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Abstract 
 
Plant fibers with nonzero microfibril angle show no plane reflection symmetries, the 
groups of spatial symmetry transformations consisting of rotations only. The spatial 
point symmetry group of any material made of such fibers is of order which is half 
of the order of the symmetry group of the corresponding orthotropic material. 
However, materials consisting of fibers show similar degeneracies of stiffness 
Eigenvalues as the non-fibrous materials. Stiffness degeneracies appear to be 
controlled by the integer exponents of dicycle conditions applied on products of 
vectors generating symmetry groups. It is found that flat orthotropic sheets always 
retain their planar shape in Eigen Deformations, whereas those made of fibers with 
microfibrils do not. Features of the out-of-plane deformations are clarified. 
Orthotropic material elements experience normal on-axis Eigen Strains only, 
whereas fibrous bodies with orthotropic fiber alignment may experience on-axis 
shear strains as Eigen Strains.  
 
Keywords: 
Group theory, representation theory, material symmetries, irreducible 
representations, dimensionality. 
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1. Introduction 
 
Plant fibers are widely used in construction, in packages, in information carrier 
products, and in a variety of engineering applications. Plant fiber products often 
provide a high stiffness in relation to mass, as well as desirable thermal, optical and 
acoustic properties.   
 
Plant fibers, consisting of helically wound microfibrils, have a rather special 
structure. Thus the symmetries of a plant fiber, as well as those of a plant fiber 
product, are somewhat peculiar. Spatial symmetry transformations may be 
translations, reflections, rotations or inversions. There are conservation laws related 
to symmetries [1-4]. In other words, properties are retained in symmetry 
transformations. Further, quite a few properties of structures may be deduced on 
the basis of the symmetries of the system, using group theory and group 
representation theory [1-6]. 
 
In this paper, we will investigate the spatial symmetries of plant fibers, as well as a 
few implications of their symmetries. In particular, we will focus in degeneracies of 
stiffness Eigenvalues of plant fiber materials on the one hand, and on Eigen 
Deformations of such materials on the other hand.  
 
First, we will briefly review group theory, and discuss spatial symmetry 
transformations of orthotropic, transversely square-symmetric, and transversely 
isotropic materials. Then, we will consider a plant fiber composed of helically wound 
microfibrils, and the symmetry transformations of such a fiber. We find a symmetry 
group which differs from that of the transversely square-symmetric material, plane 
reflection symmetries being absent.  
 
Symmetries of structures composed of plant fibers will be discussed. Properties of 
such structures can be viewed as effects induced by the properties of the plant 
fibers on the one hand, and the arrangement of the fibers within the body on the 
other hand. According to the classical symmetry principle, or Curie’s principle, an 
effect always is at least as symmetric as the cause [7, 8]. Structures made of plant 
fibers may or may not show more symmetries than the fibers themselves.  
 
Degeneracies in stiffness Eigenvalues will be discussed as a function of the 
properties of any symmetry group of a continuum material composed of plant 
fibers. Finally, the structure of a body, together with the potential field within the 
body, is discussed as a cause, and Eigen Deformation as the effect. All symmetries 
of the cause are retained in deformed bodies, which however may display 
additional symmetries. 
 
 
2. Group Theory and Representation Theory 
 
A group is a set of elements showing a few special properties. In particular, any 
group member acting on another group member produces a group member. This 
property is called Closure. The group operation is associative, i.e. (XY)X=X(YZ). 
Every group has an identity element, IY=YI=Y, and every element has an inverse 
element, Y-1Y=YY-1=I. The order of a group is the number of group elements. The 
order of an element is the power of the element producing Identity. The order of the 
group, as well as the orders of the elements often need to be known in order to 
identify the group. Group elements may be divided into conjugacy classes, 
members of any class being connected by similarity transformations X= Y-1 ZY. The 
conjugacy classes do not overlap [3, 5, 6]. 
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Group elements are often represented by matrices. A representation is reducible if 
the vector space where it acts on contains a proper subspace, closed under the 
action of the matrix. Otherwise the representation is Irreducible. A number of 
theorems apply to Irreducible Representations (Irreps); among others, 
orthogonality, completeness, and dimensionality theorems [3, 5, 6]. Using such 
theorems, a character table can be constructed for any discrete group. The 
character refers to the trace of a matrix, which is retained in unitary similarity 
transformations. Thus all the members within a conjugacy class have the same 
character within any Irrep. The number of Irreps equals the number of classes, and 
thus the character table is a square matrix. 
 
