
HAL Id: hal-00499346
https://hal.science/hal-00499346

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Cauchy problem for the Benjamin-Ono equation in
L2 revisited

Luc Molinet, Didier Pilod

To cite this version:
Luc Molinet, Didier Pilod. The Cauchy problem for the Benjamin-Ono equation in L2 revisited.
Analysis & PDE, 2012, 5 (2), pp.365-395. �hal-00499346�

https://hal.science/hal-00499346
https://hal.archives-ouvertes.fr


THE CAUCHY PROBLEM FOR THE BENJAMIN-ONO

EQUATION IN L2 REVISITED

LUC MOLINET 1 AND DIDIER PILOD 2
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Abstract. In a recent work [12], Ionescu and Kenig proved that the Cauchy
problem associated to the Benjamin-Ono equation is well-posed in L2(R). In
this paper we give a simpler proof of Ionescu and Kenig’s result, which more-
over provides stronger uniqueness results. In particular, we prove uncondi-
tional well-posedness in Hs(R), for s >

1

4
.

1. Introduction

The Benjamin-Ono equation is one of the fundamental equation describing the
evolution of weakly nonlinear internal long waves. It has been derived by Ben-
jamin [3] as an approximate model for long-crested unidirectional waves at the
interface of a two-layer system of incompressible inviscid fluids, one being infinitely
deep. In nondimensional variables, the initial value problem (IVP) associated to
the Benjamin-Ono equation (BO) writes as

(1.1)

{
∂tu+H∂2xu = u∂xu
u(x, 0) = u0(x),

where x ∈ R or T, t ∈ R, u is a real-valued function, and H is the Hilbert transform,
i.e.

(1.2) Hf(x) = p.v.
1

π

∫

R

f(y)

x− y
dy.

The Benjamin-Ono equation is, at least formally, completely integrable [2] and thus
possesses an infinite number of conservation laws. For example, the momentum and
the energy, respectively given by

(1.3) M(u) =

∫
u2dx, and E(u) =

1

2

∫ ∣∣D
1
2
x u
∣∣2dx+

1

6

∫
u3dx,

are conserved by the flow of (1.1).
The IVP associated to the Benjamin-Ono equation presents interesting math-

ematical difficulties and has been extensively studied in the recent years. In the
continuous case, well-posedness in Hs(R) for s > 3

2 was proved by Iorio [13] by
using purely hyperbolic energy methods (see also [1] for global well-posedness in
the same rage of s ). Then, Ponce [25] derived a local smoothing effect associated
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2 L. MOLINET AND D. PILOD

to the dispersive part of the equation, which combined to compactness methods,
enable to reach s = 3

2 . This technique was refined by Koch and Tzvetkov [17] and

Kenig and Koenig [14] who reach respectively s > 5
4 and s > 9

8 . On the other hand
Molinet, Saut and Tzvetkov [23] proved that the flow map associated to BO, when
it exists, fails to be C2 in any Sobolev space Hs(R), s ∈ R. This results is based on
the fact that the dispersive smoothing effects of the linear part of BO are not strong
enough to control the low-high frequency interactions appearing in the nonlinearity
of (1.1). It was improved by Koch and Tzvetkov [14] who showed that the flow map
fails even to be uniformly continuous in Hs(R) for s > 0 (see [4] for the same result
in the case s < −1/2.) As the consequence of those results, one cannot solve the
Cauchy problem for the Benjamin-Ono by a Picard iterative method implemented
on the integral equation associated to (1.1) for initial data in the Sobolev space
Hs(R), s ∈ R. In particular, the methods introduced by Bourgain [6] and Kenig,
Ponce and Vega [15], [16] for the Korteweg- de Vries equation do not apply directly
to the Benjamin-Ono equation.

Therefore, the problem to obtain well-posedness in less regular Sobolev spaces
turns out to be far from trivial. Due to the conservations laws (1.3), L2(R) and

H
1
2 (R) are two natural spaces where well-posedness is expected. In this direction,

a decisive breakthrough was achieved by Tao [26]. By combining a complex variant
of the Cole-Hopf transform (which linearizes Burgers equation) with Strichartz
estimates, he proved well-posedness in H1(R). More precisely, to obtain estimates
at the H1-level, he introduced the new unknown

(1.4) w = ∂xP+hi

(
e−

i
2F
)
,

where F is some spatial primitive of u and P+hi denotes the projection on high
positive frequencies. Then w satisfies an equation on the form

(1.5) ∂tw − i∂2xw = −∂xP+hi

(
∂−1
x wP−∂xu

)
+ negligible terms.

Observe that, thanks to the frequency projections, the nonlinear term appearing
on the right-hand side of (1.5) does not exhibit any low-high frequency interaction
terms. Finally, to inverse this gauge transformation, one gets an equation on the
form

(1.6) u = 2ie
i
2Fw + negligible terms.

Very recently, Burq and Planchon [7], and Ionescu and Kenig [12] were able to
use Tao’s ideas in the context of Bourgain’s spaces to prove well-posedness for the
Benjamin-Ono equation in Hs(R) for respectively s > 1

4 and s ≥ 0. The main
difficulty arising here is that Bourgain’s spaces do not enjoy an algebra property, so
that one is loosing regularity when estimating u in terms of w via equation (1.6).
Burq and Planchon first paralinearized the equation and then used a localized
version of the gauge transformation on the worst nonlinear term. On the other
hand, Ionescu and Kenig decomposed the solution in two parts: the first one is the
smooth solution of BO evolving from the low frequency part of the initial data, while
the second one solves a dispersive system renormalized by a gauge transformation
involving the first part. The authors then were able to solve the system via a
fixed point argument in a dyadic version of Bourgain’s spaces (already used in
the context of wave maps [27]) with a special structure in low frequencies. It is
worth noticing that their result only ensures the uniqueness in the class of limits of
smooth solutions, while Burq and Planchon obtained a stronger uniqueness result.
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Indeed, by applying their approach to the equation satisfied by the difference of two
solutions, they succeed in proving that the flow map associated to BO is Lipschitz
in a weaker topology when the initial data belongs to Hs(R), s > 1

4 .
In the periodic setting, Molinet [20], [21] proved well-posedness in Hs(T) for

successively s ≥ 1
2 and s ≥ 0. Once again, these works combined Tao’s gauge

transformation with estimates in Bourgain’s spaces. It should be pointed out that
in the periodic case, one can assume that u has mean value zero to define a primitive.
Then, it is easy to check by the mean value theorem that the gauge transformation
in (1.4) is Lipschitz from L2 into L∞. This property, which is not true in the real
line, is crucial to prove the uniqueness and the Lipschitz property of the flow map.

The aim of this paper is to give a simpler proof of Ionescu and Kenig’s result,
which also provides a stronger uniqueness result for the solutions at the L2- level.
It is worth noticing that to reach L2 in [12] or [21] the authors substituted u in
(1.4) by the formula given in (1.6). The good side of this substitution is that now
u will not appear anymore in (1.4). On the other hand, it introduces new technical
difficulties to handle the multiplication by e∓iF/2 in Bourgain’s spaces. In the
present paper we are able to avoid this substitution which will really simplify the
proof. Our main result is the following

Theorem 1.1. Let s ≥ 0 be given.

Existence : For all u0 ∈ Hs(R) and all T > 0, there exists a solution

(1.7) u ∈ C([0, T ];Hs(R)) ∩Xs−1,1
T ∩ L4

TW
s,4
x

of (1.1) such that

(1.8) w = ∂xP+hi

(
e−

i
2F [u]

)
∈ Y s

T .

where F [u] is some primitive of u defined in (3.2).

Uniqueness : This solution is unique in the following classes :

i) u ∈ L∞(]0, T [;L2(R)) ∩ L4(]0, T [×R) and w ∈ X
0, 12
T .

ii) u ∈ L∞(]0, T [;Hs(R)) ∩ L4
TW

s,4
x whenever s > 0.

iii) u ∈ L∞(]0, T [;Hs(R)) whenever s > 1
4 .

Moreover, u ∈ Cb(R;L
2(R)) and the flow map data-solution : u0 7→ u is continuous

from Hs(R) into C([0, T ];Hs(R)).

Note that above Hs(R) denotes the space of all real-valued functions with the

usual norm, Xs,b
T and Y s

T are Bourgain spaces defined in Subsection 2.2, while the
primitive F [u] of u is defined in Subsection 3.1.

Remark 1.2. Since the function spaces in the uniqueness class i) are reflexive and

since ∂xP+hi

(
e−

i
2F [un]

)
converges to ∂xP+hi

(
e−

i
2F [u]

)
in L∞(]−T, T [;L2(R)) when-

ever un converges to u in L∞(]−T, T [;L2(R)), our result clearly implies the unique-
ness in the class of L∞(]− T, T [;L2(R))-limits of smooth solutions.

Remark 1.3. It is worth noticing that for s > 0 we get a uniqueness class without
condition on w (see [7] for the case s > 1

4 ).

Remark 1.4. According to iii) we get unconditional well-posedness in Hs(R) for
s > 1

4 . This implies in particular the uniqueness of the (energy) weak solutions

that belong to L∞(R;H1/2(R)). These solutions are constructed by regularizing the
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equation and passing to the limit as the regularizing coefficient goes to 0 (taking into
account some energy estimate for the regularizing equation related to the energy
conservation of (1.1)) .

Our proof also combines Tao’s ideas with the use of Bourgain’s spaces. Actually,
it follows closely the strategy introduced by the first author in [20]. The main
new ingredient is a bilinear estimate for the nonlinear term appearing in (1.5),
which allows to recover one derivative at the L2-level. It is interesting to note
that, at the Hs-level with s > 0, this estimate follows from the Cauchy-Schwarz
method introduced by Kenig, Ponce and Vega in [16] (see the appendix for the
use of this method in some region of integration). To reach L2, one of the main
difficulty is that we cannot substitute the Fourier transform of u by its modulus in
the bilinear estimate since we are not able to prove that F−1(|û|) belongs L4

x,t but

only that u belongs to L4
x,t . To overcome this difficulty we use a Littlewood-Paley

decomposition of the functions and carefully divide the domain of integration into
suitable disjoint subdomains.

To obtain our uniqueness result, following the same method as in the periodic
setting, we derive a Lipschitz bound for the gauge transformation from some affine
subspaces of L2(R) into L∞(R) . Recall that this is clearly not possible for general
initial data since it would imply the uniform continuity of the flow-map. The main
idea is to notice that such Lipschitz bound holds for solutions emanating from initial
data having the same low frequency part and this is sufficient for our purpose.

Let us point out some applications. First our uniqueness result allows to really
simplify the proof of the continuity of the flow map associated to the Benjamin-Ono
equation for the weak topology of L2(R). This result was recently proved by Cui
and Kenig [9].

It is also interesting to observe that the method of proof used here still works
in the periodic setting, and thus, we reobtain the well-posedness result [21] in a
simpler way. Moreover, as in the continuous case, we also prove new uniqueness
results (see Theorem 7.1 below). In particular, we get unconditional well-posedness
in Hs(T) as soon as s ≥ 1

2 .
Finally, we believe that this technique may be useful for another nonlinear dis-

persive equations presenting the same kind of difficulties as the Benjamin-Ono
equation. For example, consider the higher-order Benjamin-Ono equation

(1.9) ∂tv − bH∂2xv + a∂3xv = cv∂xv − d∂x(vH∂xv +H(v∂xv)),

where x, t ∈ R, v is a real-valued function, a ∈ R, b, c and d are positive constants.
The equation above corresponds to a second order approximation model of the
same phenomena described by the Benjamin-Ono equation. It was derived by Craig,
Guyenne and Kalisch [8] using a Hamiltonian perturbation theory, and possesses an
energy at the H1-level. As for the Benjamin-Ono equation, the flow map associated
to (1.9) fails to be smooth in any Sobolev space Hs(R), s ∈ R [24]. Recently, the
Cauchy problem associated to (1.9) was proved to be well-posed in H2(R) [19]. In
a forthcoming paper, the authors will show that it is actually well-posed in the
energy space H1(R).

