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Unification of Task Identification and Control for a Humanoid Rob ot

Sovannara Hak, Nicolas Mansard, Olivier Stasse

Abstract— We present a method using simple mechanisms to
perform a real time imitation on a humanoid robot. Instead
of focusing on the fidelity of the motion, we will rather focus
on what controllers have to be activated to perform a desired
motion. The originality of our approach is to work in the
task spaces of the robot in order to solve simultaneously the
identification and the execution of a motion. With this approach,
we bypass the classical phase of the transformation from the
imitated model to the imitant model. The tasks identification
method consists in proposing several model of the motion, and
then computing the parameters of this model with a least square
optimization.

The motivation behind the use of a simple technique is to
be as much efficient as possible regarding computation time, as
this work is a preliminary step for the resolution of the reactive
control problem for a humanoid robot where more complex
mechanism have to be used. We formulate it as the problem
of deciding very quickly which sequence of controllers, has to
be activated (this choice will be based on motion imitation) to
realize a motion.

Although in this work we consider the problem where a robot
imitate a robot, we investigate the possibility of extending our
method to sequential motion imitation and a case where a robot
imitate a human.

I. I NTRODUCTION

One of the challenging task for humanoid robot is to
achieve a reactive behavior. This involves the robot taking
the right decision very quickly. We want to achieve this
reactive behavior in an motion imitation application. An
instructor performs a motion, and our robot replicate this
movement. We will focus on the task space which offers
many advantages over the joint angle space.

A. Related work

Imitation based motion are usually decomposed in two
part: the recognition part which deals with the evaluation
of what to imitate. And the action part which deals with
the problem of determining how to imitate. Statistical and
learning approach had been widely use for imitation purpose,
as it can be seen in [1] which quickly reviews the statistical
and mathematical tools used to tackle imitation problems.

The work presented in [2], [3] shows how a behavior
based control can be achieved for a humanoid robot. That
is to say that they choose beforehand what kind of motion
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they want to perform (jab, hook, elbow, shield and uppercut).
They modeled their behaviors with joint angles trajectories
examples and applied a dimensional reduction to have a
significant clusterization. The recognition part is handled
by a Bayesian classifier which recognize a trajectory in
joint or Cartesian space. To perform the reference motion,
they must interpolate the known examples : theirbehavior
controller can not be directly applied to the robot. The
methods presented is not adapted for reactive behavior if the
robot have a lots of degree of freedom or a large vocabulary
of motion.

In [4], Gaussian mixture model are used to extract
from several demonstrations a representation of a general
motion in a redundant space. This space is composed of
articular configuration of the robot, Cartesian positions
of end effector and the error between end effectors and
objective. A reduction of dimension of the data acquired
in the demonstration is then performed. Then using an
imitation metric, an optimal motion is made up from the set
of demonstrations. It is important to notice that the outputof
the reduction algorithm depends on the nature of the tasks
being performed. That is to say that the important features
of a tasks are not invariant. The set of demonstrations (also
called the learning set of motion) is acquired by kinesthetic
demonstrations, in other words, the demonstrator perform
a motion on the robot which motors are set to a passive
mode. The motors encoder will then record the data relevant
to each degree of freedom of the robot.

The kinesthetic approach to acquire motion data is also
used in [5]. They want to imitate objective based motion,
such as reaching for grasping an object or releasing an
object in a box. The point is to catch the invariant of the
task, which here is to actually grasp (or release) the object,
knowing that positions may vary from an instance of the
task to another. A model of the final configuration given
the position of the objective is built. In order to tackle the
problem of perturbations or changes in initial conditions,a
stereo vision input is used. The global system also allows
the use of several types of controllers (velocity/acceleration).

The work done in [6] map observations of a movement
from sensors to a task space that will best represent the
movement (for example a task space will generalize a motion
better than others for a particular task). This is done by
computing some score functions inspired by neuroscience.
A task space pool is created beforehand, and for each task
space, the score is computed. Then the system choose the
task space with the best score. In other words, the system



choose amongst a set of space the one which will best
describe the task. The criterion taken into account for the
task space selection is the saliency of the object that is
manipulated, the variance of the dimension of a space during
several demonstration, and some heuristics that express that
uncomfortable or exhausting motion are more relevant to a
task. In other words, uncomfortable motion is an important
feature of the global motion, and then it must be replicated.