Any representation of a particular group can be composed of Irreps of the group. 
This can often be done on the basis of the character table. For a particular 
representation, acting on a vector space spanned by some basis vectors, the 
character of any conjugacy class must be clarified. This character must be the sum 
of the characters of the Irreps for that particular conjugacy class, and the same 
Irreps constituting the representation must satisfy this requirement simultaneously 
for all conjugacy classes.   
 
Regarding the compatibility of properties, the dimensionality of the Irreps is of 
outmost importance. Compatible properties “mix” during symmetry transformations. 
In other words, they transform with multidimensional Irreps. In the particular case of 
normal modes, vibrations transforming with the same Irrep are degenerate, and the 
dimensionality of the Irrep indicates the degree of degeneracy. Abelian groups (all 
elements commuting) have only one-dimensional Irreps [3, 5, 6]. 
 
 
3. Symmetry Groups of Materials and Structures 
 
3.1  Orthotropy and Transverse Square-Symmetry 
 
A two-dimensional orthotropic material retains its properties in four symmetry 
operations: two line reflections, one with respect to each of the material symmetry 
axis, a rotation by π, and Identity. Thus the group multiplication table consists of 16 
elements. There are two non-isomorphic groups of order 4. This one is the so 
called “Vierergruppe”, or  4/2. The group multiplication table is symmetric. Thus the 
group is Abelian, and has only one-dimensional Irreps.  
 
A three-dimensional orthotropic material retains its properties in eight symmetry 
operations: three plane reflections, one with respect to each of the material 
symmetry planes, three rotations by π, Identity, and parity inversion (or point 
reflection). Thus the group multiplication table consists of 64 elements. Seven of 
the symmetry operations are of order 2. This identifies the group as 8/3, according 
to nomenclature of Thomas and Wood [9], or prismatic group mmm=D2h=Vh. The 
group is Abelian, and thus has only one-dimensional Irreps.  
 
In comparison to the three-dimensional orthotropic material, a transversely square-
symmetric material has eight more symmetry operations. It is invariant in rotations 
by ±2π/4, as well as reflections with respect to planes diagonal to the principal 
material axis. In addition, the symmetry group includes these transformations 
combined with reflection with respect to the plane of square-symmetry. Four of the 
symmetry operations are of order four, 11 are of order two. This identifies the group 
as 16/6, also know as prismatic group 4/mmm=D4h [3, 10]. 
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The group elements of 16/6 form ten conjugacy classes, and thus the group has 
ten Irreps. Character table for the group is shown in Table 1. In Table 1, we denote 
rotations by 2π/n with respect to axis xi as nxi, and plane reflections with respect to 
an { }ji,  - co-ordinate plane as Mxij. Prime refers to reversal of angular sign. Plane 

reflection with respect to a plane along x3–axis and diagonal to axis { }ji,  is 

denoted as mxi3. i refers to parity inversion. Double bar indicates reflection with 

respect to the plane of square-symmetry, here the { }2,1 – plane, i.e. 34 x = Mx124x3. 

Roman capitals A and B refer to one-dimensional Irreps, and E to a two-
dimensional Irreps. 
 
