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Abstract : 

 

In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic 

mechanical analysis, nanoindentation and the scanning microdeformation microscope have been 

presented. The methods are hereby explained, extended for viscoelastic behaviours, and their 

compatibility underlined. The storage and loss moduli of these polymers over a wide range of 

frequencies (from 0.01 Hz to some kHz) have been measured. These techniques are shown fairly 

matching and the two different viscoelastic behaviours of these two polymers have been 

exhibited. Indeed, PDMS shows moduli which still increase at 5 kHz whereas SU8 ones 

decrease much sooner. From a material point of view, the Havriliak and Negami model to 

estimate instantaneous, relaxed moduli and time constant of these materials has been identified. 

 

1 – Introduction 

 

In the field of materials sciences it is quite hard to have matching mechanical characterization 

methods at very small scale. This has become possible only in the last few years especially 

thanks to scanning probe microscopy [1, 2, 3, 4, 5, 6, 7] and nanoindentation [8, 9, 10]. 

Viscoelastic properties of polymers have also been measured for low frequencies and for higher 

frequencies thanks to the time-temperature equivalence [11]. Yet, direct measurements at high 

frequencies are far less studied in the literature of materials. 



 2 

 

In this paper, three techniques of dynamic mechanical characterization working at different 

scales have been used. A Dynamic Mechanical Analysis (DMA) is a technique working at 

macro scale by tensile tests. The Scanning Microdeformation Microscope (SMM) [12, 13] is a 

type of AC-force microscope, a non destructive system which allows quantitative measurements 

of elastic properties at micro scale. At last, nanoindentation tests which can characterize 

materials at nano or micro scale and for quasi-static or dynamic loadings have been carried out. 

We decided to characterize two polymers by measuring their complex Young's moduli for a 

wide range of frequencies to exhibit their viscoelastic properties. We chose two very different 

organic materials often used in MEMS applications, PDMS and SU8 resin. 

PolyDiMethylSiloxane (PDMS) is a silicon-based elastomer. Mechanical properties of this very 

versatile material vary with preparation conditions. Young's moduli values can actually fluctuate 

in the range of 0.1 MPa to some tens of MPa depending on its preparation [14, 15, 16, 17]. It 

exhibits an important viscoelastic behaviour. The other material we decided to characterize is a  

SU8 resin film. This resin is a polymer based on epoxies which is used for photolithography and 

MEMS applications and has a Young modulus in the range 3-6 GPa associated with a low 

viscoelastic behaviour [18]. 

 

Bulk samples have been designed to allow DMA measurements and to verify the compatibility 

of these techniques. To our knowledge such a comparison on viscoelastic materials has not been 

yet reported in the literature. This is the principal aim of this study performed on these two very 

different polymers. The material point of view will be briefly analyzed at the end of this paper. 

 

2 – Materials and experimental procedures 

 

2.1 Materials 

 

Polydimethylsiloxane (PDMS) has become the most popular building material used in a variety 

of low-cost acqueous microfluidic devices aimed in particular at single use for biological or 

medical diagnostics. In order to have low power consumption, many groups use this material for 

the manufacture of mobile part (often membrane, bridge,…) in active systems such as 

microvalves and micropumps. Therefore the characterization of the dynamic mechanical 

properties of PDMS is of great interest. To realize the PDMS samples, the Sylgard 184 PDMS 

Kit manufactured by Dow Corning Corporation and composed by a prepolymer and a curing 

agent has been used. The samples were made by the same method. The prepolymer and curing 
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agent in ratio 10:1 were mixed with an Ultra Turax homogenizer for 30s. The solution was 

poured into a Petri dish up to a thickness of about 3-4 mm and degassed in a desiccator by 

application of vacuum for 15 mn with a cycle of 2 mn at 0.5 m Torr. The solution was then 

cured in an oven at 65°C for 4 h following the recommendations from Dow Corning. PDMS 

was demolded and cut to make rectangular specimens. Different samples have been tested. 

Specimen 1 was tested thanks to the three different techniques for aging times tv of about 1500 

hours and 11 000 h at constant temperature T ≈ 20-22° C in a closed Petri dish and without light 

exposure. Specimen 2 is a very old sample which has been aging for a long time (tv > 3 years) at 

room temperature (20 to 30 °C), without any particular precaution and whose preparation 

conditions are not exactly the same as those previously presented for specimen 1. Thus, these 

two PDMS samples must be considered as two different materials. 

 

The SU8 resin is a negative epoxy type photoresit which has been developed by IBM (Watson 

Research Center). This polymer is a good material for MEMS applications. Two different 

samples have been tested. Specimen 1, tested with the three techniques, is a film of 0.13 mm 

thick obtained by spin-coating liquid SU8 resin (for 30 s at 5000 rpm/s) on a glass substrate. 

Before the deposition a deshydratation base of 1 h at 200°C has been realized. The final step, 

after deposition, is a curing of 5 mn at 120 °C. The obtained film was removed from the glass 

substrate and then cut to make the different samples, one sample for each technique. Specimen 2 

is a film of 50 µm thick deposited on <100> silicon substrate by spin-coating liquid resin (for 

120 s at 500 rpm/s). A first soft-bake deshydration of 1 h at 50 °C followed by a hard-bake of 15 

h at 90 °C have been performed. Due to the small thickness of these films, only nanoindentation 

and SMM procedures have been carried out.  

