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ordered forests are isomorphic, using a rigidity theorem for a particular type of bialgebras.
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The Connes-Kreimer Hopf algebra of rooted trees is described in [f], in a context of Quantum
Fields Theory: it is used to treat the Renormalization procedure. This Hopf algebra is generated
by the set of rooted trees, and its coproduct is given by admissible cuts. Other Hopf algebras of
trees are obtained from this one by giving additional structures to the rooted trees. For example,
adding planar datas, one obtains the Hopf algebra of planar trees H, and its decorated versions
Hz? [, [[1]; adding a total order on the vertices, one obtains the Hopf algebra of ordered forests



H, and its Hopf subalgebra Hy,,, generated by heap-ordered forests (that is to say that the total
order of the vertices is compatible with the oriented graph structure of the forests). These two
Hopf algebras appeared in [[i] in a probabilistic context, in order to define rough paths. The
main point of the construction is a Hopf algebra morphism © from H, to the Hopf algebra of
free quasi-symmetric functions FQSym [E, @], also known as the Malvenuto-Reutenauer Hopf
algebra of permutations; the restriction of © to Hy,, is an isomorphism of Hopf algebras.

Our aim here is an algebraic study of H,. In particular, H, and the Hopf algebra of parking
functions PQSym [E, E] have the same Poincaré-Hilbert series: we prove here that they are
isomorphic. We also combinatorially define a symmetric Hopf pairing on H,, mimicking the
Hopf pairing on the non-commutative Connes-Kreimer Hopf algebras. It turns out that this
pairing is degenerate, and its kernel is the kernel of the Hopf algebra morphism ©. Moreover,
© induces an isometry from H,/Ker(0) or from Hy, to FQSym.

In order to prove the isomorphism of H, and PQSym, we introduce the notion of Px -Dend
bialgebra. A Px_ algebra is an algebra with two associative (non unitary) products m and X,
such that (zy) \ z = z(y \ z) for all z,y, z. A dendriform coalgebra, dual notion of dendriform
algebra [[13, [LJ] is a coassociative (non counitary) coalgebra C, such that the coproduct A can be
written A+ A, , such that (C, A, , AL) is a bicomodule over C. A Px -Dend bialgebra is both a
Px -algebra and a dendriform coalgebra, with compatibilities between the two products and the
two coproducts given by equations (f]) and (f]) of this text. We here prove that the augmentation
ideals of H,, PQSym and HZ,) are P~ -Dend bialgebras; moreover, the augmentation ideals of
Hjp, and FQSym are sub-Px -Dend bialgebras of respectively H, and PQSym, and © is a
morphism of Px -Dend bialgebras.

We then observe that Hz? is the free P~ -algebra generated by the set D. We finally prove
a rigidity theorem a la Loday, which says that any graded, connected Px -Dend bialgebra is a
free Px -algebra, so is is isomorphic to a HI? as a Hopf algebra. Manipulating formal series, we
deduce that H, and PQSym are isomorphic to the same HI?, so are isomorphic.

The text is organised as follows: the two first sections are dedicated to reminders on respec-
tively the Hopf algebras of trees and the Hopf algebras of permutations FQSym and parking
functions PQSym. The pairing on H, is introduced and studied in the third section and the
last part of the text deals with Px -Dend bialgebras, the rigidity theorem and the existence of
an isomorphism between H, and PQSym.

Notations.

1. The base field is denoted by K. Any vector space, algebra, coalgebra,. .. of this text will
be taken over K.

2. Let A= (A,m,A,1,¢,5) be a Hopf algebra. The augmentation ideal Ker(a)Nof A will be
denoted by A;. We give A} a coassociative, but not counitary, coproduct A defined by
Alz)=A(z)—z®1—-1®axforal z e A,.

1 Four Hopf algebras of forests

1.1 The Connes-Kreimer Hopf algebra of rooted trees

We briefly recall the construction of the Connes-Kreimer Hopf algebra of rooted trees [J]. A
rooted tree is a finite tree with a distinguished vertex called the root [[§]. A rooted forest is a
finite graph F such that any connected component of F is a rooted tree. The set of vertices of
the rooted forest F is denoted by V(F). The degree of a forest F is the number of its vertices.
The set of rooted forests of degree n will be denoted by F(n).
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Let F be a rooted forest. The edges of F are oriented downwards (from the leaves to the
roots). If v,w € V(FF), we shall denote v — w if there is an edge in F from v to w and v — w if
there is an oriented path from v to w in F. By convention, v — v for any v € V (F).

Let v be a subset of V(F). We shall say that v is an admissible cut of F, and we shall write
v = V(F), if v is totally disconnected, that is to say that v % w for any couple (v, w) of two
different elements of v. If v = V(F), we denote by Lea,F the rooted sub-forest of ' obtained
by keeping only the vertices above v, that is to say {w € V(F), v € v, w — v}. Note that
v C Lea,F. We denote by Roo,[F the rooted sub-forest obtained by keeping the other vertices.

In particular, if v = (), then Lea,F = 1 and Roo,F = F: this is the empty cut of F. If v
contains the root of F, then in contains only the roots of F, Lea,F = F and Roo,F = 1: this
is the total cut of F. We shall write v |= V(F) if v is an non-total, non-empty admissible cut of F.

Connes and Kreimer proved in that the vector space H generated by the set of rooted
forests is a Hopf algebra. Its product is given by the disjoint union of rooted forests, and the
coproduct is defined for any rooted forest F by:

A(F)= Y LeayF®@Roo,F =F©1+1®F+ Y  Lea,F® RooyF.
vEV(F) v|=V (F)

For example:
A(k/): Velrio V.o Vitor .ol oitt.0.

The following coeffcients will appear in corollary [[2:

Definition 1 [i, [}, [10, [[9]. LetF be a rooted forest. The coefficient F! is the integer defined

by:
Fl= )" KweV(F) | w-ov}
veV(F)
Examples.
el e e v v e v [ V) Y
Frljijtj2 12|36 1] 2] 3 |6]4]8]12]24

1.2 Hopf algebras of planar decorated trees
We now recall the construction of the non-commutative generalisation of the Connes-Kreimer

Hopf algebra [f, [LT].

A planar forest is a rooted forest F such that the set of the roots of F is totally ordered and,
for any vertex v € V(FF), the set {w € V(F) | w — v} is totally ordered. The set of planar



forests of degree n will be denoted by F,(n) for all n > 1.