3.2  Cube-Symmetry 
 
Trying to construct the Group Multiplication Table for cube-symmetry, one readily 
finds that this is a large group. The symmetry group of a cube is of order 48. Thus 
the Group Multiplication Table contains 2304 elements. The symmetry group is 
denoted Cubic or Octahedral Group m3m=Oh [3, 10]. Eight of the group members 
are of order six, 12 of order four, eight of order three and 19 of order two.  
 
The group members form ten conjugacy classes, and thus the group has ten Irreps. 
Character table for the group is shown in Table 2. Table 2 is kept brief and simple 
by noting a class of six rotations by 2π/2 as 6*C2. These take place with respect to 
a line from the center of a cube edge to the center of the opposite edge. Another 
brief notation is 8*C3. This refers to eight rotations by 2π/3, with respect to cube 
diagonals. The last column of the Table refers to the latter, followed by parity 
inversion, and the second last to rotations by ±2π/4, followed by parity inversion. 
 
3.3  Two-dimensional and Transverse Isotropy 
 
Isotropy actually corresponds to a continuous symmetry group of infinite order. 
However, we are able to describe in-plane isotropy in terms of a finite symmetry 
group, considering that a few simple laminate structures display quasi-isotropic 
behavior. The simplest of these is the so called -60/0/60 – laminate, where layers 
are aligned with angular intervals of 2π/3. In two dimensions, this kind of a structure 
has 12 symmetry operations. Two of them are of order six, two of order three, and 
seven of order two. This identifies the group as 12/3, according to nomenclature of 
Thomas and Wood [9], also know as Dihedral Group 622=D6. It appears to be 
isomorphic to group 6mm=C6v [9, 3, 10]. 
 
The group members form six conjugacy classes, and thus the group has six Irreps. 
Character table for the group 12/3 is shown in Table 3. In Table 3, we denote a 
plane reflection with respect to a plane aligned within an axis of rotation symmetry 
with Mi, and a reflection with respect to a plane bisecting the angles between the 
previous with mi. 
 
In addition to the symmetry operations of the corresponding two-dimensional case, 
a three-dimensional orthotropic body with transverse isotropy has symmetry 
operations combining the previous with reflection with respect to the plane of 
isotropy. This applies to all the elements of group 12/3, the outcomes happening to 
include rotations with respect to axis within the plane of isotropy, as well as parity 
inversion. Thus the increment of dimensionality exactly doubles the order of the 
symmetry group. There are six elements of order six, two elements of order three, 
and 15 elements of order two. On the basis of this, the symmetry group can be 
identified as 24/4, which appears to be isomorphic to group 6/mmm=D6h [9, 3, 10]. 
 
The group members form 12 conjugacy classes, and thus the group has 12 Irreps. 
Character table for the group 24/4 is shown in Table 4. In Table 4, notations are the 
same as in Tables 2 and 3, double bar indicating reflection with respect to the plane 
of isotropy.  
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3.4  A Fiber with Helically Wound Microfibrils 
 
Let us then discuss a plant fiber, consisting of helically wound microfibrils. To 
provide an example, a microphotograph of cellular tissue of softwood is shown in 
Fig. 1. A polarized-light microphotograph of an individual fiber with helical striations, 
chemically released from the structure, is shown in Fig. 2. If the microfibril angle 
were neglected, an intact fiber might show transverse square-symmetry. However, 
any of those plane reflections which are symmetry operations for square-symmetry 
will reverse the microfibril angle. On the other hand, any line reflection can be 
written in terms of two consequent plane reflections. Thus line reflections retain the 
microfibril angle. Similarly, any rotation can be written in terms or two plane 
reflections [11, 12, 13]. Thus rotations preserve the microfibril angle. Any point 
reflection (or parity inversion) can be written in terms of three plane reflections. 
Thus point reflections do reverse the microfibril angle. Those symmetry 
transformations for the transversely isotropic material which correspond to odd 
numbers of plane reflections do not constitute symmetry transformations for the 
plant fiber with nonzero microfibril angle. 
 
