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Frontier estimation with kernel regression

on high order moments

Stéphane Girard®, Armelle Guillou® & Gilles Stupfler®

() Team Mistis, INRIA Rhone-Alpes & LJK, Inovallée, 655, av. de 'Europe,
Montbonnot, 38334 Saint-Ismier cedex, France
() Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,

67084 Strasbourg cedex, France

Abstract. We present a new method for estimating the frontier of a multidimensional
sample. The estimator is based on a kernel regression on high order moments. It is assumed
that the order of the moments goes to infinity while the bandwidth of the kernel goes to
zero. The consistency of the estimator is proved under mild conditions on these two pa-
rameters. The asymptotic normality is also established when the conditional distribution
function decreases at a polynomial rate to zero in the neighborhood of the frontier. The

good performance of the estimator is illustrated on some finite sample situations.
AMS Subject Classifications: 62G05, 62G20.

Keywords: Frontier estimation, kernel estimation, consistency, asymptotic normality.

1 Introduction

Let (X1, Y1),..., (Xn, Y) be n independent copies of a random pair (X, Y) such that their
common density has a support defined by S = {(z, y) € Q xR; 0 <y < g(x)}, where Q is
a compact subset of RY. The unknown function g is called the frontier. We address the
problem of estimating g. In Girard and Jacob (2008), an estimator is introduced based
upon kernel regression on high power-transformed data. In the particular case where Y
given X = z is uniformly distributed it is proved that this estimator is asymptotically
Gaussian with the minimax rate of convergence for Lipschitzian frontiers. Compared to
the numerous extreme-value based estimators (Gardes (2002), Geffroy (1964), Girard and
Jacob (2003a, 2003b, 2004), Girard and Menneteau (2005), Menneteau (2008)), projection

estimators (Jacob and Suquet (1995)), or piecewise polynomial estimators (Korostelev and



Tsybakov (1993), Korostelev et al. (1995), Hardle et al. (1995)) this estimator does not
require a partition of the support S. When the conditional distribution of Y given X is not
uniform, this estimator is still convergent (Girard and Jacob (2008), Theorem 1) but suffers
from a strong bias on finite sample situations (Girard and Jacob (2008), Table 1). Under
monotonicity assumptions, the frontier can also be interpreted as the endpoint of Y given
X < z. Specific estimation techniques have been developed in this context, see for instance
Deprins et al. (1984), Farrel (1957), Gijbels et al. (1999) or Aragon et al. (2005), Cazals et
al. (2002), Daouia and Simar (2005) for the definition of robust estimators.

In this paper, an estimator based on a kernel regression on high order moments of the variable

of interest Y is introduced. More precisely, the estimator is given by

L . i a //Z(aJrl)pn (CL‘) . //’an (‘T)
5@ apn [<< e ) @ TV @ @

where (p,,) is a nonrandom sequence such that p, — co, @ > 0 and

n

=R 1
fip, (2) = - > VP K, (- Xi)

i=1
is a kernel estimator of the conditional moment my,, (z) = E(Y?" |X = z). Classically, K
is a probability density function on R?, K}, (u) = h;“K(u/h,) and (h,) is a nonrandom
positive sequence such that h,, — 0. Note that fip, (z) is the empirical counterpart of the
moment p,, () = E(Y?P" K}, (x — X)), itself a smoothed version of the conditional moment
My, (), namely
@) = | Ko = ymy, (01 (0)

where f is the probability density function of X. From a practical point of view, the use of
a small window-width h,, allows to select the pairs (X;, Y;) such that X; is close to x while
the use of the high power p,, gives more weight to the Y; close to g(x). Moreover, similarly
to Girard and Jacob (2008), the kernel regression enables us to avoid the partitioning of
S. Let us also highlight that, compared to the estimator suggested in the further work of
Girard and Jacob (2008), Section 6, our proposition (1) does not require the knowledge of the
conditional extreme-value index. Moreover, it benefits from an explicit formulation which is
not the case of estimators defined by optimization problems (Girard et al. (2005)) such as
local polynomial estimators (Hall et al. (1998), Hall and Park (2004), Knight (2001)). The
asymptotic properties of the estimator (1) are investigated under two different assumptions.

The first one is nonparametric, it is only assumed that
(NP) Given X =z, Y is positive and has a finite right endpoint g(z).

We shall show in Section 3 that, under (N P), the estimator g, (z) converges in probability

to g(x) without any parametric assumption nor on the distribution of X neither on the dis-



tribution of ¥ given X = x. Remark that, although our estimator g, (x) is based on a kernel
regression, classical results do not apply (see for instance Ferraty and Vieu (2005), Theo-
rem 6.11) since the condition p, — oo induces technical difficulties. The second assumption

is parametric, the cumulative distribution function of Y given X = z is assumed to be given

by

(P) F(ylz) =1— (1 —y/g(x))*"™),Vy € [0, g(x)].

Here, a(x) is an unknown positive function driving the behavior of the distribution tail of
Y given X = z in the neighborhood of its endpoint g(z). If ax) < 1 then the density of
Y given X = x tends to infinity as y — g(x) whereas it tends to 0 in the case a(x) > 1.
The intermediate case «(x) = 1 corresponds to the uniform distribution already investigated
in Girard and Jacob (2008) where the density has a jump at the endpoint. In the general
context of extreme-value theory (see for instance Embrechts et al. (1997)), the conditional
distribution of Y given X = z is said to belong to the Weibull max-domain of attraction
with conditional extreme-value index —1/a(x). In Section 4, the estimator is proved to be
asymptotically Gaussian under (P). As expected, the asymptotic variance depends on the
tail behavior of the conditional distribution of Y given X = z through the quantity a(z).
Some simulations are proposed in Section 5 to illustrate the efficiency of our estimator and
to compare it with some estimators of the frontier estimation literature, particularly the one
of Girard and Jacob (2008). Auxiliary results are postponed to Appendix A and proved in
Appendix B.