This paper is organized as follows: in the next section, we introduce the nota-
tions, define the function spaces and recall some classical linear estimates. Section
3 is devoted to the key nonlinear estimates, which are used in Section 4 to prove the
main part of Theorem 1.1, while the assertions i) and ii) are proved in Section 5.
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In Section 6, we give a simple proof of the continuity of the flow-map for the weak
L2(R)-topology whereas Section 7 is devoted to some comments and new results in
the periodic case. Finally, in the appendix we prove the bilinear estimate used in
Section 5.

2. Notation, function spaces and preliminary estimates

2.1. Notation. For any positive numbers a and b, the notation a . b means that
there exists a positive constant c such that a ≤ cb. We also denote a ∼ b when
a . b and b . a. Moreover, if α ∈ R, α+, respectively α−, will denote a number
slightly greater, respectively lesser, than α.

For u = u(x, t) ∈ S(R2), Fu = û will denote its space-time Fourier transform,
whereas Fxu = (u)∧x , respectively Ftu = (u)∧t , will denote its Fourier transform
in space, respectively in time. For s ∈ R, we define the Bessel and Riesz potentials
of order −s, Js

x and Ds
x, by

Js
xu = F

−1
x

(
(1 + |ξ|2)

s
2Fxu

)
and Ds

xu = F
−1
x

(
|ξ|sFxu

)
.

Throughout the paper, we fix a cutoff function η such that

η ∈ C∞
0 (R), 0 ≤ η ≤ 1, η|[−1,1]

= 1 and supp(η) ⊂ [−2, 2].

We define

φ(ξ) := η(ξ)− η(2ξ) and φ2l(ξ) := φ(2−lξ).

Any summations over capitalized variables such as N are presumed to be dyadic
with N ≥ 1, i.e., these variables range over numbers of the form 2n, n ∈ Z+. Then,
we have that

∑

N

φN (ξ) = 1− η(2ξ), ∀ξ 6= 0 and supp (φN ) ⊂ {
N

2
≤ |ξ| ≤ 2N}.

Let us define the Littlewood-Paley multipliers by

PNu = F
−1
x

(
φNFxu

)
, and P≥N :=

∑

K≥N

PK .

Moreover, we also define the operators Phi, PHI , Plo and PLO by

Phi =
∑

N≥2

PN , PHI =
∑

N≥8

PN , Plo = 1− Phi, and PLO = 1− PHI .

Let P+ and P− the projection on respectively the positive and the negative
Fourier frequencies. Then

P±u = F
−1
x

(
χR±

Fxu
)
,

and we also denote P±hi = P±Phi, P±HI = P±PHI , P±lo = P±Plo and P±LO =
P±PLO. Observe that Phi, PHI , Plo and PLO are bounded operators on Lp(R) for
1 ≤ p ≤ ∞, while P± are only bounded on Lp(R) for 1 < p <∞. We also note that

H = −iP+ + iP−.

Finally, we denote by U(·) the free group associated with the linearized Benjamin-
Ono equation, which is to say,

Fx

(
U(t)f

)
(ξ) = e−it|ξ|ξ

Fxf(ξ).
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2.2. Function spaces. For 1 ≤ p ≤ ∞, Lp(R) is the usual Lebesgue space with
the norm ‖·‖Lp , and for s ∈ R , the real-valued Sobolev spaces Hs(R) andW s,p(R)
denote the spaces of all real-valued functions with the usual norms

‖f‖Hs = ‖Jsu‖L2 and ‖f‖W s,p = ‖Js
xf‖Lp.

For 1 < p <∞, we define the space L̃p

‖f‖L̃p = ‖Plof‖Lp +
(∑

N

‖PNf‖
2
Lp

) 1
2

.

Observe that when p ≥ 2, the Littlewood-Paley theorem on the square function and
Minkowski’s inequality imply that the injection L̃p →֒ Lp is continuous. Moreover,
if u = u(x, t) is a real-valued function defined for x ∈ R and t in the time interval
[0, T ], with T > 0, if B is one of the spaces defined above and 1 ≤ p ≤ ∞, we will
define the mixed space-time spaces Lp

TBx, respectively L
p
tBx, by the norms

‖u‖Lp
TBx

=
(∫ T

0

‖u(·, t)‖pBdt
) 1

p

respectively ‖u‖Lp
tBx

=
(∫

R

‖u(·, t)‖pBdt
) 1

p

.

For s, b ∈ R, we introduce the Bourgain spaces Xs,b and Zs,b related to the
Benjamin-Ono equation as the completion of the Schwartz space S(R2) under the
norms

(2.1) ‖u‖Xs,b :=

(∫

R2

〈τ + |ξ|ξ〉2b〈ξ〉2s|û(ξ, τ)|2dξdτ

)1/2

,

(2.2) ‖u‖Zs,b :=

(∫

R

( ∫

R

〈τ + |ξ|ξ〉b〈ξ〉s|û(ξ, τ)|dτ
)2
dξ

)1/2

,

(2.3) ‖u‖Z̃s,b = ‖Plou‖Zs,b +

(∑

N

‖PNu‖
2
Zs,b

) 1
2

,

and

(2.4) ‖u‖Y s = ‖u‖
Xs,1

2
+ ‖u‖Z̃s,0 ,

where 〈x〉 := 1 + |x|. We will also use the localized (in time) version of these
spaces. Let T > 0 be a positive time and ‖ · ‖B = ‖ · ‖Xs,b , ‖ · ‖Z̃s,b or ‖ · ‖Y s . If
u : R× [0, T ] → C, then

‖u‖BT := inf{‖ũ‖B | ũ : R× R → C, ũ|R×[0,T ] = u}.

it is worth recalling that

Y s
T →֒ Zs,0

T →֒ C([0, T ];Hs(R)).

2.3. Linear estimates. In this subsection, we recall some linear estimates in Bour-
gain’s spaces which will be needed later. The first ones are well-known (cf. [10] for
example).

Lemma 2.1 (Homogeneous linear estimate). Let s ∈ R. Then

(2.5) ‖η(t)U(t)f‖Y s . ‖f‖Hs .
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Lemma 2.2 (Non-homogeneous linear estimate). Let s ∈ R. Then for any 0 <
δ < 1/2,

(2.6)
∥∥η(t)

∫ t

0

U(t− t′)g(t′)dt′
∥∥
Xs, 1

2
+δ . ‖g‖

Xs,− 1
2
+δ

and

(2.7)
∥∥η(t)

∫ t

0

U(t− t′)g(t′)dt′
∥∥
Y s . ‖g‖

Xs,− 1
2
+ ‖g‖Z̃s,−1.

Proof of Lemmas 2.1 and 2.2. The proof of Lemmas 2.1 and 2.2 is a direct conse-
quence of the classical linear estimates for Xs,b and Zs,b and the fact that

‖u‖Xs,b = ‖Plou‖Xs,b +
(∑

N

‖PNu‖
2
Xs,b

)1/2
.

�

Lemma 2.3. For any T > 0, s ∈ R and for all − 1
2 < b′ ≤ b < 1

2 , it holds

(2.8) ‖u‖
Xs,b′

T

. T b−b′‖u‖Xs,b
T
.

The following Bourgain-Strichartz estimates will also be useful.

Lemma 2.4. It holds that

(2.9) ‖u‖L4
x,t

. ‖u‖L̃4
x,t

. ‖u‖
X0,3

8

and for any T > 0 and 3
8 ≤ b ≤ 1

2 ,

(2.10) ‖u‖L4
x,T

. T b− 3
8 ‖u‖X0,b

T
.

Proof. Estimate (2.9) follows directly by applying the estimate

‖u‖L4
x,t

. ‖u‖
X0, 3

8
,

proved in the appendix of [20], to each dyadic block on the left-hand side of (2.9).
To prove (2.10), we choose an extension ũ ∈ X0,b of u such that ‖ũ‖X0,b ≤

2‖u‖X0,b
T

. Therefore, it follows from (2.8) and (2.9) that

‖u‖L4
x,T

≤ ‖ũ‖L4
x,t

. ‖ũ‖
X0, 3

8
. T b− 3

8 ‖u‖X0,b
T
.

�

2.4. Fractional Leibniz’s rules. First we state the classical fractional Leibniz
rule estimate derived by Kenig, Ponce and Vega (See Theorems A.8 and A.12 in
[15]).

Proposition 2.5. Let 0 < α < 1, p, p1, p2 ∈ (1,+∞) with 1
p1

+ 1
p2

= 1
p and

α1, α2 ∈ [0, α] with α = α1 + α2. Then,

(2.11)
∥∥Dα

x (fg)− fDα
xg − gDα

xf
∥∥
Lp . ‖Dα1

x g‖Lp1‖Dα2
x f‖Lp2 .

Moreover, for α1 = 0, the value p1 = +∞ is allowed.

The next estimate is a frequency localized version of estimate (2.11) in the same
spirit as Lemma 3.2 in [26]. It allows to share most of the fractional derivative in
the first term on the right-hand side of (2.12).
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Lemma 2.6. Let α ≥ 0 and 1 < q <∞. Then,

(2.12)
∥∥Dα

xP+

(
fP−∂xg

)∥∥
Lq . ‖Dα1

x f‖Lq1‖Dα2
x g‖Lq2 ,

with 1 < qi <∞, 1
q1

+ 1
q2

= 1
q and α1 ≥ α, α2 ≥ 0 and α1 + α2 = 1 + α.

Proof. See Lemma 3.2 in [20]. �

Finally, we derive an estimate to handle the multiplication by a term on the form

e±
i
2F , where F is a real-valued function, in fractional Sobolev spaces.

Lemma 2.7. Let 2 ≤ q <∞ and 0 ≤ α ≤ 1
q . Consider F1 and F2 two real-valued

functions such that uj = ∂xFj belongs to L2(R) for j = 1, 2. Then, it holds that

(2.13) ‖Jα
x

(
e±

i
2F1g

)
‖Lq . (1 + ‖u1‖L2)‖Jα

x g‖Lq ,

and

‖Jα
x

((
e±

i
2F1 − e±

i
2F2
)
g
)
‖Lq

.
(
‖u1 − u2‖L2 + ‖e±

i
2F1 − e±

i
2F2‖L∞(1 + ‖u1‖L2)

)
‖Jα

x g‖Lq .
(2.14)

Proof. In the case α = 0, we deduce from Hölder’s inequality that

(2.15) ‖e±
i
2F1g‖Lq ≤ ‖g‖Lq ,

since F1 is real-valued. Therefore we can assume that 0 < α ≤ 1
q and it is enough

to bound ‖Dα
x

(
e±

i
2F1g

)
‖Lq . First, we observe that

(2.16) ‖Dα
x

(
e±

i
2F1g

)
‖Lq ≤ ‖Dα

x

(
Ploe

± i
2F1g

)
‖Lq + ‖Dα

x

(
Phie

± i
2F1g

)
‖Lq

Estimate (2.11) and Bernstein’s inequality imply that

‖Dα
x

(
Ploe

± i
2F1g

)
‖Lq

. ‖Ploe
± i

2F1‖L∞‖Dα
xg‖Lq + ‖Dα

xPloe
± i

2F1‖L∞‖g‖Lq . ‖Jα
x g‖Lq .

(2.17)

On the other hand, by using again estimate (2.11), we get that

‖Dα
x

(
Phie

± i
2F1g

)
‖Lq . ‖Phie

± i
2F1‖L∞‖Dα

xg‖Lq + ‖g‖Lq1‖Dα
xPhie

± i
2F1‖Lq2 ,

with 1
q1

= 1
q − α, 1

q2
= α, so that 1

q1
+ 1

q2
= 1

q . Then, it follows from the facts that

F1 is real-valued, ∂xF1 = u1 and the Sobolev embedding that

‖Dα
x

(
Phie

± i
2F1g

)
‖Lq . ‖Dα

xg‖Lq + ‖Jα
x g‖Lq‖D

α+ 1
2

x Phie
± i

2F1‖L2

. ‖Jα
x g‖Lq

(
1 + ‖∂xe

± i
2F1‖L2

)

. ‖Jα
x g‖Lq

(
1 + ‖u1‖L2

)
.