Planar forests are represented such that the total orders on the set of roots and the sets
{w e V(F) | w— v} for any v € V(F) is given from left to right. For example:

p(O) = {1}7

fp(l) = {‘}7

Fp2) = {1}

Fp(3) = {... VAR S

F4) = {...,1..,.1.,..:,11,V.,f.,.V,.f,\V,K/,\},Y,i}.

If v = V(F), then Lea,F and Roo,F are naturally planar forests. It is proved in [H] that the
space H), generated by planar forests is a bialgebra. Its product is given by the concatenation
of planar forests and its coproduct is defined for any rooted forest F by:

A(F) = Z LeayF @ RoopyF =F®1+1@F+ Z LeayF @ Roo,F.
v=V(F) v|=V (F)

For example:

A(L/) - YVeitis k/.®\/+1®1+.®f+..®1+1.®.,

A(\)) _ VetrioV.eVitert.oli. ottt 0.

We shall need decorated versions of this Hopf algebra. If D is any non-empty set, a decorated
planar forest is a couple (F,d), where F is a planar forest and d : V(F) — D is any map. The
algebra of decorated planar forest HE is also a Hopf algebra. Moreover, if D is a graded set, that

is to say D is decomposed as D = |_| D(n), HZ,) is naturally graded, the degree of a decorated

neN
planar forest D being the sum of the degrees of the decorations of the vertices of F. Moreover, if

Dy = 0, the graded Hopf algebra Hz? is connected, and, if we define the Poincaré-Hilbert formal

series: .
= Z |D(n)|x™, fHD Z dim (H
n=1
then: fa (@) - 1
_1— 1—4fp(x) o) — HD\T) —
fup (@) = 2fp(z)  fole) = fap(x)?

Let us consider the graded dual of H,. The dual basis of the basis of forests is denoted
by (Zr)rer,. The product of two elements Zg and Zg is the sum of elements Zp, where H is
obtained by grafting F on G. For example:

Z,ZI :Z.I —|—Zv —|—Z{—{—Z\/ +ZI.‘

This product can be split into two non-associative products < and >, such that, for all x,y,z €
(H;)+:

(x<y) <z = z=<(y2),
(x»y)<z = = (y < 2),
(xy) =2z = x> (y > 2).



In other words, (H), is a dendriform algebra [[3, [[3]. It is proved in [}] that (HJ}), is freely
generated by Z,, as a dendriform algebra. For example:

Z-_<ZI:ZI.7 Z°>ZI:Z.I+ZV+ZI+ZV'

More generally, the graded dual (HE): is the free dendriform algebra generated by the ele-
ments Z,,, d € D.

Remark. The dual coproducts of < and > on (HY?)Jr are not the coproducts A and A,
introduced in sectionf.1] of this text.

1.3 Hopf algebra of ordered trees

Definition 2 An ordered (rooted) forest is a rooted forest with a total order on the set of
its vertices. The set of ordered forests will be denoted by F,; for all n > 0, the set of ordered
forests with n vertices will be denoted by F,(n). The K-vector space generated by F, is denoted
by H,. It is a graded subspace, the homogeneous component of degree n being Vect(F,(n)) for
all n € N.

Examples.

Fo(0) = {1},
Fo(l) = {a}
.7:0(2) == {.1.2,1%,1%},
3 2 3 1 2 1
Fo@) = {eremen et 13 Hen a1, 1he V0V N0 B R BB BB T

Remarks.

1. Note that an ordered forest is also planar, by restriction of the total order to the subsets
of vertices formed by the roots or {w € V(F) | w — v}.

2. We shall often identify the set V(F) of an ordered forest F of degree n with the set
{1,...,n}, using the unique increasing bijection from V(F) to {1,...,n}.

If F and G are two ordered forests, then the rooted forest FG is also an ordered forest with,
for all v € V(F), w € V(G), v < w. This defines a non-commutative product on the set of
ordered forests. For example, the product of ., and 17 gives ., 13, whereas the product of 13
and ., gives 17.3 = .31%. This product is linearly extended to H,, which in this way becomes
a graded algebra.

If F is an ordered forest, then any subforest of [ is also ordered. So we can define a coproduct
A:H, — H, ® H, on H, in the following way: for all F € F,,

A(F) = Z Lea,F @ Roo,F.
vV (F)

For example:
1 1 1 1
A(“K/;”) =4k/23 ®1+1®4K/23 TV A IR PR - SRS & BN - BUS T ™ S

Remark. This is the coopposite of the coproduct defined in [[]. This will make the redac-
tion of section 4 easier. Note that H, is isomorphic to Hg’, via the reversing of the orders on
the vertices of each ordered forest; moreover, H, is isomorphic to Hg"“”? via the antipode; so

H, is isomorphic to H5”.

The number of ordered forests of degree n is (n+1)""1, see sequence A000272 of [[7]. Hence:



o
Proposition 3 The Poincaré-Hilbert formal series of H, is fu, (z) = Z(n + 1)1,
n=0

1.4 Hopf algebra of heap-ordered trees

Definition 4 [§/ An ordered forest is heap-ordered if for alli,j € V(F), (i — j) = (i > j).
The set of heap-ordered forests will be denoted by Fpo; for all n > 0, the set of heap-ordered
forests with n vertices will be denoted by Fpo(n).

For example:

Fro(0) = {1},
Fro(1) = {1},
fh0(2) - {.1.2,1%},
3
fh0(3) - {.1.2.37.1I%’.21%7.31%’3\/12’I%}.

If F and G are two heap-ordered forests, then FG is also heap-ordered. If F is a heap-ordered
forest, then any subforest of F is heap-ordered. So the subspace Hp, of H, generated by the
heap-ordered forests is a graded Hopf subalgebra of H,.

Note that Hy,, is neither commutative nor cocommutative. Indeed, .;.1? =.,13 and 17..; =
12.5. Moreover:

ACV )=V @141V’ +213 @0+ @ lz
So neither Hp, nor its graded dual Hj ), is isomorphic to the Hopf algebra of heap-ordered trees

of [§, fl], which is cocommutative.

