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We prove that the Hopf algebra of parking functions and the Hopf algebra of ordered forests are isomorphic, using a rigidity theorem for a particular type of bialgebras.

Introduction

The Connes-Kreimer Hopf algebra of rooted trees is described in [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF], in a context of Quantum Fields Theory: it is used to treat the Renormalization procedure. This Hopf algebra is generated by the set of rooted trees, and its coproduct is given by admissible cuts. Other Hopf algebras of trees are obtained from this one by giving additional structures to the rooted trees. For example, adding planar datas, one obtains the Hopf algebra of planar trees H p and its decorated versions H D p [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF][START_REF] Holtkamp | Comparison of Hopf algebras on trees[END_REF]; adding a total order on the vertices, one obtains the Hopf algebra of ordered forests H o and its Hopf subalgebra H ho , generated by heap-ordered forests (that is to say that the total order of the vertices is compatible with the oriented graph structure of the forests). These two Hopf algebras appeared in [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF] in a probabilistic context, in order to define rough paths. The main point of the construction is a Hopf algebra morphism Θ from H o to the Hopf algebra of free quasi-symmetric functions FQSym [START_REF] Duchamp | Some generalizations of quasisymmetric functions and noncommutative symmetric functions[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], also known as the Malvenuto-Reutenauer Hopf algebra of permutations; the restriction of Θ to H ho is an isomorphism of Hopf algebras.

Our aim here is an algebraic study of H o . In particular, H o and the Hopf algebra of parking functions PQSym [START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF][START_REF]Parking functions and descent algebras[END_REF] have the same Poincaré-Hilbert series: we prove here that they are isomorphic. We also combinatorially define a symmetric Hopf pairing on H o , mimicking the Hopf pairing on the non-commutative Connes-Kreimer Hopf algebras. It turns out that this pairing is degenerate, and its kernel is the kernel of the Hopf algebra morphism Θ. Moreover, Θ induces an isometry from H o /Ker(Θ) or from H ho to FQSym.

In order to prove the isomorphism of H o and PQSym, we introduce the notion of Dup-Dend bialgebra. A duplicial algebra is an algebra with two associative (non unitary) products m and տ, such that (xy) տ z = x(y տ z) for all x, y, z. This type of algebra, studied in [START_REF]Generalized bialgebras and triples of operads[END_REF], naturally appears in Quantum Electrodynamics, see [START_REF] Brouder | QED Hopf algebras on planar binary trees[END_REF][START_REF] Frabetti | Groups of tree-expanded series[END_REF]. A dendriform coalgebra, notion dual to the notion of dendriform algebra [START_REF] Loday | Dialgebras and related operads[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF] is a coassociative (non counitary) coalgebra C, whose coproduct ∆ can be written ∆ ≺ +∆ ≻ , such that (C, ∆ ≻ , ∆ ≺ ) is a bicomodule over C. A Dup-Dend bialgebra is both a duplicial algebra and a dendriform coalgebra, with compatibilities between the two products and the two coproducts given by equations ( 3) and (4) of this text. We here prove that the augmentation ideals of H o , PQSym and H D p are Dup-Dend bialgebras; moreover, the augmentation ideals of H ho and FQSym are sub-Dup-Dend bialgebras of respectively H o and PQSym, and Θ is a morphism of Dup-Dend bialgebras.

We then observe that H D p is the free duplicial algebra generated by the set D. We finally prove a rigidity theorem à la Loday, which says that any graded, connected Dup-Dend bialgebra is a free duplicial algebra, so is isomorphic to a H D p as a Hopf algebra. Manipulating formal series, we deduce that H o and PQSym are isomorphic to the same H D p , and are therefore isomorphic.

This paper is organised as follows: the two first sections are dedicated to reminders on respectively the Hopf algebras of trees, and the Hopf algebras of permutations and parking functions, FQSym and PQSym. The pairing on H o is introduced and studied in the third section and the last part of the text deals with Dup-Dend bialgebras, the rigidity theorem and the existence of an isomorphism between H o and PQSym. Notations.

1. K is a commutative field. Any vector space, algebra, coalgebra,. . . of this text will be taken over K.

2. Let A = (A, m, ∆, 1, ε, S) be a Hopf algebra. The augmentation ideal Ker(ε) of A will be denoted by A + . We give A + a coassociative, but not counitary, coproduct ∆ defined by ∆(x) = ∆(x)x ⊗ 1 -1 ⊗ x for all x ∈ A + .

1 Four Hopf algebras of forests 1.1 The Connes-Kreimer Hopf algebra of rooted trees

We briefly recall the construction of the Connes-Kreimer Hopf algebra of rooted trees [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF]. A rooted tree is a finite tree with a distinguished vertex called the root [START_REF] Stanley | Enumerative combinatorics[END_REF]. A rooted forest is a finite graph F such that any connected component of F is a rooted tree. The set of vertices of the rooted forest F is denoted by V (F). The degree of a forest F is the number of its vertices.

The set of rooted forests of degree n will be denoted by F(n).

For example:

F(0) = {1}, F(1) = { q }, F (2) 
= { q q , q q }, F(3) = { q q q , q q q , q ∨ q q , q q q }, F(4) = { q q q q , q q q q , q q q q , q ∨ q q q , q q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q }.

Let F be a rooted forest. The edges of F are oriented downwards (from the leaves to the roots). If v, w ∈ V (F), we shall denote by v → w if there is an edge in F from v to w and v ։ w if there is an oriented path from v to w in F. By convention, v ։ v for any v ∈ V (F).

Let v be a subset of V (F). We shall say that v is an admissible cut of F, and we shall write

v |= V (F), if v is totally disconnected, that is to say that v ։ w / for any couple (v, w) of two different elements of v. If v |= V (F)
, we denote by Lea v F the rooted sub-forest of F obtained by keeping only the vertices above v, that is to say {w ∈ V (F), ∃v ∈ v, w ։ v}. Note that v ⊆ Lea v F. We denote by Roo v F the rooted sub-forest obtained by keeping the other vertices.

In particular, if v = ∅, then Lea v F = 1 and Roo v F = F: this is the empty cut of F. If v contains all the roots of F, then it contains only the roots of F, Lea v F = F and Roo v F = 1: this is the total cut of F. We shall write v ||= V (F) if v is an non-total, non-empty admissible cut of F.

Connes and Kreimer proved in [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF] that the vector space H generated by the set of rooted forests is a Hopf algebra. Its product is given by the disjoint union of rooted forests, and the coproduct is defined for any rooted forest F by:

∆(F) = v|=V (F) Lea v F ⊗ Roo v F = F ⊗ 1 + 1 ⊗ F + v||=V (F) Lea v F ⊗ Roo v F.
For example: ∆ q ∨ q q q = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q .

The following coefficients will appear in corollary 12:

Definition 1 [START_REF] Ch | Trees, renormalization and differential equations[END_REF][START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF][START_REF] Michael | Combinatorics of rooted trees and Hopf algebras[END_REF][START_REF] Zhao | A family of invariants of rooted forests[END_REF]. Let F be a rooted forest. The coefficient F! is the integer defined by:

F! = v∈V (F) |{w ∈ V (F) | w ։ v}|.
Typical examples are given by: F q q q q q q q q q q q q ∨ q q q q q q q q q q q q q ∨ q q q q q q q q ∨ q q q q ∨ q q q q ∨ q q q q q q q F! 1 1 2 1 

Hopf algebras of planar decorated trees

We now recall the construction of the non-commutative generalisation of the Connes-Kreimer Hopf algebra [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF][START_REF] Holtkamp | Comparison of Hopf algebras on trees[END_REF].

A planar forest is a rooted forest F such that the set of the roots of F is totally ordered and, for any vertex v ∈ V (F), the set {w ∈ V (F) | w → v} is totally ordered. The set of planar forests of degree n will be denoted by F p (n) for all n ≥ 1.