 

2.2 Dynamic Mechanical Analysis (DMA) 

 

DMA measures with frequencies in the range of 10-2 – 100 Hz were performed on a commercial 

BOSE Electroforce 3200 machine, at room temperature for the three different materials and at 

T = 23, 0, -20, -40, -60°C for the PDMS sample 1. Thus, for this specimen the time-temperature 

equivalence has been analyzed over a large domain of frequency; 10-2 < f < 105 Hz. 

 

For PDMS and SU8 resin (specimen 1) samples, gage lengths of the specimens were about 30 

mm and 36 mm for a cross section of about 13 x 3-4 mm2 and 10.2 x 0.13 mm2 respectively. A 

control on the position with a peak to peak amplitude of 0.5 mm (corresponding to a strain of ± 

7.6.10-3) for a preload strain of 9.1.10-3 was realized. Thus the samples were always in tension 
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even at the low point of the cycles. According to the ASTM Standard Guide for Dynamic 

Testing the software calculates the phase angle φ between the imposed displacement and the 

measured force and uses the specimen shape to convert the stiffness and the phase information 

to provide the values of E', the storage modulus, E", the loss modulus and tan(φ), the tangent of 

the phase angle. Moreover, for the specimens 1 (PDMS and SU8), the evolution of E' and E" 

with the aging time tv has been studied between 3 to about 1300 hours. 

 
2.3 The Scanning Microdeformation Microscope (SMM) 

 

2.3.1 Presentation of the microscope 

 

The SMM is a type of AC-force contact microscope. The sensor is a micromechanical resonator 

(Fig. 1) composed of a silicon cantilever with a small sharp sapphire tip at the end. The 

cantilever is glued onto a piezoelectric bimorph transducer at the other end. The transducer 

excites the vibration of the tip-sample system. The tip remains in contact with the sample and 

vibrates at some kHz with an amplitude of some nanometres. Amplitude and phase of the 

cantilever vibration are measured with a high sensitivity heterodyne interferometer [19, 20]. The 

synoptic of the SMM is presented in Fig. 2. 

 

The signal at the probe output is averaged with the double-phase lock-in amplifier and the 

amplitude and the phase of the cantilever displacement are recorded by the computer. Moreover, 

a modulated laser diode is used in a deflectometer to control the static force applied on the 

sample thanks to the second lock-in (and the third one can be used for a transmission mode 

operation). This microscope is an effective tool to record images of surfaces and subsurfaces 

with heterogeneous local elasticity or to characterize elastic properties of a material. 

 

In the framework of this study, it has been used to measure Young's moduli. So we put the tip in 

contact with the sample and an additional static force is applied by vertically displacing the 

clamped end of the cantilever is applied. Then the excitation frequency is scanned. The resonant 

frequency depends on the static force applied via the contact stiffness. Actually, by measuring 

this resonant frequency, local contact stiffness can be estimated and then, with a well-suited 

model, the local Young's modulus is extracted. Other ultrasonic non-invasive methods like 

atomic force acoustic microscope (AFAM), ultrasonic force microscopy (UFM) or AFM 

spectroscopy with heterodyne interferometer can make such a characterization on the nanometre 
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scale but with less accuracy because the contact model must take into account additional forces 

at this scale [1, 2, 3, 7]. 

 

2.3.2 Model 

 

A continuous model (Fig. 3) has been used [6, 21] to obtain Young's moduli values of tested 

samples from the measured contact resonant frequencies. The cantilever is represented as a 

beam interacting with the sample through two springs '
Nk  and Tk . The piezoelectric bimorph 

transducer action on the cantilever has been modelled as a simple mass mp and a spring kp. A 

Hertz contact has been considered to obtain the expression of the contact stiffness, '
Nk  : 

 

 ' *2 / 3 1/ 3
N 0k E (6 RF )=  (1) 

 

However, for polymers, a dynamic Hertz contact is needed to consider the frequency 

dependence of the Young's modulus [22, 23], thus : 

 

 
*

' 1/ 31
N 0*1/ 3

0

E
k (6 RF )

E
=  (2) 

 

Where *
0E  is the static reduced Young's modulus of the sample, *

1E  is the dynamic reduced 

Young's modulus for the considered frequency, F0 is the static additional force and R the radius 

of the tip. This relation is different from the static one (Eq. 1). If * * *
1 0E E E ,= =  (Eq. 2) is 

identical to (Eq. 1). For viscoelastic materials it's absolutely necessary to use this new relation 

because the dynamic Young's modulus can be very different from the static one. It will be the 

case for PDMS whereas for the SU8 resin we can keep the static relation * *
1 0(E E ).≈  

 

To extract the Young's modulus value from the contact resonant frequency f0, the linear 

differential equation for the vibration of the beam with boundary conditions has been solved 

[21] : 

 

 
4 2

c 4 2
y y

E I S 0
x t

∂ ∂+ ρ =
∂ ∂

 (3), 



 6 

 

where Ec is the Young's modulus, I the area moment of inertia, ρ the volume density and S the 

cross section of the cantilever. 