It is well-known that the number of heap-ordered forests of degree n is n!, so:

[e.e]
Proposition 5 The Poincaré-Hilbert formal series of Hy, is fu,, (z) = Z nlz”.
n=0

2 Permutations and parking functions

2.1 FQSym and PQSym

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric
functions, also called the Malvenuto-Reutenauer Hopf algebra , @] As a vector space, a
basis of FQSym is given by the disjoint union of the symmetric groups &, for all n > 0. We
represent a permutation o € &,, by the word (o(1)...0(n)). By convention, the unique element
of &g is denoted by 1. The product of FQSym is given, for o € &, 7 € &;, by:

oT = Z (O’®’7’)O<71,

CeSh(k,l)

where Sh(k,l) is the set of (k,[)-shuffles. In other words, the product of ¢ and 7 is given by
shifting the letters of the word representing 7 by &, and then summing all the possible shufflings
of this word and of the word representing o. For example:

(123)(21) = (12354) + (12534) + (15234) + (51234) + (12543)
+(15243) + (51243) 4 (15423) + (51423) + (54123).



Let 0 € &,,. For all 0 < k < n, there exists a unique triple <01 ,02 ,Ck) € 6 x G, X
Sh(k,l) such that o = (; o ( *®) & O'(k)>. The coproduct of FQSym is then defined by:

o) = Z ng) ® O’ék).
k=0

Note that UYC) and O'gk) are obtained by cutting the word representing o between the k-th and
the (k + 1)-th letter, and then standardizing the two obtained word, that is to say applying to
their letters the unique increasing bijection to {1,...,k} or {1,...,n — k}. For example:

A((41325)) = 1® (41325) + Std(4) @ Std(1325) + Std(41) ® Std(325)
+Std(413) ® Std(25) + Std(4132) @ Std(5) + (41325) ® 1
= 1®(41325) + (1) ® (1324) + (21) ® (213)
+(312) ® (12) + (4132) ® (1) + (41325) @ (1).

Then FQSym is a Hopf algebra. It is graded, with FQSym(n) = vect(&,,) for all n > 0. The
formal series of FQSym is:

frQsym(x Z nlz" = fg,(z).

Moreover, FQSym has a non-degenerate Hopf pairing, homogeneous of degree 0, defined by:
<O-’ 7'>FQSym = 60*177,
where o and 7 are two permutations.

This construction is generalised to parking functions in [[5, [[f]. A parking function of degree

n is a word (ai,...,a,), of n letters in N*, such that in the reordered word (aj,...,a}) satisfies

a; < i for all i. For example, permutations are parking functions. Here are the parking functions
of degree < 3:

123), (132), (213), (231), (312), (321),
112), (121), (211), (113), (131), (311), (122), (212), (221), (111).

If o = (a1,...,ax) and 7 = (by,...,b;), we define the parking function o ® 7 by:
ocRT=(a1,...,ak,b1 +k,....by + k).

Considering parking functions as maps from {1,...,n} to N*, we define a product on the space
PQSym generated by parking functions by:

0T = Z (c®@7)olt,
cESh(k,)
where ¢ and 7 are parking functions of respective degrees k and [. For example:

(121)(11) = (12144) + (12414) + (14214) + (41214) + (12441)
+(14241) 4 (41241) + (14421) + (41421) + (44121).

The standardization is extended to parking functions and PQSym inherits a coproduct similar
to the coproduct of FQSym. Moreover, FQSym is a Hopf subalgebra of PQSym.



2.2 From ordered forests to permutations

We recall the following result of [ff:

Proposition 6 Letn > 0. For allF € F,(n), let Sp be the set of permutations o € &,, such
that for all 1 <i,j <n, (i - j) = (07 (i) > 071(j)). Let us define:

H, — FQSym
©:{ FeF, — ZO’.

€Sy

Then © : Hy”Y — FQSym is a Hopf algebra morphism, homogeneous of degree 0.

For example, if {a,b,c} = {1,2,3}:

©(1) = (1),
O(1.2) = (12) +(21),
o(17) = (12),
O(13) = (21),
O(eaerec) = (abe) + (acdb) + (bac) 4 (bea) + (cab) + (cba),
O(..15) = (abc)+ (bac) + (bea),
@(CV{ ) = (abc) + (acb),
@({Z ) = (abe).

Remark. Note that © can also be seen as a Hopf algebra morphism from H, to FQSym*®°?.

The morphism © is not injective, for example (13 + 13 — .,.,) = 0. From []:

cop

Proposition 7 The restriction of © to H; = is an isomorphism of graded Hopf algebras.

Can we extend this construction from ordered forests to parking functions, in order to obtain
a Hopf algebra isomorphism from Hg” to PQSym? The answer is given by the following result:

Proposition 8 Let ©' : Hy”Y — PQSym be a Hopf algebra morphism, homogeneous of
degree 0. We assume that for all F € F,, there exists a set Sg of parking functions such that

O'(F Z o. Then © is not an isomorphism.
oES]

Proof. As ©' is homogencous of degree 0, if F € F,(n), then S C PQSym(n), so is a set
of parking functions of size n. So S, = {(1)}. Then:

O (12) = 010 (+1) = (1)(1) = (12) + (21),
so 57 ., ={(12),(21)}. Moreover:
AP(13) =11 @1+1017 +.1 @, AP0 =0UR14+1®1} +.. Q...
So Stz and S13 are equal to {(12)}, {(21)} or {(11)}. If they are equal, then ©’ is not

injective. Let us assume that they are different. If both are equal to {(12)} or {(21)}, then
O'(17 +13)=(12) + (21) = ©'(.1.2), so O is not injective. It remains four cases:



e St2 ={(12)} and Sty = {(11)}. Then:
Ace'(i)= (@ @) oA”(i) = (12)® (1) + (1) @ (11),

so the only possibility is Si L= {(122)}. Similarly:
2

Aco'(t) = (@ 000 A} ) = 12) @ (1) + (1) @ (11),

so the only possibility is Sig = {(122)}. Hence, ©’ is not injective.
1

2 3
e Stz ={(11)} and Sy = {(12)}. Similarly, considering f1 and I3 , we conclude that ©' is
not injective.

e Si2 = {(21)} and St; = {(11)}. Then:
Ace'diy=A7roe/(l) = (1) ® (1) + (1) @ (21).

So Sii) = Sif = {(221)}: ©’ is not injective.
2 3
2 1
e St2 = {(11)} and Sty = {(21)}. Similarly, considering 13 and I3 , we conclude that ©' is
not injective.

So ©' is never injective. O

Remark. It is possible to prove a similar result for Hopf algebra morphisms from H, to

PQSym.

