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Abstract. We present a new method for estimating the frontier of a multidimensional
sample when the conditional distribution function decreases at a polynomial rate to zero in
the neighborhood of the frontier. The estimator is based on a kernel regression on high mo-
ments. It is assumed that the order of the moments goes to infinity while the bandwidth of
the kernel goes to zero. We give conditions on these two parameters to obtain the asymptotic
normality of the estimator. The good performance of the estimator is illustrated on some

finite sample situations.
AMS Subject Classifications: 62G05, 62G20.
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1 Introduction

Let (X1, Y1),..., (Xn, Y) be n independent copies of a random pair (X, Y) such that their

common density has a support defined by
S={(z,y) eQAxR; 0<y<g(z)},

where €2 is a compact subset of RZ. The unknown function g is called the frontier. We address
the problem of estimating g. In Girard and Jacob (2008), a new estimator is introduced based
upon kernel regression on high power-transformed data. In the particular case where Y given
X = z is uniformly distributed it is proved that this estimator is asymptotically Gaussian

with the minimax rate of convergence for Lipschitzian frontiers. From the practical point



of view, compared to the numerous extreme-value based estimators (Gardes (2002), Geffroy
(1964), Girard and Jacob (2003a, 2003b, 2004), Girard and Menneteau (2005), Menneteau
(2008)), projection estimators (Jacob and Suquet (1995)), or piecewise polynomial estimators
(Korostelev and Tsybakov (1993), Korostelev et al (1995), Hardle et al (1995)) this estimator
does not require a partition of the support S. When the conditional distribution of Y given
X is not uniform, this estimator is still convergent (Girard and Jacob (2008), Theorem 1)
but suffers from a strong bias on finite sample situations (Girard and Jacob (2008), Table 1).
Under monotonicity assumptions, the frontier can also be interpreted as the endpoint of Y
given X < z. Specific estimation techniques have been developed in this context, see for
instance Deprins et al. (1984), Farrel (1957), Gijbels et al. (1999) or Aragon et al. (2005),
Caazals et al. (2002), Daouia and Simar (2005) for the definition of robust estimators.

In this paper, we investigate the more general case where the conditional distribution

function of Y given X =z is

Fylz) =1—(1—y/g(x))*™, vyelo, g(x))

Here, « is a positive function driving the behavior of the distribution tail of Y given X = x in
the neighborhood of its endpoint g(z). If a(x) < 1 then the density of Y given X = x tends
to infinity as y — g(x) whereas it tends to 0 in the case a(z) > 1. The intermediate case
a(z) = 1 corresponds to the uniform distribution already investigated in Girard and Jacob
(2008) where the density has a jump at the endpoint. In the general context of extreme-value
theory, the conditional distribution of Y given X = x is said to belong to the Weibull max-
domain of attraction with extreme-value index —1/a(z). Our aim is to estimate the frontier
g when « is unknown. In the next section, we introduce an estimator based on a kernel
regression on high moments of the variable of interest Y. Similarly to Girard and Jacob
(2008), this technique enables us to avoid the partitioning of S. In Section 3 the estimator
is proved to be asymptotically Gaussian. Some simulations are proposed in Section 4 to
illustrate the efficiency of our estimator and to compare it with the one of Girard and Jacob
(2008). Our main result is proved in Section 5 and auxiliary results are postponed to the

Appendix.

2 Construction of the estimator

To motivate the construction of our estimator, first consider the unconditional case where
a(z) is constant, but not necessarily 1 and g is also constant equal to 6. The distribution

function F' can thus be rewritten as

Fooly) =1-(1-y/0)*, Yyelo,d].



If Z is a random variable with distribution function Fy o, then

1y = E|ZP = p/ trP(|Z] > t)dt = o 0 B(p+1, a)
0

1
where B(z, y) = / t*~1(1 —t)¥~! dt is the Beta function. Therefore
0

,up—&-lia p+1

p p+l+a

which leads to the equation

Hp+1 H
= +2) — (p 1)
Hp+2 Hp+1

[(p+k+ 1) Ktk (p+k)f‘f’+’“]
f Hp+k41 Hp+k

(p+ N+ 1) 2Ny q) e }
Hp+N+1 Hp+1

Coming back to the conditional case, the idea of our estimator is the following: let (p,) be

a sequence tending to +oo, (h,) a positive one converging to 0 and = € R?. Then

LA B . (2)
@) {(”” @ Pt 1)l7pn+1($)] @

is an estimator of 1/g(x) where (r,) is a positive sequence of real numbers greater than or