2 Construction of the estimator

To motivate the construction of our estimator of g(z), let us first focus on the parametric

setting (P). Let = € Q and consider the conditional moment

my,, () = pn /OOO P TF(tlx) dt = a(z) g"" (z) B(pa + 1, a(@)) (2)

1
where F' =1 — F and B(x, y) = / t*1(1 — )V "' dt is the Beta function. Therefore
0

mp, () 1 a(r)
mp,+1(x)  g(x) <1 * Do + 1) ®)

which leads to the equation

Mat1)p, (T)

1
@)~ apn {“" R e g1 (2)



for all @ > 0. On the basis of this result, the estimator of g(x) is built in two steps. First,

the conditional moment m,,, () is replaced by its smoothed version p,,, (z), and we set

1 1 (at1)pn (T)
=— |((a+1)pp+ 1) —————F
Gn(x) aPn f(a+1)p,+1(T)

o, ()
Ppn+1()

- (pn+ 1)

Second, wyp, () is estimated by the corresponding empirical moment fiy, (z). Plugging fi,, ()
in 1/G,(z) leads to the expression (1) of the estimator 1/g,(x) of 1/g(x). In the sequel, it

is assumed that

(K) The kernel K is bounded and its support is included in B the unit ball of R%,

Note that (K) implies that Vg > 1, / K9(z)dx < oo. The following regularity assumptions
B

are introduced:

Flg(e — hau)yle — huv)

(A1) YV € Q, Jyo € (0, 1) such that sup sup —
F(g(z)ylz)

y€lyo, 1] ueB

— 1| — 0 as

n — oo.
(A2) 305, 5, my > 0 such that Vo, y € Q, [z —yl| <df = [f(z) = fy)] <egllz -y
(Az) 3oy, €, ng > 0 such that Vz, y € Q, ||z —y[| <y = [9(x) — g(y)| < egllx —y|[™.
(A4) Fas €a, Na > 0 such that Va, y € Q, |z —y|| < b0 = |a(z) — a(y)| < eallz —y||"=.

Clearly, assumptions (P) and (A4) imply (A4;). Finally, for any real-valued function v on R%,

the oscillation of v between two points x and  — h,u, u € B, is defined by

Ag (@, u) = (2 = hpu) — y(2).

3 Consistency

In this section, the consistency of g, (z) is established in the nonparametric context (NP).
To this end, the first step is to prove that (3) still holds, up to an error term, when m,, (x)

is replaced by pp,, ().

Proposition 1. Let x € Q such that f(x) > 0, and assume that (NP), (K) and (A; — As)

hold. If p,, hy? — 0, then
fip,, (%) _
fp,+1(x)  g(x)

(1+o0(1)).

This result is a straightforward consequence of Lemma, 1ii) and iii). The second step consists
in showing that p,, (z) can be replaced by its empirical counterpart fi,, (x). In fact, defining

for the sake of simplicity

1
i, o (2) = P / P Fi(yla) dy (4)

where F(y|z) := F(g(z)y|r), a slightly more general result can be established:



Proposition 2. Assume that (NP), (K) and (A1 — As) are satisfied. Let x € ) such that
f(z) >0, and pick ¢ > 0 and k > 0. If nmi cp, +x(x) he — 0o and p, by’ — 0 as n — oo,

then
Hep, +k(T )

=1+op(l).
Hepn+k (T @

Proof. Let, for all 1 < j <n,

YR g, (@ - X;)

U, = -2
" ”/chomLk(x)

The desired result is then tantamount to E?:l Uy 5 1asn — oco. Let us highlight that,
for all n, the (Uyj)1<j<n are positive independent random variables, and Y7, E(Uy;) = 1.
According to Chow and Teicher (1997, Corollary 2 p. 358), it is enough to show that, for all

e>0,3 7 E(Unl{y,;>c3) — 0 as n — oo. Remark that the U,; can be rewritten as

U,; =
" nMep, +1(z)
where S
v fepn+k(2)
Vi = J and M, T) = Pnt .
nj max gcanrk (I _ hnu) Cpn"l‘k( ) max ng"+k($ _ hnu)
ueB ueB

The (U,;)1<j<n being identically distributed, it is equivalent to prove that, for all € > 0,

1

Moy () SV B (@ = X) v k6, (030 2em Moy, () = 0

Let then € > 0 and notice that

Vo1 K, (v — X) > en My, 11(x) & b Vi Kp, (x — X) > en Me,, 11 () h2. (5)

The left-hand side of the second inequality is positive and bounded by maxgas K. In view of
Lemma 1ii), condition n.m1, ¢p, +x(2)he — 0o is equivalent to nhl e, 11 (z) /g T*(z) — oo.

Besides, p,, hn’ — 0 and (16) in the proof of Lemma 1ii) imply that

cpntk( |
may I @ hnt)
weB  gePnth(x)

so that n M., 1r(z) h% — oo as n — oo. As a consequence, the right-hand side of (5) goes

to 400, so that

1
mE(an Ky, (fE - X)]l{hgg Vit Khy (2= X)>en Mep,, +1(2) hg{}) =0

eventually, and the result is proved. [ |

As a consequence of the two previous results, we have:

Theorem 1. Suppose that (NP), (K) and (Ay — As) hold. If nmy (q11)p, () he — 0o and

Pnha? — 0, then Gn(x) N g(xz) as n — oo.