(2.18)

The proof of estimate (2.13) is concluded gathering (2.15)–(2.18).
Estimate (2.14) can be obtained exactly in the same way, using that

(2.19) ‖∂x
(
e±

i
2F1 − e±

i
2F2
)
‖L2 . ‖u1 − u2‖L2 + ‖e±

i
2F1 − e±

i
2F2‖L∞‖u1‖L2.

�
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3. A priori estimates in Hs(R) for s ≥ 0

In this section we will derive a priori estimates on a solution u to (1.1) at the Hs-
level, for s ≥ 0. First, following Tao in [26], we perform a nonlinear transformation
on the equation to weaken the high-low frequency interaction in the nonlinearity.
Furthermore, since we want to reach L2, we will need to use Bourgain spaces. This
requires a new bilinear estimate which will be derive in Subsection 3.2.

3.1. The gauge transformation. Let u be a solution to the equation in (1.1).
First, we construct a spatial primitive F = F [u] of u, i.e. ∂xF = u, that satisfies
the equation :

(3.1) ∂tF = −H∂2xF +
1

2
(∂xF )

2.

It is worth noticing that these two properties defined F up to a constant. In order to
construct F for u with low regularity, we use the construction of Burq and Planchon
in [7]. Consider ψ ∈ C∞

0 (R) such that
∫
R
ψ(y)dy = 1 and define

(3.2) F (x, t) =

∫

R

ψ(y)
( ∫ x

y

u(z, t)dz
)
dy +G(t),

as a mean of antiderivatives of u. Obviously, ∂xF = u and

∂tF (x, t) =

∫

R

ψ(y)
(∫ x

y

∂tu(z, t)dz
)
dy +G′(t)

=

∫

R

ψ(y)
(∫ x

y

(
−H∂2zu(z, t) +

1

2
∂z(u(z, t)

2)
)
dz
)
dy +G′(t)

= −H∂xu(x, t) +
1

2
u(x, t)2 +

∫

R

(
Hψ′(y)u(y, t)− ψ(y)

1

2
u(y, t)2

)
dy +G′(t).

Therefore we choose G as

G(t) =

∫ t

0

∫

R

(
−Hψ′(y)u(y, s) + ψ(y)

1

2
u(y, s)2

)
dyds,

to ensure that (3.1) is satisfied. Observe that this construction makes sense for
u ∈ L2

loc(R
2). Next, we introduce the new unknown

(3.3) W = P+hi

(
e−

i
2F
)

and w = ∂xW = −
i

2
P+hi

(
e−

i
2Fu

)
.

Then, it follows from (3.1) and the identity H = −i(P+ − P−) that

∂tW +H∂2xW = ∂tW − i∂2xW = −
i

2
P+hi

(
e−

i
2F (∂tF − i∂2xF −

1

2
(∂xF )

2)
)

= −P+hi

(
WP−∂xu

)
− P+hi

(
Ploe

− i
2FP−∂xu

)
,

since the term −P+hi

(
P−hie

− i
2FP−∂xu

)
cancels due to the frequency localization.

Thus, it follows differentiating that

(3.4) ∂tw − i∂2xw = −∂xP+hi

(
WP−∂xu

)
− ∂xP+hi

(
Ploe

− i
2FP−∂xu

)
.

On the other hand, one can write u as

u = Fx = e
i
2F e−

i
2FFx = 2ie

i
2F∂x

(
e−

i
2F
)

= 2ie
i
2Fw − e

i
2FPlo(e

− i
2Fu)− e

i
2FP−hi(e

− i
2Fu),

(3.5)
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so that it follows from the frequency localization

P+HIu = 2iP+HI

(
e

i
2Fw

)
− P+HI

(
P+hie

i
2FPlo(e

− i
2Fu)

)

+ 2iP+HI

(
P+HIe

i
2F∂xP−hie

− i
2F
)
.

(3.6)

Remark 3.1. Note that the use of P+HI allows to replace e
i
2F by P+hie

i
2F in the

second term on the right-hand side of (3.6). This fact will be useful to obtain
at least a quadratic term in ‖u‖L∞

T L2
x
on the right-hand side of estimate (3.8) in

Proposition 3.2.

Then, we have the following a priori estimates on u in terms of w.

Proposition 3.2. Let 0 ≤ s ≤ 1, 0 < T ≤ 1, 0 ≤ θ ≤ 1 and u be a solution to

(1.1) in the time interval [0, T ]. Then, it holds that

(3.7) ‖u‖Xs−θ,θ
T

. ‖u‖L∞
T Hs

x
+ ‖u‖L4

T,x
‖Js

xu‖L4
T,x
.

Moreover, if 0 ≤ s ≤ 1
4 , it holds that

(3.8) ‖Js
xu‖Lp

TLq
x
. ‖u0‖L2 +

(
1 + ‖u‖L∞

T L2
x

)(
‖w‖Y s

T
+ ‖u‖2L∞

T L2
x

)
,

for (p, q) = (∞, 2) or (4, 4).

Remark 3.3. It is worth notice that (3.8) could be rewritten in a convenient form
for s ≥ 1

4 (cf. [20]).

Proof. We begin with the proof of estimate (3.7) and construct a suitable extension
in time ũ of u. First, we consider v(t) = U(−t)u(t) on the time interval [0, T ] and
extend v on [−2, 2] by setting ∂tv = 0 on [−2, 2] \ [0, T ]. Then, it is pretty clear
that

‖∂tv‖L2
[−2,2]

Hr
x
= ‖∂tv‖L2

THr
x
, and ‖v‖L2

[−2,2]
Hr

x
. ‖v‖L∞

T Hr
x
,

for all r ∈ R. Now, we define ũ(x, t) = η(t)U(t)v(t). Obviously, it holds

(3.9) ‖ũ‖Xs−1,1 . ‖∂tv‖L2
[−2,2]

Hs−1
x

+ ‖v‖L2
[−2,2]

Hs−1
x

. ‖∂tv‖L2
THs−1

x
+ ‖v‖L∞

T Hs−1
x

,

and

(3.10) ‖ũ‖Xs,0 . ‖v‖L2
[−2,2]

Hs
x
. ‖v‖L∞

T Hs
x
= ‖u‖L∞

T Hs
x
.

Then, it is deduced interpolating between (3.9) and (3.10) and using the identity

∂tv = H∂2xU(−t)u+ U(−t)∂tu = U(−t)
[
H∂2xu+ ∂tu

]
,

that

(3.11) ‖ũ‖Xs−θ,θ . ‖∂tu+H∂2xu‖L2
THs−1

x
+ ‖u‖L∞

T Hs
x
,

for all 0 ≤ θ ≤ 1. Therefore, the fact that u is a solution to (1.1) and the fractional
Leibniz rule (cf. [15]) yield

‖ũ‖Xs−θ,θ . ‖u‖L∞
T Hs

x
+ ‖u‖L4

x,T
‖Js

xu‖L4
x,T
,

which concludes the proof of (3.7) since ũ extends u outside of [0, T ].
Next, we turn to the proof of (3.8). Let 0 ≤ T ≤ 1, 0 ≤ s ≤ 1

4 , (p, q) = (∞, 2)
or (4, 4) and u a smooth solution to the equation in (1.1). Since u is real-valued, it
holds P−u = P+u, so that

(3.12) ‖Js
xu‖Lp

TLq
x
. ‖PLOu‖Lp

TLq
x
+ ‖Ds

xP+HIu‖Lp
TLq

x
.
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To estimate the second term on the right-hand side of (3.12), we use (3.6) to
deduce that

‖Ds
xP+HIu‖Lp

TLq
x
.
∥∥Ds

xP+HI

(
e

i
2Fw

)∥∥
Lp

TLq
x
+
∥∥Ds

xP+HI

(
P+hie

i
2FPlo(e

− i
2Fu)

)∥∥
Lp

TLq
x

+
∥∥Ds

xP+HI

(
P+HIe

i
2F ∂xP−hie

− i
2F
)∥∥

Lp
TLq

x

:= I + II + III.

Estimates (2.10) and (2.13) yield

(3.13) I . (1 + ‖u‖L∞
T L2

x
)‖Js

xw‖Lp
TLq

x
. (1 + ‖u‖L∞

T L2
x
)‖w‖Y s

T
.

On the other hand the fractional Leibniz rule (cf. Lemma 2.5), Hölder’s inequality
in time and the Sobolev embedding imply that

II . ‖Ds
xP+hie

i
2F ‖Lp

TLq
x
‖P+lo

(
ue−

i
2F
)
‖L∞

T,x

+ ‖P+hie
i
2F ‖L∞

T,x
‖Ds

xP+lo

(
ue−

i
2F
)
‖Lp

TLq
x

. ‖∂xP+hie
i
2F ‖Lp

TL2
x
‖P+lo

(
ue−

i
2F
)
‖L∞

T L2
x

. T
1
p ‖u‖2L∞

T L2
x
.

(3.14)

Finally estimate (2.12) with α1 = α2 = (1 + s)/2 and q1 = q2 = q, Hölder’s
inequality in time and the Sobolev embedding lead to

III . ‖D(1+s)/2
x P+HIe

i
2F ‖L2p

T L2q
x
‖D(1+s)/2

x P−hie
− i

2F ‖L2p
T L2q

x

. T
1
p ‖D

1+ s
2−

1
2q

x P+HIe
i
2F ‖L∞

T L2
x
‖D

1+ s
2−

1
2q

x P−hie
− i

2F ‖L∞
T L2

x

. T
1
p ‖∂xP+HIe

i
2F ‖L∞

T L2
x
‖∂xP−hie

− i
2F ‖L∞

T L2
x

. T
1
p ‖u‖2L∞

T L2
x
,

(3.15)

since 0 ≤ s ≤ 1
q . Therefore, we deduce gathering (3.13)–(3.15) that

(3.16) ‖Ds
xP+HIu‖Lp

TLq
x
.
(
1 + ‖u‖L∞

T L2
x

)(
‖w‖Y s

T
+ T

1
p ‖u‖2L∞

T L2
x

)
.

Next we turn to the first term on the right-hand side of (3.12) and consider the
integral equation satisfied by PLOu,

(3.17) PLOu = U(t)PLOu0 +

∫ t

0

U(t− τ)PLO∂x(u
2)(τ)dτ.

First, observe that

‖PLOu‖Lp
TLq

x
. T

1
p ‖PLOu‖L∞

T L2
x

Then, we deduce from (3.17), using the fact that U is a unitary group in L2 and
Bernstein’s inequality, that

‖PLOu‖Lp
TLq

x
. T

1
p ‖u0‖L2

x
+ T 1+ 1

p ‖∂xPLO(u
2)‖L∞

T L2
x

. T
1
p ‖u0‖L2

x
+ T 1+ 1

p ‖PLO(u
2)‖L∞

T L1
x

. ‖u0‖L2
x
+ ‖u‖2L∞

T L2
x
,

(3.18)

since 0 ≤ T ≤ 1.
Thus, estimate (3.8) follows combining (3.12), (3.16) and (3.18). This concludes

the proof of Proposition 3.2. �
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3.2. Bilinear estimates. The aim of this subsection is to derive the following
estimate on ‖w‖Y s

T
:

Proposition 3.4. Let 0 < T ≤ 1, 0 ≤ s ≤ 1
2 and u be a solution to (1.1) on the

time interval [0, T ]. Then it holds that

‖w‖Y s
T
.
(
1 + ‖u0‖L2

)
‖u0‖Hs + ‖u‖2L4

x,T

+ ‖w‖
X

s,1/2
T

(
‖u‖L∞

T L2
x
+ ‖u‖L4

x,T
+ ‖u‖X−1,1

T

)
.

(3.19)

The main tool to prove Proposition 3.4 is the following crucial bilinear estimates.