 

In this study a simple spring-mass approximation has been introduced to take into account the 

damping and to determine the complex Young's modulus like Arinéro et al. [24] did for an 

AFM. First, the relation between f0 and '
Nk  is obtained: 

 

 
'
N c

0
eff

k k1
f

2 m

+=
π

 
 

(4) 

 

where kc is the beam stiffness. The linear differential equation describing the response of an 

oscillator, with meff the effective mass of cantilever and tip, x%  the complex value of the 

response, ω0 the cantilever-tip-sample system's resonance angular frequency and λ the damping 

coefficient is: 

 

 
2

2 0
02

eff

Fx x
2 x exp(i t)

t mt

∂ ∂+ λ + ω = ω
∂∂

% %
%  (5) 

 

with: 0x X exp(i t) exp(i ).= ω φ%  

 

So, 

 0 eff
0 2 2

0

F / m
X exp(i )

( ) 2i
φ =

ω − ω + ωλ
 (6) 

 

Introducing the resonance frequency of the system f0 and the 3 dB half-bandwidth f1, given by 

f0 = ω0/2π and f1 = λ/2π, the expression of the complex contact dynamic stiffness can be 

obtained: 

 

 2 2 2 20
CCD eff 0 1

0

F
k m (4 (f f ) 8i f f )

X exp(i )
= = π − + π

φ
 (7). 

 

By taking the imaginary part, and as f is close to f0, the "
Nk  stiffness is obtained: 
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 " 2
N eff 0 1k 8m f f= π  (8) 

 

Introducing the complex effective Young modulus *
xE : 

 

 * '* "*
xE E iE= +  (9) 

 

and writing the expression of the complex stiffness as [25] : 

 

 ' "
N N Nk k ik= +  (10) 

 

with a static Hertz contact : 

 

 " "*2 / 3 1/ 3
N 0k E (6RF )=  (11), 

 

and thanks to Eqs. (4), (8) and (11), the expression of E"*  is given by: 

 

 
' 3 / 2

"* N c 1
3/ 2 1/ 2
0 0

(2(k k )f )
E

f (6RF )

+
=  (12) 

 

This relation will be used for the SU8 resin as * *
1 0E E≈ . 

 

For a dynamic contact: 

 

 
"*

" 1/ 31
N 0*1/ 3

0

E
k (6RF )

E
=  (13) 

 

Thanks to Eqs. (4), (8) and (13), the following expression of "*
1E  has been obtained: 

 

 
' *1/ 3

"* N c 1 0
1/ 3

0 0

2(k k )f E
E

f (6RF )

+
=  (14) 
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This relation will be used for the PDMS elastomer. 

 

At last, it is interesting to note that the relations on the components of the complex Young's 

modulus determined with the hypothesis of static (st) (Eq. 1) or dynamic (dyn) (Eq. 2) Hertz 

contact are such that : 

 

 '* '* 2 / 3 *1/ 3 "* "* 2 / 3 *1/ 3
dyn st 0 dyn st 0E (E ) E and E (E ) E= =  (15). 

 

It is thus possible to write: 

 

 

1/ 3
*

(i)* (i)* 0
stdyn (i)*

st

E
E E (1 )

E

    = α + − α     

 
 

(16) 

 

with (i) = ( ' or " ), α = 1 for a non viscous material and α = 0 for a viscoelastic material. 

 

2.3.3 Experimental conditions 

 

Two different cantilevers have been used for the characterization of these two materials. Thanks 

to a previous study on the sensitivity of the SMM [23], we chose 2 different cantilevers which 

are optmized for PDMS and SU8 resin. Actually, we showed that the cantilever stiffness must 

be chosen close to the contact stiffness to have the best sensitivity. As cantilever stiffness 

depends on the inverse of the cube of the length, a length of 7 mm for PDMS and 4.5 mm for 

the SU8 which is harder have been chosen. The width and the thickness of the beam are 400 µm 

and 150 µm respectively. The tip has a cylindrical base and a conical end as shown in Fig. 1. 

The sharp end of the tip is spherical. For the beam with a length of 7 mm, the tip length l is 697 

µm, its mass m = 0.23 µg and its curvature radius R = 45 µm. For the one with a length of 4.5 

mm, l = 976 µm, m = 0.45 µg and R = 20 µm. The static applied force F0 was 0.15 mN for the 

PDMS and 0.5 mN for the SU8 resin. The frequency domain of the SMM with these cantilevers 

corresponds to some kHz. As an example, Fig. 4 gives the first resonance mode of the two 

PDMS samples (specimens 1 and 2). On each sample about 5 to 7 measurements have been 

performed and the final result is the mean of the values. The shift frequency difference between 

these two specimens, due to their different modulus, is about 350 Hz. Note that the SMM has 
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already been tested on standard hard materials like silicon and silica [6, 21, 26] and a precision 

of nearly 5 % have been determined with the used model. 

 

With these experimental conditions the polymers are loaded in their linear viscoelastic regime. 

Actually, PDMS remains linear until deformations of 60 % [17] and 5 % for SU8 resin [18]. For 

a spherical tip like SMM ones, deformation of the contact area is ε = 0.2a/R [27], where a is the 

contact area radius and R the tip radius. With the tips we have used, a < 5 µm and R > 20 µm, 

thus ε < 5 %. 

 

2.4 Nanoindentation tests 

 

2.4.1 Model 

 

The Berkovich's indentations were performed with a Nanoindenter IIS (NanoInstruments). The 

hardness Hb and the Young's modulus E* are deduced using the classical static procedure or the 

continuous stiffness method (CSM) described as follows. One of the most commonly used 

methods for analysing nanoindentation data is the Oliver and Pharr one [8], which expands on 

earlier ideas developed by Loubet et al. [28] and Doerner and Nix [29]. This analysis has often 

been applied to polymer characterization, for example [18], [30] and [31], even if the true 

contact area is underestimated due to the pushing up of the material around the indenter. In this 

case the Young's modulus is slightly overestimated. However, in our method described below 

the Young's modulus has been estimated for an indentation depth close to zero (Eq. (32)) and 

thus the pile up effect may be considered as negligible. 