3 Pairing on H,

3.1 Definition
Theorem 9 For all F,G € F,, we put:

S(F,G) = {f VE) s V(G), bijective | 1Y EVEL @2y = (@)= f>(y))} |

Va,y € V(F), (f(z) » fy) = (z = y)

We define a pairing on Ho" by (F,G) = |S(F,G)|. This pairing is Hopf, symmetric, and
homogeneous of degree 0.

Proof. If F and G do not have the same number of vertices, then S(F,G) = 0, so (F,G) = 0:
the pairing is homogeneous. Moreover, the map f — f~! is a bijection from S(F,G) to S(G,F)
for any F,G € F,, so the pairing is symmetric.

Let F1,Fo,G € F,. Let us prove that (F1F9, G) = (F; ® Fo, A?(G)). Let f € S(F1F2,G).
Let 2’ € f(V(Fq)) and 3 € V(G), such that y' — 2. As f is bijective, there exists x € V(Fa),
y € V(F), such that f(z) = 2/ and f(y) = y. As f € S(F,G), z > yin F. Asy € V(Fy),
x € V(Fq), so x € f(V(F2)). So there exists a unique admissible cut v; = V(G), such that
Leay,(G) = f(V(F2)) and Rooy,(G) = f(V(F1)). Moreover, fjyw,) € S(F1,Rooy,(G)) and
five,) € S(Fa, Leay(G)). Hence, this defines a map:

vE=V(G)

{S(IFJFQ,G) — || S(F1,Ro0,(G)) x S(F2, Leay(G))
v
[ — (fiveys fives))-

9



It is clearly injective. Let us show that it is surjective. Let v |= V(G), (f1, f2) € S(F1, Roo,(G))x
S(F2, Leay (G)). Let f: V(F1F2) — V(G) be the unique bijection such that fiyr,) = fi for
i =1,2. Let us show that f € S(F1Fq,G).

If x - y in F1F9, then x — y in Fy, for i =1 or 2. So f;(x) > fi(y) and f(z) > f(y).

Let us assume that f(z) - f(y) in G. Three cases are possible:

e f(x) » f(y) in Rooy(G): then f(z) = fi(x), f(y) = fi(y). Sox >y in Fy, so z > y in
F,Fs.

o f(x) — f(y) in Lea,(G): similar proof.
o f(z) € Leay(G) and f(y) € Rooy(G): soy € V(F;) and x € V(F2), so x > y in F1Fs.
As a conclusion, v is a bijection. So:

’S(FJFQ’G)‘ - Z ’S(FhROOU(G))HS(F27Lea'v(G))’v
vEV(G)
<F1F2, G> = <F1 & F27 AOP(G».

As it is symmetric, the pairing is a Hopf pairing.

Here are the matrices of the pairing in degree 1 and 2:

-
N
—s
=
—e
o=

| .1 1oz 11
a1 B[ 1]1]o0
1ol

This pairing is degenerate. For example, 17 + 13 — .., is in the kernel of the pairing.

3.2 Kernel of the pairing

Lemma 10 Let F,G € F,(n). The elements of Sg, Sg and S(F,G) can all be seen as
elements of &y, identifying V(F) and V(G) with {1,...,n} by the help of the unique increasing
bijections from V(F) or V(G) to {1,...,n}. Then S(F,G) = Sz' N Sg.

Proof. Let f € S(F,G). If z — y in F, then f(z) > f(y) in G, so f(z) > f(y) in {1,...,n},
so f(x) > f(y)inF. So f~' € Spand f € Sg*. If 2/ — ¢/ in G, then f~(z) > f~!® in F, so
in {1,...,n}, soin G. Hence, f € Sg.

Let f € SIEIOSG. Ifx —»yinF,as f~1 € Sg, f(x) > f(y)inF,soin {1,...,n}, soin G. If
f(z) = f(y) in G, then as f € Sg, z > y in G, so in {1,...,n}, so in F. Hence, f € S(F,G). O

Proposition 11 For any z,y € H,, (z,y) = (0(x), O(y))rQSym -

Proof. It is enough to take z = F, y = G in F,. Then:

(OF),0(G)rasym= Y (o)=Y b51,.=ISz' NSe| =|S(F,G) = (F,G).

oESE, TESG oE€SE, TES

So © respects the pairings. O

Corollary 12 The kernel of the pairing on H, is Ker(©). Moreover, the restriction of the
pairing to Hy, is non-degenerate.

10



Proof. Oy, is an isometry from Hj, to FQSym. As the pairing of FQSym is non-
degenerate, the same holds for the pairing of Hy,. Moreover, for any x € H,, as © is surjective:

reHY «— VyeH, (,y) =0

< Vy € H,, (6(z),0(y))resym =0
< Vy € FQSym, (6(z),y') =0
<~ O(x) € FQSym™
< O(z)=0.
So H = Ker(0). -

Here is an application of the pairing:

F|!
Proposition 13 For alln >0, for all F € F,(n), |Sr| = % =(1...0n,F).

Proof. Let us fix n > 0. The symmetric group &,, naturally acts on F,(n) by permutation
of the orders of the vertices of the ordered forests. For example, if 0 € ©3:

3 o (3)
o\ = 0(2)'\/0((1(;3,) U.I? = IZE?} )
Let F € F,(n), 0 € &,. For any bijection f: V(F) — {1,...,n}:

fESr = Vi,jeV(F), (i »jinoF) < (f1() > ()
— Vi,j € V(F), (6(i) » o(j) in o.F) <= (f'o
— Vi,jeV(F), (i—»jinF)= (floo@)>f o))
— o lofe S

So S, r = 0 0 Sp. As a consequence, |Sg| does not depend of the order of the vertices of F, but
only of the subjacent rooted forest.

It is clear that S., . = &,,50 S(.1....n,F) =&, NS = Sp. Hence, (v .....,F) = |Sp|.

Let us now prove that (.1 ....,,F) = % = by induction on the degree n of F. If n = 0, this
is obvious. Let us assume the result for any forest of degree < n. Two cases can occur.

e [ is not connected. As (.1 ....n,F) = |Sr| does not depend of the order of the vertices of
F, we can assume that F = F1Fy, with deg(F1) = n1, deg(Fe) = na, n1,ny < n. Then:

(reiemE) = (AP0, .....),F @ F,)

n!
= Z il—ﬂ(.l....i®.1....j,F1®F2>
i+j=n
n!
= 0 ' |<.1....n1®.1....n2,F1®F2>
nino:
n!  ni!no!