equal to 1 and

. 1o,
Fip, (2) = — > VP K, (x— Xi)
k=1

is a kernel estimator of p,, () = E(Y?P*|X = z). Here Kp,(u) = % - K (%) where K is a
probability density on R? and h a window-width. Intuitively, the use of the window-width
h., allows to select the pairs (X, Yi) such that X is close to « while the use of the high
power p,, gives more weight to the Y} close to g(x). Let us also highlight that, compared
to the estimator suggested in the further work of Girard and Jacob (2008), Section 6, our
proposition (1) does not require the knowledge of «(x). Moreover, it benefits from an explicit
formulation which is not the case of estimators defined by optimization problems (Girard et al.
(2005)) such as local polynomial estimators (Hall et al. (1998), Hall and Park (2004), Knight
(2001)). Finally, although our estimator g, () is based on kernel regressions, classical results

do not apply (see for instance Ferraty and Vieu (2005), Theorem 6.11) since the condition

pn — o0 induces technical difficulties.

3 Main result

In all the sequel r,, will be chosen as r, = ap, +b with a > 0 or a =0 and b > 1. Let us
denote by f the density function of X. To establish the asymptotic normality of g,(z), the

following regularity assumptions are needed:



(A1) 35, ep,mp >0 Va,y eRY: |z —yll <5 = [f(z) — fy)| < eglle —yl™.
(A2) e, €as Mo >0 Y,y €RY: |z —y|| < 00 = |a(z) — a(y)| < eallz — yl|".

(A3) 30y, €g: 19 >0 YV, y e R : o —yll < by = |g(z) — g(y)| < gglla —y"s.
Let B the unit ball of R%, We shall also assume that

(A4) The support of K is included in B and / K3(z)dr < .
B

Note that (A4) implies that V¢ € {1,2, 3}, / Ki(x)dr < oo.
B
Our main result can now be stated:

Theorem 1. Suppose (A;—A4) hold. For all x € RY such that f(z) > 0, npn ™ he — +o0

and p, hi? — 0 as n — oo, we have:

\/ﬁp;a(w)ﬂ*l hi/2 <§;((;)) — 1> AN <0, |K|§‘;((;x)(9:), a)> , as m— oo

where || K||3 :/ K?(z)dx and
B

1. Ifa>0,
V(alz), a) = % {2—a<z>_2 . 2m 4 a2 4 a)am] |
2. Ifa=0,
Via(z), 0) = lim V(a(z), ) = ZF_((;(:;;; (a®(z) + 20 () + 3a(x) + 2).

Note that, if we set 2 € Q, the sequences hy, (z) = n~ Y/ (@+12@) and p,, (x) = g, nls/(d+1s2(2))
can be chosen, where (¢,,) is an arbitrary sequence of positive real numbers tending to 0. How-
ever, this requires a precise knowledge of the function o which is often unrealistic. Remarking
that Q is a compact subset of R? and that « is continuous under the assumption (A3), one
can define o, = maxq o and set h,, = n~1/(dt192<) and p,, = e, ne/(@H19%<) In the uni-
form case (that is, when « is constant equal to 1), with such choices, the rate of convergence
of the estimator is then 8}/2 ns/(d+19) which is also, up to the factor &, the optimal rate
of convergence for the estimator presented in Girard and Jacob (2008). In the next section,
we shall thus use such sequences to compare Girard and Jacob’s estimator to the moment
estimator.

The asymptotic variance of the estimator also involves the multiplicative factor V(a(z), a).
The choice of an “optimal” value for a by minimization of V(«(z), a) is a difficult task since
it depends on the unknown value of a(x). One can observe on Figure 1 that, for a(z) < 2,
V(a(z), .) is a decreasing function and thus large values of a should be preferred. These

results are now illustrated on finite sample situations.



4 Numerical experiments

In this section, we limit ourselves to unidimensional standard uniform random variables X.
(@ =1[0,1) and d = 1). The behavior of the estimators is illustrated on samples with size

n = 500 on four situations obtained by combining two models for both g and . The first

frontier
1\2

. 1

1+ exp (—60 <m— 4) ) ifx € [0, g}

1+ exp 5 ifxe]l g]

gl(‘r): 12 37 3

5 5 .
1+ 5exp (—12) —6exp (—12>x 1fx€]§, 2]
6z — 4 ifxe}%,l}

is continuous but not differentiable at = 1/3, x = 2/3 and « = 5/6. The second one

g2(z) = (110 + sin(m:)) [1(1) - % exp <—64 (3C N ;)2>]

is infinitely differentiable. The first function «(x) considered is the constant a; = 1.25 and
the second one is as(z) = 1.25 + | cos(4dnz)].