 

In the Oliver and Pharr method, the hardness Hb and the reduced modulus E* are derived from : 

 

 max
b

F
H

A
=  (17) 

and 

 
2 2

* s i
s *

s iunloading

1 1dF 2 1
S E A with

dh E EE

− ν − νη  = = = +  π 
 (18) 

 

In these equations, Fmax is the maximum indentation load, A the projected area of the elastic 

contact, Ss the unloading stiffness measured at different maximum depths of penetration h for 

the classical method (quasi-static method), or continuously with the CSM technique (at a 
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frequency f = 45 Hz). η = 1.034 for a Berkovich's tip. Es and νs are the Young's modulus and the 

Poisson's ratio of the specimen and Ei, νi the same parameters for the indenter. The expression 

of the projected contact area A for a Berkovich indenter is given by the following formula: 

 

 
4

2 1/ n
c c n c

n 1
A(h ) 24.56 h (a h )

=
= + Σ  (19) 

 

The second term in Eq. (19), evaluated using fused silica as a reference material, takes into 

account the geometrical deviations due to the tip rounding. Presently, this term is negligible due 

to the large penetration depths. The displacement hc is given by: 

 

 max
c

s

F
h h

S
= − ε  (20) 

 

in the case of the classical method. Ss is calculated by analytical differentiating of the 

experimental unloading curve: 

 

 m
fF D(h h )= −  (21) 

 

and evaluating the derivative at the peak load Fmax. hf is the remanent penetration depth and m ≈ 

2 for a Berkovich indenter. For the CSM method, the displacement hc is given by: 

 

 c
s

F
h h

S
= − ε  (22) 

 

where Ss and F are the unloading stiffness and the force recorded along the displacement of the 

indenter, respectively. So, with this method, hardness and Young's modulus can be determined 

as a function of the penetration depth h. In (20) and (22), ε = 0.72 which corresponds to a 

conical indenter. In the CSM method a small harmonic load oscillation is superimposed to the 

static one and if the tested material presents a viscoelastic character it is then possible to deduce 

its complex modulus [32]. If the dynamic loading is given by: 

 

 0F F exp(i t)= ω  (23) 
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the deformation response of the material is : 

 

 0h h exp(i t)exp(i )∆ = ∆ ω φ  (24) 

 

where φ is the phase lag due to viscous dissipation, as in Eqs. (5) and (6) for the SMM 

technique. The components of the complex modulus E* can be calculated according to: 

 

 '*
dE S cos( )

2 A

π= φ
η

 
 

(25) 

 

 "*
dE S sin( )

2 A

π= φ
η

 
 

(26) 

 

with Sd = F0/∆h0 and thus tan(φ) = E"* /E'*. 

 

In the present case, for polymer application, Ei >> Es (Eq. 18) and then, * 2
s sE E /(1 )= − ν  as in 

SMM experiments. Now, if Si, Sf and Ss are the stiffness of the indentation cell, of the load 

frame and of the sample respectively, the total stiffness S0 is : 

 

 
1

0 i
s f

1 1
S S

S S

−
 

= + + 
 

 
 

(27) 

 

In our case Sf >> Ss, then: 

 

 0 s iS S S= +  (28) 

 

Combining Eqs. (18) and (19), we obtain : 

 

 s
s s2

c s

S 24.56 dF
E with µ and S

2µh dh1

η= = =
π − ν

 
 

(29). 

 

This relation supposes that the surface of the sample is precisely detected without initial 

penetration (Ss >> Si ≈ 44 N/m). This is the case for metallic materials and hard polymers such 
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as the SU8 resin. However, with PDMS, Ss < Si and thus when the contact is detected the 

indenter has penetrated into the sample. In this study we determined the contact with the sample 

for different fixed stiffnesses S0, such that S0 > Si > Ss, that is to say for a certain penetration 

depth h0 function of S0. In this case, the measured Young's modulus Emes is given by: 

 

 s
mes

mes

S
E

2µh
=  (30) 

 

where hmes is the measured indentation depth penetration. 

 

Due to the quasi-elastic indentation response of the PDMS samples, hf ≈ 0 and m = 2 in Eq. 

(21), and thanks to the relations (19) and (20), it's easily shown that: 

 

 c i ih h with 1= α α <  (31) 

Note that the coefficient αi is not the same in quasi-static or dynamic methods. As the measured 

indentation depth for a given contact stiffness S0 is hmes = h – h0, combining Eqs. (29), (30) and 

(31) the relation (32) is obtained: 

 

 0 0
mes s s

mes

h (S )
E E E

h
= +  (32) 

 

Thus the representation Emes = f(1/hmes)s0 must be linear ; the intersection with the Y axis gives 

the value of the true Young's modulus Es and the slope of the straight line allows to determine 

Esh0(S0) which is an increasing function of the initial stiffness S0. 

 

In fact, when hmes >> h0, Emes = Es. Thanks to these representations the Es values for quasi-static 

condition or for dynamic loading (f = 45 Hz) can be determined. 