Proposition 3.5. Let s ≥ 0. Then we have that

‖∂xP+hi

(
∂−1
x wP−∂xu

)
‖
Xs,− 1

2

. ‖w‖
Xs, 1

2

(
‖u‖L2

x,t
+ ‖u‖L4

x,t
+ ‖u‖X−1,1

)
,

(3.20)

and

‖∂xP+hi

(
∂−1
x wP−∂xu

)
‖Z̃s,−1

. ‖w‖
Xs, 1

2

(
‖u‖L2

x,t
+ ‖u‖L4

x,t
+ ‖u‖X−1,1

)
.

(3.21)

Remark 3.6. Note that ∂−1
x w is well defined since w is localized in high frequencies.

Proof. We will only give the proof in the case of s = 0, since the case s > 0 can
be deduced by using similar arguments. By duality to prove (3.20) is equivalent to
prove that

(3.22)
∣∣I
∣∣ . ‖h‖L2

x,t
‖w‖

X0, 1
2

(
‖u‖L2

x,t
+ ‖u‖L4

x,t
+ ‖u‖X−1,1

)
,

where

(3.23) I =

∫

D

ξ

〈σ〉
1
2

ĥ(ξ, τ)ξ−1
1 ŵ(ξ1, τ1)ξ2û(ξ2, τ2)dν,

(3.24) dν = dξdξ1dτdτ1, ξ2 = ξ − ξ1, τ2 = τ − τ1, σi = τi + ξi|ξi|, i = 1, 2,

and

(3.25) D =
{
(ξ, ξ1, τ, τ1) ∈ R4 | ξ ≥ 1, ξ1 ≥ 1 and ξ2 ≤ 0

}
.

Observe that we always have in D that

(3.26) ξ1 ≥ ξ ≥ 1 and ξ1 ≥ |ξ2|.

In the case where |ξ2| ≤ 1, we have by using Hölder’s inequality and estimate (2.9)
that

∣∣I
∣∣ .

∫

R4

|ĥ|

〈σ〉
1
2

|ŵ(ξ1, τ1)||û(ξ2, τ2)|dν

.
∥∥
( |ĥ|

〈σ〉
1
2

)∨∥∥
L4

x,t
‖(|ŵ|)∨‖L4

x,t
‖u‖L2

x,t

. ‖h‖L2
x,t
‖w‖

X
3
8
‖u‖L2

x,t
.

Then, from now on we will assume that |ξ2| ≥ 1 in D.
By using a dyadic decomposition in space-frequency for the functions h, w and

u one can rewrite I as

(3.27) I =
∑

N,N1,N2

IN,N1,N2
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with

IN,N1,N2 :=

∫

D

ξ

〈σ〉
1
2

P̂Nh(ξ, τ)ξ
−1
1 P̂N1w(ξ1, τ1)ξ2P̂N2u(ξ2, τ2)dν,

and the dyadic numbers N, N1 and N2 ranging from 1 to +∞. Moreover, the
resonance identity

(3.28) σ1 + σ2 − σ = ξ21 + (ξ − ξ1)|ξ − ξ1| − ξ2 = −2ξξ2

holds in D. Therefore, to calculate IN,N1,N2 , we split the integration domain D in
the following disjoint regions

AN,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D | |σ| ≥

1

6
NN2

}
,

BN,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D | |σ1| ≥

1

6
NN2 , |σ| <

1

6
NN2

}
,

CN,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D | |σ| <

1

6
NN2, |σ1| <

1

6
NN2 , |σ2| ≥

1

6
NN2

}
,

(3.29)

and denote by I
AN,N2

N,N1,N2
, I

BN,N2

N,N1,N2
, I

CN,N2

N,N1,N2
the restriction of IN,N1,N2 to each of

these regions. Then, it follows that

IN,N1,N2 = I
AN,N2

N,N1,N2
+ I

BN,N2

N,N1,N2
+ I

CN,N2

N,N1,N2

and thus

(3.30)
∣∣I
∣∣ ≤

∣∣IA
∣∣+
∣∣IB
∣∣+
∣∣IC
∣∣,

where

IA :=
∑

N,N1,N2

I
AN,N2

N,N1,N2
, IB :=

∑

N,N1,N2

I
BN,N2

N,N1,N2
and IC :=

∑

N,N1,N2

I
CN,N2

N,N1,N2
.

Therefore, it suffices to bound
∣∣IA
∣∣,
∣∣IB
∣∣ and

∣∣IC
∣∣. Note that one of the two following

cases holds:

(1) high-low interaction: N1 ∼ N and N2 ≤ N1

(2) high-high interaction: N1 ∼ N2 and N ≤ N1.

Estimate for
∣∣IA
∣∣. In the first case, we observe from the Cauchy-Schwarz inequality

that

∣∣IA
∣∣ ∼

∣∣∣
∫

R2

ĥ
∑

N1

ln(N1)

ln(2)∑

j=0

φN1ξ〈σ〉
− 1

2χ{|σ|≥ 1
6N1

22−j}F
(
P+

(
∂−1
x PN1wP−∂xP2−jN1

u
))
dξdτ

∣∣∣

. ‖ĥ‖L2
ξ,τ

∥∥∥
∑

N1

∑

j≥0

N1
2(N2

1 2
−j)−1φN1

∣∣∣F
(
P+

(
∂−1
x PN1wP−∂xP2−jN1

u
))∣∣∣
∥∥∥
L2

ξ,τ

.

Then, the Plancherel identity and the triangular inequality imply that

∣∣IA
∣∣ . ‖h‖L2

x,t

∑

j≥0

(∑

N1

2j
∥∥∥PN1

(
∂−1
x PN1wP−∂xP2−jN1

u
)∥∥∥

2

L2
x,t

) 1
2

.

By using the Hölder and Bernstein inequalities, we deduce that

∣∣IA
∣∣ . ‖h‖L2

x,t

∑

j≥0

(∑

N1

2−j‖PN1w‖
2
L4

x,t
‖P2−jN1

u‖2L4
x,t

) 1
2

. ‖h‖L2
x,t

(∑

N

‖PN1w‖
2
L4

x,t

) 1
2

‖u‖L4
x,t
.

(3.31)
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In the second case, it follows using the same strategy as in the first case, that∣∣IA
∣∣ . ‖h‖L2

x,t

×
∑

j≥0

(∑

N1

(2−jN1)
2(2−jN1N1)

−1
∥∥∥P2−jN1

(
∂−1
x PN1wP−∂xPN1u

)∥∥∥
2

L2
x,t

) 1
2

,

which implies using the Hölder and Bernstein inequalities

∣∣IA
∣∣ . ‖h‖L2

x,t

∑

j≥0

(∑

N1

2−j‖PN1w‖
2
L4

x,t
‖PN1u‖

2
L4

x,t

) 1
2

. ‖h‖L2
x,t

(∑

N1

‖PN1w‖
2
L4

x,t

) 1
2

‖u‖L4
x,t
.

(3.32)

Therefore, we deduce gathering (3.31)–(3.32) and using estimate (2.9) that

(3.33)
∣∣IA
∣∣ ≤ ‖h‖L2

x,t
‖w‖

X0, 3
8
‖u‖L4

x,t
.

Estimate for
∣∣IB
∣∣. By using again the triangular and the Cauchy-Schwarz inequal-

ities, we have in the first case that∣∣IB
∣∣ ≤ ‖w‖

X0, 1
2

×
∑

j≥0

(∑

N1

N−2
1 (N12

−jN1)
−1
∥∥∥PN1

(
∂xP+hiPN1

( ĥ

〈σ〉
1
2

)∨
P+∂xP2−jN1

ũ
)∥∥∥

2

L2
x,t

) 1
2

,

where ũ(x, t) = u(−x,−t). Thus it follows from the Bernstein and Hölder inequal-
ities that

∣∣IB
∣∣ . ‖w‖

X0, 1
2

∑

j≥0

(∑

N1

2−j
∥∥PN1

( ĥ

〈σ〉
1
2

)∨∥∥2
L4

x,t
‖P2−jN1

u‖2L4
x,t

) 1
2

. ‖w‖
X0, 1

2

(∑

N1

∥∥PN1

( ĥ

〈σ〉
1
2

)∨∥∥2
L4

x,t

) 1
2

‖u‖L4
x,t
.

(3.34)

In the second case, we bound
∣∣IB
∣∣ as follows,

∣∣IB
∣∣ ≤ ‖w‖

X0, 1
2

×
∑

j≥0

(∑

N1

N−2
1 (2−jN1N1)

−1
∥∥∥PN1

(
∂xP+hiP2−jN1

( ĥ

〈σ〉
1
2

)∨
P+∂xPN1 ũ

)∥∥∥
2

L2
x,t

) 1
2

,

so that

∣∣IB
∣∣ . ‖w‖

X0, 1
2

∑

j≥0

(∑

N1

2−j
∥∥P2−jN1

P+hi

( ĥ

〈σ〉
1
2

)∨∥∥2
L4

x,t
‖PN1u‖

2
L4

x,t

) 1
2

. ‖w‖
X0, 1

2

∑

j≥0

2−
j
2

(∑

N1

∥∥P2−jN1
P+hi

( ĥ

〈σ〉
1
2

)∨∥∥2
L4

x,t

) 1
2

‖u‖L4
x,t

. ‖w‖
X0, 1

2

(∑

N1

∥∥PN1

( ĥ

〈σ〉
1
2

)∨∥∥2
L4

x,t

) 1
2

‖u‖L4
x,t
.

(3.35)

In conclusion, we obtain gathering (3.34)–(3.35) and using estimate (2.9) that

(3.36)
∣∣IB
∣∣ ≤ ‖h‖L2

x,t
‖w‖

X0, 1
2
‖u‖L4

x,t
.
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Estimate for
∣∣IC
∣∣. First observe that

(3.37)
∣∣IC
∣∣ .

∫

C̃

|ξ|

〈σ〉
1
2

|ĥ(ξ, τ)||ξ1|
−1|ŵ(ξ1, τ1)|

|ξ2|
2

〈σ2〉

〈σ2〉

|ξ2|
|û(ξ2, τ2)|dν,

where

C̃ =
{
(ξ, ξ1, τ, τ1) ∈ D | (ξ, ξ1, τ, τ1) ∈

⋃

N,N2

CN,N2

}
.

Since |σ2| > |σ| and |σ2| > |σ1| in C̃, it follows from (3.28) that |σ2| & |ξξ2|. Then,

(3.38) |ξξ−1
1 ξ22〈σ2〉

−1| . 1

holds in C̃, so that

∣∣IC
∣∣ .

∫

C̃

|ĥ(ξ, τ)|

〈σ〉
1
2

|ŵ(ξ1, τ1)|
〈σ2〉

|ξ2|
|û(ξ2, τ2)|dν

.
∥∥
( |ĥ|

〈σ〉
1
2

)∨∥∥
L4

x,t
‖(|ŵ|)∨‖L4

x,t
‖u‖X−1,1

. ‖h‖L2
x,t
‖w‖

X
3
8
‖u‖X−1,1

(3.39)

is deduced by using Hölder’s inequality and estimate (2.9).
Therefore, estimates (3.30), (3.33), (3.36) and (3.39) imply estimate (3.22), which

concludes the proof of estimate (3.20).
To prove estimate (3.21), we also proceed by duality. Then it is sufficient to

show that

(3.40)
∣∣J
∣∣ .