7”L1'TL2' Fll ]FQ'
n!

FqlF,!

n!

ﬁ.
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e M is connected. There is only one admissible cut v = V(IF), such that Roo,F is of degree

1: v={w e V(F) | w— r}, where r is the root of F. Then F! = nLea,F!. Then:

(ci i, F) = (1 ®u1oiien_ 1, A%P(F))
= (e1,01)(e1 . v en—1,Lea,F) +0
B 1(n—1)!
Leay,F!
n!
= &

4 An isomorphism from ordered forests to parking functions

4.1 Other structures on HI?

This defines a product \_on (HE)JF, the augmentation ideal of HI?.

Examples. In the non-decorated case:

If F, G are two non-empty planar forests, eventually decorated, we denote by F N G the planar
forest, eventually decorated, obtained by grafting GG on the leaf of F' that is at most on the right.

o1 o= o= _ ¥ K wer = .V ..
.:f\r:.fx\.::Y..\.::.\}.:
:\1::11\::%..\1:&/:
V\I:\JI\V:Y Vo= .YV
b o et bl 24 ]

S0

The following properties are easily verified for x,y, z non-empty forests:

Lemma 14 For all z,y,z € (HY),.:

This suggests the following definition:

Definition 15 A Px -algebra is a triple (A,.,\), where A is a vector space and .,"\: A ®

A — A, with the following axioms: for all x,y,z € A,

(zy)z = z(y2),
ENy)yNz = 2N (¥N\ 2),
(zy) Nz = z(y\ 2).

(1)

Remark. If (4,m,\) is a P~ -algebra, then A = (A, m,\ ) is a P »-algebra, as defined

12

in [{]. In particular, for A = H,, the P -algebra H}" is isomorphic to (H,,m, /), where F G
is defined in [f] by grafting F on the leaf at most on the left of G. An explicit isomorphism is
given by sending a planar forets F to its image by a vertical symmetry.



Proposition 16 For all set D, (H’IZ?))J’_ is the free Px_-algebra generated by the elements .4 s,
deD.

Proof. In order to simplify the proof, we only treat here the case where D is reduced to a
single element, that is to say we work with non-decorated planar forests. The general proof is
very similar. Let A be a Px -algebra and let a € A. Let us prove there exists a unique morphism
of P~ -algebras ¢ : (Hp); — A, such that ¢(.) = a. We define ¢(IF) for any non-empty planar
forest F inductively on the degree of F by:

o(.) = a
pty...ty) = ot1)...o(ty) if k> 2,
¢(BT(F)) = a\ o(F).

As the product of A is associative, this is perfectly defined. This map is linearly extended into
amap ¢ : (Hp)y — A. Let us show it is a morphism of Px -algebras. By the second point,
d(zy) = ¢(x)@(y) for any forests z,y € (H,)4. Let x,y be two non-empty forests. Let us prove
that ¢(z "\ y) = ¢(z) N\ ¢(y) by induction on n = deg(x). If n =1, then = = ., so:

Pz y) = (BT (y) =a’\ o(y) = ¢(z) \ o).

Let us assume the result for any forest of weight < n. We put @ = t;...tg, ty, = BT(F). Then,
using the induction hypothesis on F":

Pz Ny) = o(t1...t)1BT(F\y))
= ¢(t1) ... o(tr—1) (@ o((F N\ v)))
= o(t1)... d(t—1)(a ™\ (¢(F) N ¢(y)))
= ¢(t1) ... o(tr—1)((a N &(F)) \ &(y))
= o(t1) ... o(tr—1)(o(tr) L &(v))
= (o(t1) ... d(tk—1)0(tr)) "\ 6(y))
= ¢(z) \ 6(y).

We use the convention 1N y =y, if tx = .. So ¢ is a morphism of Px_-algebras.

Let ¢' : (Hy)y — A be another morphism of Px -algebras such that ¢/(.) = a. Then for
any planar trees ty,...,tk, &' (t1...tx) = ¢'(t1) ... ¢ (tx). For any planar forest F, ¢/(BT(F)) =
PNF)=a\¢'(F). Sop=4¢. O

Definition 17 For any non-empty planar forest F, let rg be the leaf of F that is at most on
the right. We put:

A (F)= Y  LeayF®Rooy,F, A, (F)= >  LeayF® Roo,F.
v|=V(F) vl=V (F)

rr€LeayF rr€ R0, F

Note that A + A, = A.

Lemma 18 For any z € (HY)
(Ac@Id)oAs(z) = (Id®A)oA (),
(A, © ) oA(r) = (doA)od, (x) &)
(A®Id)oAy(x) = (Id®As)o A (

3]

In other words, (Hz?)+ is a dendriform coalgebra.
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Proof. It is enough to prove it if x is a non-empty forest. We put, as A is coassociative:
(A®Id)oA()=(Id®A)oA) = sV @s® g2,

where the (), 23| 23 are subforests of 2. Then:

A_.@Id)oAL(x) = Id® Ao A_(x = M @ 2@ ®x(3)
(A )o A <
rxel'(l)
AL @Id)oAL(z) = (Id®AZ)oA. (z) = M @23 @ 2B
(A ) < < -
re€x(2)
(AgId)oA, (z) = (IdoA)oA (x) = Y 2Wes®e®.
rxéx(?’)
So (HD)4 is a dendriform coalgebra. O
Notations.

1. If (A,AZ,A,) is a dendriform coalgebra, we denote Prim,(A) = Ker(AZ) N Ker(Ay).

2. Let (A, AL, A>.) be a dendriform coalgebra. We shall use the following sweedler notations:
for any a € A, Ala) = a' ® a”, AL(a) = a’, @ d”, and A, (a) = a_ @ a’’.

Proposition 19 The dendriform coalgebra (Hz?)+ 1s freely cogenerated by the elements .4 ’s,
d € D. As a consequence, Primyy (HY)4) = Vect(.a, d € D).