The uniform kernel is chosen:
1
K(z) = 51[71,1](93)

with associated bandwidth h{™ = 26(X)/n!/(+e=) and p{™ = nt/(+e=) /\ /In(n), where
0(X) is the empirical standard deviation of X. These sequences are chosen according to the
remark below Theorem 1. Note that the multiplicative constant o(X) has been suggested by
Girard and Jacob (2008), whereas the constant 2 was empirically chosen. Two versions of the
moment estimators are considered. The first one is based on a constant number of moments,
rn = 35 (e = 0, b = 35), and is denoted by ’g)(lm’c). The second one is based on a variable

number of moments, r, = 15p£Lm) (a =15, b = 0), and is denoted by ’g}(Lm’v). The constants

have been chosen after intensive simulations. These two estimators are compared to fq\ﬁlgj )
proposed by Girard and Jacob (2008) with W99 = 46(X)/+/n and pSﬁj) = /n/In(n). On
each of the four considered situations, 500 replications of the sample are simulated which
permits to compute the minimum, maximum and mean L'— errors associated to each esti-
mator. Results are reported in Table 1. It appears that, as soon as « increases, performance
of all these estimators decrease, since the simulated points are getting more and more distant
from the frontier. Let us highlight that, in all the considered situations, the chosen constants
give satisfactory results. Moreover, in all cases, both moment estimators g, and g™ *)
yield better results than @(lgj ), the estimator of Girard and Jacob (2008). These results are
illustrated on Figure 2-5. On each of the upper panels, the best estimates, i.e. the estimates

that yield the smallest L;— errors in Table 1, /g)(fj ), /g}(Lm ) and §£Lm Y) are superimposed to the



frontier g. Similarly, the worst estimates are depicted on the lower panels, i.e. the estimates

that yield the largest L;— errors in Table 1.

(m; v)

Note also that in three situations over four, the best estimator is gy, , the estimator

~(m, c)

with a variable number of moments whose L' error is smaller than gy The essential

A(m v) . A(m c)

advantage of g is that, for o < 2, its asymptotic variance is smaller than that of g
(for all a), as illustrated on Figure 1. Thus, taking a = 15 allows us to build pointwise
confidence intervals for the frontier that are significantly tighter in the case where « is small,

but just a little larger in the extreme cases.

5 Proof of Theorem 1
Our goal is to prove that the random variable

A ps @)/ /2 | (@jx) a 9(1:E)>

converges in distribution to a standard Gaussian random variable. Theorem 1 is then a

&n(x)
||K||2 )s

simple consequence of this result. The proof of this result is divided into two parts whether
a = 0 or not.

1. Let us consider the case a > 0. The first step consists to use Lemma 3 in order to

1) )]

linearize &, (x):

o = e (i) e (o) (s

X

7“"7;(“”) (1+o0(1)).

n

Now, Lemma 2 yields

() = “21 T 0) 1 0p(¢2) () + 02(¢Y (@)] (1+ 0(1))

Tn

and to conclude the proof, it is sufficient to establish that

tool8 o) L (0, 1), (22
o nal®) () 4w, 1), (2b)
o® LD @) 4y 4w, 1), (20)

r
where C®) and C'®) are suitable constants. Note that in fact, (2b) and (2c) are stronger
than what is necessary, but their proofs are similar to (2a). In all the sequel, the following

notations will be used

7" ()
frep,,+5 (%)

vp()

YkCPnJrj K, (.%' _ Xk),
B (@),

fip (@) — pip ().



To prove (2a), remark that ¢ (1)( ) can be expanded as the sum of independent and centered

random variables: Q(Ll)( )= 15’(1 a)( ) with

a 1 n, n n a n a
S,(Ll”k)(x) = = {Z( 1,0) Z( ,1,1)( ), Z}g 1+ ,b)(x)’ Z}g 1+ ,b+1)<x) AD (), (3)
t
AP@) = [allh(@), S>1<x>, aih(@), ally(@)]
(I)O(x) = _1a
fp, (T)
A (z) =
tp,+1()
(1) _ Tn ) fip, +1(2)
a, o(x) = 1+ ,
72( ) < pn+1 ManrrnJrl(x)
(1) T\ Hpa+1(Z) fp,+r, (T)
a, ’3(x) = —<1+ ) )
w3 pnt+1 Mgn+rn+1(f)

where A? stands for the transposed matrix of A. In order to use Lyapounov’s central limit
theorem (see e.g. Billingsley, 1979, p. 312), it remains to prove that

n

2

WE\SSIC&)( ) — 0 (4)

which requires to control Var(g}(f)(x)) and ]E|S’?(AL1 ’ka) (x)|2. The variance can be rewritten as

Var(c (2)) L I )+(1+ I )2 b, 11 (7) (pn + + 1) ()
ar(¢,, ’/(z = — |w(pn, pn)(x W(Pn T Tny Pn T T )T
n Pn+1 M§n+rn+1(x)
Tn ,U/Pn+1(x)
=21+ > mePn"‘Tn 1':|
< Pnt+1) tp,trp+1(2) ( @)
where

t
NSpn+t(Q7) ﬂupn+v(x)
w(spn +t, up, +v)(xz) = [1, ] M, (s, t, u, v)(x) [1, T
" Hospn+t+1(T) " Hupn+v+1(T)

and M, (s, t, u, v)(z) is the 2 x 2 covariance matrix defined by

E(z(n, s, t) ((E) Z('n7 u, v) (LE)) E(z(n, s, t) (.’IJ) Z(n7 w, v+1) ((E))