(∑

N

‖gN‖2L2
ξL

∞
τ

) 1
2 ‖w‖

X0, 1
2

(
‖u‖L2

x,t
+ ‖u‖L4

x,t
+ ‖u‖X−1,1

)
,

where

J =
∑

N

∫

D

ξ

〈σ〉
gN(ξ, τ)φN (ξ)ξ−1

1 ŵ(ξ1, τ1)ξ2û(ξ2, τ2)dν,

and dν and D are defined in (3.24) and (3.25). As in the case of I, we can also
assume that |ξ2| ≥ 1. By using dyadic decompositions as in (3.27), J can be
rewritten as

J =
∑

N,N1,N2

JN,N1,N2,

where

JN,N1,N2 :=

∫

D

ξ

〈σ〉
φN (ξ)gN (ξ, τ)ξ−1

1 P̂N1w(ξ1, τ1)ξ2P̂N2u(ξ2, τ2)dν,

and the dyadic numbers N , N1 and N2 range from 1 to +∞. Moreover, we will

denote by J
AN,N2

N,N1,N2
, J

BN,N2

N,N1,N2
, J

CN,N2

N,N1,N2
the restriction of JN,N1,N2 to the regions

AN,N2, BN,N2 and CN,N2 defined in (3.28). Then, it follows that

(3.41)
∣∣J
∣∣ ≤

∣∣JA
∣∣+
∣∣JB

∣∣+
∣∣JC
∣∣,

where

JA :=
∑

N,N1,N2

J
AN,N2

N,N1,N2
, JB :=

∑

N,N1,N2

J
BN,N2

N,N1,N2
and JC :=

∑

N,N1,N2

J
CN,N2

N,N1,N2
,

so that it suffices to estimate
∣∣JA

∣∣,
∣∣JB

∣∣ and
∣∣JC
∣∣.
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Estimate for
∣∣JA

∣∣. To estimate
∣∣JA

∣∣, we divide each region AN,N2 into disjoint
subregions

A
q
N,N2

=
{
(ξ, ξ1, τ, τ1) ∈ AN,N2 | 2q−3NN2 ≤ |σ| < 2q−2NN2

}
,

for q ∈ Z+. Thus if J
A

q
N,N2

N,N1,N2
denote the restriction of J

AN,N2

N,N1,N2
to each of these

regions, we have that JA =
∑

q≥0

∑
N,N1,N2

J
A

q
N,N2

N,N1,N2
. In the case of high-low inter-

actions, we deduce by using the Plancherel identity Cauchy-Schwarz and Minkowski
inequalities that

|JA| ≤
∑

q≥0

∑

N1

∑

N2≤N1

‖gN1χ{|σ|∼2qN1N2}‖L2
ξ,τ

× (2qN1N2)
−1N1

∥∥∥∂−1
x PN1wP−∂xPN2u

∥∥∥
L2

x,t

.

Moreover, we get from Hölder’s inequality

‖gN1χ{|σ|∼2qN1N2}‖L2
ξ,τ

. (2qNN2)
1
2 ‖gN1‖L2

ξL
∞
τ
,

so that, the Cauchy-Schwarz inequality yields

|JA| .
∑

N1

∑

N2≤N1

(N2N
−1
1 )

1
2 ‖gN1‖L2

ξL
∞
τ
‖PN1w‖L4

x,t
‖PN2u‖L4

x,t

. ‖u‖L4
x,t

∑

N1

‖gN1‖L2
ξL

∞
τ
‖PN1w‖L4

x,t

.
(∑

N1

‖gN1‖
2
L2

ξL
∞
τ

) 1
2 ‖w‖L̃4

x,t
‖u‖L4

x,t
.

(3.42)

In the high-high interaction case, it follows from the Minkowski and Cauchy-
Schwarz inequalities that

|JA| ≤
∑

q≥0

∑

N1

∑

N≤N1

‖gNχ{|σ|∼2qNN1}‖L2
ξ,τ

× (2qNN1)
−1N

∥∥∥∂−1
x PN1wP−∂xPN1u

∥∥∥
L2

x,t

.

Moreover, we deduce from Hölder’s inequality that

‖gNχ{|σ|∼2qNN1}‖L2
ξ,τ

. (2qNN1)
1
2 ‖gN‖L2

ξ
L∞

τ
.

Then, the Cauchy-Schwarz inequality implies that

|JA| .
∑

j≥0

∑

N1

(N−1
1 2−jN1)

1
2 ‖g2−jN1

‖L2
ξL

∞
τ
‖PN1w‖L4

x,t
‖PN1u‖L4

x,t

.
∑

j≥0

2−
j
2

(∑

N1

‖g2−jN1
‖2L2

ξL
∞
τ

) 1
2
(∑

N1

‖PN1w‖
2
L4

x,t

) 1
2 ‖u‖L4

x,t

.
(∑

N1

‖gN1‖
2
L2

ξL
∞
τ

) 1
2 ‖w‖L̃4

x,t
‖u‖L4

x,t
.

(3.43)

Then estimates (2.9), (3.42) and (3.43) yield

(3.44) |JA| .
(∑

N

‖gN‖2L2
ξL

∞
τ

) 1
2 ‖w‖

X0, 3
8
‖u‖L4

x,t
.
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Estimate for
∣∣JB

∣∣ and
∣∣JC
∣∣. Arguing as in the proof of (3.20), it is deduced that

∣∣JB
∣∣+
∣∣JC
∣∣ .

(∥∥
( g

〈σ〉

)∨∥∥
L̃4

x,t
+
∥∥
( |g|

〈σ〉

)∨∥∥
L̃4

x,t

)
‖w‖

X0, 1
2

(
‖u‖L4

x,t
+ ‖u‖X−1,1

)
,

where g =
∑

N φNgN . Moreover, estimate (2.9) and Hölder’s inequality imply

∥∥
( g

〈σ〉

)∨∥∥
L̃4

x,t
+
∥∥
( |g|

〈σ〉

)∨∥∥
L̃4

x,t
. ‖〈σ〉−

5
8

∑

N

φNgN‖L2
ξ,τ

.
(∑

N

‖〈σ〉−
5
8 gN‖2L2

ξ,τ

) 1
2

.
(∑

N

‖gN‖2L2
ξ
L∞

τ

) 1
2 ,

so that

(3.45)
∣∣JB
∣∣+
∣∣JC
∣∣ .

(∑

N

‖gN‖2L2
ξ
L∞

τ

) 1
2 ‖w‖

X0, 1
2

(
‖u‖L4

x,t
+ ‖u‖X−1,1

)
.

Finally (3.41), (3.44) and (3.45) imply (3.40), which concludes the proof of esti-
mate (3.21). �

Lemma 3.7. Let 0 < T ≤ 1, s ≥ 0 , u1, u2 ∈ L∞(R;L2(R)) ∩ L4(R2) supported

in the time interval [−2T, 2T ], and F1, F2 be some spatial primitive of respectively

u1 and u2. Then
∥∥∂xP+hi

(
Ploe

− i
2F1P−∂xu1

)∥∥
Z̃s,−1

+
∥∥∂xP+hi

(
Ploe

− i
2F1P−∂xu1

)∥∥
Xs,− 1

2
. ‖u1‖

2
L4

x,t
,

(3.46)

and ∥∥∂xP+hi

(
Plo

(
e−

i
2F1 − e−

i
2F2
)
P−∂xu2

)∥∥
Z̃s,−1

+
∥∥∂xP+hi

(
Plo

(
e−

i
2F1 − e−

i
2F2
)
P−∂xu2

)∥∥
Xs,− 1

2

.
(
‖u1 − u2‖L∞

t L2
x
+ ‖e−

i
2F1 − e−

i
2F2‖L∞

x,t
‖u2‖L∞

t L2
x

)
‖u2‖L4

x,t
.

(3.47)

Proof. We deduce from the Cauchy-Schwarz inequality, the Sobolev embedding
‖f‖

H
− 1

2
+ǫ

t

. ‖f‖
L1+ǫ′

t
with 1 + ǫ′ = 1

1−ǫ , and the Minkowski inequality that

‖f‖Z̃s,−1 + ‖f‖
Xs,− 1

2
. ‖f‖

Xs,−1
2
+ǫ =

∥∥∥
∥∥(Js

xU(−t)f
)∧x

(ξ)
∥∥
H

− 1
2
+ǫ

t

∥∥∥
L2

ξ

.
∥∥∥‖
(
Js
xU(−t)f

)∧x
(ξ)
∥∥
L1+ǫ′

t

∥∥∥
L2

ξ

. ‖f‖
L1+ǫ′

t Hs
x
.

(3.48)

On the other hand, it follows from the frequency localization that

∂xP+hi

(
Ploe

− i
2FP−∂xu

)
= ∂xP+LO

(
Ploe

− i
2FP−LO∂xu

)
.

Therefore, by using (3.48), Bernstein’s inequalities and estimate (2.12), we can
bound the left-hand side of (3.46) by

(3.49)
∥∥P+LO

(
Ploe

− i
2FP−LO∂xu

)∥∥
L1+ǫ′

t L2
x
. T γ‖∂xe

− i
2F ‖L4

x,t
‖u‖L4

x,t
,

with 1
γ = 1

2−ǫ
′, which concludes the proof of estimate (3.46) recalling that ∂xF = u

and 0 < T ≤ 1. Estimate (3.47) can be proved exactly as above recalling (2.19). �
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A proof of Proposition 3.4 is now in sight.

Proof of Proposition 3.4. Let 0 ≤ s ≤ 1
2 , 0 < T ≤ 1 and let ũ and w̃ be extensions

of u and w such that ‖ũ‖X−1,1 ≤ 2‖u‖X−1,1
T

and ‖w̃‖Xs,1/2 ≤ 2‖w‖
X

s,1/2
T

. By the

Duhamel principle, the integral formulation associated to (3.4) reads

w(t) = η(t)w(0) − η(t)

∫ t

0

U(t− t′)∂xP+hi

(
ηT∂

−1
x w̃P−

(
ηT ∂xu

))
(t′)dt′

− η(t)

∫ t

0

∂xP+hi

(
Plo

(
ηT e

− i
2 F̃
)
P−

(
ηT ∂xũ

))
(t′)dt′,

for 0 < t ≤ T ≤ 1. Therefore, we deduce gathering estimates (2.5), (2.7), (3.20),
(3.21) and (3.46) that

‖w‖Y s
T
. ‖w(0)‖Hs + ‖u‖2L4

x,T
+ ‖w‖

X
s1/2
T

‖
(
‖u‖L∞

T L2
x
+ ‖u‖L4

x,T
+ ‖u‖X−1,1

T

)
.

This concludes the proof of estimate (3.19), since

(3.50) ‖w(0)‖Hs .
∥∥Js

x

(
e−

i
2F (·,0)u0

)∥∥
L2 .

(
1 + ‖u0‖L2

)
‖u0‖Hs ,

follows from estimate (2.13) and the fact that 0 ≤ s ≤ 1
2 . �

4. Proof of Theorem 1.1

First it is worth noticing that we can always assume that we deal with data
that have small L2(R)-norm. Indeed, if u is a solution to the IVP (1.1) on the time
interval [0, T ] then, for every 0 < λ <∞, uλ(x, t) = λu(λx, λ2t) is also a solution to
the equation in (1.1) on the time interval [0, λ−2T ] with initial data u0,λ = λu0(λ·).
For ε > 0 let us denote by Bε the ball of L2(R), centered at the origin with radius

ε. Since ‖uλ(·, 0)‖L2 = λ
1
2 ‖u0‖L2, we see that we can force u0,λ to belong to Bǫ

by choosing λ ∼ min(ε2‖u0‖
−2
L2 , 1). Therefore the existence and uniqueness of a

solution of (1.1) on the time interval [0, 1] for small L2(R)-initial data will ensure
the existence of a unique solution u to (1.1) for arbitrary large L2(R)-initial data
on the time interval T ∼ λ2 ∼ min(‖u0‖

−4
L2 , 1). Using the conservation of the

L2(R)-norm, this will lead to global well-posedness in L2(R).