Proof. Note that m, (a+1)p, (z) < (a + 1)my,p, (z), which implies nmy,,, (z) he — oo.
Thus, Lemma 1iii) entails nm1, p, +1(2)hi — 0o and nmy (a41)p,+1(¥)hd — 0o as n — oo.

We can then apply Proposition 2 to rewrite the frontier estimator as:

1 1 H(a+1)p (‘T)
=——=— |((a+ )pp +1)————~
gn(z)  apn M(a+1)pn+1($)

fp, (T)
Hpn+1()

(I+op(1)) = (pn + 1) (14o0p(1))] .
(6)

From Proposition 1, we have

1 a 1
Hp., (I) N and /14( +1)pn(x) N

Ppp+1(T) g9(z) M(a+1)pn+1($) g(z)

as n — oco. Replacing in (6), the conclusion follows. [ |

4 Asymptotic normality

We now establish the asymptotic distribution of g, («) under the assumption (P). The para-
metric model enables us to compute a more precise asymptotic expansion of ,, (x)/tp, +1(x)

than under the nonparametric assumption, see Proposition 1.

Proposition 3. Let © € Q such that f(z) > 0, and assume that (P), (K) and (A2 — Ay)
hold. If p, hy? — 0, then

7706

Pn

Pp,+1(z)  g(w) pn+1

Proof. Remark that, retaining notations of Lemma 2, we have

Mo Mgl o (M )

Ln(pn + 17 €z, u) _ 1+

_l’_
Ly (pn, x, u) g9(x) Pn 2

n bn

uniformly in u € B. Using the expansion of y,, (¢) provided by Lemma 2ii) with ¢ = 1 then

yields
(@) 11+Mm}
fip,+1() g9(@ pnt1
AS A9
umwuﬂ"“w—’f”qmwm P
X B Pn 9(z) +0 (— o )
/ Ly (pn, z, u) K(u)du Pn - Pn
B
To conclude, from Lemma 2i), L, (pp, ©, u) = 1 as n — oo uniformly in u € B so that
Al A9
/ Ln(pn7 z, u) |: n(fE, ’U,) _ n((fE, 'U:):| K(u)du -
B Pn g9(z) -0 (hzg + L)
/ Ly (pn, z, u) K(u)du P
B
which entails
7706
an(w) — 1 |:1+ a(x) ] +0 (hzg + hn )
pp,+1(z)  g(x) Pnt1 Pn
and completes the proof of Proposition 3. ]



As a straightforward consequence, we obtain a control of the bias introduced by replacing

My, (x) by pp, (z). If py he? — 0, then

1 1 hlle
__+O<h§7;f+—"). (7)
Let us now turn to the random term:

Theorem 2. Suppose (P), (K) and (A2 — A4) hold. Let x € Q such that f(x) > 0. If

npp @ hd — oo and p, hy? — 0 then

o) ( g,;((a;)) _1) L N(()’ ||K||%¥(<;<x>, a)), o

where vy (z) = \/ﬁp;a(m)/}|rl h/?, K3 = / K?*(z)dx and
B

V(a(z), a) = a(r) +1 [2a(m)2 (et 1)e@)+1

)T -y —a(z)—2 a(z)
a2 T(a(z)) (a + 2)o@)2 +2 (a+1) } :

Proof. Our goal is to prove that the sequence of random variables

_s@ f f@ (L 1
§n($) = K2 V V(a(x), a) n( ) (En(x) Gn(z))

converges in distribution to a standard Gaussian random variable. The first step consists to
use Lemma 3 in order to linearize &, (z):

6 = |+ (LD ) P+ (142 )(‘1““”’"“(””)—1) )

Up,+1(T Pn + 1 /’L(a"l‘l)pn"l'l('r)
<t a(@)(1 4 0(1)).

Now, Proposition 2 yields

£(2) = tn,a(2) [ (0 (@) + 00 (2 (@) + 08 (¢S (@))] (1 +0(1)

and to conclude the proof, it is sufficient to establish that

Un, a(z) ¢V (2) —5 N(0, 1), (8a)
U, o(z) (P (2) <, N(0,Cy), (8b)
tn, a(x) (P (&) ~L5 N(0,C3), (8¢)

where Cp and C3 are positive constants. Note that in fact, (8b) and (8c¢) are stronger
than what is necessary, but their proofs are similar to (8a). In all the sequel, we set:
Z,g"’c’j)(x) = YK, (¢ — Xi), 80 that pep,4j(z) = E(Z™%9)(z)). To prove (8a),

remark that C,(Il)(:t) can be expanded as the sum of independent and centered random vari-



1 n n n,a n,a
S = — 2@, 2P @), 2 @), 2 V@) AP @), )
t
AP@) = |alh@), ali(@), ally@), alh@)] .
a'ELl,)O(I) = _15
V@) = Ll
p,+1(T)
aly(z) = <1+ apnl) trat1(2) ;
Pn + H(a+1)pp+1 (I)
D) = _(1+ apy, )an+;(x)ﬂ(a+l)pn($)7
Pt 1) Higiayp, (%)

where A? stands for the transposed matrix of A. In order to use Lyapounov’s central limit

theorem (see e.g. Billingsley, 1979, p. 312), it remains to prove that

L - (1)
T LB w0

which requires to control Var(C,(zl)(x)) and E|S7(111)k (7)|2. The variance can be rewritten as

nVar((V(z)) = wpn, pn)(x) —2 (1 4 p:zi:—ll) u(Mf:)Hfi)(x) w(pn, (a+ 1)py)(x)