Proof. It is equivalent to prove that the graded dual (HZ,))*Jr is the free dendriform algebra
generated by the elements Z,,’s, d € D. In order to simplify the proof, we only treat here
the case where D is reduced to a single element, that is to say we work with non-decorated
planar forests. Comparing the Poincaré-Hilbert formal series, it is enough to prove that (Hp)%

is generated by Z,. For any forests F,G, we have:

Zp < Za = E Zi, Zp = Za= E 2.
H grafting of F on G H grafting of F on G
TH=TF rTH=TG

In particular, Zp >~ Z, = Zp,.

Let A be the (associative) subalgebra of (H,)% generated by the elements Zp,, F' planar
forest. Let us prove that Zg € A for any non-empty planar forest G by induction on n = deg(G).
Ifn=1,7Zs =27, € A. Let us assume that any Zpy € A, if deg(H) < n. If deg(G) = n, we put
G =1ty...t,_1B1Y(H). We proceed by induction on deg(H) = 1. If | =0, then G =t;...t;_1.,
so Zg € A. If l > 1, then:

ZaZsy. 4y = Za + R,

where R is a sum of Zps, with F’ of weight n, of the form F' =, ...t BT(H"), deg(H') < I.
By the induction hypothesis on I, R € A. By the induction hypothesis on n, Zg € A; moreover,
Zty .t ,. €A So Zg € A.

Let B the dendriform subalgebra of (Hy)% generated by Z,. Let us prove that B = (H))%.
By the first point, it is enough to prove that for any planar forests F,...,Fy, x = Zp,, ... Zp,. €
B. We proceed by induction on deg(x) = deg(Fy)+...+deg(Fi)+k. If n =1, thenx = Z, € B.
If n > 2, then the induction hypothesis gives Zr,,...,ZF, € B. Then:

r=(Zp - Z2.)...(Zp, > Z.) € B.

So (H,)% is generated by Z, . O

14



Proposition 20 1. Let z,y € (HD),. Then:

i

Al(zy) = y@o+ay@a’+ay @yl +yl @yl +a'yl @y,
{ Ar(zy) = zoyt+a’ @y +ayl @yl +yl @ayl +alyl @a"yl.
In other words, (HY), is a codendriform bialgebra.
2. Let x,y € (HY)4. Then:
AlzNy) = y@r+yi@a\yl+a Nyl
+aly @l + 2y, @zl N 2, (4)
ArxNy) = ghoa Nyl +al @al Ny+alyl @l gl

Proof. It is enough prove these formulas if x = F, y = G are non-empty planar forests. Let

us first compute AL (FG). For any admissible cut v |= V(FG), let v’ be the restriction of v to
F and v” the restriction of v to G. Then v’ | V(F) and v” = V(G). Moreover, v’ and v” are

not simultaneously total, and not simultaneously empty.

Let us first compute A (FG). Let v |= V(FG), such that rpg = rg belongs to Lea,FG. So

rg € LeayG, so v” is not empty. There are five possibilities for v:

e v is empty and v” is total: this gives the term G ® F.

e v is not empty and v” is total: then v’ |= V(F), and this gives the term F'G @ F”.

v’ is empty and v” is not total: as rg € Lea,»G, this gives the term G, ® FG”,.

v’ is total and v” is not total: as rg € Lea,G, this gives the term FG', ® G”,.
e v/ |=V(F) and v” is not total: as rg € Lea,G, this gives the term F'G’, @ F'G”..

We now compute A, (FG). Let v |&= V(FG), such that rpg = r¢ belongs to Roo,FG. So

rg € Roo, G, so v” is not total. There are five possibilities for v:

e v is total and v” is empty: this gives the term F ® G.

e v is not total and v” is empty: then v’ |= V(F), and this gives the term F’ @ F"G.
e v’ is total and v” is not empty: as rg € Roo,~G, this gives the term FG{ @ GL.

e v’ is empty and v” is not total: as rg € Roo,G, this gives the term G{ @ FG{.

e v/ |=V(F) and v” is not total: as rg € Roo,G, this gives the term F'G{ ® F'G!.

For any admissible cut v [ V(F N G), let v’ be the restriction of v to F and let v” be

the unique admissible cut of G such that Lea,~G is the subforest of Lea,F N\ G formed by the
vertices that belong to V(G). Moreover, if v’ is not empty, as v is admissible, rp € Lea,,F, if,
and only if v” is total. Consequently, as v is not total, v’ is not total.

We compute AL (F X G). Let v |= V(F X_G), such that rp< G = 7'¢ belongs to Lea,F '\ G.

As rg € Lea, G, v” is not empty. There are five possibilities for v:

e v is empty and v” is total: this gives the term G ® F.

e v is empty and v” is not total: then v” | V(G) and rg € Lea,G, so this gives the term
G, 9F~ G".

e v’ is not empty and v” is total: we obtain two subcases:

15



— LeawF contains rp: this gives the term F, \ G ® F”,.

— Roo,/F contains rp: this gives the term F{ G ® F{.

e v’ is not empty and v” is not total: then ry does not belong to Lea,F, rg belongs to
Lea,»G, and this gives the term F_G’, @ F{ N\ G”.

Finally, we compute A, (F X G). Let v |= V(F X\ G), such that rer.Gc = TG belongs to
Roo,F N\ G. As rg € Roo,G, v" is not total. So v’ does not contain rg. There are three
possibilities for wv:

e v is empty: then v” |= V(G) and Roo,»G contains rg, and this gives the term G @ F '\
GL.
e v’ is not empty and v” is empty: then rp € Roo,F and we obtain the term F{ @ F! N G.

e v is not empty and v” is not empty: then rp € Roo,/F, rg € Roou,G and we obtain the
term FL. GL @ F/ N\ GL.

This suggests:

Definition 21 A Px -Dend bialgebra is a family (A,.,’\,A<,A>), where A is a vector
space, ,N:ARA — A and AL, A, : A — AR A, with the following properties:

1. (A, ,N) is a Px_-algebra (azioms[1).
2. (A, AL, A,) is a dendriform coalgebra (azioms[3).