4.1. Uniform bound for small initial data. First, we begin by deriving a priori

estimates on smooth solutions associated to initial data u0 ∈ Hs(R) that is small in
L2(R) . It is known from the classical well-posedness theory (cf. [13]) that such an
initial data gives rise to a global solution u ∈ C(R;H∞(R)) to the Cauchy problem
(1.1). Setting for 0 < T ≤ 1,

(4.1) Ns
T (u) := max

(
‖u‖L∞

T Hs
x
, ‖Js

xu‖L4
x,T
, ‖w‖

X
s, 1

2
T

)
,

it follows from the smoothness of u that T 7→ Ns
T (u) is continuous and non de-

creasing on R∗
+. Moreover, from (3.4), the linear estimate (2.7), (3.50) and (3.7) we

infer that limT→0+N
s
T (u) . (1 + ‖u0‖L2)‖u0‖Hs . On the other hand, combining

(3.7)-(3.8) and (3.19) and the conservation of the L2-norm we infer that

N0
T (u) . (1 + ‖u0‖L2)‖u0‖L2 + (N0

T (u))
2 + (N0

T (u))
3 .

By continuity, this ensures that there exists ε0 > 0 and C0 > 0 such that N0
1 (u) ≤

C0ε provided ‖u0‖L2 ≤ ε ≤ ε0. Finally, using again (3.7)-(3.8) and (3.19), this
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leads to Ns
1 (u) . ‖u0‖Hs provided ‖u0‖L2 ≤ ε ≤ ε0.

4.2. Lipschitz bound for initial data having the same low frequency part.

To prove the uniqueness as well as the continuity of the solution we will derive
a Lipschitz bound on the solution map on some affine subspaces of Hs(R) with
values in L∞

T H
s(R). We know from [17] that such Lipschitz bound does not exist

in general in Hs(R). Here we will restrict ourself to solutions emanating from initial
data having the same low frequency part. This is clearly sufficient to get uniqueness
and it will turn out to be sufficient to get the continuity of the solution as well as
the continuity of the flow-map.
Let ϕ1, ϕ2 ∈ Bǫ ∩H

s(R), s ≥ 0, such that PLOϕ1 = PLOϕ2 and let u1, u2 be two
solutions to (1.1) emanating respectively from ϕ1, and ϕ2 that satisfy (7.1) on the
time interval [0, T ], 0 < T < 1. We also assume that the primitives F1 := F [u1] and
F2 := F [u2] of respectively u1 and u2 are such that the associated gauge functions
W1, w1, respectively W2, w2, constructed in Subsection 3.1, satisfy (7.2). Finally,
we assume that

(4.2) N0
T (ui) ≤ C0ε ≤ C0ε0.

First, by construction, we observe that since F (x) − F (y) =
∫ y

x u(z) dz, it holds

PLO

∫ x

y
udz = PLO

(
F (x)−F (y)

)
= PLOF (x)−F (y). On the other hand, since PLO

and ∂x do commute, we have ∂xPLOF = PLOu and, by integrating,
∫ x

y PLOudz =

PLOF (x)− PLOF (y). Gathering these two identities, we get
∫ x

y

PLOudz − PLO

∫ x

y

udz = F (y)− PLOF (y) = PHIF (y),

which leads to

Plo

∫ x

y

udz = Plo

∫ x

y

PLOudz.

We thus infer that

Plo(F1 − F2)(x, 0) =

∫

R

ψ(y)Plo

∫ x

y

(u1 − u2)(z, 0)dzdy

=

∫

R

ψ(y)Plo

∫ x

y

PLO(ϕ1(z)− ϕ2(z))(z, 0)dzdy = 0.(4.3)

Then, we set v = u1 − u2, Z =W1 −W2 and z = w1 − w2. Obviously, z satisfies

∂tz − i∂2xz =− ∂xP+hi

(
W1P−∂xv

)
− ∂xP+hi

(
ZP−∂xu2

)

− ∂xP+hi

(
Ploe

− i
2F1P−∂xv

)
− ∂xP+hi

(
Plo

(
e−

i
2F1 − e−

i
2F2
)
P−∂xu2

)
.

Thus, we deduce gathering estimates (2.7), (3.20), (3.21), (3.46) and (3.47) that

‖z‖Y s
1
. ‖z(0)‖Hs + ‖w1‖Xs,1/2

1

(
‖v‖X−1,1

1
+ ‖v‖L4

x,1
+ ‖v‖L∞

1 L2
x

)
+ ‖v‖2L4

x,1

+ ‖z‖
X

s,1/2
1

(
‖u2‖X−1,1

1
+ ‖u2‖L4

x,1
+ ‖u2‖L∞

1 L2
x

)

+
(
‖v‖L∞

1 L2
x
+ ‖e−

i
2F1 − e−

i
2F2‖L∞

x,1

)
‖u2‖L4

x,1
,

which implies recalling (4.1) and (4.2) that

(4.4) ‖z‖Y s
1
. ‖z(0)‖Hs+ε

(
‖v‖X−1,1

1
+‖v‖L4

x,1
+‖v‖L∞

1 L2
x

)
+ε‖e−

i
2F1−e−

i
2F2‖L∞

x,1
.
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where, by the mean-value theorem,

‖z(0)‖Hs . ‖ϕ1 − ϕ2‖Hs

(
1 + ‖ϕ1‖Hs + ‖ϕ2‖L2

)

+‖e−iF1(0)/2 − e−iF2(0)/2‖L∞‖ϕ1‖Hs(1 + ‖ϕ1‖L2)

. ‖ϕ1 − ϕ2‖Hs + ‖F1(0)− F2(0)‖L∞ .

On the other hand, the equation for v = u1 − u2 reads

∂tv +H∂2xv =
1

2
∂x
(
(u1 + u2)v

)
,

so that it is deduced from (3.11), (4.1) and the fractional Leibniz rule that

(4.5) ‖v‖X−1,1
1

. ‖∂tv +H∂2xv‖L2
1H

−1
x

+ ‖v‖L∞
T L2

x
. ε‖v‖L4

x,1
+ ‖v‖L∞

1 L2
x
.

Next, proceeding as in (3.6), we infer that

P+HIv = 2iP+HI

(
e

i
2F1z

)
+ 2iP+HI

(
(e

i
2F1 − e

i
2F2)w2

)

+ 2iP+HI

(
P+hie

i
2F1∂xP+lo(e

− i
2F1 − e−

i
2F2)

)

+ 2iP+HI

(
P+hi(e

i
2F1 − e

i
2F2)∂xP+loe

− i
2F2
)

+ 2iP+HI

(
P+HIe

i
2F1∂xP−(e

− i
2F1 − e−

i
2F2)

)

+ 2iP+HI

(
P+HI (e

i
2F1 − e

i
2F2)∂xP−e

− i
2F2
)
.

Thus, we deduce using estimates (2.14), (2.19) and arguing as in the proof of
Proposition 3.2 that

‖Js
xv‖Lp

1L
q
x
.
(
‖u1‖L∞

1 L2
x
+ ‖u2‖L∞

1 L2
x

)
‖v‖L∞

1 L2
x
+ (1 + ‖u1‖L∞

1 L2
x
)‖z‖Y s

1

+
(
‖v‖L∞

1 L2
x
+ ‖e

i
2F1 − e

i
2F2‖L∞

x,1
(1 + ‖u1‖L∞

1 L2
x
)
)
‖w2‖Y s

1

+ ‖u1‖L∞
1 L2

x

(
‖v‖L∞

1 L2
x
+ ‖e−

i
2F1 − e−

i
2F2‖L∞

x,1
‖u1‖L∞

1 L2
x

)

+ ‖u2‖L∞
1 L2

x

(
‖v‖L∞

1 L2
x
+ ‖e

i
2F1 − e

i
2F2‖L∞

x,1
‖u1‖L∞

1 L2
x

)
,

for (p, q) = (∞, 2) or (p, q) = (4, 4), which implies recalling (4.2) that

(4.6) ‖Js
xv‖L∞

1 L2
x
+‖Js

xv‖L4
x,1

. ‖z‖Y s
1
+ε‖e−

i
2F1−e−

i
2F2‖L∞

x,1
+ε‖e

i
2F1−e

i
2F2‖L∞

x,1
.

Finally, we use the mean value theorem to get the bound

(4.7) ‖e±
i
2F1 − e±

i
2F2‖L∞

x,1
. ‖F1 − F2‖L∞

x,1
.

The following crucial lemma gives an estimate for the right-hand side of (4.7).

Lemma 4.1. It holds that

(4.8) ‖F1(0)− F2(0)‖L∞ . ‖ϕ1 − ϕ2‖L2 .

and

(4.9) ‖F1 − F2‖L∞
x,1

. ‖v‖L∞
1 L2

x
.

Proof. (4.8) clearly follows from (4.3) together with Bernstein inequality. To prove
(4.9) we set G = F1 − F2, Glo = PloG and Ghi = PhiG. Then,

(4.10) ‖G‖L∞
x,1

≤ ‖Glo‖L∞
x,1

+ ‖Ghi‖L∞
x,1
.
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Observe that, from the Duhamel principle and (4.3), Glo satisfies

Glo =
1

2

∫ t

0

U(t− τ)Plo

(
(u1 + u2)v

)
(τ)dτ

Therefore, it follows using Bernstein and Hölder’s inequality that

(4.11) ‖Glo‖L∞
x,1

. ‖(u1 + u2)v‖L∞
1 L1

x
.
(
‖u1‖L∞

1 L2
x
+ ‖u2‖L∞

1 L2
x

)
‖v‖L∞

1 L2
x
.

On the other hand, the Bernstein inequality ensures that

(4.12) ‖Ghi‖L∞
x,1

. ‖∂xGhi‖L∞
1 L2

x
. ‖v‖L∞

1 L2
x
,

since ∂xG = v. The proof of Lemma 4.1 is concluded gathering (4.2), (4.10)–
(4.12). �

Finally, estimates (4.4)–(4.9) lead to

‖z‖Y s
1
+ ‖v‖Xs−1,1

1
+ ‖v‖L∞

1 Hs
x
+ ‖Js

xv‖L4
x,1

. ‖ϕ1 − ϕ2‖Hs + ε
(
‖z‖Y s

1
+ ‖v‖Xs−1,1

1
+ ‖v‖L∞

1 Hs
x
+ ‖Js

xv‖L4
x,1

)
,

Therefore we conclude that there exists 0 < ε1 ≤ ε0 such that

(4.13) ‖z‖Y s
1
+ ‖v‖Xs−1,1

1
+ ‖v‖L∞

1 Hs
x
+ ‖Js

xv‖L4
x,1

. ‖ϕ1 − ϕ2‖Hs

provided u1 and u2 satisfy (4.2) with 0 < ε ≤ ε1.

4.3. Well-posedness. Let u0 ∈ Bε1 ∩H
s(R) and consider the sequence of initial

data {uj0} ⊂ H∞(R), defined by

(4.14) uj0 = F
−1
x

(
χ|[−j,j]

Fxu0
)
, ∀ j ≥ 20.

Clearly, {uj0} converges to u0 in Hs(R). By the classical well-posedness theory, the
associated sequence of solutions {uj} is a subset of C([0, 1];H∞(R)) and according

to Subsection 4.1, it satisfies Ns
1 (u

j) ≤ C0ε1. Moreover, since PLOu
j
0 = PLOu0 for

all j ≥ 20, it follows from the preceding subsection that

(4.15) ‖uj − uj
′

‖L∞
1 Hs

x
+ ‖uj − uj

′

‖L4
1W

s,4
x

+ ‖wj − wj′‖X0,1/2 . ‖uj0 − uj
′

0 ‖Hs
x
.

Therefore the sequence {uj} converges strongly in L∞
1 H

s(R) ∩ L4
1W

s,4 to some
function u ∈ C([0, 1];Hs(R) and {wj}j≥4 converges strongly to some function w in

Xs,1/2. Thanks to these strong convergences it is easy to check that u is a solution

to (1.1) emanating from u0 and that w = Phi(∂x(e
−i∂−1

x u/2)). Moreover from the
conservation of the L2(R)-norm, u ∈ Cb(R;L

2(R)) ∩ C(R;Hs(R)).
Now let ũ be another solution of (1.1) on [0, T ] emanating from u0 belonging to

the same class of regularity as u. By using again the scaling argument we can always
assume that ‖ũ‖L∞

T L2
x
+ ‖ũ‖L4

x,T
≤ C0ε1. Moreover, setting w̃ := P+hi(e

−iF [ũ]),

by the Lebesgue monotone convergence theorem, there exists N > 0 such that
‖P≥N w̃‖

X
0, 1

2
T

≤ C0ε1/2. On the other hand, using Lemma 2.1-2.2, it is easy to

check that

‖(1− P≥N )w̃‖
X

0, 1
2

T

. ‖u0‖L2 +NT
1
4 ‖ũ‖L4

x,T
‖w̃‖L4

x,T
+ ‖ũ‖2L4

x,T

. ‖u0‖L2 +NT
1
4 ‖w̃‖

X
0, 1

2
T

‖ũ‖L4
x,T

+ ‖ũ‖2L4
x,T

.
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Therefore, for T > 0 small enough we can require that ũ satisfies the smallness
condition (4.2) with ε1 and thus by (4.13), ũ ≡ u on [0, T ]. This proves the
uniqueness result for initial data belonging to Bε1 .