Planar forests are represented in such a manner that the total orders on the set of roots and the sets {w ∈ V (F) | w → v} for any v ∈ V (F) are given from left to right. For example:

F p (0) = {1}, F p (1) = { q }, F p (2) = { q q , q
q }, F p (3) = { q q q , q q q , q q q , q ∨ q q , q q q }, F p (4) = { q q q q , q q q q , q q q q , q q q q , q q q q , q ∨ q q q , q q q q , q q ∨ q q , q q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q }.

If v |= V (F), then Lea v F and Roo v F are naturally planar forests. It is proved in [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF] that the space H p generated by planar forests is a bialgebra. Its product is given by the concatenation of planar forests and its coproduct is defined for any rooted forest F by:

∆(F) = v|=V (F) Lea v F ⊗ Roo v F = F ⊗ 1 + 1 ⊗ F + v||=V (F) Lea v F ⊗ Roo v F.
For example: ∆ q ∨ q q q = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q , ∆ q ∨ q q q = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q .

We shall need decorated versions of this Hopf algebra. If D is any non-empty set, a decorated planar forest is a couple (F, d), where F is a planar forest and d : V (F) -→ D is any map. The algebra of decorated planar forest H D p is also a Hopf algebra. Moreover, if D is a graded set, that is to say D is decomposed as D = n∈N D(n), H D p is naturally graded, the degree of a decorated planar forest D being the sum of the degrees of the decorations of the vertices of F. If D 0 = ∅, the graded Hopf algebra H D p is connected, and, if we define the Poincaré-Hilbert formal series:

f D (x) = ∞ n=1 |D(n)|x n , f H D p (x) = ∞ n=0 dim H D p (n) x n , then: f H D p (x) = 1 -1 -4f D (x) 2f D (x) , f D (x) = f H D p (x) -1 f H D p (x) 2 .
Let us consider the graded dual of H p . The dual basis of the basis of forests is denoted by (Z F ) F∈Fp . The product of two elements Z F and Z G is the sum of elements Z H , where H is obtained by grafting F on G. For example: Z q Z q q = Z q q q + Z q ∨ q q + Z q q q + Z q ∨ q q + Z q q q = Z q q q + Z q q q + 2Z q ∨ q q + Z q q q . This product can be split into two non-associative products ≺ and ≻, such that, for all x, y, z ∈

(H * p ) + :    (x ≺ y) ≺ z = x ≺ (yz), (x ≻ y) ≺ z = x ≻ (y ≺ z), (xy) ≻ z = x ≻ (y ≻ z).
In other words, (H * p ) + is a dendriform algebra [START_REF] Loday | Dialgebras and related operads[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF]. It is proved in [START_REF]Les algèbres de Hopf des arbres enracinés décorés. II[END_REF] that (H * p ) + is freely generated by Z q , as a dendriform algebra. For example: Z q ≺ Z q q = Z q q q , Z q ≻ Z q q = Z q q q + 2Z q ∨ q q + Z q q q .

More generally, the graded dual (H D p ) * + is the free dendriform algebra generated by the elements Z q d , d ∈ D.

Remark. The dual coproducts of ≺ and ≻ on (H D p ) + are not the coproducts ∆≺ and ∆≻ introduced in section 4.1 of this text.

Hopf algebra of ordered trees

Definition 2 An ordered (rooted) forest is a rooted forest with a total order on the set of its vertices. The set of ordered forests will be denoted by F o ; for all n ≥ 0, the set of ordered forests with n vertices will be denoted by F o (n). The K-vector space generated by F o is denoted by H o . It is a graded subspace, the homogeneous component of degree n being V ect(F o (n)) for all n ∈ N.

Examples.

F o (0) = {1}, F o (1) = { q 1 }, F o (2) = { q 1 q 2 , q q 1 2 , q q 2 1 }, F o (3) = q 1 q 2 q 3 , q 1 q q 2 3 , q 1 q q 3 2 , q q 1 3 q 2 , q 2 q q 3 1 , q q 1 2 q 3 , q q 2 1 q 3 , q ∨ q q 1 3 2 , q ∨ q q 2 3 1 , q ∨ q q 3 2 1
, q q q 1 2 3 , q q q 1 3 2 , q q q 2 1 3 , q q q 2 3 1 , q q q 3 1 2 , q q q 3 2 1 .

Remarks.

1. Note that an ordered forest is also planar, by restriction of the total order to the subsets of vertices formed by the roots or {w ∈ V (F) | w → v}.

2. We shall often identify the set V (F) of an ordered forest F of degree n with the set {1, . . . , n}, using the unique increasing bijection from V (F) to {1, . . . , n}.

If F and G are two ordered forests, then the rooted forest FG is also an ordered forest with, for all v ∈ V (F), w ∈ V (G), v < w. This defines a non-commutative product on the set of ordered forests. For example, the product of q 1 and q q 1 2 gives q 1 q q 2 3 , whereas the product of q q 1 2 and q 1 gives q q 1 2 q 3 = q 3 q q 1 2 . This product is linearly extended to H o , which in this way becomes a graded algebra.

If F is an ordered forest, then any subforest of F is also ordered. So we can define a coproduct ∆ :

H o -→ H o ⊗ H o on H o in the following way: for all F ∈ F o , ∆(F) = v|=V (F) Lea v F ⊗ Roo v F.
For example:

∆ q ∨ q q q 2 3 4 1 = q ∨ q q q 2 3 4 1 ⊗ 1 + 1 ⊗ q ∨ q q q 2 3 4 1 + q 1 ⊗ q ∨ q q 1 3 2 + q q 2 1 ⊗ q q 1 2 + q 1 ⊗ q q q 2 3 1 + q 1 q 2 ⊗ q q 1 2 + q q 3 1 q 2 ⊗ q 1 .
Remark. This is the coopposite of the coproduct defined in [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF]. This observation will make the redaction of section 4 easier. Note that H o is isomorphic to H op o , via the reversing of the orders on the vertices of each ordered forest; moreover,

H o is isomorphic to H op,cop o via the antipode; so H o is isomorphic to H cop o .
The number of ordered forests of degree n is (n+1) n-1 , see sequence A000272 of [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF]. Hence, we have proved:

Proposition 3 The Poincaré-Hilbert formal series of H o is f Ho (x) = ∞ n=0 (n + 1) n-1 x n .

Hopf algebra of heap-ordered trees

Definition 4 [START_REF] Grossman | Hopf-algebraic structure of combinatorial objects and differential operators[END_REF] An ordered forest is heap-ordered if for all i, j ∈ V (F), (i ։ j) =⇒ (i > j). The set of heap-ordered forests will be denoted by F ho ; for all n ≥ 0, the set of heap-ordered forests with n vertices will be denoted by F ho (n).

For example:

F ho (0) = {1}, F ho (1) = { q 1 }, F ho (2) = { q 1 q 2 , q q 1 2 }, F ho (3) = q 1 q 2 q 3 , q 1 q q 2 3 , q 2 q q 1 3 , q 3 q q 1 2 , q ∨ q q 1 2 3 , q q q 1 2 3 .
If F and G are two heap-ordered forests, then FG is also heap-ordered. If F is a heap-ordered forest, then any subforest of F is heap-ordered. So the subspace H ho of H o generated by the heap-ordered forests is a graded Hopf subalgebra of H o .

Note that H ho is neither commutative nor cocommutative. Indeed, q 1 . q q 1 2 = q 1 q q 2 3 and q q 1 2 . q 1 = q q 1 2 q 3 . Moreover:

∆( q ∨ q q 1 3 2 ) = q ∨ q q 1 3 2 ⊗ 1 + 1 ⊗ q ∨ q q 1 3 2 + 2 q 1 ⊗ q q 1 2 + q 1 q 2 ⊗ q 1 .
So neither H ho nor its graded dual H * ho , are isomorphic to the Hopf algebra of heap-ordered trees of [START_REF] Grossman | Hopf-algebraic structure of combinatorial objects and differential operators[END_REF][START_REF]Hopf algebras of heap ordered trees and permutations[END_REF], which is cocommutative.

