii).Proof of Lemma 3. Let us �rst remark that, from Lemma 2i) and iii) with q = 1,
µpn+1(x) = f(x)Γ(α(x) + 1)gpn+1(x)p−α(x)

n (1 + o(1)),leading to
µpn+1(x)un, a(x) =

g(x)

a‖K‖2

√
f(x)

V (α(x), a)
vn(x)(1 + o(1)), (20)and therefore

ξn(x) =
µpn+1(x)un, a(x)

pn + 1
· apn

(
1

ĝn(x)
− 1

Gn(x)

)
(1 + o(1)). (21)19



Besides,
apn

(
1

ĝn(x)
− 1

Gn(x)

)
= ((a+ 1)pn + 1)

µ̂(a+1)pn
(x)µ(a+1)pn+1(x)− µ(a+1)pn

(x) µ̂(a+1)pn+1(x)

µ̂(a+1)pn+1(x)µ(a+1)pn+1(x)

− (pn + 1)
µ̂pn

(x)µpn+1(x) − µpn
(x) µ̂pn+1(x)

µ̂pn+1(x)µpn+1(x)

=: D(1)
n (x)−D(2)

n (x)with
D(1)

n (x) :=
(a+ 1)pn + 1

µ(a+1)pn+1(x)
· µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
·
(
ν(a+1)pn

(x)− µ(a+1)pn
(x)

µ(a+1)pn+1(x)
ν(a+1)pn+1(x)

)

D(2)
n (x) :=

pn + 1

µpn+1(x)
· µpn+1(x)

µ̂pn+1(x)
·
(
νpn

(x)− µpn
(x)

µpn+1(x)
νpn+1(x)

)which leads to
µpn+1(x)

pn + 1
·D(1)

n (x) =

(
1 +

apn
pn + 1

)
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
· ζ(3)n (x)

µpn+1(x)

pn + 1
·D(2)

n (x) = −µpn+1(x)

µ̂pn+1(x)
· ζ(2)n (x).Replacing in (21) concludes the proof of Lemma 3.Proof of Lemma 4. We only prove the case c = 1 since the result can be obtained byreplacing pn by cpn. Conditioning on X yields

E|Sn(x)|3 =
1

n3

∫

Rd

E




∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j Khn

(x− v)

∣∣∣∣∣∣

3 ∣∣∣X = v


 f(v) dv

=
1

n3h2d
n

∫

B

E




∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j

∣∣∣∣∣∣

3 ∣∣∣X = x− hnu


 K3(u) f(x− hnu) du.Now, given {X = x− hnu}, we have Wn(x, u) :=

Y

g(x− hnu)
≤ 1. Setting

cn(x) := (m+ 1)2 sup
[0, 1]

0≤j≤m
n∈N\{0}

|Hn, j |3 ·max
u∈B

g3pn(x− hnu)

g3pn(x)
,which is a bounded sequence, Hölder's inequality entails, given {X = x− hnu},

∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j

∣∣∣∣∣∣

3

= g3pn(x − hnu)

∣∣∣∣∣∣
W pn

n (x, u)
k∑

j=0

bn, j W
j
n(x, u)g

j(x− hnu)

∣∣∣∣∣∣

3

≤ cn(x) g
3pn(x)

m∑

j=0

1

p3jn
W 3pn

n (x, u)(1 −Wn(x, u))
3(m−j).It is therefore su�cient to prove that, for all j ∈ {0, . . . , m}, uniformly in u ∈ B,

E(W 3pn
n (x, u)(1−Wn(x, u))

3(m−j) |X = x− hnu) = O(p3j−3m−α(x)
n ).20



Because for all λ, µ ≥ 0, the function
(y, ω) 7→ d

dy

[
yλ (1− y)µ

]
1l{y≤Wn(x, u)(ω)}is Lebesgue⊗ P(· |X = x− hnu)−integrable, Fubini's theorem gives

E(W 3pn
n (x, u)(1−Wn(x, u))

3(m−j) |X = x−hnu) =

∫ 1

0

d

dy

[
y3pn (1− y)3(m−j)

]
F 1(y|x−hnu) dysince, given {X = x − hnu}, Wn(x, u) has survival function F 1(·|x − hnu). To conclude,notice that if (sn) is a real sequence tending to +∞ such that sn h

ηg
n → 0 as n → ∞ and

` ≥ 0, we obtain following (18) and Tricomi and Erdélyi (1951)
∫ 1

0

ysn(1 − y)`+α(x−hnu) dy = B(sn + 1, `+ α(x− hnu) + 1) = O(s−`−α(x)−1
n )uniformly in u ∈ B. Since F 1(y|x − hnu) = (1 − y)α(x−hnu), some quick computations thenshow that

E(W 3pn
n (x, u)(1−Wn(x, u))

3(m−j) |X = x− hnu) = O(p3j−3m−α(x)
n )uniformly in u ∈ B, which ends the proof of Lemma 4.

21



Situation Moment estimator Girard-Jacob estimator Ge�roy estimatorCase d = 1, model (P )

α(x) = α1Frontier g1 0.082 [0.051, 0.117] 0.089 [0.052, 0.135] 0.107 [0.058, 0.168]Frontier g2 0.045 [0.032, 0.070] 0.047 [0.031, 0.078] 0.050 [0.029, 0.089]

α(x) = α2(x)Frontier g1 0.109 [0.073, 0.179] 0.162 [0.093, 0.241] 0.169 [0.087, 0.248]Frontier g2 0.064 [0.042, 0.088] 0.067 [0.037, 0.099] 0.072 [0.041, 0.115]Case d = 1, model (13)
c = 7/8 0.055 [0.032, 0.101] 0.108 [0.070, 0.157] 0.107 [0.067, 0.174]

c = 5/8 0.058 [0.032, 0.101] 0.116 [0.076, 0.161] 0.112 [0.069, 0.154]

c = 3/8 0.063 [0.030, 0.111] 0.127 [0.083, 0.171] 0.122 [0.062, 0.177]

c = 1/8 0.070 [0.037, 0.136] 0.137 [0.086, 0.190] 0.131 [0.085, 0.194]Case d = 2, model (P ) 0.036 [0.024, 0.058] 0.146 [0.105, 0.195] 0.176 [0.124, 0.213]Table 1: Mean L1− errors and [minimum, maximum] L1− errors associated to the estimatorsin the di�erent situations.
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Figure 1: Graphs of the functions a 7→ V (α, a). Solid line α = 1.25, dashed line α = 1.75,dashed-dotted line α = 2, dotted line α = 2.25.22
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Figure 2: Case d = 1 and α(x) = α1: the frontier g1 (solid line) and its moment estimate ĝn(dotted line) with a = 15. Top: best situation, bottom: worst situation.23
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Figure 3: Case d = 1 and α(x) = α2(x): the frontier g1 (solid line) and its moment estimate
ĝn (dotted line) with a = 15. Top: best situation, bottom: worst situation.24
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Figure 4: Case d = 2: pairs (g(Xi), ĝ(Xi)), i = 1, . . . , n associated to Girard-Jacob estimator(+) and to the moment estimator (�). The solid line has equation y = x. Top: best situation,bottom: worst situation. 25