Next, we turn to the continuity of the flow map. Fix u0 ∈ Bǫ1 and λ > 0 and
consider the emanating solution u ∈ C([0, 1];Hs(R)). We will prove that if v0 ∈ Bǫ1

satisfies ‖u0− v0‖Hs ≤ δ, where δ will be fixed later, then the solution v emanating
from v0 satisfies

(4.16) ‖u− v‖L∞
1 Hs

x
≤ λ.

For j ≥ 1, let uj0 and vj0 be constructed as in (4.14), and denote by uj and vj the

solutions emanating from uj0 and vj0. Then, it follows by the triangular inequality
that

(4.17) ‖u− v‖L∞
1 Hs

x
≤ ‖u− uj‖L∞

1 Hs
x
+ ‖uj − vj‖L∞

1 Hs
x
+ ‖v − vj‖L∞

1 Hs
x
.

First, according to (4.15), we can choose j0 large enough so that

‖u− uj0‖L∞
1 Hs

x
+ ‖v − vj0‖L∞

1 Hs
x
≤ 2λ/3 .

Second, from the definition of uj0 and vj0 in (4.14) we infer that

‖uj0 − vj0‖H3 ≤ j3−s‖u0 − v0‖Hs ≤ j3−sδ.

Therefore, by using the continuity of the flow map for smooth initial data, we can
choose δ > 0, such that

‖uj0 − vj0‖L∞
1 Hs

x
≤
λ

3
,

This concludes the proof of Theorem 1.1.

5. Improvement of the uniqueness result for s > 0

In this section we prove that uniqueness holds for initial data u0 ∈ Hs(R), s > 0,
in the class u ∈ L∞

T H
s
x ∩ L4

TW
s,4
x . The great interest of this result is that we do

not assume any condition on the gauge transform of u anymore. Moreover, when
s > 1

4 , the Sobolev embedding L∞
T H

s
x →֒ L4

TW
0+,4
x ensures that uniqueness holds

in L∞
T H

s
x, and thus the Benjamin-Ono equation is unconditionally well-posed in

Hs(R) for s > 1
4 .

According to the uniqueness result i) of Theorem 1.1, it suffices to prove that
for any solution u to (1.1) that belongs to L∞

T H
s
x ∩ L4

TW
s,4, the associated gauge

function w = ∂xPhi(e
− i

2F [u]) belongs to X
0, 12
T . The proof is based on the following

bilinear estimate that is shown in the appendix :

Proposition 5.1. Let s > 0. Then, there exists 0 < δ < s
10 and θ ∈ (12 , 1), let us

say θ = 1
2 + δ, such that

‖P+hi(WP−∂xu)‖
X

1
2
,− 1

2
+2δ

. ‖W‖
X

1
2
, 1
2
+δ

(
‖Jsu‖L2

x,t
+ ‖Jsu‖L4

x,t
+ ‖u‖Xs−θ,θ

)
.

(5.1)

First note that by the same scaling argument as in Section 4.3, for any given
ε > 0, we can always assume that ‖Jsu‖L∞

T L2
x
+ ‖Jsu‖L4

Tx
≤ ε and by (3.7) it

follows that ‖u‖Xs−θ,θ
T

. ε for 0 ≤ θ ≤ 1.
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Now, since u ∈ L∞([0, T ];Hs(R)) ∩ L4
TW

s,4
x and satisfies (1.1), it follows that

ut ∈ L∞([0, T ];Hs−2(R)). Therefore F := F [u] ∈ L∞([0, T ];Hs+1
loc ) and ∂tF ∈

L∞([0, T ];Hs−1
loc ). It ensures that

(5.2) W := Phi(e
− i

2F ) ∈ L∞([0, T ];Hs+1(R)) ∩ L4
TW

s+1,4
x →֒ X1,0,

e−
i
2F ∈ L∞([0, T ];Hs+1

loc ) and the following calculations are thus justified:

∂tW = ∂tP+(e
− i

2F ) = −
i

2
Phi(Fte

− i
2F )

= −
i

2
Phi

(
e−

i
2F (−HFxx +

1

2
F 2
x )
)

and

∂xxW = ∂xxPhi(e
− i

2F ) = Phi

(
e−

i
2F (−

1

4
F 2
x −

i

2
Fxx)

)
.

It follows that W satisfies at least in a distributional sense,

(5.3)

{
∂tW − i∂2xW = −P+hi

(
WP−∂xu

)
− P+hi

(
Ploe

− i
2FP−∂xu

)

W (·, 0) = P+hi(e
− i

2F [u0]) .

From (5.2) and Lemma 2.6 we thus deduce thatW ∈ Xs,1
T , so that, by interpolation

with (5.2), W ∈ X
1/2,1/2+
T . But, u being given in L∞

T H
s
x ∩ L4

TW
s,4
x ∩ Xs−θ,θ

T , on
one hand gathering (2.6), the bilinear estimate (5.1) and (3.49), we infer that there

exists only one solution to (5.3) in X
1/2, 12+

T . Hence, w = ∂xW belongs to X
−1/2, 12+

T

and is the unique solution to (3.4) in X
−1/2, 12+

T emanating from the initial data

w0 = ∂xPhi(e
− i

2F [u0]) ∈ L2(R). On the other hand, according to Proposition 3.4,
one can construct a solution to (3.4) emanating from w0 and belonging to Y s

T , by
using a Picard iterative scheme. Moreover, using (1.1) and Lemma 2.6 we can easily

check that this solution belongs to X−1,1
T and thus by interpolation to X

s−, 12+

T →֒

X
−1/2, 12+

T . This ensures that w = ∂xPhi(e
−iF/2) belongs to Y s

T →֒ X
0,1/2
T which

concludes the proof.

6. Continuity of the flow-map for the weak L2-topology

In [9] it is proven that, for any t ≥ 0, the flow-map u0 7→ u(t) associated
to the Benjamin-Ono equation is continuous from L2(R) equipped with the weak
topology into itself. In this section, we explain how the uniqueness part of Theorem
1.1 enables to really simplify the proof of this result by following the approach
developed in [11].

Let {u0,n}n ⊂ L2(R) be a sequence of initial data that converges weakly to
u0 in L2(R) and let u be the solution emanating from u0 given by Theorem
1.1. From the Banach-Steinhaus theorem, we know that {u0,n}n is bounded in
L2(R) and from Theorem 1.1 we know that {u0,n}n gives rise to a sequence {un}n
of solutions to (1.1) bounded in C([0, 1];L2(R)) ∩ L4(]0, 1[×R) with an associ-

ated sequence of gauge functions {wn}n bounded in X
0,1/2
1 . Therefore there exist

v ∈ L∞(]0, 1[;L2(R)) ∩ X−1,1
1 ∩ L4(]0, 1[×R) and z ∈ X

0,1/2
1 such that, up to

the extraction of a subsequence, {un}n converges to v weakly in L4(]0, 1[×R) and

weakly star in L∞(]0, 1[×R) and {wn}n converges to z weakly in X
0,1/2
1 . We now

need some compactness on {un}n to ensure that z is the gauge transform of v. In

this direction, we first notice, since {wn}n is bounded in X
0,1/2
1 and by using the
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Kato’s smoothing effect injected in Bourgain’s spaces framework, that {D
1
4
xwn}n is

bounded in L4
xL

2
1. Let ηR(·) := η(·/R). Using (3.6) and Lemma 2.6 we infer that

‖D
1
4
x P+HIun‖L2(]0,1[×]−R,R[ . ‖D

1
4
x P+HI

(
e

i
2F [un]wnηR

)
‖L2

1,x

+ ‖D
1
4
x P+HI

(
P+hie

i
2F [un]∂xPloe

− i
2F [un]

)
‖L2

1,x

+ ‖D
1
4
x P+HI

(
P+HIe

i
2F [un]∂xP−hie

− i
2F [un]

)
‖L2

1,x

. ‖D
1
4
x (wnηR)‖L2

xL
2
1
+ ‖D

1
4
x e

iF [un]‖L8
1,x

‖wn‖
L

8
3
1,x

+ ‖un‖
2
L4

1,x

But clearly,

‖D
1
4
x (wnηR)‖L2

xL
2
1
. C(R)(‖D

1
4
xwn‖L4

xL
2
1
+ ‖wn‖L2

1,x
)

and by interpolation ‖D
1
4
x eiF [un]‖L8

1,x
. ‖un‖

3
4

L2
1,x

. Therefore, recalling that the un

are real-valued functions, it follows that {un}n is bounded in L2
1H

1
4 (]−R,R[).

Since, according to the equation (1.1), {∂tun}n is bounded in L2
1H

−2
x , Aubin-

Lions compactness theorem and standard diagonal extraction arguments ensure
that there exists an increasing sequence of integer {nk}k such that unk

→ v a.e. in
]0, 1[×R and u2nk

⇀ v2 in L2(]0, 1[×R). In view of our construction of the primitive
F [un] of un (see Section 3.1), it is then easy to check that F [unk

] converges to the

primitive F [v] of v a.e. in ]0, 1[×R. This ensures that P+hi(e
− i

2F [unk
]) converges

weakly to P+hi(e
− i

2F [v]) in L2(]0, 1[×R) and thus z is the gauge transform of v .
Passing to the limit in the equation , we conclude that v satisfies (1.1) and belong
the class of uniqueness of Theorem 1.1.

Moreover, setting (·, ·) for the L2
x scalar product, by (1.1) and the bounds above,

it is easy to check that, for any smooth space function φ with compact support,
the family {t 7→ (unk

(t), φ)} is uniformly equi-continuous on [0, 1]. Ascoli’s theo-
rem then ensures that (unk

(·), φ) converges to (v(·), φ) uniformly on [0, 1] and thus
v(0) = u0. By uniqueness, it follows that v ≡ u which ensures that the whole
sequence {un} converges to v in the sense above and not only a subsequence. Fi-
nally, from the above convergence result, it results that un(t) ⇀ u(t) in L2

x for all
t ∈ [0, 1]. �

7. The periodic case

In this section we explain how the bilinear estimate proved in Proposition 3.5 can
lead to a great simplification of the global well-posedness result in L2(T) derived in
[21] and to new uniqueness results in Hs(T), where T = R/2πZ. With the notations
of [20] these new results lead to the following global well-posedness theorem :

Theorem 7.1. Let s ≥ 0 be given.

Existence : For all u0 ∈ Hs(T) and all T > 0, there exists a solution

(7.1) u ∈ C([0, T ];Hs(T)) ∩Xs−1,1
T ∩ L4

TW
s,4(T)

of (1.1) such that

(7.2) w = ∂xP+hi

(
e−

i
2 ∂

−1
x ũ
)
∈ Y s

T .

where

ũ := u(t, x− t

∫
−u0)−

∫
−u0 and ∂̂−1

x :=
1

iξ
, ξ ∈ Z∗ .
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Uniqueness : This solution is unique in the following classes :

i) u ∈ L∞(]0, T [;L2(T) ∩ L4(]0, T [×T) and w ∈ X
0, 12
T .

ii) u ∈ L∞(]0, T [;H
1
4 (T) ∩ L4

TW
1
4 ,4(T) whenever s ≥ 1

4 .

iii) u ∈ L∞(]0, T [;H
1
2 (T) whenever s ≥ 1

2 .