(o >2 510 ), (a4 D))
wila Pn, (@ Pn )T
Pt 1 M?a-l-l)pn-i-l(x)

where
w(spy +t, upn +v)(x) = [—1 M} Mo (s, t, u, v)(x) [_1 _Huputo () '
B ' fsparena (@) | O " L o1 (2)

and M, (s, t, u, v)(z) is the 2 x 2 covariance matrix defined by

E(z(n, s, t) (.I) Z(n, w, v) (I)) E(z(n, s, t) (.I) Z(n, u, v+1) (.I))

My(s, t, u, v)(z) =
E(z(n, s,t+1) (JJ) Z(n, w, v) (,T)) E(z(n, s, t+1) (JJ) Z(n, u, v+1) (LL'))

Since Lemma 2iii) provides an asymptotic expansion of the matrix M, (s, t, u, v)(z), it is
therefore sufficient to compute an asymptotic expansion of pisp, +¢(2)/fbsp, +t+1(x). Using

Proposition 3 and tedious computations lead to

Var(¢ (@) = a2|[ K2 £(2) T3 (a(x) + 1)V (a(z), a) =

n

g (@) 52 (1 o(1). (1)

n

Now, focusing on the third moment, Holder’s inequality yields

1 1 n,1,0 1 n,1,1
nPEISM @) < 4Bl (@) 200 (@) + ol (@) 20 (@)

+ 4Ea (@) 2O (@) + ol (x) 20 T D ()P



The next step consists in applying Lemma 4 to each term of the right-hand side of this

inequality. To this end, let us consider the functions

Hn%)O(u) = _15

H () = ao)u,

Hfll) u) = (1 + &) goP (2 M7
A Pnt1 ( )/L<a+1>pn+1(:r)

Hnl) u) = — (1 + &) g (x Hpn+1 (z) ) O‘(x)u,
-+ pnt1 ) HatD)pa+1(2)  a+1

and note that there exist two sequences of measurable functions (x,,1) and (xn, 2) uniformly

convergent to 0 on [0, 1] such that

HY )]+ xn1(y
max‘asll,)o(gc)+a511,)1($)9($—hnu)y‘ < |H,(:)O(y)|(1—y)+| $10 1 ),

ueh Dn
HM )] + X, 2(y)
(1) (1) o ‘ < Y EY wa [Hp,3(y)] + Xn,2(y

gleaé( ‘an, 2(‘I) + Ay, 3($) g(.I nu) Yy = gorn (JJ) | n, 2(y)|( y) + o

Since g% (2)pp,+1(2)/Hat1pn+1(2) = (@ +1)*@ as n — oo, the functions Hle)J, Jj €

{0, 1, 2, 3} are bounded on [0, 1], uniformly in n, and thus Lemma 4 entails that

IS ()] = O(n? g% (2) p® ) ;2. (12)

Combining (11) and (12), convergence (10) follows from the condition np;a(w)hz — oo and

therefore (8a) holds.

Proofs of (8b) and (8c) are similar since C,(f) and C,(f’) can be rewritten as

1 — n,1,0 n,1,1 2 2 t
(@) = -3 [0, 2V @) 0@, o) @)
k=1
1 = n,a+1,0 n,a+1,1 3 3 t
(@) = (2 @), 20 @) [al@), ol @)
k=1
with clear definitions of the sequences aff;)i (z),1=0,1, =2, 3. Applying Lemma 4 with
H7(z2,)0(u) = -1,
H2\ (W) = al@)u,
HOw) = g () Loett@)
0 M(a+1)pn+1 :E)
HO@) = —gon(a) Hot1) ol
’ M(a+1)pn+l(w) a+1

yields ]E|Sr(f;)1 (2)|3 = O(n=3 g3Pn (z) pp >~ h;2d), j = 2, 3. Lyapounov’s central limit the-

orem then gives the convergence. Theorem 2 is therefore established. ]

From the expansion

(0) = 9(0) = Gula) | 2450 1] 4 [G) - g0,

the asymptotic normality of g,,(z) centered on the true function g(z) is readily obtained:




Theorem 3. Suppose (P), (K) and (As — A4) hold. Let x € Q such that f(x) > 0. If
npp @ hd — oo, npp @2 290 and npp @@ hd+2na — 0, then

onfa) (22 1) v (o “K'@?((;(I)’ 2. wno.

(z) —a(z)+2 h

Let us note that n p, “**’ h? — oo and npy, i+2ng — 0 imply that p,, hy? — 0. Besides,

if we assume that o has greater regularity than g, namely n, > 74, then the hypotheses

(z)+2 h;il+2779 0.

24 hd o0 and npn®

necessary to apply Theorem 3 can be reduced to n p,

Let z € Q such that f(x) > 0 and note that the sequences

B () = Ef{(ﬂﬁ)*l n~V(d+nga(@) 554 po(z) = et e/ (d+nga(z))

can be chosen to check the assumptions of Theorem 3, where (e,,) is an arbitrary sequence
of positive real numbers tending to 0 such that n =%, — 0 for all § > 0. With such choices,
the rate of convergence v, (z) of the estimator is then n/(@+152®) yp to a e, term. In
the uniform case (that is, when « is constant equal to 1), the rate of convergence of the
estimator is then n's/(4479) up to the factor e,, which is also the rate of convergence for the
Parzen estimator studied in Girard and Jacob (2008), Theorem 2. Let us note that this rate
of convergence has been shown to be minimax by Hérdle et al. (1995) for a particular class

of densities with a L' risk.