B. Hypothesis and outline

Our work is based on theStack of Tasksstructures : given a
set of tasks to achieve (which are stacked by order of priority)
and a model of a robot, a command law is computed and
then applied to the robot. This relationship between the task
space and the joint space of the robot will be exploited to
perform an imitation by working in the task space instead
of working in the joint space. The task space refers to the
finite and discrete set of all possible tasks to achieve.

However, some assumptions have to be made for the
imitation application. First, the motion to imitate has to be
generated by astack of tasksstructure with the same task
space, so that the relationship between the task space and the
joint space is still valid. Then, all tasks involved in a motion
belong to a known set of possible tasks. This assumption
will also assure that the motion to replicate can really be
executed by the imitator.

The second assumption is that the kinematic models of
both imitator and teacher have to be known, because they
are needed to compute a control law from a stack of tasks.

This work is not focused in the problem of estimation of
a motion, and so, we assume that a system will provide us
motion data in the desired space. That is to say that we know
the joint angle trajectory or the velocity of the motion of the
entity to imitate.

Our major contribution is a method that identify the
tasks to be used and their control parameters in an efficient
manner and manage to discriminate very close motion. This
is realized by using an analytical description of the task
exponential decay, and performing the recognition directly
in the task space instead of the articular space.

The next sections describe the base of our work : the task-
function formalism and how to use this formalism along with
an optimization approach to detect what is performed by the
imitated model; description of some experimentations; future
works discussion where the application of the method in the
case where the motion to imitate is performed by a human,
and the extension of this method to a sequential problem are
briefly investigated.

II. STACK OF TASKS

In order to control a robot, a sensory-motor control ap-
proach based on task component can be used instead of a
trajectory planner. A task function [7] is an elegant approach
to produce intuitively sensor-based robot objectives. Based
on the redundancy of the system, the approach can be
extended to consider a hierarchical set of tasks [8].

A. Task function formalism

Defining the motion of the robot in terms of task consists
in choosing several control laws to be applied on a subspace
of the robot degree of freedom. A task is defined by a
vector e (which is typically the error between a signals

and its desired valuee = s∗ − s) The Jacobian of the task
is notedJ = ∂e

∂q
whereq is the robot configuration vector.

We consider that the robot input control is the velocityq̇ :
ė = Jq̇. Considering a reference behaviorė to be executed
in the task space,

ė∗ = −λe (1)

the control law to be applied on the robot whole body is
given by the least-square solution:

q̇ = J+ė∗ + Pz (2)

where J+ is the least-square inverse ofJ, P = I − J+J

is the null-space ofJ and z is any secondary criterion.P
ensures a decoupling of the task with respect toz, which can
be extended recursively to a set ofn tasks, each new task
being fulfilled without disturbing the previous ones:

q̇i = q̇i−1 + (JiP
A

i−1)
+(ėi − Jiq̇i−1), i = 1 . . . n (3)

whereq̇0 = 0 and(JiP
A
i−1)

+ is the projector onto the null-
space of the augmented JacobianJA

i
= (J1, . . .Ji). The

robot joint velocity realizing all the tasks iṡq = q̇n. A
complete implementation of this approach is proposed in [9]
under the nameStack of Tasks(SoT). The structure enables
to easily add or remove a task, or to swap the priority order
between two tasks, during the control while preserving the
continuity of the control law. Constraints (such as joints
limit) can be taken into account locally.

Using this formalism, the key idea is that imitate a
motion is equivalent to execute the same stack of tasks.
Because of the relationship between the tasks and trajectories
as illustrated in the figure 1. Then the imitation problem
becomes a problem of finding all the tasks relevant to the
motion.

Fig. 1. Relationship between tasks and trajectories.

Detecting all tasks in a row may be intractable. That is why
a method to decouple the tasks is needed. This decoupling
will be provided by the projection operator.