Eight of the symmetry transformations of the transversely square-symmetric 
material remain for the plant fiber. Two of them are of order four, and five are of 
order two. This identifies the symmetry group as 8/4, also known as Dihedral Group 

422=D4. It appears to be isomorphic to groups 4mm=C4v and m24  =D2d=Vd [9, 3, 
10]. The group elements form five conjugacy classes, and thus the group has five 
Irreps. A character table for the group 8/4 is shown in Table 5.  
 
3.5  A Body with All-Parallel Fibers 
 
In the absence of the effect of microfibril angle, a body with all-parallel fibers might 
show transverse square-symmetry. Microfibril angle however being reversed in 
plane reflections, the symmetry group of a structure consisting of all-parallel fibers 
is the same as the symmetry group of a single fiber, i.e. 8/4. 
 
3.6  Fibrous Structures with Orthotropy in Two Dimensions 
 
A structure with all fibers parallel to a plane and with orthotropic orientation 
distribution of fibers within the plane, this distribution invariant with respect to the 
co-ordinate perpendicular to the plane, would show the symmetries of three-
dimensional orthotropy, i.e. symmetry group 8/3. But, any plane reflection, as well 
as any point reflection, reverses the microfibril angle. Then, the symmetry 
operations consist of three rotations by π, one with respect to the center line of 
each of the two orthotropic symmetry planes, and the third with respect to an axis 
perpendicular to them, and Identity. Three of the four symmetry operations are of 
order two. The symmetry group is 4/2, or the Vierergruppe, and it has only one-
dimensional Irreps. 
 
A structure with all fibers parallel to a plane, with orthotropic orientation distribution 
of fibers within the plane, but this distribution not invariant with respect to the co-
ordinate perpendicular to the plane, is not invariant in rotations with respect to the 
center line of each of the two orthotropic symmetry planes. Thus the symmetry 
group is of order two. There is only one group of this order, and it is Abelian. 
 
A structure with all fibers parallel to a plane and with square-symmetric orientation 
distribution of fibers within the plane, this distribution invariant with respect to the 
co-ordinate perpendicular to the plane, would show transverse square-symmetry, in 
addition to those of three-dimensional orthotropy. The symmetry group would be 
16/6. However, any plane reflection, as well as any point reflection, reverses the 
microfibril angle. Eight of the 16 symmetry operations of group 16/6 retain the 
microfibril angle, the symmetry group thus being the same as that of a single fiber, 
i.e. 8/4.  
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A structure with all fibers parallel to a plane, with square-symmetric orientation 
distribution of fibers within the plane, but this distribution not invariant with respect 
to the co-ordinate perpendicular to the plane, is not invariant in rotations with 
respect to the center line of each of the two orthotropic symmetry planes. Neither is 
it invariant in two consequent plane reflections, one of the reflection planes being 
that of fiber alignment. The symmetry group is of order four. Two of the symmetry 
operations are of order four, and one of order two. This identifies the group as 4/1, 
or cyclic group C4. The group is Abelian, and thus has only one-dimensional Irreps. 
 
For a structure with all fibers parallel to a plane and with isotropic orientation 
distribution of fibers within the plane, any rotation within the plane would be a 
symmetry operation. Also any plane reflection within the sheet plane would retain 
the random distribution of fiber orientation. Such a transverse isotropy can be 
characterized by a discrete symmetry group which includes rotations corresponding 
to those which are symmetry operations of quasi-isotropic laminates. The simplest 
of these is the -60/0/60 – laminate, where the symmetry group can be identified as 
24/4, which appears to be isomorphic to group 6/mmm=D6h [9, 3, 10]. 
 
However, any plane reflection would reverse the microfibril angle. The same 
applies to any point reflection, as well as any operation which contains an odd 
number of plane reflections. The resulting discrete symmetry group is of order 12. 
Two of the group elements are of order six, two of order three, and seven of order 
two. This identifies the group as 12/3, according to nomenclature of Thomas and 
Wood [9], also know as Dihedral Group 622• D 6. It appears to be isomorphic to 
group 6mm=C6v [9, 3, 10]. 
 