The asymptotic variance of the estimator also involves the multiplicative factor V(a(z), a).
The choice of an “optimal” value for a by minimization of V(a(x), a) is a difficult task since
it depends on the unknown value of a(z). One can observe on Figure 1 that, for a(z) < 2,

V(a(z), -) is a decreasing function and thus large values of a should be preferred.

However, both statements above require a precise knowledge of the function z — a(x), which
is often unrealistic. In view of these remarks, it may be of interest to estimate a(x). From (3),
the following estimator is considered:

fip, (z) 1

an(z) = (pn +1) |gn(z) Lp,+1(2)

and its weak consistency is established under the same assumptions as in Theorem 3.
Proposition 4. Under the assumptions of Theorem 3, & (z) = ax) + Op(pn/vn(x)).
Proof. Define

(@) = (pu + 1) [Gnm% .

and let us focus first on the random term

(1+o(1))

on(®) 2 o (@) — o) | @) — Gy L2 G (e @) 67 (@)
212 @, (@) () = >[[gn<> Gl 2T — G (a) R S,

10



with notations of Lemma 3. Recall that, from Proposition 1, pp, (z)/ptp.+1(z) — 1/g(x),

from Proposition 2, pup, (z)/p, (x) 5 1 and from (7), Gn(x) — g(x) as n — oo so that

Un®) o ) (@) — o (@) (G (@) 1 amle @)
) 1) =0, 0)) = 0 (@)= Gn0) |5+ 0n (1) g 0 (1)

Besides, applying Theorem 2 yields vy, (z)(gn(z) — Gn(z)) = Op(1). Now,

V@ )

- U 232 (1) =
fip,+1(2)  pip, 1 (2)un, () n,a(2)¢y” () = O (1),

Up (T

from (20) and since un,a(x)c,(f) (z) is asymptotically Gaussian (see (8b)). As a preliminary
conclusion, we have

”;ff)@m ~ () = Op(1).

Turning to the bias term, (7) and Proposition 3 yield

Bl
an(z) = a(z) + (pr +1) O (h?f' + pL) = a(z) + o(pn/vn(x)),
which completes the proof. [ |

Meanwhile, the density function f(x) can be estimated with the classical kernel estimator:

Since Collomb (1976), it is well-known that f,(z) N f(z) when nh? — co. By plugging

ap () and fn(x) in the asymptotic variance of Theorem 3, classical arguments thus yield:

Corollary 1. Under the assumptions of Theorem 3,

Un(x)

fal2) <an<x>

a 2 as n 0.
Van(2), a) \ gl@) 1> = N (0, [1K1[3) , -

Pointwise confidence intervals for the frontier may then be built using this result.

5 Numerical experiments

The behavior of the proposed frontier estimator is investigated on different situations. In
particular, we examine the case d = 1 where X is uniformly distributed on € = [0, 1] and the

case d = 2 where X = (X7, X») is uniformly distributed on € = [0, 1]2.

11



— Let us first focus on the case d = 1. Three frontiers are considered:

2
1

1+ exp —60(96—1)) if z € [0, %]

1+ exp _5 ifzeli, 2]
gi(x) = 12 30 5]

5 5 .

1+5exp<—ﬁ>—6exp<—ﬁ)x ifx e %, %}

6z — 4 ifxe]2, 1]
@ - (- 1 __2
g2(x) = 0 sin(mx) 0 2exp ;C

5
g3(z) = 7-2z(1-2)

Note that g1 is continuous but not differentiable at « = 1/3, x = 2/3 and = = 5/6 while g5
and gs are infinitely differentiable.

In the parametric setting (P), two different models for the function a(z) are considered: a
constant function ay(z) = 1.25 and as(z) = 1.25 + 0.5] cos(2mx)|.

In the nonparametric setting (N P), the simulated model is given by

Flylz) = C(2)(1 = y/g5(2))*2® + (1 = C(@))(L = y/g3(2))*2 @1 vy € [0, ga(x)], (13)

with C(x) = ¢+ sin(27x)/16 and ¢ € {1/8, 3/8,5/8, 7/8}. Let us highlight that (13) can
be seen as a “contamination” of the parametric model (P): the smaller ¢ is, the larger the
contamination is.

The uniform kernel is chosen:
1
K((E) = 5]1[,11 1] (JI)

with associated bandwidth h\™ = 26(X)/nt/(+a=) and p{™ = nt/(+ew) /) /In(n), where
0(X) is the empirical standard deviation of X and a., = maxg o < 00 since « is continuous
and ) is a compact subset of R. These sequences are chosen to check the hypotheses of
Theorem 1. Note that the multiplicative constant o(X) has been suggested by Girard and
Jacob (2008), whereas the constant 2 was empirically chosen. The sample size is fixed to

n = 500.

— In the case d = 2, we limit ourselves to a unique model
g(x, y) = 14 3g1(x)y/20, and a(z, y) = 1.25 + 0.5] cos(27z) sin(2wy)],

the kernel being
1
K(% y) = 111[71,1]x[71,1} (957 y)u

with bandwidth h(™ = 4,/5(X1)5(X2)/nY/?Fe=) and p{™ = nl/@+a=)/ /In(n). The

sample size is fixed to n = 1000.

12



In all cases, our moment estimator is computed with a = 15, the constant a having been
chosen after intensive simulations. Our estimator is compared to the two estimators proposed
by Girard and Jacob (2008) and Geffroy (1964). Let us recall that, similarly to g, (z), Girard
and Jacob’s estimator (2008) is based on a kernel regression on high power transformed
data. At the opposite, the estimator in Geffroy (1964) is based on the extreme values of
the sample and does not involve any smoothing. For Girard and Jacob’s estimator, we set
RD = 45(X)/+/n and ) = n/In(n) if d = 1, and RD = 44/5(X1)5(X2)/n'/? and
p%qj) = nl/g/\/m when d = 2. The L'~ errors associated to each estimator are computed
on 500 replications of the initial sample and the minimum, maximum and mean L'— errors

are reported in Table 1.