3. The compatibilities of proposition [20 are satisfied (azioms [ and [}).

4.2 A rigidity theorem

Theorem 22 Let A be a Px_-Dend bialgebra. We assume that A is graded and connected,
that is to say Ag = (0). Let (pp)aep be a basis of Primyy(A) formed by homogeneous elements,
indezed by a graded set D. There exists a unique isomorphism of graded P~ _-Dend bialgebras:

¢. (Hz?)+ — A
’ 'd;deD — pd

Proof. The graded dual A* of A is a graded dendriform algebra, so is the quotient of a free
dendriform algebra. By proposition [IJ, there exists a graded set D’, such that there exists a,
epimorphism of dendriform algebras = : (H?)i — A*. Dually, we obtain a monomorphism of

dendriform coalgebras v/ : A — (HEI)JF. For all d € D, i/ (pq) € Primo((HY

span of .o, d € D'. Up to an automorphism of (Hz?l)+’ we can assume that D C D’ and that

")4), so is a linear

! (pg) = «a for all d € D. Composing ¢/ with the canonical epimorphism from (HE/)Jr to (HD)
obtained by deleting the forests with vertices with decorations which are not in D, we obtain
a morphism of dendriform coalgebras ¢ : A — (HP),., sendind ¢(pq) to .4 for all d € D. If .
is not injective, let us consider x € Ker(/), non-zero, of minimal degree. As ¢ is a morphism
of dendriform coalgebras, x € Prim,(A): absurd, ¢ is clearly injective on Prim,(A). So ¢ is
injective.

Let z € A. We denote by IC), the set of n-iterated coproducts of A:

ICy, = {Id}’

c. - Id® @ AL @ Id®— =D 6 @, Id®" ' @ Ay @ Id®(") 0@ |
"o ©clC,1,1<i<n ’
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The elements of IC,, are homogeneous map from A to A2+ As a consequence, if z € A,

then if k > n, O(x) € (A®¥),, = (0). So for any = € A, there exists a greater integer k such that
there exists 2 € ICy, Q(x) # 0. This k will be denoted by deg,(z).

Let us prove that A is generated by Primg.(A). Let B be the Px -subalgebra of A generated
by Primu.(A). Let x € A, we prove that x € B by induction on degy(z). If deg,(z) < 1, then
x € primg,(A) and the result is obvious. Let us assume that any y € A, such that deg,(y) < k, is
in B, and let us take x € A, such that deg,(z) = k. Then (z) is an element of (HY),, so can be
written as an expression in . 4, using the products . and ~ of (HY),: we put «(z) = P(.4,d € D).
Let us consider y = P(pg, d € D). As deg,(z) = k, for any Q € ICy_1, Q(z) € Primyy(A)®F,
as it is cancelled by Id® @ A_ ® I[d®* =1 and Id® @ A, @ Id®* =1 for any i. We put:

Qx) = Z ady,....dpPdy @ - -+ @ Py, -
dl,...,de'D

As ¢ is a morphism of coalgebras:

Qua) =0 Q@)= Y agqea®. . ®
di,...,dy€D

As the compatibilities between the products and the coproducts are the same in A and (H’IZ?))J’_’

we deduce that:

FFoQy) =) = D ddera® - @ ea= Q).
dl,---,dkED

The injectivity of ¢ that Q(x — y) = 0. So the induction hypothesis can be applied on = — ¥,
which belongs to B. By definition, y € B, so x € B.

As a consequence, the unique morphism of Px -algebras ¢ : (HZ,))Jr — A, sending .4 to
pq for all d € D, is surjective. Moreover, it is homogeneous of degree 0, as .4 and pg are
homogeneous of the same degree for all d € D. As it sends .4 to an element of Primy,(A) for
all d, ¢ is a morphism of Px -Dend bialgebras. If ¢ is not injective, let us take x € Ker(¢), non-
zero, of minimal degree. As ¢ is a morphism of dendriform coalgebras, x € Primtot((HI?)+) =
Vect(.q, d € D): absurd, by definition the restriction of ¢ on Vect(.q, d € D) is injective. So ¢
is an isomorphism. O

4.3 Application to ordered forests

We define the following product ~ on (H,)4 for two non-empty ordered forests F and G in the
following way: F \_G is the ordered forests obtained by grafting G on the greatest vertex of IF,
the vertices of F being smaller than the vertices of G in the grafting. For example:

3¢ g4 3
I% \.1.2 == Y? 5 I% ’\.1.2 :2\1/14.

Let F, G, H be three non-empty ordered forests. As the greatest vertex of FG is the greatest
vertex of G, (FG) N\ H = F(G \_H). As the greatest vertex of F \_ G is the greatest vertex of

G, FNG)NH=FXN (GN\ H). So (Ho)4,.,\) is a Px_-algebra.

For any ordered forest IF, we denote by gr the greatest vertex of F. We then put:

ALF)= Y Lea,F®Roo,F, A .(F)= Y  Lea,F® Roo,F.
v|EV(F) v|EV (F)
gr€V (LeayF) gr€V (RooyF)
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For example:
1 1 1
A <4K/23> SRR 4. ®a, A <4K/23> —aoll L0V e,

Then ((HE)JF, AL, A, ) is a dendriform coalgebra: indeed, if F is a non-empty ordered forest,
we put:

(A@Id)oA(F) = (Id®A)o A(F) =) F @ F® g F®),

where the F(), F?) and F®) are subforests of F. Then:

((Ai@Id)oAL(F) = ([Id®A)oAF) = > FHF?gF®),
gr€FM)

A-®Id)oAL(F) = (Id®AL) oA (F) = > FUFDF®,
grEF®)

(A@Id)oA (F) = (Id®A,)oA (F) = > FYUeF?gF®.
gr€F®)

Moreover, one can prove similarly with proposition P( that (H,) is a Px -Dend bialgebra.
Moreover, (Hp,)4 is clearly a sub-Px -Dend bialgebra of (H,). Hence:

Theorem 23 1. There exists a graded set D,, such that (H,)y is isomorphic to (H}?")Jr
as graded Px_-Dend bialgebras.

2. There exists a graded set Do, such that (Hy,)4 is isomorphic to (HD") | as graded Px_ -
Dend bialgebras.

The formal series of D, and Dy, are given by:

_ () -1 _ fm, (@) —1
ey e

This gives:
k 112131 4] 5 6 7 8

D,(k)| | 1] 1[7]66] 786 11278 | 189391 | 3648 711
Dho(R)[ | T[0[1] 6 | 39 | 284 | 2305 | 20682

These are sequences A122705 and A122827 of [[L7].

Remark. As a consequence, H, and Hj,, are free and cofree. It is not difficult to show
that H, is freely generated by indecomposable ordered forests, that is to say ordered forests
F that cannot be written as F = GH, with G,H # 1. Similarly, Hy, is freely generated by
indecomposable heap-ordered forests.