B. The null-space projection

The null-space projectors have a central role in our work.
Most of the time, with the tasks formulation, the robot does
not execute only one single task (for example, one task for
the gaze of the robot, and another to an end effector, some
constraints. . . ). In order to perform an imitation, we then
want to be able to identify all the tasks being performed
by the imitated entity. The idea to tackle this problem is
to detect the most significant task in the motion, and then
cancel it using the properties of the null-space projector.
Doing this recursively will allow us to identify all the tasks
being performed.

We use the recursive formula proposed by [10] to compute
the null-space projector:

{

P0 = I

Pi = Pi−1 − (JiPi−1)
+(JiPi−1)

(4)

whereI is the identity matrix,Ji is the Jacobian matrix of
the taski. Once the projector has been computed, we use
it to project the joint angle trajectory in the null-space of
a task. The effect of the projection, is that the sub-part of
the robot involved in the task will have its motion cancelled.
This feature will be used in the algorithm described below.

III. I MITATION

A. Task selection algorithm

We want to reconstruct the stack of tasks of the imitated
model. In other word, to select relevant tasks or controllers
that will perform an imitation. We iteratively select tasks
until we consider all tasks detected. This stop criterion
will be based on the null-space projection. Remember
that projecting a motion onto the null-space of a task will
cancel its relative motion. Each time a task is selected, the
motion is projected onto the null-space of that task. The
projected motion is then used to select another task. When
the projected motion becomes non-significant, we consider
that all tasks involved in the motion have been detected,
and then stop the algorithm.

The task selection algorithm (where the task fitting func-
tion is described later) is shown below :

while
∫

‖P q̇(t)‖2dt > ǫ do
for task i = 1..n do

ri ← taskFitting(i)
end for
iselect ← argmin(ri)
activePool.push(iselect)
P q̇(t)← projection(iselect, P q̇(t))

end while

whereP is a projector,ri is the score of the cost function
of the optimization,activePool the set of tasks selected to
perform the imitation.

The stop criterion will allow the discrimination of very
close motions as it is illustrated in the next section.

B. Distinction between two close motions

An interesting challenge in motion detection, and therefore
imitation, is to make the distinction between two motions
involving different tasks but stilllook close.

In this section, two motions will be considered and we
will show how two different instances of stack of tasks can
be build from those two motions. The first one is a reaching
task motion with the right hand. The reaching motion of the
right hand has an influence on the left hand. That is because
the target is out of reach of the robot arm, so the robot has
to use his chest to reach it, the motion of the chest involves
the motion of the left hand. In the remainder of the section,
that motion will be called theno task motion.

The second motion is the same reaching task motion, but a
second reaching task is defined on the left hand. The desired
position of the left hand is the final position of the left handin
the first motion. In the remainder of the section, that motion
will be called thetask motion.

A video showing those two motions on the HRP-2 is
downloadable1.

The two motions are really close, and it is very difficult
for someone to tell which motion involves a left and right
hand task. In the first case, the motion of the left hand is
not an important motion, as it is a side effect of the motion
of the right hand. Whereas in the second case, the motion
of the left hand is important, because the left hand has been
controlled. Figure 2 plots the 3-D trajectories of the left hand
in both case.
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Fig. 2. 3D trajectories of the left hand.

The projection of the motion in the null-space of the right
hand task will have different consequences for theno task
andtaskmotion. Projecting theno task motioninto the null-
space of the right hand will cancel the motion involved in this
task. Including the non-controlled motion of the left hand.
The norm of the remaining motion is therefore almost null,
so the tasks selection algorithm stops.

1http://homepages.laas.fr/shak/videos/



On the other hand, when projecting thetask motion, the
remaining motion is not null. The remaining motion is the
motion involved by the left hand task, and therefore its norm
is not null. The algorithm will continue and look for other
tasks. Figure 3 illustrates the norm of both projected motions.

P q̇task

P q̇NoTask

0

‖P q̇‖

t

Fig. 3. Projection of the motion in the right hand null-space.

Being able to discriminate those two motions allow the use
of classical techniques of sequential data processing, such
as Hidden Markov Model, and particle filtering in the task
space. This will be discussed in the future works section.