It is well-known that the number of heap-ordered forests of degree n is n!. Therefore, we have:

Proposition 5 The Poincaré-Hilbert formal series of H ho is f H ho (x) = ∞ n=0 n!x n .
2 Permutations and parking functions

FQSym and PQSym

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric functions, also called the Malvenuto-Reutenauer Hopf algebra [START_REF] Duchamp | Some generalizations of quasisymmetric functions and noncommutative symmetric functions[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. As a vector space, a basis of FQSym is given by the disjoint union of the symmetric groups S n , for all n ≥ 0. We represent a permutation σ ∈ S n by the word (σ(1) . . . σ(n)). By convention, the unique element of S 0 is denoted by 1. The product of FQSym is given, for σ ∈ S k , τ ∈ S l , by:

σ.τ = ζ∈Sh(k,l) (σ ⊗ τ ) • ζ -1 ,
where Sh(k, l) is the set of (k, l)-shuffles. In other words, the product of σ and τ is given by shifting the letters of the word representing τ by k, and then summing over all the possible shufflings of this word and of the word representing σ. For example: Let σ ∈ S n . For all 0 ≤ k ≤ n, there exists a unique triple σ

(k) 1 , σ (k) 2 , ζ k ∈ S k × S n-k × Sh(k, l) such that σ = ζ k • σ (k) 1 ⊗ σ (k) 2
. The coproduct of FQSym is then defined by:

∆(σ) = n k=0 σ (k) 1 ⊗ σ (k) 2 . Note that σ (k) 1 and σ (k)
2 are obtained by cutting the word representing σ between the k-th and the (k + 1)-th letter, and then standardizing the two obtained word, that is to say applying to their letters the unique increasing bijection to {1, . . . , k} or {1, . . . , n -k}. For example:

∆((41325)) = 1 ⊗ (41325) + Std(4) ⊗ Std(1325) + Std(41) ⊗ Std(325) +Std(413) ⊗ Std(25) + Std(4132) ⊗ Std(5) + (41325) ⊗ 1 = 1 ⊗ (41325) + (1) ⊗ (1324) + (21) ⊗ (213) +(312) ⊗ (12) + (4132) ⊗ (1) + (41325) ⊗ (1).
Then FQSym is a Hopf algebra. It is graded, with FQSym(n) = vect(S n ) for all n ≥ 0. The formal series of FQSym is:

f FQSym (x) = ∞ n=0 n!x n = f Ho (x).
Moreover, FQSym has a non-degenerate Hopf pairing, homogeneous of degree 0, defined by:

σ, τ FQSym = δ σ -1 ,τ ,
where σ and τ are two permutations. This construction is generalized to parking functions in [START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF][START_REF]Parking functions and descent algebras[END_REF]. A parking function of degree n is a word (a 1 , . . . , a n ), of n letters in N * , such that in the reordered word (a ′ 1 , . . . , a ′ n ) satisfies a ′ i ≤ i for all i. For example, permutations are parking functions. Here are the parking functions of degree ≤ 3:

1, (1), ( 12), ( 21), ( 11 

σ ⊗ τ = (a 1 , . . . , a k , b 1 + k, . . . , b l + k).
Considering parking functions as maps from {1, . . . , n} to N * , we define a product on the space PQSym generated by parking functions by:

σ.τ = ζ∈Sh(k,l) (σ ⊗ τ ) • ζ -1 ,
where σ and τ are parking functions of respective degrees k and l. For example:

(121)( 11 The standardization is extended to parking functions and PQSym inherits a coproduct similar to the coproduct of FQSym. Moreover, FQSym is a Hopf subalgebra of PQSym.

From ordered forests to permutations

We recall the following result of [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF]:

Proposition 6 Let n ≥ 0. For all F ∈ F o (n), let S F be the set of permutations σ ∈ S n such that for all 1 ≤ i, j ≤ n, (i ։ j) =⇒ (σ -1 (i) ≥ σ -1 (j)). Let us define: Θ :    H o -→ FQSym F ∈ F o -→ σ∈S F σ.
Then Θ : H cop o -→ FQSym is a Hopf algebra morphism, homogeneous of degree 0.

For example, if {a, b, c} = {1, 2, 3}:

Θ( q 1 ) = (1), Θ( q 1 q 2 ) = (12) + (21), Θ( q q 1 2 ) = (12), Θ( q q 2 1 ) = (21), Θ( q a q b q c ) = (abc) + (acb) + (bac) + (bca) + (cab) + (cba), Θ( q a q q b c ) = (abc) + (bac) + (bca), Θ( q ∨ q q a b c ) = (abc) + (acb), Θ( q q q a b c ) = (abc).
Remark. Note that Θ can also be seen as a Hopf algebra morphism from H o to FQSym cop . The morphism Θ is not injective, for example Θ( q q 1 2 + q q 2 1q 1 q 2 ) = 0. From [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF], we recall: Proposition 7 The restriction of Θ to H cop ho is an isomorphism of graded Hopf algebras. Can we extend this construction from ordered forests to parking functions, in order to obtain a Hopf algebra isomorphism from H cop o to PQSym? The answer is given by the following result:

Proposition 8 Let Θ ′ : H cop o
-→ PQSym be a Hopf algebra morphism, homogeneous of degree 0. We assume that for all F ∈ F o , there exists a set S ′ F of parking functions such that

Θ ′ (F) = σ∈S ′ F σ. Then Θ ′ is not an isomorphism. Proof. As Θ ′ is homogeneous of degree 0, if F ∈ F o (n), then S ′ F ⊆ PQSym(n), so is a set of parking functions of size n. So S ′ q 1 = {(1)}. In particular: Θ ′ ( q 1 q 2 ) = Θ ′ ( q 1 )Θ ′ ( q 1 ) = (1)(1) = (12) + (21), so S ′ q 1 q 2 = {(12), (21)}. Moreover: ∆ op ( q q 1 2 ) = q q 1 2 ⊗ 1 + 1 ⊗ q q 1 2 + q 1 ⊗ q 1 , ∆ op ( q q 2 1 ) = q q 2 1 ⊗ 1 + 1 ⊗ q q 2 1 + q 1 ⊗ q 1 .
So S ′ q q 1 2 and S ′ q q 2 1 are equal to {(12)}, {(21)} or {(11)}. If they are equal, then Θ ′ is not injective. Let us assume that they are different. If both are equal to {(12)} or {(21)}, then Θ ′ ( q q 1 2 + q q 2 1 ) = ( 12) + (21) = Θ ′ ( q 1 q 2 ), so Θ ′ is not injective. It remains four cases: 12) ⊗ (1) + ( 1) ⊗ (11), so the only possibility is S ′ q q q 2 3 1 = {(122)}. Similarly: 12) ⊗ (1) + (1) ⊗ (11), so the only possibility is S ′ q q q 1 3 2 = {(122)}. Hence, Θ ′ is not injective.

• S ′ q q 1 2 = {(12)} and S ′ q q 2 1 = {(11)}. Then: ∆ • Θ ′ ( q q q 2 3 1 ) = (Θ ′ ⊗ Θ ′ ) • ∆op ( q q q 2 3 1 ) = (
∆ • Θ ′ ( q q q 1 3 2 ) = (Θ ′ ⊗ Θ ′ ) • ∆op ( q q q 1 3 2 ) = (
• S ′ q q 1 2 = {(11)} and S ′ q q 2 1 = {(12)}. Similarly, considering q q q 3 1 2 and q q q 2 1 3

, we conclude that Θ ′ is not injective. 21)}. Similarly, considering q q q 1 3 2 and q q q 2 3 1 , we conclude that Θ ′ is not injective.