Moreover, u ∈ Cb(R;L
2(T)) and the flow map data-solution : u0 7→ u is continuous

from Hs(T) into C([0, T ];Hs(T)).

Sketch of the proof. In the periodic case, following [20], the gauge transform
is defined as follows : Let u be a smooth 2π-periodic solution of (BO) with initial
data u0. In the sequel, we will assume that u(t) has mean value zero for all time.
Otherwise we do the change of unknown :

(7.3) ũ(t, x) := u(t, x− t

∫
−u0)−

∫
−u0 ,

where
∫
−u0 := 1

2π

∫
T
u0 is the mean value of u0. It is easy to see that ũ satisfies

(BO) with u0 −
∫
−u0 as initial data and since

∫
−ũ is preserved by the flow of (BO),

ũ(t) has mean value zero for all time. We take for the primitive of u the unique
periodic, zero mean value, primitive of u defined by

F̂ (0) = 0 and F̂ (ξ) =
1

iξ
û(ξ), ξ ∈ Z∗ .

The gauge transform is then defined by

(7.4) W := P+(e
−iF/2) .

Since F satisfies

Ft +HFxx =
F 2
x

2
−

1

2

∫
−F 2

x =
F 2
x

2
−

1

2
P0(F

2
x ) ,

we finally obtain that w :=Wx = − i
2P+hi(e

−iF/2Fx) = − i
2P+(e

−iF/2u) satisfies

wt − iwxx = −∂xPhi

[
e−iF/2

(
P−(Fxx)−

i

4
P0(F

2
x )
)]

= −∂xP+hi

(
WP−(ux)

)
+
i

4
P0(F

2
x )w .(7.5)

Clearly the second term is harmless and the first one has exactly the same structure
as the one that we estimated in Proposition 3.5 . Following carefully the proof of
this proposition, it is not too hard to check that it also holds in the periodic case
independently of the period λ ≥ 1. Note in particular that (2.9) also holds with

L4
x,t and X

0, 38 respectively replaced by L4
t,λ and X

0, 38
λ , λ ≥ 1, where the subscript

λ denotes spaces of functions with space variable on the torus R/2πλZ (see [5] and
also [20]). This leads to a great simplification of the proof the global well-posedness
in L2(T) proved in [21].

Now to derive the new uniqueness result we proceed exactly as in Section 5
except that Proposition 5.1 does not hold on the torus. Actually, on the torus it
should be replaced by
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Proposition 7.2. For s ≥ 1
4 and all λ ≥ 1 it holds

‖P+hi(WP−∂xu)‖
X

s+1
2
,− 1

2
λ

. ‖W‖
X

s+1
2
, 1
2

λ

(
‖Js

xu‖L2
T,λ

+ ‖Js
xu‖L4

T,λ
+ ‖u‖Xs−1,1

λ

)
.

(7.6)

Going back to the proof of the bilinear estimate it easy to be convinced that the
above estimate works at the level s = 0+ in the regions A and B (see the proof of
Proposition 5.1), whereas in the region C we are clearly in trouble. Indeed, when
s = 0, (3.38) has then to be replaced by

|k
1
2 k

− 1
2

1 k22〈σ2〉
−1| ∼ |k−

1
2 k

− 1
2

1 k2|

which cannot be bound when |k2| >> k. On the other hand at the level s = 1
4 it

becomes

|k
3
4 k

− 3
4

1 k
7
4
2 〈σ2〉

−1| ∼ |k−
1
4 k

− 3
4

1 k
3
4
2 | . k−

1
4 . 1

which yields the result.
With Proposition 7.2 in hand, exactly the same procedure as in Section 5 leads

to the uniqueness result in the class u ∈ L∞
T H

1
4 (T) ∩ L4

TW
1
4 ,4(T) and by Sobolev

embedding to the uniqueness in the class u ∈ L∞
T H

1
2 (T), i.e. unconditional unique-

ness in H
1
2 (T). As in the real line case, it proves the uniqueness of the (energy)

weak solutions that belong to L∞(R;H1/2(T)).

Appendix

Proof of Proposition 5.1. We will need that following calculus lemma stated in
[10].

Lemma 7.3. Let 0 < a− ≤ a+ such that a− + a+ > 1
2 . Then, for all µ ∈ R

(7.7)

∫

R

〈y〉−2a−〈y − µ〉−2a+dy . 〈µ〉−s,

where s = 2a− if a+ > 1
2 , s = 2a− − ǫ, if a+ = 1

2 , and s = 2(a+ + a−) − 1, if

a+ < 1
2 and ǫ denote any small positive number.

The proof of Proposition 5.1 follows closely the one of Proposition 3.5 except in
the region σ2-dominant where we use the approach developed in [16]. Recalling the
notation used in (3.24)–(3.25), we need to prove that

(7.8)
∣∣K
∣∣ . ‖h‖L2

x,t
‖f‖L2

x,t

(
‖u‖L2

x,t
+ ‖u‖L4

x,t
+ ‖u‖X−θ,θ

)
,

where

(7.9) K =

∫

D

〈ξ〉
1
2

〈σ〉
1
2−2δ

ĥ(ξ, τ)
〈ξ1〉

− 1
2

〈σ1〉
1
2+δ

f̂(ξ1, τ1)ξ2〈ξ2〉
−sû(ξ2, τ2)dν.

For the same reason as in the proof of Proposition 3.5, we can assume that
|ξ2| ≤ 1. By using a Littlewood-Paley decomposition on h, f and u, K can be
rewritten as

(7.10) K =
∑

N,N1,N2

KN,N1,N2

with

KN,N1,N2 :=

∫

D

〈ξ〉
1
2

〈σ〉
1
2−2δ

P̂Nh(ξ, τ)
〈ξ1〉

− 1
2

〈σ1〉
1
2+δ

P̂N1f(ξ1, τ1)ξ2〈ξ2〉
−sP̂N2u(ξ2, τ2)dν,
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and the dyadic numbers N, N1 and N2 ranging from 1 to +∞. Moreover, we will

denote by K
AN,N2

N,N1,N2
, K

BN,N2

N,N1,N2
, K

CN,N2

N,N1,N2
the restriction of KN,N1,N2 to the regions

AN,N2, BN,N2 and CN,N2 defined in (3.28). Then, it follows that

(7.11)
∣∣K
∣∣ ≤

∣∣KA

∣∣+
∣∣KB

∣∣+
∣∣KC

∣∣,
where

KA :=
∑

N,N1,N2

J
AN,N2

N,N1,N2
, KB :=

∑

N,N1,N2

K
BN,N2

N,N1,N2
and KC :=

∑

N,N1,N2

J
CN,N2

N,N1,N2
,

so that it suffices to estimate
∣∣KA

∣∣,
∣∣KB

∣∣ and
∣∣KC

∣∣. Recall that, due to the structure
of D, one of the following case must hold:

(1) high-low interaction: N1 ∼ N and N2 ≤ N1

(2) high-high interaction: N1 ∼ N2 and N ≤ N1.

Estimate for
∣∣KA

∣∣. In the first case, it follows from the triangular inequality,
Plancherel’s identity and Hölder’s inequality that

∣∣KA

∣∣ . ‖h‖L2
x,t

∑

N1

∑

N2≤N1

N
1
2
1

(N1N2)
1
2−2δ

∥∥∥PN1

(
J
− 1

2
x PN1

( f̂

〈σ1〉
1
2+δ

)∨
P−∂xJ

−s
x PN2u

)∥∥∥
L2

x,t

. ‖h‖L2
x,t

∑

N1

∑

N2≤N1

N
1
2−s+2δ
2

(N1)
1
2−2δ

∥∥PN1

( f̂

〈σ1〉
1
2+δ

)∨∥∥
L4

x,t
‖PN2u‖L4

x,t

. ‖h‖L2
x,t
‖u‖L4

x,t

∑

N1

N4δ−s
1

∥∥PN1

( f̂

〈σ1〉
1
2+δ

)∨∥∥
L4

x,t
.

Then, it is deduced from the Cauchy-Schwarz inequality in N1 that

(7.12)
∣∣KA

∣∣ . ‖h‖L2
x,t

(∑

N1

∥∥PN1

( f̂

〈σ1〉
1
2+δ

)∨∥∥2
L4

x,t

) 1
2

‖u‖L4
x,t
,

since s > 10δ. On the other, estimate (7.12) also holds in the case of high-high
interaction by arguing exactly as in (3.32), so that estimate (2.9) yields

(7.13)
∣∣KA

∣∣ . ‖h‖L2
x,t
‖f‖L2

x,t
‖u‖L4

x,t
.

Estimate for
∣∣KB

∣∣. The estimate

(7.14)
∣∣KB

∣∣ . ‖h‖L2
x,t
‖f‖L2

x,t
‖u‖L4

x,t
,

follows arguing as in (7.12).
Estimate for

∣∣KC

∣∣. First observe that

(7.15)
∣∣KC

∣∣ .
∫

C̃

|ξ|
1
2

〈σ〉
1
2−2δ

|ĥ(ξ, τ)|
|ξ1|

− 1
2

〈σ1〉
1
2+δ

|f̂(ξ1, τ1)|
|ξ2|

(1+θ−s)

〈σ2〉θ
〈σ2〉

θ

|ξ2|θ
|û(ξ2, τ2)|dν,

where

C̃ =
{
(ξ, ξ1, τ, τ1) ∈ D | (ξ, ξ1, τ, τ1) ∈

⋃

N,N2

CN,N2

}
.

Since |σ2| > |σ| and |σ2| > |σ1| in C̃, (3.28) implies that |σ2| & |ξξ2|. Applying
twice the Cauchy-Schwarz inequality, it is deduced that

∣∣KC

∣∣ . sup
ξ2,τ2

(
L
C̃
(ξ2, τ2)

) 1
2 ‖f‖L2

ξ,τ
‖g‖L2

ξ,τ
‖h‖L2

ξ,τ
,
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where

L
C̃
(ξ2, τ2) =

|ξ2|
2+2(θ−s)

〈σ2〉2θ

∫

C(ξ2,τ2)

|ξ||ξ1|
−1

〈σ〉1−4δ〈σ1〉1+2δ
dξ1dτ1,

and

C̃(ξ2, τ2) =
{
(ξ1, τ1) ∈ R2 | (ξ, ξ1, τ, τ1) ∈ C

}
.

Thus, to prove that

(7.16)
∣∣KC

∣∣ . ‖h‖L2
x,t
‖f‖L2

x,t
‖u‖X−θ,θ ,

it is enough to prove that L
C̃
(ξ2, τ2) . 1 for all (ξ2, τ2) ∈ R2. We deduce from (7.7)

and (3.28) that

L
C̃
(ξ2, τ2) .

|ξ2|
2+2(θ−s)

〈σ2〉1+2δ

∫

ξ1

|ξ||ξ1|
−1

〈σ2 + 2ξξ2〉1−4δ
dξ1,

since θ = 1 + δ. To integrate with respect to ξ1, we change variables

µ2 = σ2 + 2ξξ2 so that dµ2 = 2ξ2dξ1 and |µ2| ≤ 4|σ2|.

Moreover, (3.26) and (3.28) imply that

|ξ||ξ1|
−1|ξ2|

1+2(θ−s)

|ξ1|2
≤ |ξξ2|

1
2+θ−s . |σ1|

1
2+θ−s

in C̃. Then,

L
C̃
(ξ2, τ2) .

|ξ2|
1+2(θ−s)

〈σ2〉1+2δ

∫ 4|σ2|

0

|ξ||ξ1|
−1

〈µ2〉1−4δ
dµ2

.
〈σ2〉

1
2+θ−s+4δ

〈σ2〉1+2δ
. 〈σ2〉

3δ−s . 1,

since s− 3δ > 0.
Finally, we conclude the proof of Proposition 5.1 gathering (7.8), (7.11), (7.13),

(7.14) and (7.16).
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