M, (s, t, u, v)(x) =
( )( ) E(z(n,s,t+1)(m) Z(n,u,v)(x)) E(Z("’s’t+1)(.’lj) Z(n,u,v+1)(x))

Therefore, since Lemma 1 provides an asymptotic expansion of the matrix M, (s, t, u, v)(x),
it is sufficient to compute an asymptotic expansion of psp, +¢()/tsp, +t+1(x). The use of

Lemma 1 and tedious computations lead to

11

Var(¢i (2)) ~ a®|[ K3 f(2) T*(a(x) + DV (a(2), a) 7 I

(@)@ ()

n
Now, focusing on the third moment, Hélder’s inequality yields

PESHY @) < 4-Elal (@) 27 (@) + al (@) 20D (@)

+ 4-Elal (@) 20 (@) + aly (@) 20 D ()P



The next step consists in applying Lemma 4 to each term of the right-hand side of the

inequality. To this end, let us consider the functions

B W) = -1,

2 (W) = a2,

H(lia) — (1 + >g7'n T MP7L+1(x) :
™2 ( ) anFl ( )an+rn+l(x)

H(La) " — (1 + ) T (g /’LPnJrl(aj) _a(m)u7
n3 () n+1 g )an+rn+1(33) l+a

and note that there exist two sequences of measurable functions (X( @) 1) and (x (e )2) uniformly

convergent to 0 on [0, 1] such that

HE W) ()

) (1) (1,a) :
max |a,, +a,, x—hyu ‘ < |H, 1—-y)+ + ,
ma o () + 0y () oo — haw)y| < TH @)1 — )+ = o
ma ol (@) + ally () o — o)y < P -y + T W] 600)
e " ooog (.’17) w2 Pn Pn

Since

T Manrl(m) a(m)

g™ (@) ———= ~ (1 +a)

lu’pn +rp+1 (:I;)

the functions Hf:’ja), j € {0,1,2,3} are bounded on [0, 1], uniformly in n, and thus Lemma 4
entails that

EIS (@)F = O(n=2 - g% (@) - p 2 ). (6)

n, 1

Combining (5) and (6), convergence (4) follows from the condition np, ™ hé — oo and

therefore (2a) holds.

Proofs of (2b) and (2¢) are completely similar since ¢!? and ¢{¥ can be rewritten as

L[, n n
D@ = 23 [2 0w, 20 @) [1Ph), aP@)]
k=1
1 = n a,b n a b t
(O(z) = EZ [Zlg ab) gy Z}g ,14a, 1+ )(x)} {aff)o(w), aif)l(w)} ’
k=1

2,a
HT(L,O)(U) = _la
H () = alo)u,
B w) = g () Lol
0 Hp+r,+1 (x)
,a T ’[Ln X ol )u
B (w) = g () Leenl) o)

Hpptr+1(x) 1+a

yields E|S£Lj;’1a) (2)]2 =0(n=3 - g®Pn (z) ) h2d), j = 2,3. Lyapounov’s central limit

theorem then gives the convergence. The first part of Theorem 1 is therefore established.



2. Now, we shift to the case a = 0 which is analogous to the previous one, but this time the
asymptotic expansions have to be more precise. The computations are therefore much more
complicated, but all the details can be found in Girard et al. (2010). At first sight, it can
appear somewhat odd as the case a = 0 corresponds to the simple case of a constant value of
the sequence r,. However, heuristically, in the case a > 0, our estimator is a Césaro mean of
the estimators considered in the case a = 0. As a consequence, the convergence of the latter

is expected to be harder to study than that of the former.

In the case a = 0, we obtain, using Lemma 3,

o) = A o) 4 (B 1) ) 14 o)

Hp,+1(7)

n Un,o(x) [(an+b+1($) _ an+1(x)> ¢ (x)} (1+o0(1))

b lip,+b+1(2)  Hp,+1(x)

Un,0(®) (Hputo1(z) (3)(p )
ot (ﬁanrbH(x) 1) G (@) (1 + o(1)).