• S ′ q q 1 2 = {(21)} and S ′ q q 2 1 = {(11)}. Then: ∆ • Θ ′ ( q q q 2 1 3 ) = ∆ • Θ ′ ( q q q 3 1 2 ) = (11) ⊗ (1) + (1) ⊗ (21). So S ′ q q q 2 1 3 = S ′ q q q 3 1 2 = {(221)}: Θ ′ is not injective. • S ′ q q 1 2 = {(11)} and S ′ q q 2 1 = {(
Therefore, Θ ′ is never injective. 2

Remark. It is possible to prove a similar result for Hopf algebra morphisms from H o to PQSym.

3 Pairing on H o

Definition

Theorem 9 For all F, G ∈ F o , we put:

S(F, G) = f : V (F) -→ V (G), bijective | ∀x, y ∈ V (F), (x ։ y) =⇒ (f (x) ≥ f (y)) ∀x, y ∈ V (F), (f (x) ։ f (y)) =⇒ (x ≥ y) .
We define a pairing on H cop o by F, G = |S(F, G)|. This pairing is Hopf, symmetric, and homogeneous of degree 0.

Proof. If F and G do not have the same number of vertices, then S(F, G) = ∅, so F, G = 0: the pairing is homogeneous. Moreover, the map f -→ f -1 is a bijection from S(F, G) to S(G, F) for any F, G ∈ F o , so the pairing is symmetric.

We now prove that

F 1 F 2 , G = F 1 ⊗ F 2 , ∆ op (G) for any forests F 1 , F 2 , G ∈ F o . We consider f ∈ S(F 1 F 2 , G). Let x ′ ∈ f (V (F 2 )) and y ′ ∈ V (G), such that y ′ ։ x ′ . As f is bijective, there exists x ∈ V (F 2 ), y ∈ V (F 1 F 2 ), such that f (x) = x ′ and f (y) = y ′ . As f ∈ S(F, G), y ≥ x in F. Since x ∈ V (F 2 ), y ∈ V (F 2 ), it follows that y ′ ∈ f (V (F 2 )). Hence, there exists a unique admissible cut v f |= V (G), such that Lea v f (G) = f (V (F 2 )) and Roo v f (G) = f (V (F 1 )). Moreover, f |V (F 1 ) ∈ S(F 1 , Roo v f (G)) and f |V (F 2 ) ∈ S(F 2 , Lea v f (G)).
Hence, this defines a map:

υ :    S(F 1 F 2 , G) -→ v|=V (G) S(F 1 , Roo v (G)) × S(F 2 , Lea v (G)) f -→ (f |V (F 1 ) , f |V (F 2 ) ). It is clearly injective. Let us show that it is surjective. Let v |= V (G), (f 1 , f 2 ) ∈ S(F 1 , Roo v (G))× S(F 2 , Lea v (G)). Let f : V (F 1 F 2 ) -→ V (G) be the unique bijection such that f |V (F i ) = f i for i = 1, 2. Let us show that f ∈ S(F 1 F 2 , G). If x ։ y in F 1 F 2 , then x ։ y in F i , for i = 1 or 2. So f i (x) ≥ f i (y) and f (x) ≥ f (y).
Let us assume that f (x) ։ f (y) in G. Three cases are then possible:

• f (x) ։ f (y) in Roo v (G): then f (x) = f 1 (x), f (y) = f 1 (y). So x ≥ y in F 1 , so x ≥ y in F 1 F 2 . • f (x) ։ f (y) in Lea v (G): similar proof. • f (x) ∈ Lea v (G) and f (y) ∈ Roo v (G): so y ∈ V (F 1 ) and x ∈ V (F 2 ), so x ≥ y in F 1 F 2 .
We conclude that υ is a bijection. So the following equation holds:

F 1 F 2 , G = |S(F 1 F 2 , G)| = v|=V (G) |S(F 1 , Roo v (G))||S(F 2 , Lea v (G))| = F 1 ⊗ F 2 , ∆ op (G) .
As it is symmetric, the pairing is a Hopf pairing. 2

We list the matrices of the pairing in degree 1 and 2:

q 1 q 1 1 q 1 q 2 q q 1 2 q q 2 1 q 1 q 2 2 1 1 q q 1 2 1 1 0 q q 2 1 1 0 1
This pairing is degenerate. For example, q q 1 2 + q q 2 1q 1 q 2 is in the kernel of the pairing.

Kernel of the pairing

Lemma 10 Let F, G ∈ F o (n). The elements of S F , S G and S(F, G) can all be seen as elements of S n , identifying V (F) and V (G) with {1, . . . , n}, using the unique increasing bijections from V (F) or V (G) to {1, . . . , n}. Then S(F,

G) = S -1 F ∩ S G . Proof. Let f ∈ S(F, G). If x ։ y in F, then f (x) ≥ f (y) in G, so f (x) ≥ f (y) in {1, . . . , n}, so f (x) ≥ f (y) in F. So f -1 ∈ S F and f ∈ S -1 F . If x ′ ։ y ′ in G, then f -1 (x) ≥ f -1 (y) in F, so in {1, . . . , n}, so in G. Hence, f ∈ S G . Let f ∈ S -1 F ∩ S G . If x ։ y in F, as f -1 ∈ S F , f (x) ≥ f (y) in F, so in {1, . . . , n}, so in G. If f (x) ։ f (y) in G, then as f ∈ S G , x ≥ y in G, so in {1, . . . , n}, so in F. Hence, f ∈ S(F, G). 2 Proposition 11 For any x, y ∈ H o , x, y = Θ(x), Θ(y) FQSym . Proof. It is enough to take x = F, y = G in F o . Then: Θ(F), Θ(G) FQSym = σ∈S F ,τ ∈S G σ, τ = σ∈S F ,τ ∈S G δ σ -1 ,τ = |S -1 F ∩ S G | = |S(F, G)| = F, G .
So Θ respects the pairings. 2

Corollary 12

The kernel of the pairing on H o is Ker(Θ). Moreover, the restriction of the pairing to H ho is non-degenerate.

Proof. Θ |H ho is an isometry from H ho to FQSym. As the pairing of FQSym is nondegenerate, the same holds for the pairing of H ho . Moreover, for any x ∈ H o , as Θ is surjective:

x ∈ H ⊥ o ⇐⇒ ∀y ∈ H o , x, y = 0 ⇐⇒ ∀y ∈ H o , Θ(x), Θ(y) FQSym = 0 ⇐⇒ ∀y ′ ∈ FQSym, Θ(x), y ′ = 0 ⇐⇒ Θ(x) ∈ FQSym ⊥ ⇐⇒ Θ(x) = 0. So H ⊥ o = Ker(Θ). 2 
The next proposition gives application of the pairing:

Proposition 13 For all n ≥ 0, for all F ∈ F o (n), |S F | = |F|! F! = q 1 . . . q n, F .
Proof. Let us fix n ≥ 0. The symmetric group S n naturally acts on F o (n) by permutation of the orders of the vertices of the ordered forests. For example, if σ ∈ S 3 :

σ. q ∨ q q 1 3 2 = q ∨ q q σ(1) σ(3) σ(2) , σ. q q q 1 2 3 = q q q σ(1) σ(2) σ(3) . Let F ∈ F o (n), σ ∈ S n . For any bijection f : V (F) -→ {1, . . . , n}: f ∈ S σ.F ⇐⇒ ∀i, j ∈ V (F), (i ։ j in σ.F) ⇐⇒ (f -1 (i) ≥ f -1 (j)) ⇐⇒ ∀i, j ∈ V (F), (σ(i) ։ σ(j) in σ.F) ⇐⇒ (f -1 • σ(i) ≥ f -1 • σ(j)) ⇐⇒ ∀i, j ∈ V (F), (i ։ j in F) ⇐⇒ (f -1 • σ(i) ≥ f -1 • σ(j)) ⇐⇒ σ -1 • f ∈ S F .
So S σ.F = σ • S F . As a consequence, |S F | does not depend of the order of the vertices of F, but only of the subjacent rooted forest.