The group elements of 12/3 form six conjugacy classes, and thus the group has six 
Irreps. Character table for the group is shown in Table 6, where just the column 
headings differ from those of Table 3. In Table 6, we denote line reflection (or 
rotation) with respect to an axis within the x1-x2 -plane with of angular alignment 2π/i 
from co-ordinate axis x2 with Li. 
 
Within a structure with all fibers parallel to a plane and with isotropic orientation 
distribution of fibers within the plane, the fiber alignment is not necessarily 
orthotropic in three dimensions. Even if the fiber alignment is isotropic within a 
plane, it does not need to be invariant as a function of the co-ordinate perpendicular 
to the plane, since the distribution of axial fiber rotations may vary. In case it does 
not vary symmetrically with respect to the central plane of the sheet, out-of plane 
rotations are not symmetry operations for the sheet, and the symmetry group 
corresponding to the 60/0/60 – laminate is of order 6. Two of the elements are of 
order six, two of order three, and one of order two. This Identifies the symmetry 
group as 6/1, which is Abelian. 
 
3.7  Fibrous Structures with Orthotropy in Three Dimensions 
 
As mentioned above, three-dimensional orthotropy corresponds to symmetry group 
8/3. However, a body consisting of fibers with helically wound microfibrils, the fibers 
aligned according to three-dimensional orthotropy, corresponds to symmetries of 
the Vierergruppe 4/2, which is Abelian. 
 
As well it was mentioned above that transverse square-symmetry, in addition to 
three-dimensional orthotropy, corresponds to symmetry group 16/6. A body 
consisting of fibers with helically wound microfibrils, the fibers aligned according to 
three-dimensional orthotropy, corresponds to symmetry group 8/4, which is the 
same as the symmetry group of a single fiber. 
 
Cube-symmetry corresponds to symmetry group Oh, which is of order 48. The order 
of the symmetry group for fibers aligned according to cube-symmetry is 24, half of 
the symmetry operations shown in Table 2 not being applicable. Five conjugacy 
classes remain; the character table can easily be found from the left part of Table 2.  
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4. Degeneracies in Stiffness Eigenvalues 
 
Within a continuum material, deformations can be described in terms of strains: 
partial derivatives of displacements with respect to co-ordinates. In a three-
dimensional body, the strain tensor has nine components. All deformations within a 
body can be described in terms of the strain components. Thus the number of the 
strain components corresponds to the number of normal modes of vibration. 
 
Within a co-ordinate system, stresses can be given as partial derivatives of forces 
with respect to areas perpendicular to co-ordinate axis. The number of stress 
tensor components is the same as the number of strain tensor components. Strains 
are related to stresses through Stiffnesses. The Stiffness Matrix thus is a 9*9 matrix 
in the case of a three-dimensional body. The Stiffness Matrix may be diagonalized 
in terms of a Unitary Transformation. Such a diagonalization results as nine (or four 
in two dimensions) stiffness Eigenvalues, as well as strain and stress components 
expressed in a co-ordinate system called Normal Co-ordinates. 
 
In normal co-ordinates, one can easily raise an argument regarding conservation of 
energy. In the particular case of an elastic body, the time derivative of the sum of 
kinetic energy and strain energy must be zero. The energy components can be 
written in terms of body dimensions, stiffnesses, strains, and time derivatives of 
strains. This applies separately for any co-ordinate direction in the normal co-
ordinates, and leads to an Equation of strain and second time derivative of strain 

εωε 2
i−=    (1),  

the solution of which is a cyclical function with angular frequency iω ,  

 
ρ

ω ii
i

Q

D

s
=    (2),  

where si is a direction-dependent geometry factor, D is linear size, Qi is stiffness 
Eigenvalue, and ρ  is mass density of the material. Repeated index does not imply 
summing in Eq. (2). 
 