C. Task fitting by optimization

The point of this step is to estimate how much a task is
relevant in the execution of a motion. And by the same time
compute the parameters of that task.

Here, we compute the motion data that the execution of a
task would produce using forward kinematics.

Our idea is to define a parametrized model of the task.
It is important that the model will be a good representation
of the task. We use a least-square optimization to find the
parameters that will be appropriate for the model to fit the
actual motion data. As the motion generated for a task vary
for different parameters.

x∗ = arg min
x

‖p∗(t)− px(t)‖ (5)

wherep∗(t) is the reference trajectory,px(t) is the trajectory
generated by the model using the parametersx.

D. Model of a robot task

In the case where the imitant and imitated model are a
humanoid robot, the task is modeled as an exponential decay
with 3 input parameters.

px(t) = x1e
(−x2t) + x3 (6)

This is motivated by the nature of the control of the robot.

An iteration of the optimization is time consuming as it
computes the motion of the robot for each value of the iterate
(parameters of the task). In order to minimize the number of

iteration, and the computation time a good first guess of the
task parameters have to be computed very quickly.

An analytical method is used to compute the first guess
of the iterate. 3 data pointsp∗

1(t), p∗

2(t) andp∗

3(t) from the
observation at timest = 1, 2, 3 are used to form a system of
3 equations which solutions are the first guess value.

0 = (p3 − x3)
k2−k1(p1 − x3)

k3−k2

−(p2 − x3)
k3−k1 (7)

x2 = −
ln p2−x3

p1−x3

t2 − t1
(8)

x1 =
p1 − x3

e−x2t1

with ti = ki∆t and∆t is the time step. The data points are
close to each other. In the particular case ofti = 0, we can
obtain a simpler formulation forx1 :

x1 = p1 − x3 (9)

The third parameter of our model is the objective of the
task. The equation 7 is a polynomial ofx3, because each
exponent are strictly positives by definition ask1 > k2 > k3.
We then use a numerical solver to compute the parameters
of the exponential. It is important to notice that those
analytical solution must be used with caution. The order of
the polynomial will depend on the choice of the data points.
The consequence is that if we choose data points that are not
close to each other, the order of the polynomial will increase,
and we will encounter numerical noise in the resolution. On
the other hand if we choose data points that are too close,
the noise of the data will perturb our exponential fitting and
it will not fit globally the data.

IV. EXPERIMENTATIONS AND RESULTS

For all experimentations, we use a simulation of the
humanoid robot HRP-2 having 30 degrees of freedom. We
used the same robot for the imitant and imitated one.

A. Experiment 1 : robot trajectory fitting

In this simulated experiment, the imitated model performs
a position reaching task with the right hand. The desired posi-
tion was far enough to disturb the left hand. The disturbance
is due to the fact that on a humanoid robot, the kinematic
chain for the hands share the degrees of freedom coming
from the chest. In other word, the motion of the right hand
is controlled, whereas the motion of the left hand is not.

The trajectory of the hands were traced and artificially
noised. The noised signal was given as input of the opti-
mization, that will fit the data with a model of an exponential
decay.

As it can be seen in the figures 4 and 5, the optimization
find a very good set of parameters for the exponential decay
of the right hand. Whereas for the left hand, the set of optimal
parameters can’t exactly fit the data point in range[0 : 200].
This is because the motion of the left hand was a motion here
involved by the motion of the chest rather than a controlled
motion.
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B. Experiment 2 : Scale test

This experiment is intended to test our method against a
larger scale problem. That is to say that the detection and
fitting techniques are applied in the case where the size of
the stack of tasks is close to a real situation. The imitated
model here is a robot. It will perform a right and left hand
tasks, a head task, a constraint of center of mass balancing
and a task that will constraint the feet to keep a constant
distance between them.

First a motion involving those tasks is generated in sim-
ulation. This motion is then artificially noised. The noised
signal will be used for our experimentation. The motion is
given to the detection program which select the task that is
the best fitted by the optimization. Figure 6 shows the result
of the fitting for the left hand task.