It appears that, in all the considered situations, our moment estimator yields better results
than both the estimators of Girard and Jacob (2008) and Geffroy (1964). For a fixed frontier,
all the estimators perform better on the situation «(z) = a; () than on the situation a(z) =
az(z). This behavior is a consequence of as(x) > a1(x): as «(z) increases, the simulated
points tend to move away from the frontier g(z). This phenomenon is illustrated in the case
d = 1 on Figures 2 and 3. On each of the upper panels the best situation is represented,
i.e. the replication that yields the smallest L'— error for g, in Table 1. Similarly, the worst
situation is depicted on the lower panels, i.e. the replication that yields the largest L'— error

for g, in Table 1. In all cases, g, is superimposed to the frontier g.

When d = 2, scatter plots (g(X;), 9(X;)), i =1, ..., n are represented on Figure 4, g being
either our moment estimator or Girard and Jacob’s estimator. The best and worst situations
are depicted for these two estimators. It appears that the points associated to the moment
estimator are closer to the line y = z than the points associated to Girard and Jacob’s

estimator.
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Appendix A: Auxiliary results

First, some results on the moments p,, () and m;_,, () are provided, see (4) for a definition.

Lemma 1. Suppose that (NP), (K) and (A1 — A3) hold. Let x € Q such that f(z) > 0. If
Pn ha? — 0, then

i) ma,p, (x — hpu) = my p, (2)(1 4+ o(1)) uniformly in u € B,
i) pip, (x) = f(2)g" (2)m1,p, ()(1 +o(1)),
iit) ma,p, (x) = ma,p,+1(x)(1 4 0(1)).

The next result of this section is technical: it provides precise expansions of the smoothed
moment, E(Y?» K}} (X —x)) when p, — 00, h,, — 0 and for all ¢ > 1. It will be useful for

the proof of our next lemmas and of Theorem 2.

Lemma 2. Suppose (P), (K) and (Ay — A4) hold. For all ¢ > 1, w € B, n € N\ {0} and
x € Q such that f(x) >0, let

_ fl@—hpu)T(a(z — hpu) +1) ox AY(z, u) n ey
) = d(q—1) E(yen KZn (X —=))
Aol b2 = BT )
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If pp hy? — 0, then
i) Ln(pn, , u) = 1 as n — oo uniformly in u € B.

it) For all ¢ > 1

Molg.pns) /BLn(pMu)[1_&(%@ﬂm>du

a(z)B(pn +1, a(z)) 2\ g
- pi L, (pn, z, U)W [a(x — hpu) + a(z) + 1] K4(u) du
n JB
hzg e
£ oo(Bh .
Pn 2

iii) Moreover, there exist 61, 62 € R such that for all ¢ > 1

Mt t) [
B

I(a(z) + 1)]9;(1(1) D 2 9(z
1 A%(z, u) ,
_ p_n/BLn(pn, z, U)T [a(z — hpu) + a(z) + 1] K9(u) du
% U () du + o(p;, 2
i p%/BK()d o)

Our next lemma consists in linearizing

g9(x) f(z) ( 1 1 )
En(x) = - op(x) | = —
@)= 1K\ Vew o "\5e G
appearing in Theorem 2.
Lemma 3. Suppose (P), (K), (As — Ay) hold and let x € Q such that f(x) > 0. If p, — o0
then

fe) = [0+ (L) @)+ (14 ) (Bt o)

[ip,+1(2) Pn+ 1) \ Bat1)p,+1()
X Up,q(z)(1 4+ 0(1))

where vy(x) = () — 1p(a),

) = @+ 142 (P

pn+1
, fip,, ()
wzth(,(f) ) = -, (2) + 22", +1(2),
( ) 2 ( ) ,UJanrl(I) Pn+ ( )
pn+1(T) Ppnt1() H(a+1)p, (2)
C'r(7«3) (.I) = V(a n (I) - V(a n ('r)
f(at1)p,+1(2) o Kot 1ypnt1(®) et
1 1 pf{(m)vn(x)

and tn,0(T) = R LT @ 1D\ F@) Ve, @ gna)

Finally, the following result provides an asymptotic bound of the third-order moments ap-

pearing in the proofs.
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Lemma 4. Suppose (P), (K), (Ay — A4) are satisfied and p, i’ — 0 asn — oo. Let k € N,
(bn, j)nen\{o},0<j<k € R and x € R? such that there exist m € N and sequences of measurable

functions (H,, ;), 0 < j < m, uniformly bounded on [0, 1] with

k m
: : Hy,5(y) m—j
Vy e [0, 1] max E Obmj g (x — hpu)y’| < E (1 —y)™ .
=

Let us consider

Then E|S,(2)[? = O(n=3 g (z) p, ™) p 24y,

Appendix B: Proof of the auxiliary results
Proof of Lemma 1. i) Set

1
I.(z) = / Y (yle) dy

so that mi1, p, () = pnlp, (x). Let € € (0,1 —yo) and v € B. The integral I, (z — hyu) is

rewritten as:

1—¢
1 o / Y T Pyl — haw) dy
o=t = [ Fle = gy |14 ;
e / y" T Ryl — hou) dy
1—¢
with
1—¢ .
/ yPn VR (ylx — hpu) dy
0< 20 1-¢
- 1 - - 1 y pn_l_
[T b [T Fle - by
1—¢ 1—¢ — &
1—c¢
L—e/21 7t b '
SR [ Al maay
—€ 1—¢/2