It is clear that S q 1 ... q n = S n , so S( q 1 . . . q n, F) = S -1 n ∩ S F = S F . Hence, q 1 . . . q n, F = |S F |. Let us now prove that q 1 . . . q n, F = |F|! F! by induction on the degree n of F. If n = 0, this is obvious. Let us assume the result for any forest of degree < n. Two cases can occur.

• F is not connected. As q 1 . . . q n, F = |S F | does not depend of the order of the vertices of F, we can assume that F = F 1 F 2 , with deg(F 1 ) = n 1 , deg(F 2 ) = n 2 , n 1 , n 2 < n. Then:

q 1 . . . q n, F = ∆ op ( q 1 . . . q n), F 1 ⊗ F 2 = i+j=n n! i!j! q 1 . . . q i ⊗ q 1 . . . q j , F 1 ⊗ F 2 = 0 + n! n 1 !n 2 ! q 1 . . . q n 1 ⊗ q 1 . . . q n 2 , F 1 ⊗ F 2 = n! n 1 !n 2 ! n 1 ! F 1 ! n 2 ! F 2 ! = n! F 1 !F 2 ! = n! F! . • F is connected. There is only one admissible cut v |= V (F), such that Roo v F is of degree 1: v = {w ∈ V (F) | w → r},
where r is the root of F. Then F! = nLea v F!. So: Examples. In the non-decorated case:

q 1 . . . q n, F = q 1 ⊗ q 1 . . . q n -1, ∆ op (F) = q 1 , q 1 q 1 . . . q n -1, Lea v F +0 = 1 (n -1)! Lea v F! = n! F! . 2 4 
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The following properties are easily verified for x, y, z non-empty forests:

Lemma 14 For all x, y, z ∈ (H D p ) + :

(x տ y) տ z = x տ (y տ z), (xy) տ z = x(y տ z).
We recover the definition of [START_REF]Generalized bialgebras and triples of operads[END_REF]: (

Definition
) 1 
Remark. If (A, m, տ) is a duplicial algebra, then A op = (A, m op , տ op ) is a P ր -algebra, as defined in [START_REF] Foissy | The infinitesimal Hopf algebra and the operads of planar forests[END_REF]. In particular, for A = H p , the P ր -algebra H op p is isomorphic to (H p , m, ր), where F ր G is defined in [START_REF] Foissy | The infinitesimal Hopf algebra and the operads of planar forests[END_REF] by grafting F on the leaf at most on the left of G. An explicit isomorphism is given by sending a planar forets F to its image by a vertical symmetry.

Here is an alternative description of the free duplicial algebras: Proposition 16 For all set D, (H D p ) + is the free duplicial algebra generated by the elements

q d 's, d ∈ D.
Proof. In order to simplify the proof, we only treat here the case where D is reduced to a single element, that is to say we work with non-decorated planar forests. The general proof is very similar. Let A be a duplicial algebra and let a ∈ A. Let us prove there exists a unique morphism of duplicial algebras φ : (H p ) + -→ A, such that φ( q ) = a. We define φ(F) for any non-empty planar forest F inductively on the degree of F by:

   φ( q ) = a, φ(t 1 . . . t k ) = φ(t 1 ) . . . φ(t k ) if k ≥ 2, φ(B + (F )) = a տ φ(F ).
As the product of A is associative, this is perfectly defined. This map is linearly extended into a map φ : (H p ) + -→ A. Let us show it is a morphism of duplicial algebras. By the second point, φ(xy) = φ(x)φ(y) for any forests x, y ∈ (H p ) + . Let x, y be two non-empty forests. Let us prove that φ(x տ y) = φ(x) տ φ(y) by induction on n = deg(x). If n = 1, then x = q , so:

φ(x տ y) = φ(B + (y)) = a տ φ(y) = φ(x) տ φ(y).
Let us assume the result for any forest of weight < n. We put x = t 1 . . . t k , t k = B + (F ). Then, using the induction hypothesis on F :

φ(x տ y) = φ(t 1 . . . t k-1 B + (F տ y)) = φ(t 1 ) . . . φ(t k-1 )(a տ φ((F տ y))) = φ(t 1 ) . . . φ(t k-1 )(a տ (φ(F ) տ φ(y))) = φ(t 1 ) . . . φ(t k-1 )((a տ φ(F )) տ φ(y)) = φ(t 1 ) . . . φ(t k-1 )(φ(t k ) տ φ(y)) = (φ(t 1 ) . . . φ(t k-1 )φ(t k )) տ φ(y)) = φ(x) տ φ(y).
We use the convention 1 տ y = y, if t k = q . So φ is a morphism of duplicial algebras.

Let φ ′ : (H p ) + -→ A be another morphism of duplicial algebras such that φ ′ ( q ) = a. Then for any planar trees t

1 , . . . , t k , φ ′ (t 1 . . . t k ) = φ ′ (t 1 ) . . . φ ′ (t k ). For any planar forest F , φ ′ (B + (F )) = φ ′ ( q տ F ) = a տ φ ′ (F ). So φ = φ ′ . 2 
Definition 17 For any non-empty planar forest F, let r F be the leaf of F that is at most on the right. We put:

∆≺ (F) = v||=V (F) r F ∈LeavF Lea v F ⊗ Roo v F, ∆≻ (F) = v||=V (F) r F ∈RoovF Lea v F ⊗ Roo v F.
Note that ∆≺ + ∆≻ = ∆.

Lemma 18 For any x ∈ (H

D p ) + :    ( ∆≺ ⊗ Id) • ∆≺ (x) = (Id ⊗ ∆) • ∆≺ (x), ( ∆≻ ⊗ Id) • ∆≺ (x) = (Id ⊗ ∆≺ ) • ∆≻ (x), ( ∆ ⊗ Id) • ∆≻ (x) = (Id ⊗ ∆≻ ) • ∆≻ (x).
(

) 2 
In other words, (H D p ) + is a dendriform coalgebra.

Proof. It is enough to prove this statement if x is a non-empty forest. We put, as ∆ is coassociative: 3) ,

( ∆ ⊗ Id) • ∆(x) = (Id ⊗ ∆) • ∆(x) = x (1) ⊗ x (2) ⊗ x (
where the x (1) , x (2) , x (3) are subforests of x. Then:

                 ( ∆≺ ⊗ Id) • ∆≺ (x) = (Id ⊗ ∆) • ∆≺ (x) = rx∈x (1)
x (1) ⊗ x (2) ⊗ x (3) ,

( ∆≻ ⊗ Id) • ∆≺ (x) = (Id ⊗ ∆≺ ) • ∆≻ (x) = rx∈x (2)
x (1) ⊗ x (2) ⊗ x (3) ,

( ∆ ⊗ Id) • ∆≻ (x) = (Id ⊗ ∆≻ ) • ∆≻ (x) = rx∈x (3)
x (1) ⊗ x (2) ⊗ x (3) .

So (H D p ) + is a dendriform coalgebra. 2 
Notations.

1. If (A, ∆≺ , ∆≻ ) is a dendriform coalgebra, we denote P rim tot (A) = Ker( ∆≺ ) ∩ Ker( ∆≻ ).

2. Let (A, ∆≺ , ∆≻ ) be a dendriform coalgebra. We shall use the following sweedler notations:

for any a ∈ A, ∆(a) = a ′ ⊗ a ′′ , ∆≺ (a) = a ′ ≺ ⊗ a ′′ ≺ and ∆≻ (a) = a ′ ≻ ⊗ a ′′ ≻ .
Proposition 19 The dendriform coalgebra (H D p ) + is freely cogenerated by the elements q d 's, d ∈ D. As a consequence, P rim tot (H

D p ) + = V ect( q d , d ∈ D).
Proof. It is equivalent to prove that the graded dual (H D p ) * + is the free dendriform algebra generated by the elements Z q d 's, d ∈ D. In order to simplify the proof, we only treat here the case where D is reduced to a single element, that is to say we work with non-decorated planar forests. Comparing the Poincaré-Hilbert formal series, it is enough to prove that (H p ) * + is generated by Z q . For any forests F, G, we have:

Z F ≺ Z G = H grafting of F on G r H =r F Z H , Z F ≻ Z G = H grafting of F on G r H =r G Z H .
In particular, Z F ≻ Z q = Z F q .