 

In the CSM technique the loss tangent is defined as: 

 

 0
2

0

E"
tan( )

E ' S m

λ ωφ = =
− ω

 
 

(33) 

 

where S0 is given by the relation (28) at the considered frequency, λ0 is the sum of the damping 

coefficient of the apparatus and the one of the contact, m is the mass of the moving part of the 
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indenter. The measured tan(φ) is false as λ0 and S0 are functions of the initial indentation depth 

h0. The true value of the loss tangent corresponds to those at h = h0 + hmes = 0. Plotting the 

measured values of tan(φ) as a function of (h0 + hmes), the intersection with the Y axis should 

give the true value of this parameter. The initial depth penetration h0 can be calculated from the 

experimental representation of Eq. (32); the slope gives the product h0Es and knowing Es 

previously determined, we calculate the h0 value. This way will be used to determine the tan(φ) 

value of the PDMS samples and thus the loss modulus E" (Eq. (33)). For the SU8 resin, the 

contact is precisely detected, thus h0 = 0 and the tan(φ) value given by the standard procedure is 

considered as accurate. 

 

2.4.2 Experimental conditions 

 

Nanoindentation tests were performed using a Nanoindenter IIS. As previously mentioned the 

study was conducted following the classical (quasi-static) and CSM (dynamic at f = 45 Hz) 

procedures. For each tested sample and for each initial stiffness S0, the measurement sequence 

consists on 5 indents with a 50 µm space between them with a maximum penetration depth of 

hmax ≅ 4 µm. The penetration speed was not constant but increased with depth from  2 to 45 

nm.s-1 with 8 steps such that (1/ h)(dh / dt)ε =&  is approximately constant and equal to 2.10-2 s-1. 

The stiffness of the indentation cell Si is 44 N/m and the values of the imposed initial stiffness 

are in the range 53 < S0 < 94 N/m. For the quasi-static method, four unloadings (to 90 % of the 

total loading) were performed at about hmax ≈ 1, 2, 3 and 4 µm and 50 % of the unloading curves 

are considered to calculate the contact stiffness of the samples SS as previously presented. For 

the CSM procedure, the indenter vibrates at a frequency of 45 Hz for an amplitude of 1-2 nm 

during the indenter penetration 2 1( 2.10 s )− −ε ≈& . 

 

As an example, Fig. 5 shows, for the PDMS sample 1, the evolution of the measured Young's 

modulus Emes obtained with the two methods as a function of the measured indentation depth 

hmes and for different values of S0. As expected by Eq. (32), Emes decreases with hmes. According 

to Eq. (32), Fig. 6 gives the representations of Emes as a function of 1/hmes, for the same 

conditions as those presented in Fig. 5. These representations are linear and lead to determine Est 

= 1.7 MPa, Edyn = 2.6 MPa for the classical and CSM methods respectively. Note that, for the 

same value of S0, the slopes of these representations are different, depending on the performed 

method. Indeed, this is due to the different value of αi in Eq. (31) for quasi-static or dynamic 

loadings. Thanks to Eq. (32) and knowing Es we can evaluate the indentation depth h0 
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corresponding to the initial stiffness S0. For instance, in the case of the sample 1, if (S0-Si) ≈ 25 

N/m, h0 ≈ 4 µm. 

In the case of the SU8 films the maximum penetration depth has been fixed at hmax=3 µm and 

the contact between the surface of the sample and the indenter tip is easily detectable. Thus, the 

measured values of the Young’s modulus and of the hardness are constant overall the 

indentation depth. 

 

3 – Experimental results 

 

The three techniques work at different scales and at different frequencies. As previously shown, 

they enable us to check the viscoelastic properties of these polymers. Actually, storage and loss 

moduli of polymers change depending on the frequency. We recorded the measures of E' and E" 

for the two specimens of PDMS and for the two SU8 resin films. 

 

3.1 Case of the PDMS samples 

 

We took ν = 0.48 for the Poisson's ratio of the PDMS (hyperelastic material). The values of E' 

for the two PDMS samples are plotted in Fig. 7 as a function of the working frequency and for 

the three experimental techniques. Note that for the SMM value, f is the first contact resonance 

frequency equal to 4,18 KHz. The measures given by the DMA and the nanoindentation 

methods are in a fairly good agreement. The SMM ones even if it is two decades further show a 

possible continuity. Static moduli *0E  for the two samples are respectively 1.7 and 2.9 MPa. As 

it will be shown, this difference is principally due to the different preparation conditions and 

weakly to the aging time. Storage modulus increases with the frequency for the two samples, 

which is typical of a viscoelastic material. For these two materials the values given by the SMM 

at nearly 4 kHz are 3.4 and 5.5 MPa (Fig. 7). In the Fig. 8 the loss modulus is plotted as the 

function of the working frequency. At 0.01 Hz the values are very low, near zero, but sharply 

increase with the working frequency. Results between DMA and SMM show the same 

behaviour for E" than for E'. Typically, for polymers, E" increases before reaching a maximum 

and then decreases with the working frequency. The SMM values of E" at 4 kHz for the two 

specimens are about 1 and 1.6 MPa. 

 

E' and E" are of the same order of magnitude which means that for this range of frequencies the 

material is very viscoelastic. This behaviour is quantified by the parameter tan(φ) = E"/E' as 
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shown in Fig. 9. The values estimated with the CSM nanoindentation procedure are in good 

agreement with those obtained by the DMA analysis. The SMM values also show a possible 

continuity. The tan(φ) parameter is an increasing function of the frequency, as expected, and the 

SMM values are close to 0.28 for f ≈ 4 kHz. It should then decrease for higher frequencies, the 

maximum value should be obtained at a frequency of about 106 Hz. From a material point of 

view, it is interesting to note that the values of the tan(φ) parameter are the same for the two 

tested specimens, indicating that this parameter seems insensitive to the elaboration conditions 

and the aging time as it will be shown later. 