We shall therefore establish that

U0 (0 2 (0, 1), (7a)

fip,+1() | =(2) P
Up,o(x) | =———= — 1| (7 (z) — 0, b
of )[Mpnﬂ(m) ] (%) ()

Ppn+b+1(T)  ppa1(T)] 3y, P
Up,0(T) | = - = ¢ (x) — 0, Tc
o) [y - e < (7o

L Tuproi(@) L] 5 P
Un. o(T — —1 x) — 0. 7d
o) oy | B ] () (7a)
Using representation (3), Var( y(Ll)(l‘)) has to be expanded up to order o(p;47a(x)). Indeed,

comparing the two versions of Lemma 3 whether a = 0 or not, it appears that in the latter
the right-hand side of Lemma 3 is divided by r,, instead of b, a constant, when a = 0. This
explains why in this case, the variance has to be expanded to a higher order. To this aim,
remark that

Var(()(@) = = A (1) Ba(r) AD (2)

n

where B,,(z) is the 4 x 4 covariance matrix defined by

Mn(L 07 17 0)(33) Mn(la 07 17 b)(l’)
M1, 0,1, 0)()  My(L, b, 1, )(x)

B, (z) =

From (8) in the proof of Lemma 1, Stirling’s formula (see e.g. Abramowitz and Stegun, 1965,
p. 257) and Tricomi and Erdelyi (1951), we deduce that

Var(¢ () ~ [1K[13 £(@) T2 (a(z) + 1)V (a(x), 0) b= - g2 (z) pr )=,

n hd "



These tedious computations are detailed in Girard et al. (2010). Like in the case a > 0,
our aim is now to apply Lyapounov’s central limit theorem which requires the order of

IE|S7(11”,€O)($)|3. This can be obtained from Lemma 4. Setting

l-y
Hy ) =~

) 1—y ’
- [ Lt 0 [guta 0) 4 o G w] K]
HOO(y) = | alx) + 22 [y - byb] |
/Ln(x, u) K (u) du y
B
b b b
g°(x — hpu) — g°(x)| 4 gz —hyu)—g(x)| 11—y b
n n b
P wen gb(z) vtp wen g(x) 4 1—y + o
b—1)b b(b+1
) = oty + | C5 0w+ oo - 1) - L2 o) o]
1 1 2
_|:b(b;_ )aQ(x)—l— |:b2_ (b+ )2(b+ ):| Oé(l‘)—b:| yb—i-l,
there exists a sequence of measurable functions (Xﬁll’o)) uniformly convergent to 0 on [0, 1]
such that
max |all (@) + 0l (2) (0 = huw) y + 0y (@) ¢*(@ = huw) * + 0l (@) ¢ (@ = ho) g
Hy” () ey W)
<IN W= g+ gy 2 W e 1),

For all b > 1, the function y +— (1 — 3*)/(1 — y) is bounded on [0, 1], so that the functions

HT(:’]»O) are bounded on [0, 1] uniformly in n. Lemma 4 then yields

E‘S(l’o) (x)‘S _ O(’I’L_3 931%, (x) p;f}—a(m) h;Qd)

n,1

and consequently (7a) holds.
Let us come back to the proof of (7b)—(7d) and remark that z,(?)(a:) =Y Sfl%’ko)(x) where

1

’ n

200 @), 20 @), 2 @), 2 @) AP @),

and
t
AP(@) = [aPy(@), as (@), ao(@), ai(@)] -

n’ n7

Similarly to the case a > 0, direct computations lead to

Var(C2 (@) ~ K3 @) T(a(x) + D (a(e), 0082 L L g2 () proto)-s
with
V(a(r), 0) = (al(x)) L2701 (03(z) — 20%(z) + 3a() + 6).

To apply Lyapounov’s central limit theorem, the order of E|ST(L2”1O) (7)|® has to be determined.

10



To this aim, Lemma 4 is used with

HEO () = 1Y

n, 0

/ L, (z, u) [Jn(x, u) + pn, Gn(z, u)} K(u)du
B

1— b
HEO () = |a() + L o]
/ Ly(z, u)K(u)du y
B
b b b
9°(x — hnu) — g°(2) | g(x —hnu) —g(z)| 1-y
+Pn wen g°(x) Yot Pn wen g(x) . y’

120 = ~a@+ | P50 - [0 )] v

- {b(b;l)az(i) - [b+ (Hl);b”)} a(x)] g,

after remarking that there exists a measurable sequence (X%Z’O)) uniformly convergent to 0

on [0,1] such that

max |a,” (7) + 0,7 (2) g(x — hnw)y + 4 (2) g (& — how) g + 0,y (2) g

b+1(x b+1

— hpu)y

(2,0) (2,0) (2,0)
1HO ()] HED W) 29 (y)
<|HZ )1 - y)? + e T

It follows that E|S(%’1O) (z)]3 = O(n=3 g3Pn (x)pgﬁ_a(r) h.-24) which yields (7b). Proofs of (7c)

n

and (7d) use the same method and are therefore omitted. Finally, since

Hpa+1(2) Un,o(@) g(z) f() —a(z)/2+1 1.d/2
el b K \ V@), 0 VP "

the second part of Theorem 1 is established. [ ]
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Appendix A: Auxiliary results

The first result of this section is technical and only useful for the proof of our next lemmas

and of the main theorem.