(Ay) ensures that = — F;(y|x) is continuous for all y, so that

sup

1
< / sup [Fi(yle — hnu) — Fi(yle)|dy
ueB 1

—e/2u€EB

1 1
/1 Filyle — hnu) — / Fi(yle) dy

—£/2 1—¢/2

1—¢/2

pn—1
which converges to 0 by the dominated convergence theorem. Since { ] — 00 as
n — oo, we therefore get, uniformly in u € B,

1
Iy (o= o) = [ P gl — ho) dy(1 + o).

1—¢
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Now,

1 1 _
_ — F; — hy,
/ ypn*lFl(yLr — hnu) dy / yp"lel(y|:17) M — 1‘ dy
1—¢ 1 < 1—¢ Fl(y|x)
1 - = 1
/ y' R (ylx) dy / yPn R (yla) dy
1—¢ 1—e
iz — hn,
< sup  sup M - 1‘ —0
velyo, 1] weB | Fi(ylz)

as n — oo and consequently, I, (z — hpu)/Ip, () — 1 as n — oo uniformly in v € B. The
conclusion follows.

ii) Recall that
iy, (z) = / F(@ = hatw)gP (2 — hte)ma, p, (7 — ht) K () du.
B

First, (A2) yields

flx — hpu) ’ Al (z, u) efha!
sup |—————= — 1| = sup |—=% 0 14
T 22w | S ()
Second, (As) entails
Af (z, u) {fghzg ][ }

Pp SUD | — <pasupy ——~— ¢ = O(pahjl? 15
uEB g() uEB g(z) ( ) (15)

so that the hypothesis p, k7’ — 0 gives

g’ (z — hnU)] { A (z, U)]

I [T |14 2 W o, k) 5 0 16
{ gPn (x) g(x) ( : (1)

uniformly in v € B as n — oo. Collecting (14), (16) and i), the dominated convergence

theorem therefore gives ii).
1

iii) Recall that for all € € (0, 1 — yo), Ip, (z) = / yP" 1 Fy (y|z) dy (1 + o(1)). Since

1—¢

1 1
o _ 1
1< / yP UV (y|) dy// yPr iy (ylx) dy <
1—e l1—e 1—¢

foralle € (0, 1—yo), onehas I, (z)/Ip,+1(x) = 1 asn — oco. Hence, my_p, (x)/m1, p,+1(z) —

1 as n — oo, which completes the proof of iii). [ ]

Proof of Lemma 2. i) Let us introduce

f(z = hpu) T(a(x — hyu) + 1)
f(@)T(a(z) +1)

Since T is lipschitz on any compact set of |0, +oo[, the function y — I'(a(y) + 1) is locally

Qn(x, u) =

Holderian with exponent 7,. This is also the case for the function y — f(y) I'(a(y) + 1) with
exponent min(ny, 7). As a consequence, Qn(z, u) — 1 as n — oo, uniformly in v € B.
Moreover, since k¢ p, — 0, we have

Mo /Mg | 10 py, |

sup In(pn) | A5 (7, )| < o b [ pa] = 2o [Wlopn :
ueB plle/ms
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It was already proved that sup,cp pn |A%(x, u)] = 0 as n — oo, see (15). As a conclusion,
Ly(pn, x, u) = 1 as n — oo, uniformly in u € B.
ii) By definition of the Beta function,

An(q, pn, ) B . D(pn +1+a(x)  ¢”(x—ha) _, .
(@) B(pn +1, () _/BQn( 7 )F(pn+1+a(;v—hnu)) gP (x) K (u) du. (17)

Applying Stirling’s formula, simple calculations yield

F(pi(inl‘:—la'é‘xa_(l'}ziu» = exp(— ln(pn)Az(xa ’U,)) (1—%;’“/) (1 + a(:zc _ hnu) + Oé(i[:)))
Al
o ( p: ) ’ (18)
uniformly in v € B. Besides
g (& — hpu) o N A (z, u)
i G G o)

uniformly in v € B. Replacing (18) and (19) in (17) gives the first desired expansion.

iii) Now, according to Tricomi and Erdélyi (1951), for all k and ¢, there exist two real numbers
01(k, ¢) and da(k, ¢) such that

% _ g [1 + 51(’;’ ot 52(;5 Lo <i>} '

x2

Consequently, setting 01 = 01(1, a(x) + 1) and 2 = d2(1, a(z) 4+ 1), we have

B(pn + 1, a(z)) = T(a(z)) p; *® {1 T Z_jl + Z_% o (%ﬂ '

Replacing in the expansion ii) and remarking that, from i),

/ Ly(pn, =, U)5—§ K9(u)du = 5—;/ K9(u)du+ o <i)
B p bn JB

A I
yields iii). [ |
Proof of Lemma 3. Let us first remark that, from Lemma 2i) and iii) with ¢ =1,

Hpo1(2) = f@)D(a(z) +1)gH (@)p, @ (1 + o(1)),

leading to

@) [ i@
a[E]l; \| V{alz), o)

o +1(T)n, o(T) vy (2)(1 +0(1)), (20)

and therefore

&n(z) = —Mp””r;(jif’;’“(x) - apn (; - ) (1+o(1)). (21)
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1 1 fi(a a — l(a fi(a
ap, <A _ ) — (a4 Dpn + 1)N( +1)p, (2) /L(A+1)pn+1($) H(a+1)p, (T) Blat1)p,+1(2)
M(a+1)pn+l(x) H(a+1) pn+1( )
//an (17) /L;Dn+1($) — Hp, (I) ﬁanrl(x)
Fp,+1() pp, +1(2)
= DV (x) - DP(2)