 

To compare in a more quantitative manner the results obtained by the DMA and the SMM 

techniques, DMA experiments at low temperatures (T = 0, -20, -40, -60°C) on specimen 1 have 

been carried out. The frequency range is 0.01 to 50 Hz and thus, thanks to the time-temperature 

equivalence, a large domain of frequency can be analyzed; 10-2 < f(Hz) < 107. However, for the 

specimen 1, between the first experiments previously presented (Figs. 7, 8, 9) for a relatively 

short aging time (tv = 1460 h) and these new measures (tv = 11 000 h, Figs. 11-12-13), the 

material has evolved over a very long time at room temperature. The effect of aging time has 

been analyzed thanks to the DMA technique and figure 10 shows the increasing of the 

normalized storage modulus E(tv)/E'(4h) (E'/(tv) measured at an aging time tv over the modulus 

measured just after the elaboration of the material, E'(4h)) as a function of the aging time tv and 

for three frequencies. So, between these two experiments, the storage modulus (and also the loss 

modulus) has grown of about 14 %. The William-Landel and Ferry model has been applied to 

calculate the storage and loss moduli master curves as shown in Figs. 11 and 12 respectively. In 

this model, for a fixed reference temperature To, the translation parameter T / To
a  of the 

frequencies, is given by: 

 

 ( ) ( )
(i)

0(i) (i)(i) (i) 1
o T / T T / T (i)o o

02

C (T T )
E (T, f ) E T , a f with Ln a and (i) (' or ")

C T T

− −
= = =

+ −
 

 

(34) 

 

In the representations drawn in Figs. 11 and 12, the reference temperature is T0 = 23°C and the 

values of the parameters (i) (i)
1 2C and C ( C)°  are equally reported in these figures. E' and E" 

continuously increase with the equivalent frequency (10-2 < f < 105 Hz) from 2 to 7.5 MPa and 

0.02 to 1.6 MPa respectively. Figure 13 gives the evolution of the parameter tan(φ) = E"/E' as a 

function of the equivalent frequency.  
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New nanoindentation and SMM tests have been performed on this aged specimen (tv = 11 000 

h) and the results are plotted in Fig. 11, 12, 13. As for the previous results (Figs. 7, 8, 9), 

nanoindentation measures (quasi-static and dynamic) perfectly match those given by the DMA. 

For the SMM experiments, a new cantilever whose characteristics are: length 6,5  mm, width 

400 µm, thickness 80 µm, l = 697 µm, m = 0.44 µg and R = 45 µm, has been used. The first 

resonance mode with an applied static force of 0.15 mN is fo = 2,65 KHz, which corresponds to 

E' = 4.39 MPa ( *
oE  = 2 MPa in Eqs. (2) or (15)). The value of the lost modulus determined from 

the half-bandwidth f1 of the resonance peak is E" = 1,19 MPa, thus tan(φ) = 0.27. These 

different values are plotted in Figures 11, 12, 13 and are in a fairly good agreement with the 

time-temperature equivalent curves. Taking into account the aging of the specimen, resulting in 

an increasing of 14 % on the values of the Young's modulus components when tv increases from 

1460 h to 11 000 h (Fig. 10), the values of the previous measurements (f0 = 4,16 KHz) have also 

been reported in these figures. They are in the neighbourhood of the master curves. 

 

From a material point of view, it is interesting to note that the values of the tan(φ) parameter 

obtained with these three different techniques on the two specimens are identical, thus 

insensitive to the aging time and the elaboration conditions. The values measured with the SMM 

technique (tan(φ) ≅ 0.27) are slightly higher than those evaluated with the DMA time-

temperature equivalence, tan(φ) ≅ 0.21, for the same frequency domain. Indeed, the E" values 

are slightly overestimated with the SMM method. This observation tends to show that, if g(tν, 

ElC) is a function of the aging time tν and the elaboration conditions ElC, the complex modulus 

should be given by : 

 

 * '* "*E g(t , ElC)(E iE )ν= +  (35) 

 

As a conclusion, our measures given by the three different techniques working at different scales 

lead to characterize the PDMS material over a wide range of frequencies (10-2 – 104 Hz), but 

with a certain discrepancy due to the difference in the working frequency of these three 

methods. However, the measures show the compatibility and the complementary of these 

characterization systems. We quantitatively saw the evolution of storage and loss moduli of 

these bulk PDMS samples. Indeed, the measured values are in a fairly good agreement with the 

results reported by Mata et al. [15], Roure et al. [16] and Schneider et al. [17], ie : E' = 1.9 MPa 

without climate test and for quasi-static measurements. 
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3.2 Case of the SU8 resin 

 

The same measures on the SU8 resin film have been carried out. For this material we took a 

Poisson's ratio of ν = 0.29. For the two specimens the evolution of the storage modulus E' with 

the frequency has been plotted in Fig. 14. This time, the three techniques do not perfectly match. 