Let A be the (associative) subalgebra of (H p ) * + generated by the elements Z F q , F planar forest. Let us prove that Z G ∈ A for any non-empty planar forest G by induction on n = deg(G).

If n = 1, Z G = Z q ∈ A. Let us assume that any Z H ∈ A, if deg(H) < n. If deg(G) = n, we put G = t 1 . . . t k-1 B + (H). We proceed by induction on deg(H) = l. If l = 0, then G = t 1 . . . t k-1 q , so Z G ∈ A. If l ≥ 1, then: Z H Z t 1 ...t k-1 q = Z G + R, where R is a sum of Z F ′ , with F ′ of weight n, of the form F ′ = t ′ 1 . . . t ′ r B + (H ′ ), deg(H ′ ) < l. By the induction hypothesis on l, R ∈ A. By the induction hypothesis on n, Z H ∈ A; moreover, Z t 1 ...t k-1 q ∈ A. So Z G ∈ A.
Let B the dendriform subalgebra of (H p ) * + generated by Z q . Let us prove that B = (H p ) * + . By the first point, it is enough to prove that for any planar forests F 1 , . . . , F k , x = Z F 1 q . . . Z F k q ∈ B. We proceed by induction on deg

(x) = deg(F 1 )+. . . +deg(F k )+k. If n = 1, then x = Z q ∈ B.
If n ≥ 2, then the induction hypothesis gives Z F 1 , . . . , Z F k ∈ B. Then:

x = (Z F 1 ≻ Z q ) . . . (Z F k ≻ Z q ) ∈ B. So (H p ) * + is generated by Z q . 2 Proposition 20 1. Let x, y ∈ (H D p ) + . Then: ∆≺ (xy) = y ⊗ x + x ′ y ⊗ x ′′ + xy ′ ≺ ⊗ y ′′ ≺ + y ′ ≺ ⊗ xy ′′ ≺ + x ′ y ′ ≺ ⊗ x ′′ y ′′ ≺ , ∆≻ (xy) = x ⊗ y + x ′ ⊗ x ′′ y + xy ′ ≻ ⊗ y ′′ ≻ + y ′ ≻ ⊗ xy ′′ ≻ + x ′ y ′ ≻ ⊗ x ′′ y ′′ ≻ . (3) 
In other words, (H D p ) + is a codendriform bialgebra.

2. Let x, y ∈ (H D p ) + . Then:

     ∆≺ (x տ y) = y ⊗ x + y ′ ≺ ⊗ x տ y ′′ ≺ + x ′ ≺ տ y ⊗ x ′′ ≺ +x ′ ≻ y ⊗ x ′′ ≻ + x ′ ≻ y ′ ≺ ⊗ x ′′ ≻ տ x ′′ ≺ , ∆≻ (x տ y) = y ′ ≻ ⊗ x տ y ′′ ≻ + x ′ ≻ ⊗ x ′′ ≻ տ y + x ′ ≻ y ′ ≻ ⊗ x ′′ ≻ տ y ′′ ≻ . (4) 
Proof. It is enough to prove these formulas if x = F, y = G are non-empty planar forests. Let us first compute ∆≺ (FG). For any admissible cut v ||= V (FG), let v ′ be the restriction of v to F and v ′′ the restriction of v to G. Then v ′ |= V (F) and v ′′ |= V (G). Moreover, v ′ and v ′′ are not simultaneously total, and not simultaneously empty.

Let us first compute ∆≺ (FG). Let v ||= V (FG), such that r FG = r G belongs to Lea v FG. So r G ∈ Lea v ′′ G, so v ′′ is not empty. There are five possibilities for v:

• v ′ is empty and v ′′ is total: this gives the term G ⊗ F.

• v ′ is not empty and v ′′ is total: then v ′ ||= V (F), and this gives the term

F ′ G ⊗ F ′′ . • v ′ is empty and v ′′ is not total: as r G ∈ Lea v ′′ G, this gives the term G ′ ≺ ⊗ FG ′′ ≺ . • v ′ is total and v ′′ is not total: as r G ∈ Lea v ′′ G, this gives the term FG ′ ≺ ⊗ G ′′ ≺ . • v ′ ||= V (F) and v ′′ is not total: as r G ∈ Lea v ′′ G, this gives the term F ′ G ′ ≺ ⊗ F ′′ G ′′ ≺ .
We now compute ∆≻ (FG). Let v ||= V (FG), such that r FG = r G belongs to Roo v FG. So r G ∈ Roo v ′′ G, so v ′′ is not total. There are five possibilities for v:

• v ′ is total and v ′′ is empty: this gives the term F ⊗ G.

• v ′ is not total and v ′′ is empty: then v ′ ||= V (F), and this gives the term F ′ ⊗ F ′′ G.

• v ′ is total and v ′′ is not empty: as r G ∈ Roo v ′′ G, this gives the term FG ′ ≻ ⊗ G ′′ ≻ .

• v ′ is empty and v ′′ is not total: as r G ∈ Roo v ′′ G, this gives the term G ′ ≻ ⊗ FG ′′ ≻ .

• v ′ ||= V (F) and v ′′ is not total: as r G ∈ Roo v ′′ G, this gives the term

F ′ G ′ ≻ ⊗ F ′′ G ′′ ≻ .
For any admissible cut v ||= V (F տ G), let v ′ be the restriction of v to F and let v ′′ be the unique admissible cut of G such that Lea v ′′ G is the subforest of Lea v F տ G formed by the vertices that belong to V (G). Moreover, if v ′ is not empty, as v is admissible, r F ∈ Lea v ′ F, if, and only if v ′′ is total. Consequently, as v is not total, v ′ is not total.

We compute ∆≺ (F տ G). Let v ||= V (F տ G), such that r FտG = r G belongs to Lea v F տ G. As r G ∈ Lea v ′′ G, v ′′ is not empty. There are four possibilities for v:

• v ′ is empty and v ′′ is total: this gives the term G ⊗ F.

• v ′ is empty and v ′′ is not total: then v ′′ ||= V (G) and r G ∈ Lea v ′′ G, so this gives the term

G ′ ≺ ⊗ F տ G ′′ ≺ .
• v ′ is not empty and v ′′ is total: we obtain two subcases:

-Lea v ′ F contains r F : this gives the term

F ′ ≺ տ G ⊗ F ′′ ≺ . -Roo v ′ F contains r F : this gives the term F ′ ≻ G ⊗ F ′′ ≻ .
• v ′ is not empty and v ′′ is not total: then r F does not belong to Lea v ′ F, r G belongs to Lea v ′′ G, and this gives the term

F ′ ≻ G ′ ≺ ⊗ F ′′ ≻ տ G ′′ ≺ . Finally, we compute ∆≻ (F տ G). Let v ||= V (F տ G), such that r FտG = r G belongs to Roo v F տ G. As r G ∈ Roo v ′′ G, v ′′
is not total. So v ′ does not contain r F . There are three possibilities for v:

• v ′ is empty: then v ′′ ||= V (G) and Roo v ′′ G contains r G , and this gives the term

G ′ ≻ ⊗ F տ G ′′ ≻ .
• v ′ is not empty and v ′′ is empty: then r F ∈ Roo v ′ F and we obtain the term

F ′ ≻ ⊗ F ′′ ≻ տ G.
• v ′ is not empty and v ′′ is not empty: then r F ∈ Roo v ′ F, r G ∈ Roo v ′′ G and we obtain the term

F ′ ≻ G ′ ≻ ⊗ F ′′ ≻ տ G ′ ≻ .
2 This suggests: Definition 21 A Dup-Dend bialgebra is a family (A, ., տ, ∆≺ , ∆≻ ), where A is a vector space, ., տ: A ⊗ A -→ A and ∆≺ , ∆≻ : A -→ A ⊗ A, with the following properties:

1. (A, ., տ) is a duplicial algebra (axioms 1).