The nine Eigenfrequencies are not necessarily all distinct. In such a case the 
normal modes of vibration are said to be degenerate. We find from Eq. (2) that any 
Eigenfrequency depends on the geometry and size of the Representative Material 
Element under discussion. The stiffness Eigenvalue Qi does not depend on size or 
geometry. It solely characterizes the properties of the material.  
 
 
5. Representations for Non-Fibrous Materials 
 
In order to utilize character tables above for the composition of a representation of 
the group on a nine-dimensional strain vector space, we should determine the 
character for any conjugacy class of symmetry operations acting on such a space. 
Firstly, the character of the Identity is of course the same as the number of basis 
vectors spanning the vector space. The same applies to inversion, which retains all 
strain components. In the case of a nine-dimensional strain space, the trace of any 
rotation matrix is 4cos2θ+4cosθ+1. It is further worth noting that three-dimensional 
orthotropy corresponding to symmetry group 8/3, which is Abelian, and thus 
contains only one-dimensional Irreps, does not induce any stiffness degeneracies. 
In other words, no stiffness degeneracies are due to orthotropic material symmetry. 
Symmetry of the strain and stress tensors makes that there are six distinct stiffness 
Eigenvalues.   
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5.2  Transverse Square-Symmetry 
 
Regarding transverse square-symmetry, in addition to three-dimensional orthotropy, 
a consequence of the character of the inversion being the same as the 
dimensionality of the strain space, the representation of the symmetry group 16/6 
on nine-dimensional strain space must consist of g-Irreps, and not include any u-
Irreps of Table 1. Since the trace of any rotation matrix is 4cos2θ+4cosθ+1, the 
character of both 2xi and 4xi is unity. In order to the character 2x3 become unity, 
simultaneously as the character of the Identity is nine, Irrep Eg (Table 1) must 
appear two times in the representation, and the combined appearance of the rest of 
the g-Irreps must be five. 
 
mx13 exchanges co-ordinates 1 and 2. The only strain component it retains is ε33, 
and thus the character is 1. The only representation which gives the correct 
character for all these conjugacy classes is 

ggggg EBBAAD 22 2121 ⊕⊕⊕⊕= . It is straightforward to verify that the 

characters of the rest of the group members do comply with this representation, 
these characters all being equal to unity. 
 
Thus we find that transverse square-symmetry induces two two-fold degeneracies 
in stiffness Eigenvalues. This is somewhat surprising since it has been recently 
shown that square-symmetry does not induce any degeneracies of stiffness 
Eigenvalues in the case of a four-dimensional strain space [14]. A first guess might 
be that the degenerate Eigenvalues might be among those which do not exist in the 
case of a two-dimensional material. It can actually be verified that 23231313 QQ = , 

and 32323131 QQ =  [14]. Further considering the symmetry of the stress tensor and 

the strain tensor, which are not due to material symmetry, we find that there are five 
distinct stiffness Eigenvalues. 
 
5.2  Cube-Symmetry 
 
Again, the character of the Identity, as well as the character of the Inversion equals 
the number of basis vectors in spanning the nine-dimensional vector space, i.e. 
nine. Thus we find that the representation of the group on the strain vector space 
must consist of g-Irreps of Table 2 only, and not include any u-Irreps. One of the 
members of the class C2 can be given as a combination of two reflections, namely 
Mx12mx23. The character of this transformation is calculable by transforming co-
ordinates, as well as displacements, and composing transformed strain 
components of them. The transformation does preserve one of the strain 
components. No one changes sign, and thus the character is one. One of the 
members of class C3 can be given as mx23mx32. The character of this transformation 
can similarly be clarified as zero. The latter indicates that the number of A-Irreps in 
the Representation must equal the number of E-Irreps. This number cannot be 
zero. If it would, the Representation would consist of T-Irreps only, and the 
character of 2xi could not equal unity. The only number which gives simultaneously 
unity for 2xi and nine for Identity is one.  
 