Lemma 1. For all x € R? such that f(x) >0, uw € B and n € N*, let

In(z, u) = a(z—hyu) —a(z)
) = 1 g(x — hpu)
Gnlee) = 12700
_ flx = hpu)T(a(z — hpu) + 1) B vw) —In _—
Ln({E, u) = f(l‘) F(O{(l‘) + 1) eXp[ pnGn( ) ) 1 (pn)Jn( 9 )] .

Suppose (A1 — Ag) hold and p, hp® — 0 as n — oo. Then, there exist two real numbers 6;

and 8o such that for all g € [1, 3],

E(YP» K (X —
pla—1) ( o ( z)) = / L(z, u) [1 + LI &Gi(z, u)| K%(u)du
B

T(a(z) +1) f(z) gP () pa " pn 2
= e P — hw) + ale) + 1] K9(w) du
Pn B
02 9(y) du + o(p;, 2
+ 2 [ K o)

Most of the time, in the proofs, a weaker result, which is a corollary of the previous lemma,

is enough:

Corollary 1. Let us denote, for all integers i and j,

o) = a(x) Pt () Blepn +i+1, a(x))

Yot (@) = ale) gt Pt (@) B((e+ pa + i+ + 1, al@))
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Suppose (A — Ay) hold and p, hp? — 0 asn — oo. Then, for all z € RY such that f(x) > 0,

we have
Bz (@) ~ o™e)(2) f(x)
. ’o 1 /i, g
B(Z (@) 20D (@)~ g e (@) f(@) K

n

(ete)Patiti(z) ((¢ + ¢ )pn) ~ @)
hd '

n

Cov(Z2™ @D (x), 2D (x)) ~ T(alz)+1)f(z)|K|32

The quantity ficp, +1(€)/thep, +1 () appears at several places in the linear expansion of &, (x)
given in Lemma 3 below. The corollary we have just stated allows us to prove its convergence

in probability to 1.

Lemma 2. Suppose (A; — Ay) hold. For all x € R? such that f(x) > 0, npy ™ he — +o0

and py by — 0 as n — oo, we have:

ﬁczin+k ()

=1+ op(1).
/'chn+k(x)

Our next lemma consists in linearizing the quantity &, ().

Lemma 3. Let (p,) be an arbitrary sequence of positive real numbers tending to +o0o. Two
cases are considered.

i) If a > 0 then

G = |+ (2D )P+ (14 L) (L) o)

ILLP77,+1(:C) DPn + 1 ﬁpn+rn,+1(1‘)
o Mmel® o)
Tn
where
(@) = @)+ L2y (@)
P +1()
T'n Hp,, +1 () Hp,,+1 (r) Hp,+ry, (7)
+ |1+ } Vp, +r, (T) — Vp tr,+1(T)
{ pnt1 lﬂpwrﬁl(x) o 1 (@) T
/Jpn(x)
(,(LQ) ) = —vp () + ——=Vp, +1(T
@ = o)+ L2, @)
Manrl(x) Hpn+1 () Hpr+ra ()
(Pla) = ey, L (2) — Vpn+rn+1(2)
Hpptrm+1(T) et /J'?)n“l"r‘n-‘rl(x) Pt
1 1
and Uy, () Vi pl @)/ pd/2,

K2 T(e(z) + 1)gPe(x) || f(z) V(a(z), a)
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ii) If a = 0 then rp, = b and

o) = 2 () + (B2 1) 8] (1 o)

si(z
Un, () [(Mpn+b+1($) Mpn+1($)) 3) }
+ G/ (x)| (14+0o(1
b Hp,+b+1()  Hp,+1() ()] ( @)
Un, o(2) (Mm+b+1(ﬂ?) ) (3)
+ —1]¢y(x)(1+o(1
Pn+1 \Iip,4o41(2) G (@) )
where
i fip, (%) fip,+1(2) fip,+b(T)
C,(7,2)96:f1/"96+71/n )+ ——— |vp, 1b(T) — Up., T
( ) p,( ) Mpr,LJrl(x) ;D,+1( ) ,upn+b+1(x) D +b( ) Mp,,L+b+1($) p,+b+1( )
and Uy, o(z) ! ! Vi p@)/242 pd/2

K2 T(a(z) + 1)gPe(z) || f(x) V(a(z), 0)

Finally, the following result provides the asymptotic order of the third moments appearing

in the proofs.