4.4 Application to parking functions

Let o be a parking function. We denote by m, the maximal index ¢ such that o (i) is maximal.
In particular, if ¢ € &,,, my = 0~ (n). For any parking function ¢ of degree n > 1, we put:

me—1 n—1
AL(o) = Z Uék) ® UYC), A, (o) = Z Jék) ® O'gk).
k=1 k=ms

For example:

AZ((21332)) = (1332) @ (1) + (221) @ (21) + (21) ® (213), A, ((21332)) = (1) ® (2133)
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Note that A~ + A, = A°?. Moreover, for any o of degree n, we denote:

AeIdolA)=(IdeA)oA@) = Y o el el

1<i<j<n—1

where O'Y’j) ® O'éi7j) ® U§i7j) is the unique term of (A ® Id) o A(o) with O'Y’j) a parking function
of degree 1, ag’j ) a parking function of degree j — ¢, and az(,f’] ) a parking function of degree n — j.
Then:

Ax@Id)oAi(o) = (Id®A)oAilo) = > i@l ol
j<mg . g
A-@Id)oAi(o) = Id@AL)oA (o) = Y o el ol
A@Id)oA (o) = (IdoA)oA (o) = Y of? ®ol? @al.
1>Mg

So PQSym<” is a dendriform coalgebra. Thinking of 0.7 as a sum of shufflings of two words,
cop

it is easy to see that PQSym’™ is a codendriform bialgebra.

Let 0,7 be two parking functions of respective degrees k and [. We put:

oN T = Z (c@T1)ol L.
¢eSh(k,l)
C(k+1)=¢(mo)
In other words, o \_7 is the sum of the shufflings of the word o and the shifted word 7 shifted
by k, such that the letters of 7 are all after the greatest letter that is more on the right, of o.
In particular, if m, = k, then o \_ 7 = 0 ® 7. For example:

(21331) N (12) = (2133167) + (2133617) + (2133671).

So, if o, T, v are three parking functions of respective degrees k, [, m, as my, = deg(o) + 7:

( (cr)Nv = o(tNv) = Z (c®@T®v)o(
¢eSh(k,l,m)
C(k+i+1)>((mqr+k)
CNT)Nv = o\ (TNv) = > (c@T@uv)o( ™"
ceSh(k,l,m)

((kA1+1)=((mr+k)
((k+1)=((mo)

\

So PQSym({” is a Px -algebra. It is not difficult to show that PQSym<” is a Px_-Dend
bialgebra. Moreover, FQSymffp is a sub-Px -Dend bialgebra of PQSym(fp . So:

Theorem 24 1. There exists a graded set Dp, such that PQSym, is isomorphic to
(HDP)4 as graded Px_-Dend bialgebras.

2. There exists a graded set Dp, such that FQSym  is isomorphic to (HI?F)+ as graded
P~ _-Dend bialgebras.

as H, and PQSym have the same formal series, D, and Dp have the same formal series,
so (HD°)4 and (HD'P), are isomorphic. The same result holds for (HD"), and (HPF),. As a
conclusion:

Corollary 25 The graded Hopf algebras H,, HEO and PQSym are isomorphic. The graded
Hopf algebras Hy,, Hl?ho and FQSym are isomorphic.
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4.5 Compatibilities with 0

Proposition 26 The morphism © : H, — PQSym*? is a morphism of Px_-Dend bialge-
bras.

Proof. Let F and G be two non-empty ordered forest, of respective degrees k and [. We
first show:
See= | L] {wenoc.
oc€Sk, TESG CeSh(k,l)
C(k+1)>¢ (o (K))
C. Let x € Spxg. There exists a unique (o,7,¢) € & x &; x Sh(k,l), such that x =
(0 ®7)o( L. Let us prove that o € Sp. If i — j in IF, then i — j in F N\ G, so:

X)) = xTH),
(oot @r (@) > Co(o @ (),
(oo (i) = (oo (j),
) > o),
as ( is increasing on {1,...,k}. So o € Sp. Similarly, 7 € Sg. Moreover, the vertex 7(1) + k
belongs to G in F\ G, so 7(1) + k — k in F N\_G. As a consequence:
X (1) + k) X~ (k),

>
(olcl@r (M) +k) > (o(o @ (k)
C(k+1) > Coa_l(k:).

D. Let 0 € S, 7 € Sg and ¢ € Sh(k,l), such that ((k + 1) > ((c7'(k)). We put
X = (0 ®7)o( L. Let i,j be two vertices of F \_G, such that i — j. Three cases can occur:

e i,j are vertices of F. Then o~ 1(i) > o71(5), so (c7' @ 771 (i) > (¢! @ 771)(j), and
finally 0=(i) = Co (e @ 77 1)(i) 2 Co (et @ 771)(j) = 071 (j)-

e i, j are vertices of G. The same proof holds.

e j is a vertex of G and j is a vertex of F. Then i — k in F N\ G. As F \_ G is a forest,
necessarily k — j in IF, so by the first point o= (k) > o71(j).

Moreover,i +1 > k+1, so 0~1(i) > ((k+1) as ( is increasing on {k+1,...,k+1}. Then:

o (i) 2 C(k+1) > (o7 (k) =0 (k) = 0 (h)
Finally, for any non-empty ordered forests F and G of respective degrees k and [:

OF NG = > > (c@rm)o¢ = > oNT=06(F) N OG)
o€Sk, TESG CESh(K,I) o€Sk, TESG
C(k+1)>¢(0 1 (k)

Let F € Fo(n). We proved in [[f] that there exists a bijection:

Spx{l,....n—1} +— |_| SRoouF X SLeayF
T: v|=V (F)
k) (k
(oK) — (of".0").

where this couple belongs to the term of the union indexed by the unique admissible cut v
such that the vertices of Roo,F are {o(1),...,0(k)}, and the vertices of Lea,F are {o(k +
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1),...,0(n)}. So, if (6,k) € Sp x {1,...,n— 1}, k < o~ !(n) if, and only if, n is a vertex of
Lea,F. So:

~(n)
©©0) A m= Y Y a®7_z Z o wol? =3 AL(o) = Ao O(F).

’UHZV ) UesLeavJF O’ES]F k=1 O'ES[F
neLeayF TESRoo,F

The proof is similar to show that (6@ ® ©) o A, =A._o0. O

Remark. We also obtain that the Px -Dend bialgebras Hjy, and FQSym are isomorphic.
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