Then, two questions remain. Which one of the Irreps A1g and A2g appears in the 
Representation? The combined number of T1g and T2g must be two, but how may of 
each? 
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Now, there are two ways of making the character of 4xi.  Either ggg TTA 211 ⊕⊕  or 

gg TA 12 2⊕  must appear in the Representation. On the other hand, mx13 

exchanges co-ordinates 1 and 2. The only strain component it retains is ε33, and the 
character is 1. Thus either ggg TTA 211 ⊕⊕  or gg TA 22 2⊕  must appear in the 

Representation. Only the former works for 4xi. Thus the Representation is 

gggg TTEAD 211 ⊕⊕⊕= .  

 
We find that in the case of cube-symmetry, there is one two-fold degeneracy, and 
two three-fold degeneracies in stiffness Eigenvalues due to material symmetry. The 
three-fold degeneracies obviously refer to shear stiffnesses. Considering also the 
symmetry of the stress and strain matrices, all shear stiffnesses must be equal. 
The two-fold degeneracy corresponds to stiffness Eigenvalues related to normal 
strains and normal stresses. Thus there are three distinct stiffness Eigenvalues. 
 
5.3  Transverse Isotropy 
 
Regarding the transverse quasi-isotropy group 24/4, the character of the Identity, as 
well as the character of the inversion, equals the number of basis vectors spanning 
the nine-dimensional vector space, i.e. nine. Thus we find from Table 4 that the 
representation of the group on the strain vector space must consist of g-Irreps only, 
and not include any u-Irreps. Again, the trace of any rotation matrix is 
4cos2θ+4cosθ+1. Thus the character of  2xi is unity,  3xi is zero,  and   6xi four. The 
Representation must include two-dimensional Irreps, as many as one-dimensional, 
in order to make the character of 3xi zero. The character of the Identity then 
requires that there are three two-dimensional and three one-dimensional Irreps. 
The characters of 2xi and 6xi become right if there are three A-Irreps, two E1g and 
one E2g. In order to separate between the A-Irreps, we have to study the reflections. 
M1 and  m2 are with respect to co-ordinate axis. Thus they change the sign of ε12 

and ε21 but retain ε11, ε22 and ε33. In particular, M1 also changes the sign of ε13 and 
ε31, but retains ε23 and ε32. Thus the character of this transformation is unity. The 
only combination of Irreps compatible with these characters is 

gggg EEAAD 2121 22 ⊕⊕⊕= . 

 
We find that transverse isotropy induces three two-fold degeneracies in stiffness 
Eigenvalues. Thus one additional degeneracy appears, in relation to the transverse 
square-symmetry: one of the Eigenvalues corresponding to normal strains equals 
the shear stiffness within the plane of Isotropy. There are four distinct stiffness 
Eigenvalues. 
 
5.4  Three-Dimensional Isotropy 
 
Isotropy actually corresponds to a continuous Symmetry Group of infinite order. It 
obviously would be possible to generalize the two-dimensional laminate treatments 
into three dimensions. This would, create discrete symmetry groups of rather large 
order, with huge group multiplication tables. One of the candidates for a discrete 
group which might be used to describe three-dimensional isotropy may be the 
Icosahedral group of order 120. 
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Fortunately, isotropy is a rather trivial case, regarding degeneracies of stiffness 
Eigenvalues. There are two distinct stiffness Eigenvalues.  How is this supposed to 
be reflected in the dimensionality of the Irreps constituting the Natural 
Representation of the Symmetry Group, acting on the nine-dimensional strain 
space? Recalling that the stress tensor and the strain tensor are symmetric by 
definition, and not due to material symmetry, the six Shear Stiffnesses transform 
according to two different Irreps. Then, two of the stiffness Eigenvalues 
corresponding to normal strains are degenerate, and similar to the shear 
stiffnesses. Thus the representation should contain one five-dimensional Irrep and 
one three-dimensional Irrep. Dimensionality of the strain space then requires a third 
Irrep, which must be one-dimensional.  
 