Lemma 4. Suppose (Ay — Ay) are satisfied and p, hy’ — 0 as n — oo. Let k € N,
(bn, j)nen+ 0<j<k be real numbers and x € RY such that there exist an integer m, sequences
of measurable functions (H, j), 0 < j < m, uniformly bounded on [0, 1] and a sequence of

measurable functions (x,) uniformly convergent to 0 on [0, 1] with

k m

: : H j(y) Xn(y)
d (r — Il < 2J P
max anﬂg (x —hyu)y’| < Z o (1—y)" 7+ == o
j=0 j=0 " "
Let us consider .
):an,j (n, ¢, ) )
j=0
Then, B|S,(x)|* = O(n=3 g3n () p, ™~ h2d)
Appendix B: Proof of the auxiliary results
In all the proofs, C(x) will be a generic notation for constants.
Proof of Lemma 1. By definition of the Beta function,
pla=1) E(YP K}l (X —
a(x)gPr () B(pn + 1, afx / K(u
I'(p, +14+ a(z p":z:fhu (u)
:/ O, (p () g™ ( (8)
pot1lta(—hou) g ( /Kq u
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H@ = b Doz = hnu) + 1). Since ha?p,, — 0 as n — oo, we have

where Q. (z, u) =

F@)T(a(x) + 1)
Na/Mg |10 py,
Sup In(p) |z, )| < o B [Inpy | = < [op] """ 2Pl g
ueB pza Mg
and
Ng
Sup pr, |Gn (2, u)| < ppeg——~ — 0
Sub P (G, W) < ooy

as n — oo, which implies that J,(z, u) = o(1/In(p,)) and G, (x, u) = o(1/p,) uniformly in
u € B. Applying Stirling’s formula, simple calculations yield

F(pn+1+a(x)) (e (s Jn<x’ u) 1 a($—hnu)+a(x) .
T(pn + 1+ oz — hyw) e ){1_ Pn {+ ” o),

2 2
uniformly in u € B. We then deduce that

g’ (x — hpu)

(@) = exp(pnIn(1 — Gu(x, u)))

exp(—puGala, ) [1 = 21GA (@, )| +o0(p?)
uniformly in v € B. Now, according to Tricomi and Erdélyi (1951), for all x and ¢, there
exist two real numbers 63 (k, ¢) and d2(k, ¢) such that

Consequently, setting 01 = 61(1, a(z) + 1) and d3 = J2(1, a(x) + 1), we have
B(pn + 1, a(2)) = T'(a(z)) p, *™ {1 p oy 6—3 +o (12)} :

bn  DPn Py
Since T is lipschitz on any compact set in Ry \ {0}, the function y — I'(a(y) + 1) is locally
Holderian with exponent 7,. This is also the case for the function y — f(y)T'(a(y) + 1)
with exponent min(ny, 7,). Condition h.'p, — 0 and the results above on G,, and J,, hence
imply that L, (z, ) = 1+ o(1/1n(p,)) uniformly in v € B. It is then sufficient to use the

asymptotic expansion above in (8), and to use the equality

09 62/ (1)
Ly(z,u)—= Kl (u)du = —= | KY(u)du+o|—
/B ( )p% (w) Pa JB (®) I

to conclude the proof of Lemma 1. [ |

Proof of Corollary 1. The proof is a direct consequence of Lemma 1 and is therefore

omitted. n

Proof of Lemma 2. Note that 7:”71:8 — 1 is a centered random variable. Therefore to
cPn

establish its convergence in probability to 0, it is sufficient to prove that its variance tends

to 0. Corollary 1 yields

Vo (Fth) ) _ NGl gy
Hepn+1(T) Ncanrk(x) npn " hd
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which tends to 0 under the condition np;a(x) hfl — 00.

Proof of Lemma 3. Let us first remark that, from Corollary 1,

(), (1YL
60te) = L2218 v, ) (5~ o) (4 ol )

If @ > 0, we have

o _ 1 (P + 7 + 1)ﬁpn+rn (@) Bpr 7041 (%) = Ppntr, (@) Bp 7, +1(2)
gn(z)  g(z) T'n Lip,+ro+1(T) fp,4r,+1(T)

—(pn + 1)ﬁpn () pp,+1(x) — pp, () ﬁpn—kl(fc)}
Iip,+1(2) pp,+1(x)
1
= —[AD @) - AP ()]
with
+rat 1l fp,gr,41(@) Hpn+ra (T)
AWM (x) 1= Dol BeetndtUOL () L (@) - LAy L (@),
fpntrat1(T)  Hptr,+1(2) potrn Poppy 47 +1(T) Ptint
AP (z) = P . DBt N, () — v, 11(2) ],
@ @ () T, L
and consequently,
Ao = (1) Bl ),
DPn + 1 Pn + 1 MP7L+T7L+1(‘r)
Ppnt1() A® Ppnt1() (2)
et x) = —=mC. x).
2t AR (a) Lot 8 (0 w)
Replacing in (9) and remarking that
W () = ¢@ 1 n (3)
@) =)+ (14 1) ()

lead to the first part of Lemma 3. To prove the second part (a = 0), we only have to remark

that (7 (z) = ¢ (2) + ¢ (2). n

Proof of Lemma 4. We only prove the case ¢ = 1 since the result can be obtained by
replacing p,, by ¢p,. Let w : R x R? — R, be the function defined by
a(u)—1
a(u) ( y >
wy, u) =—=<11-—= 10, g(u) (¥)-
() =" 1~ 5w 0,9(w)) (¥)