Actually for sample 1, at 0.01 Hz the DMA value is about 2.9 GPa (2 different measures) 

whereas the nanoindentation value is about 4.5 GPa. Moreover, for these two techniques the 

storage modulus slightly increases with the frequency in the studied range. The SMM value at 

23 kHz (first resonance frequency) confirms the indentation modulus values with a nearly equal 

value of 4.2 GPa. As previously mentioned, the value of the order of 4.5 GPa is in agreement 

with the results given in the overall literature E' ≈ 4 to 6 GPa. The low values obtained by DMA 

technique are certainly due to the too small thickness of the tested specimen (0.13 mm) and the 

small preload strain (≈ 9.10-3) allowing to a certain inhomogeneity in the strain field across the 

specimen section. The artefacts due to the instrument compliance effects observed on rigid 

specimens are also not neglectible. So in the typical curve of the storage modulus of a polymer, 

the maximum of slope has already been passed and the modulus is quite constant. The same 

evolution can be expected for the loss modulus in this range of frequencies. In Fig. 15 a loss 

modulus which decreases with the frequency can be observed. The nanoindentation value is a 

slightly greater than the DMA one. The SMM value at 23 kHz is lower and confirms the global 

decreasing of the loss modulus. It can be noted that the loss modulus if far lower than the 

storage one (20-80 MPa versus 4-4.5 GPa). Thus, the SU8 resin presents a very weak 

viscoelastic behaviour, far less than the PDMS one. 

 

The tan(φ) has also been plotted in Fig. 16. The maximum has been passed (f ≅ 10-2 Hz) and this 

parameter decreases with the frequency. Of course, the values are much lower than for the 

PDMS and the maximum value is close to 0.025. It is important to observe that the three 

techniques perfectly match. DMA and nanoindentation values are the same at 45 Hz and the 

SMM value prolongs the decrease of the curve. In fact with DMA technique, the error due to the 

small thickness of the film (or other causes) has the same effect on the determination of E' and 

E" and disappears on the loss tangent which is equal to the ratio E"/E'. 

Nanoindention and SMM measurements have been performed on the same sample (specimen 1) 

but for an aging time at room temperature of about 13000 h. Contrary to the PDMS samples, no 

noticeable evolution outside of the method accuracies has been pointed out. 

For the SU8 film deposited on the Si substrate (specimen 2), the nanoindentation and the SMM 

techniques perfectly match (Fig.14) and the determined values of the storage modulus are 5.57 ±   



 18 

0.15 GPa and 5.6 ± 0.3 GPa, respectively. These values are higher than those measured on 

specimen 1, but close to those reported by Al-Halhouli et al. [18], i.e.: 5.2 GPa. The values of 

the loss modulus and the tangent of the phase lag are plotted in Figs. 15 and 16. As for the 

specimen 1 these two parameters decrease with the frequency, but the values are slightly lower 

than those determined on the previous sample, i.e.: E’’ = 40 MPa (at 45 Hz) and E’’ = 8.4 MPa (at 

13 KHz) for the nanoindentation and the SMM procedures, respectively. These observations, 

increasing of E’ and decreasing of E’’ compared to the values obtained on sample 1, are 

certainly due to the long bake during 15 h at 90 °C performed on this specimen.  

 

Note that the Berkovich hardnesses Hb of these different polymers are about, Hb = 0.33 ± 0.05 

MPa and 0.55 ± MPa for the two PDMS samples (specimens 1 and 2 respectively) and Hb = 330 

± 20 MPa and Hb =362± 13 MPa for the two SU8 films (specimens 1 and 2). This last value is in 

fairly good agreement with the one given by Al-Halhouli et al. [18] (Hb ≈ 430 MPa). 

 

4 – Phenomenological modeling 

 

From a material point of view and for viscoelastic materials as polymers, the crucial problem in 

vibration experiments concerns the accurate determination of the viscoelastic parameters over a 

broad range of frequency. So, in the case of sinusoidal deformation, the complex modulus can 

be written as [34] : 

 

 
n n* i r i

j j
j 1 j 1j

1
E E (E E ) p with p 1

1 i= =
= + − =∑ ∑

+ ωτ
 

 

(36) 

 

where Ei and Er are the instantaneous and relaxed Young's moduli, respectively. The parameters 

τj are the different relaxation times and pj is a ponderation coefficient for each relaxation time. It 

is very difficult to determine the values of the parameters pj, τj and their number n. From a 

phenomenological point of view, to overcome this difficulty the empirical model of Havriliak 

and Negami [35] (H-N model) is considered, which combines the advantages of the modelling 

of Cole et al. [36] and Davidson et al. [37]. In this model, the complex modulus is given by: 

 

 * i r i 1
E E (E E )

(1 (i ) )α β= + −
+ ωτ

 
 

(37) 
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Thus, storage and loss moduli are respectively given by: 

 

 

( )
i r i

/ 22

cos( )
E ' E (E E )

1 2( ) cos( / 2) ( )
βα α

βφ= + −
+ ωτ απ + ωτ

 
 

(38) 

 

 

( )
i r

/ 22

sin( )
E" (E E )

1 2( ) cos( / 2) ( )
βα α

βφ= −
+ ωτ απ + ωτ

 
 

(39) 

 

with 1 ( ) sin( / 2)
tan

1 ( ) cos( / 2)

α
−

α

 ωτ απφ =  
 + ωτ απ 

 
 

(40) 

 

where τ is a single parameter with time dimension and α, β two empirical parameters.  

 

Note that if α = β = 1, the equation (37) with a single relaxation time is obtained. The different 

experimental curves of Figs. 11, 12 and 13 for the PDMS and Figs. 14, 15 and 16 for the SU8 

resin have been fitted by equations (38), (39), (40) and the results drawn on these figures. The 

identified values of the parameters are listed in Table 1. Note that these values correspond to the 

working range of frequencies and cannot be used for very higher frequencies. 