2. (A, ∆≺ , ∆≻ ) is a dendriform coalgebra (axioms 2).

The compatibilities of proposition 20 are satisfied (axioms 3 and 4).

A rigidity theorem

Theorem 22 Let A be a Dup-Dend bialgebra. We assume that A is graded and connected, that is to say A 0 = (0). Let (p D ) d∈D be a basis of P rim tot (A) formed by homogeneous elements, indexed by a graded set D. There exists a unique isomorphism of graded Dup-Dend bialgebras:

φ : (H D p ) + -→ A q d , d ∈ D -→ p d .
Proof. The graded dual A * of A is a graded dendriform algebra, so is the quotient of a free dendriform algebra. By proposition 19, we can find a graded set D ′ , such that there exists a epimorphism of dendriform algebras π : (H D ′ p ) * + -→ A * . Dually, we obtain a monomorphism of dendriform coalgebras ι ′ : A -→ (H D ′ p ) + . For all d ∈ D, ι ′ (p d ) ∈ P rim tot ((H D ′ p ) + ), so is a linear span of q d ′ , d ′ ∈ D ′ . Up to an automorphism of (H D ′ p ) + , we can assume that D ⊆ D ′ and that ι ′ (p d ) = q d for all d ∈ D. Composing ι ′ with the canonical epimorphism from (H D ′ p ) + to (H D p ) + obtained by deleting the forests with vertices with decorations which are not in D, we obtain a morphism of dendriform coalgebras ι : A -→ (H D p ) + , sendind ι(p d ) to q d for all d ∈ D. If ι is not injective, let us consider x ∈ Ker(ι), non-zero, of minimal degree. As ι is a morphism of dendriform coalgebras, x ∈ P rim tot (A): absurd, ι is clearly injective on P rim tot (A). So ι is injective.

Let x ∈ A. We denote by IC n the set of n-iterated coproducts of A:

IC 0 = {Id}, IC n = Id ⊗i ⊗ ∆≺ ⊗ Id ⊗(n-i-1) • Θ, Id ⊗i-1 ⊗ ∆≻ ⊗ Id ⊗(n-i) • Θ | Θ ∈ IC n-1 , 1 ≤ i ≤ n .
The elements of IC n are homogeneous maps from A to A ⊗(n+1) . As a consequence, if x ∈ A n , k ≥ n and Ω ∈ IC k , then Θ(x) ∈ A ⊗(k+1) n = (0). So for any x ∈ A, there exists a greatest integer k such that there exists Ω ∈ IC k , Ω(x) = 0. This k will be denoted by deg p (x).

Let us prove that A is generated by P rim tot (A). Let B be the P տ -subalgebra of A generated by P rim tot (A). Let x ∈ A, we prove that x ∈ B by induction on deg p (x). If deg p (x) ≤ 1, then x ∈ prim tot (A) and the result is obvious. Let us assume that any y ∈ A, such that deg p (y) < k, is in B, and let us take x ∈ A, such that deg p (x) = k. Then ι(x) is an element of (H D p ) + , so can be written as an expression in q d , using the products . and տ of (H D p ) + : we put ι(x) = P ( q d , d ∈ D).

Let us consider y = P (p d , d ∈ D). As deg p (x) = k, for any Ω ∈ IC k-1 , Ω(x) ∈ P rim tot (A) ⊗k , as it is cancelled by Id ⊗i ⊗ ∆≺ ⊗ Id ⊗(k-i-1) and Id ⊗i ⊗ ∆≻ ⊗ Id ⊗(k-i-1) for any i. We put:

Ω(x) = d 1 ,...,d k ∈D a d 1 ,...,d k p d 1 ⊗ . . . ⊗ p d k .
As ι is a morphism of coalgebras:

Ω(ι(x)) = (ι ⊗k ) • Ω(x) = d 1 ,...,d k ∈D a d 1 ,...,d k q d 1 ⊗ . . . ⊗ q d k .
As the compatibilities between the products and the coproducts are the same in A and (H D p ) + , we deduce that:

(ι ⊗k ) • Ω(y) = Ω(ι(y)) = d 1 ,...,d k ∈D a d 1 ,...,d k q d 1 ⊗ . . . ⊗ q d k = Ω(ι(x)).
The injectivity of ι implies that Ω(xy) = 0. So the induction hypothesis can be applied on xy, which belongs to B. By definition, y ∈ B, so x ∈ B.

As a consequence, the unique morphism of duplicial algebras φ : (H D p ) + -→ A, sending q d to p d for all d ∈ D, is surjective. Moreover, it is homogeneous of degree 0, as q d and p d are homogeneous of the same degree for all d ∈ D. As it sends q d to an element of P rim tot (A) for all d, φ is a morphism of Dup-Dend bialgebras. If φ is not injective, let us take x ∈ Ker(φ), nonzero, of minimal degree. As φ is a morphism of dendriform coalgebras, x ∈ P rim tot ((

H D p ) + ) = V ect( q d , d ∈ D): absurd, by definition the restriction of φ on V ect( q d , d ∈ D) is injective. So φ is an isomorphism. 2 

Application to ordered forests

We define the following product տ on (H o ) + for two non-empty ordered forests F and G in the following way: F տ G is the ordered forests obtained by grafting G on the greatest vertex of F, the vertices of F being smaller than the vertices of G in the grafting. For example:

q q 1 2 տ q 1 q 2 = q ∨ q q q 1 2 4 3 , q q 2 1 տ q 1 q 2 = q ∨ q qq 2 4 3 1 .
Let F, G, H be three non-empty ordered forests. As the greatest vertex of FG is also the greatest vertex of G, (FG) տ H = F(G տ H). As the greatest vertex of F տ G is the greatest vertex of G, (F տ G) տ H = F տ (G տ H). So ((H o ) + , ., տ) is a duplicial algebra.

For any ordered forest F, we denote by g F the greatest vertex of F. We then put:

∆≺ (F) = v||=V (F) g F ∈V (LeavF) Lea v F ⊗ Roo v F, ∆≻ (F) = v||=V (F) g F ∈V (Roov F) Lea v F ⊗ Roo v F. For example: ∆ ≺ q ∨ q q q 2 3 4 1 = q q 2 1 ⊗ q q 1 2 + q q 3 1 q 2 ⊗ q 1 , ∆ ≻ q ∨ q q q 2 3 4 1 = q 1 ⊗ q q q 2 3 1 + q 1 ⊗ q ∨ q q 1 3 2 + q 1 q 2 ⊗ q q 1 2 .
Then ((H o ) + , ∆≺ , ∆≻ ) is a dendriform coalgebra: indeed, if F is a non-empty ordered forest, we put: 3) ,

( ∆ ⊗ Id) • ∆(F) = (Id ⊗ ∆) • ∆(F) = F (1) ⊗ F (2) ⊗ F ( 
where the F (1) , F (2) and F (3) are subforests of F. Then:

                 ( ∆≺ ⊗ Id) • ∆≺ (F) = (Id ⊗ ∆) • ∆≺ (F) = g F ∈F (1)
F (1) ⊗ F (2) ⊗ F (3) ,

( ∆≻ ⊗ Id) • ∆≺ (F) = (Id ⊗ ∆≺ ) • ∆≻ (F) = g F ∈F (2) F (1) ⊗ F (2) ⊗ F (3) , ( ∆ ⊗ Id) • ∆≻ (F) = (Id ⊗ ∆≻ ) • ∆≻ (F) = g F ∈F (3) 
F (1) ⊗ F (2) ⊗ F (3) .