We get

3
k
1 )
BIS. @ = 5 [ [ {3 b7 Ko = )|ty w0 f) dudy
i=0

3
k

1 ! , .
= W/ / E b, j Y P (& = hpu)| K3 (u)¥(y, @ — hou) f (@ — hou) dudy
nohy, B -
j=0
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where ¥ : [0,1] x RY — R, is the function defined by ¥(y, u) = a(u) (1 — y)a(u)_l. From
condition hy?p, — 0 as n — 0o, we obtain

3

n3E| S, ( b
Snl@)l” hzd / / 3t (o = )| K30 Wl =) o=y
=0

3n
gp

where ¢, (z) — 1 as n — co. From the assumptions on b,,, ; and Holder’s inequality, it follows

3

k m
| Hy, ‘(y)|3 m—3j . a@)[*
g 3011 20— )| < 42 |35 sl oy bty
7=0 ; n n
Therefore, let us first consider, for j € {0,..., m},
H,, .
/ / | J —y)?" K3 () g Wy, & — hou) f@ — hou) dudy
< p,¥ sup |Hn7j|3 / B(3p, + 1, 3m — 35 + a(z — hyu)) alx — hpu) K3(u) f(z — hyu) du
0,1 B
nen
< C(z)p,* sup |H, ;|* B(3pn + 1, 3m — 3j + a(z / K3(u
[0, 1]
neN*

~ C(l’) p—?ﬂn—a(w)

n

following the lines of the proof of Lemma 1. Secondly,

1
Xn
: ”537” s bl / B(3pa+1, alw — hyw) alz = hyu) K*(u) f(z = hyu) du
; B
< C(z)png I[IolaX|Xn| B(3pn—|—1 OL / K3

~ C 3, —3m— oc(:v)
() e [xn " pr

As max(g, 1] |xn| — 0 when n — +o0, it follows that (n® g—*F» () pamte(@) h2E|S, (z)[?) is

bounded and the result is proved. [ ]
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~(m, c)

~(g7)

Frontier go

0.048 [0.036, 0.068]

0.047 [0.034, 0.068]

Parameters n n In
az) =
Frontier g1 0.082 [0.054, 0.137] | 0.083 [0.051, 0.143] | 0.091 [0.043, 0.161]

0.050 [0.033, 0.074]

a(z) = as(x)

Frontier g;

Frontier g

0.141 [0.091, 0.202]
0.099 [0.072, 0.128]

0.140 [0.089, 0.203]
0.097 [0.072, 0.126]

0.246 [0.175, 0.326]
0.101 [0.069, 0.142]

Table 1: Mean L' — errors and [minimum, maximum]| L' — errors associated to the estimators

in the four situations.

Figure 1: Graphs of the functions ¢ — V(a,a). Solid line « = 1.25, dashed line o« = 1.75,

dashed-dotted line o = 2, dotted line a« = 2.25.
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Figure 2: The frontier g; (solid line) and its estimates when a(z) = ;. Top: best estimates,

bottom: worst estimates. Dashed line: Girard & Jacob estimator @(«ng ), dashed-dotted line:
moment estimator §£Lm’c) with 7, = 35, dotted line: moment estimator @%m’v) with r, =

15p™).
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Figure 3: The frontier g, (solid line) and its estimates when o = a;. Top: best estimates,

bottom: worst estimates. Dashed line: Girard & Jacob estimator fq\flgj ) , dashed-dotted
line: moment estimator @\ém’c) with r, = 35, dotted line: moment estimator ’g\ﬁlm’v) with
ry, = 15 pﬁ{").
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Figure 4: The frontier g; (solid line) and its estimates when a(x) = as(z). Top: best

estimates, bottom: worst estimates. Dashed line: Girard & Jacob estimator @(«ng ) , dashed-
dotted line: moment estimator Zj,(lm ) with r, = 35, dotted line: moment estimator @}(lm’v)

with r,, = 15p5™.
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Figure 5: The frontier go (solid line) and its estimates when oo = ay(z). Top: best estimates,

bottom: worst estimates. Dashed line: Girard & Jacob estimator @(«ng ), dashed-dotted line:
moment estimator ﬁﬁlm’c) with 7, = 35, dotted line: moment estimator §7(1m,v) with r, =

15p™).

23