 

The simulations are fairly good especially considering on the one hand the three different 

experimental techniques that have been used and on the other hand the wide range of frequency 

which has been analysed. Notice the very great difference between the time parameter of the 

PDMS and the SU8 resin's one; the PDMS is very viscous (tan(φ) ≈ 0.21 at f = 104 Hz) contrary 

to the SU8 resin (tan(φ) ≈ 0.005 at f = 104 Hz for sample 1). The same trend is observed on the 

ratio between the instantaneous and the relaxed moduli, Ei/Er: Ei/Er ≈ 17 for the PDMS and only 

≈1.12-1.25 for the SU8 resin. Note that from an experimental point of view, the time-

temperature equivalence experiments performed on PDMS samples with Er = 2 MPa give 

E(f)/Er ≅ 7.5 at f = 107 Hz (this study) and from [38] with Er ≈ 50 MPa give E(f)/Er ≈ 10 at f = 

1011 Hz. These results corroborate the value Ei/Er ≈ 17 presently determined for f → ∞. 

 

5 – Conclusion  
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In this article the efficiency of the three mechanical characterization methods has been pointed 

out. The results of the three different scales techniques (macro, micro and nanoscale) fairly 

match. The two very different viscoelastic behaviours of PDMS and SU8 resin for the same 

frequency range have been quantified. Their storage, loss moduli and tan(φ) from 0.01 Hz to 

some kHz have been measured. Satisfying global behaviours according to the models and good 

agreement between measured values and literature ones have been obtained. In conclusion, these 

three complementary experimental techniques and the developed methods can be used as 

powerful metrology tools for the mechanical characterization at very small scale of viscoelastic 

materials. To our knowledge, such a comparison of these three experimental methods applied on 

viscoelastic materials has not been reported in the literature and highlights the potentialities of 

these techniques for polymer applications.  

Note that as multiple modes were measurable by SMM method (4 modes detected on the SU8 

resin), we started to develop a suitable identification procedure to recover both the Young’s 

modulus at different frequencies and the Poisson ratio from SMM measurements.  

 

 

Acknowledgments 

The authors thank the city of Besançon for supporting this project. The authors acknowledge V. 

Placet for his assistance for the DMA experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

Figure captions 

 

Fig. 1 : Vibrating sensor of the SMM. 

Fig. 2 : Principle of the SMM microscope. 

Fig. 3 : Model to describe the behaviour of the SMM. 

Fig. 4 : Experimental spectra of amplitude of vibration (1st mode) as a function of frequency 

in contact with the two different PDMS samples for a static force of 150 µN and for a 

driving voltage of the bimorph of 1V. 

Fig. 5 : Evolution of the measured indentation modulus Emes as a function of the measured 

depth penetration hmes for PDMS sample 1 (tv = 1460 hours) and different contact 

stiffness S0. The results are obtained with quasi-static and CSM methods. 

Fig. 6 : Determination of Est (static measurement) and Edyn (dynamic measurement) according 

to Eq. (32) : Emes as a function of 1/hmes . 

Fig. 7 : Storage modulus of PDMS samples measured by nanoindentation, DMA and SMM 

techniques as a function of the working frequency. Simulation with the H-N model. 

Fig. 8 : Loss modulus of PDMS samples measured by nanoindentation, DMA and SMM 

techniques as a function of the working frequency. Simulation with the H-N model. 

Fig. 9 : tan(φ) parameter of PDMS samples determined by the three different techniques. 

Simulation with the H-N model. 

Fig. 10 : Evolution of the storage modulus of sample 1(E'(tv)/E'(4h)) as a function of the aging 

time tv . 

Fig. 11 : Storage modulus of PDMS sample 1 (tv = 11 000 h) measured by nanoindentation, 

DMA time-temperature equivalence and SMM techniques as a function of the 

working frequency. Simulation with the H-N model. 

Fig. 12 : Loss modulus of PDMS sample 1 (tv = 11 000 h) measured by nanoindentation, DMA 

time-temperature equivalence and SMM techniques as a function of the working 

frequency. Simulation with the H-N model. 

Fig. 13 : tan(φ) parameter of the PDMS sample. Simulation with the H-N model. 

Fig. 14 : Storage modulus of SU8 resin samples measured with the three techniques as a 

function of the working frequency. Simulations with the H-N model. 

Fig. 15 : Loss modulus of SU8 resin samples measured with the three techniques as a function 

of the working frequency. Simulations with the H-N model. 

Fig. 16 : tan(φ) parameter of the two SU8 resin samples determined by the three techniques. 

Simulations with the H-N model.  
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Table 1: Parameters values of equation (38) (39) and (40) 

 

Specimen tν α β τ(s) Er(MPa) Ei(MPa) F(Hz) 

PDMS (Spec. 1) 1460 h 0.236 1 2 10-9 1.65 29.6 10-2-106 

PDMS (Spec. 1) 11 000 h 0.236 1 2.10-9 1.9 34 10-2-106 

PDMS (Spec. 2) >25000 h 0.236 1 2.10-9 2.6 44 10-2-106 

SU8 (Spec. 1) ~ 1000 h  

~14000h 

0.4 0.38 40 3600 4500 10-2-105 

SU8 (Spec. 2)  ~1000 h 0.4 1 0.5 5000 5600 10-105 
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