Moreover The formal series of D o and D ho are given by:

f Do (x) = f Ho (x) -1 f Ho (x) 2 , f D ho (x) = f H ho (x) -1 f H ho (x) 2 .
This gives the following examples: These are sequences A122705 and A122827 of [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF].

Remark. As a consequence, H o and H ho are free and cofree. It is not difficult to show that H o is freely generated by indecomposable ordered forests, that is to say ordered forests F that cannot be written as F = GH, with G, H = 1. Similarly, H ho is freely generated by indecomposable heap-ordered forests.

Application to parking functions

Let σ be a parking function. We denote by m σ the maximal index i such that σ(i) is maximal. In particular, if σ ∈ S n , m σ = σ -1 (n). For any parking function σ of degree n ≥ 1, we put:

∆≺ (σ) = mσ-1 k=1 σ (k) 2 ⊗ σ (k) 1 , ∆≻ (σ) = n-1 k=mσ σ (k) 2 ⊗ σ (k) 1 .
For example: We denote by S ′ the set in the second member of this equation. We first prove that S FտG ⊆ S ′ . Let χ ∈ S FտG . There exists a unique (σ, τ, ζ) ∈ S k × S l × Sh(k, l), such that χ = (σ ⊗ τ ) • ζ -1 . Let us prove that σ ∈ S F . If i ։ j in F, then i ։ j in F տ G, so:

∆ ≺ (( 21332 
χ -1 (i) ≥ χ -1 (j), ζ • (σ -1 ⊗ τ -1 )(i) ≥ ζ • (σ -1 ⊗ τ -1 )(j), ζ • σ -1 (i) ≥ ζ • σ -1 (j), σ -1 (i) ≥ σ -1 (j),
as ζ is increasing on {1, . . . , k}. So σ ∈ S F . Similarly, τ ∈ S G . Moreover, the vertex τ (1) + k belongs to G in F տ G, so τ (1) + k ։ k in F տ G. As a consequence:

χ -1 (τ (1) + k) ≥ χ -1 (k), ζ • (σ -1 ⊗ τ -1 )(τ (1) + k) ≥ ζ • (σ -1 ⊗ τ -1 )(k), ζ(k + 1) ≥ ζ • σ -1 (k).
Let us now prove that S ′ ⊆ S FտG . Let σ ∈ S F , τ ∈ S G and ζ ∈ Sh(k, l), such that ζ(k + 1) ≥ ζ(σ -1 (k)). We put χ = (σ ⊗ τ ) • ζ -1 . Let i, j be two vertices of F տ G, such that i ։ j. Three cases can occur:

• i, j are vertices of F. Then σ -1 (i) ≥ σ -1 (j), so (σ -1 ⊗ τ -1 )(i) ≥ (σ -1 ⊗ τ -1 )(j), and finally σ -1 (i) = ζ • (σ -1 ⊗ τ -1 )(i) ≥ ζ • (σ -1 ⊗ τ -1 )(j) = σ -1 (j).

• i, j are vertices of G. The same proof holds.

• i is a vertex of G and j is a vertex of F. Then i ։ k in F տ G. As F տ G is a forest, necessarily k ։ j in F, so by the first point σ -1 (k) ≥ σ -1 (j).

Moreover,i + 1 ≥ k + 1, so σ -1 (i) ≥ ζ(k + 1) as ζ is increasing on {k + 1, . . . , k + l}. Then:

σ -1 (i) ≥ ζ(k + 1) ≥ ζ(σ -1 (k)) = σ -1 (k) ≥ σ -1 (j).
Finally, for any non-empty ordered forests F and G of respective degrees k and l:

Θ(F տ G) = σ∈S F , τ ∈S G ζ∈Sh(k,l) ζ(k+1)≥ζ(σ -1 (k)) (σ ⊗ τ ) • ζ -1 = σ∈S F , τ ∈S G σ տ τ = Θ(F) տ Θ(G).
Let F ∈ F o (n). We proved in [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF] that there exists a bijection: Υ :

     S F × {1, . . . , n -1} -→ v||=V (F) S RoovF × S LeavF (σ, k) -→ σ (k) 1 , σ (k) 2 
, where the pair σ 

(

  123)(21) = (12354) + (12534) + (15234) + (51234) + (12543) +(15243) + (51243) + (15423) + (51423) + (54123).

  ), (123), (132), (213), (231), (312), (321), (112), (121), (211), (113), (131), (311), (122), (212), (221), (111). If σ = (a 1 , . . . , a k ) and τ = (b 1 , . . . , b l ), we define the parking function σ ⊗ τ by:

  ) = (12144) + (12414) + (14214) + (41214) + (12441) +(14241) + (41241) + (14421) + (41421) + (44121).

  [START_REF]Generalized bialgebras and triples of operads[END_REF] A duplicial algebra is a triple (A, ., տ), where A is a vector space and ., տ:A ⊗ A -→ A,with the following axioms: for all x, y, z ∈ A,    (xy)z = x(yz), (x տ y) տ z = x տ (y տ z), (xy) տ z = x(y տ z).
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 1345 )) = (1332) ⊗ (1) + (221) ⊗ (21) + (21) ⊗ (213), ∆ ≻ ((21332)) = (1) ⊗ (2133).Note that ∆≺ + ∆≻ = ∆op . Moreover, for any σ of degree n, we denote:( ∆ ⊗ Id) • ∆(σ) = (Id ⊗ ∆) • ∆(x) =1≤i<j≤n-Compatibilities with θ Proposition 26 The morphism Θ : H o -→ PQSym cop is a morphism of Dup-Dend bialgebras.Proof. Let F and G be two non-empty ordered forest, of respective degrees k and l. We first show:S FտG = σ∈S F , τ ∈S G ζ∈Sh(k,l) ζ(k+1)≥ζ(σ -1 (k)) {(σ ⊗ τ ) • ζ -1 }.

2

 2 belongs to the term of the union indexed by the unique admissible cut v such that the vertices of Roo v F are {σ(1), . . . , σ(k)}, and the vertices of Lea v F are {σ(k +

  An isomorphism from ordered forests to parking functions 4.1 Other structures on H D p If F, G are two non-empty planar forests, eventually decorated, we denote by F տ G the planar forest, eventually decorated, obtained by grafting G on the leaf of F that is at most on the right. This defines a product տ on (H D p ) + , the augmentation ideal of H D p .

  , one can prove similarly with proposition 20 that (H o ) + is a Dup-Dend bialgebra. Moreover, (H ho ) + is clearly a sub-Dup-Dend bialgebra of (H o ) + . Hence: Theorem 23 1. There exists a graded set D o , such that (H o ) + is isomorphic to (H Do p ) + as graded Dup-Dend bialgebras. 2. There exists a graded set D ho , such that (H ho ) + is isomorphic to (H D ho p ) + as graded Dup-Dend bialgebras.

where σ

is the unique term of ( ∆ ⊗ Id) • ∆(σ) with σ (i,j) 1 a parking function of degree i, σ (i,j) 2 a parking function of degree ji, and σ (i,j) 3 a parking function of degree nj. Then, we have the equalities:

So PQSym cop

+ is a dendriform coalgebra. Thinking of σ.τ as a sum of shufflings of two words, it is easy to see that PQSym cop + is a codendriform bialgebra.

Let σ, τ be two parking functions of respective degrees k and l. We put:

In other words, σ տ τ is the sum of the shufflings of the word σ and the shifted word τ shifted by k, such that the letters of τ are all after the greatest letter that is more on the right, of σ. In particular, if m σ = k, then σ տ τ = σ ⊗ τ . For example: 

So

The proof is similar to show that (Θ ⊗ Θ) • ∆≻ = ∆≻ • Θ.

2

Remark. We also obtain that the Dup-Dend bialgebras H ho and FQSym are isomorphic.