(pn + 1)

with
+Dpn +1 Hat) +1() [(at 1)p,, (T)
DY) = Y s o UL R
M(a+1)pn+l(x) (a )pn+1(x) (a+1)pn N(a+1)pn+1(x) (a+D)pnt
DP(z) = - . Vp (1) = L2 (@)
fpn1(z) fip,a(z) " Mpt1(x) T
which leads to
Hpn+1() .D(1)($) _ (1 + apn ) u(a+1)pn+1(w) 'C(S)(UC)
Pn + 1 " P+ 1 ,a(a-l-l)pn-i-l(x) "
Hpn+1() . D@ (z) = _Mpn+1($) 'C(Q) ().
Pn + 1 " ,aanrl('r) "
Replacing in (21) concludes the proof of Lemma 3. [ |

Proof of Lemma 4. We only prove the case ¢ = 1 since the result can be obtained by

replacing p,, by ¢p,. Conditioning on X yields

i 3
3 _ i _
ElS, ()] = = Zobn,jyp I Ky, (z — ) ‘X_v F(v)dv
J:
3
k .
= n3h2d/ Z jYPrt ’X:x—hnu K3(u) f(z — hpu) du.
=0
Now, given {X = x — hyu}, we have W,,(z u)'—L<1 Settin
w, giv = nu}, we have W, (z, = b g

3pn —
g°P" (z — hpu)
cn(z) = (m+1)* sup |H, ;> max *——T">
o 7 weB gn(w)
0<j<m
neN\{0}

)

which is a bounded sequence, Holder’s inequality entails, given {X = x — h,u},

3 3
k k
an)j yPati = ¢ (@ — hou) |WP (2, u Zb W (z, u)g’ (x — hnu)
7=0 Jj=
< enla) g™ Z?‘ 2, u)(1 = Wz, u)) "),
=0 ’ﬂ
It is therefore sufficient to prove that, for all j € {0, ..., m}, uniformly in v € B,

E(W3Pr (z, u)(1 — Wy (z, u))?" ) | X = 2 — hyu) = O(p¥—3m—o(@)),
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Because for all A, p > 0, the function

d
(y, w) — d—y [ (1= 9)"] Ty<w, 0w (@)}

is Lebesgue @ P(- | X = & — h,u)—integrable, Fubini’s theorem gives

d

1
BV (2, 0) (1= W, )" | X = a-hyw) = [ [y (1= )] Falylo—hou)dy
o a4y

since, given {X = z — hyu}, W, (x, u) has survival function F;(-|x — h,u). To conclude,
notice that if (s,) is a real sequence tending to +oo such that s, hn’ — 0 as n — oo and

£ >0, we obtain following (18) and Tricomi and Erdélyi (1951)

1
/ yor (1 — ) Fe@=he) gy — B(s, + 1, €+ a(z — hyu) + 1) = O(s, @)
0

a(z—h

uniformly in u € B. Since Fi(y|x — hou) = (1 —y) n%) some quick computations then

show that
E(W3Pr (x, u)(1 — Wy (z, u))?’(m_j) | X =2 — hyu) = O(p;o’lj_?’m_o‘(w))

uniformly in u € B, which ends the proof of Lemma 4. [ ]
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Situation

Moment estimator

Girard-Jacob estimator

Geffroy estimator

Case d = 1, model (P)

alz) =
Frontier g;

Frontier g

0.082 [0.051, 0.117]
0.045 [0.032, 0.070]

0.089 [0.052, 0.135]
0.047 [0.031, 0.078]

0.107 [0.058, 0.168]
0.050 [0.029, 0.089]

a(z) = az(z)

Frontier g;

0.109 [0.073, 0.179]

0.162 [0.093, 0.241]

0.169 [0.087, 0.248]

Frontier go 0.064 [0.042, 0.088] |  0.067 [0.037, 0.099] | 0.072 [0.041, 0.115]

Case d = 1, model (13)
c=17/8 0.055 [0.032, 0.101] |  0.108 [0.070, 0.157] | 0.107 [0.067, 0.174]
c=5/8 0.058 [0.032, 0.101] | 0.116 [0.076, 0.161] | 0.112 [0.069, 0.154]
c=3/8 0.063 [0.030, 0.111] | 0.127 [0.083, 0.171] | 0.122 [0.062, 0.177]
c=1/8 0.070 [0.037, 0.136] |  0.137 [0.086, 0.100] | 0.131 [0.085, 0.194]
[ ] [ ] [ ]

Case d = 2, model (P)

0.036 [0.024, 0.058

0.146 [0.105, 0.195

0.176 [0.124, 0.213

Table 1: Mean L' — errors and [minimum, maximum]| L' — errors associated to the estimators

in the different situations.

Figure 1: Graphs of the functions a — V(«, a). Solid line oo = 1.25, dashed line o = 1.75,

dashed-dotted line o = 2, dotted line a = 2.25.
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Figure 2: Case d = 1 and a(x) = a1: the frontier g7 (solid line) and its moment estimate g,

(dotted line) with a = 15. Top: best situation, bottom: worst situation.
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Figure 3: Case d = 1 and «a(z) = az(x): the frontier g7 (solid line) and its moment estimate

Jn (dotted line) with a = 15. Top: best situation, bottom: worst situation.
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Figure 4: Case d = 2: pairs (9(X;), g(X;)), i =1, ..., n associated to Girard-Jacob estimator

(+) and to the moment estimator (¢). The solid line has equation y = z. Top: best situation,

bottom: worst situation.
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