When a task is detected, the motion is projected into the
null-space of that task. Figure 7 shows the norm of the joint
angle velocity of the robot when the motion of the robot
is successively projected in the null-spaces of the detected
tasks. Each projection cancel a part of the motion, until the
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Fig. 6. Example of the left hand noised trajectory fitted with an exponential
decay

robot’s motion is null, which means that all relevant tasks
have been detected.
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V. FUTURE WORKS

A. Model of a human motion and real human trajectory
fitting

We want to investigate the possibility of applying the
tasks selection method in the case where the motion to
imitate is provided by a human.

A motion capture system was used to record a real human
motion. The data were recorded at 100Hz with 10 cameras.
The subject wore 23 markers for tracking.

The model chosen for the human motion is a minimum
jerk trajectory. This kind of trajectory describes a natural
human motion as stated in [11]. The jerk is the derivative of
the acceleration, so the trajectory is computed by integrating
the jerk 3 times. The model chosen for the jerk is not a



polynomial but rather a four stages signal which correspond
to a linear acceleration, deceleration, acceleration and null
acceleration. That will lead to a 6 parameters model. The
parameters are the relative time between each stages, and 3
values of the jerk. Then the jerk is defined as :

jerk(t) =















K1 if 0 < t < t1
K2 if t1 < t < t1 + t2
K3 if t2 < t < t1 + t2 + t3

0 if t > t1 + t2 + t3

(10)

Defining the jerk that way will directly provide us a mini-
mum jerk function. Figure 8 shows an example of a minimum
jerk, and its corresponding trajectory.
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Fig. 8. An example of a minimum jerk and its corresponding trajectory

We assumed that the trajectory was a point to point
one. So the trajectory must end with a constant position.
The problem is to make this trajectory continuous, so that
the optimization performance is not poor. This is done by
constraining the final relative time, and the final jerk value:
the velocity and acceleration att = t1 + t2 + t3 is null. It
leads to a system of 2 equations which will be solved over
K3 and t3.

The optimization problem becomes :
{

x∗ = arg min
x

‖p∗(t)− px(t)‖2 + x2
3 + x2

4

px(t) =
t

jerk(t)dt
(11)

where x = [dt1 dt2 K1 K2], p∗ is a human trajectory.
The second part of the cost functionx2

3 + x2
4 is introduced

to limit the K1 and K2 parameters, so that the trajectory
obtained by integrating the jerk is reasonable.

In order to test this model, we use the motion capture
system to record a subject performing a motion. The subject
was asked to touch with his finger the top of a bottle and
to keep at least one foot on the ground. The bottle that was
far enough from him so that the subject has to lift a foot
in order to reach the bottle. The point was to focus on the

trajectory of the touching hand. The final position is clearly
defined, and the orientation is not constrained.

The trajectory of the touching hand is given to the opti-
mization program in order to fit the real trajectory with our
model. As it can be seen on the figure 9, the optimization
performs well with our model of the trajectory.
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Fig. 9. Minimum Jerk Fitting

Of course, this experiment does not prove that the min-
imum jerk model can discriminate intended motion and
unintended ones. This has to be investigated.

B. Sequential data processing

We also want to use the tasks selection method presented
here in a sequential data processing context. What we can
call a full motion can be segmented in a sequence of stack
of tasks as it can be seen in figure 10
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Fig. 10. Motion segmented in a sequence of stack of tasks

For example, in a boxing activity, one can first do two jabs
followed by one uppercut. That is where we want to apply
classical sequential data processing techniques, in orderto
learn probabilities of transition between instances of stack
of tasks.

VI. CONCLUSION

Our contribution takes place in both stage of the classical
imitation method:



• the evaluation of what to imitate. Our method manages
to distinguish two motions which differences lie on the
controlled tasks. In that situation, a human will not be
able to tell whether or not a motion is a controlled or
a side effect one.

• how to imitate. The use of task function formalism, and
the optimization technique provide us all the informa-
tions needed to replicate a motion (that is to say the
parameters of the tasks).

This work leads us to two different interesting problems
which can be seen as the possibility of processing human
motion data with a stack of tasks approach. The other
problem is the problem of sequential motion imitation of
a robot where the core of the problem is the selection of the
relevant tasks to activate.
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