 
6. Representations for Fibrous Materials 
 
6.1  A Body with All-Parallel Fibers 
 
The trace of any rotation matrix being 4cos2θ+4cosθ+1, the character of both 2xi 
and 4xi is unity. Regarding 2x3, this requires the two-dimensional Irrep E to appear 
two times in the Representation (Table 5). Rest of the rotation characters require 
the Irrep A1 to appear two times in the Representation. The only combination of 
Irreps compatible with these characters EBBAAD 22 2121 ⊕⊕⊕⊕= . It 

appears that the Stiffness Degeneracies are the same as those of transverse 
square-symmetry (group 16/6), even if the symmetry group is 8/4. 
 
6.2  Fibrous Structures with Orthotropy in Two Dimensions 
 
A structure with all fibers parallel to a plane and with square-symmetric orientation 
distribution of fibers within the plane corresponds to symmetry group 8/4, and has 
the character table shown in Table 5. The Representation of this group in the nine-
dimensional strain space thus is the same as in the case of a body of all-parallel 
fibers, and even the Stiffness Degeneracies are the same, being equal to those 
corresponding to transverse square-symmetry. 
 
For a structure with all fibers parallel to a plane and with isotropic orientation 
distribution of fibers within the plane, the symmetry can be described in terms of 
group 12/3, and the character table is shown in Table 6. The character of 3xi being 
zero, we find that the number of two-dimensional Irreps must equal the number of 
one-dimensional Irreps. The character of the Identity requires that this number must 
be three. The characters of 2x1 and 2x2 being unity require that the one-dimensional 
irreps consist of two times A1 and once A2. Then, the character of 2x1 being unity 
requires that the two-dimensional irreps are two times E1 and once E2. Thus the 
Representation is 2121 22 EEAAD ⊕⊕⊕= . Thus the stiffness degeneracies 
are the same as those of transverse isotropy, even if the symmetry group is 12/3 
instead of 24/4. 
 
6.3  Fibrous Structures with Orthotropy in Three Dimensions 
 
Transverse square-symmetry, in addition to three-dimensional orthotropy, 
corresponds to symmetry group 16/6. A body consisting of fibers with helically 
wound microfibrils, the fibers aligned according transverse square-symmetry, in 
addition to three-dimensional orthotropy, corresponds to symmetry group 8/4, which 
is the same as the symmetry group of a single fiber. A body with all-parallel fibers 
actually is one special case of this kind of a structure. Another special case is a 
body where all fibers are parallel to a plane and with an invariant square-symmetric 
orientation distribution within the plane. All these structures show two two-fold 
stiffness degeneracies, and have five distinct stiffness Eigenvalues. 
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Transverse quasi-isotropy, in addition to three-dimensional orthotropy, corresponds 
to symmetry group 24/4. A body consisting of fibers with helically wound 
microfibrils, the fibers aligned according transverse square-symmetry, in addition to 
three-dimensional orthotropy, corresponds to symmetry group 12/3. A body where 
all fibers are parallel to a plane and with an isotropic orientation distribution within 
the plane is a special case of this kind of a structure. All these structures show 
three two-fold stiffness degeneracies, and four distinct stiffness Eigenvalues. 
 
Cube-symmetry corresponds to a symmetry group of order 48. A body consisting of 
fibers with helically wound microfibrils, the fibers aligned according cube-symmetry, 
corresponds to a symmetry group of order 24. A Representation of this group on a 
nine-dimensional strain vector space can be composed on the basis of the 
Character Table 2. The character of 3xi being zero, we find that the number of two-
dimensional Irreps must equal the number of one-dimensional Irreps. The 
character of 2xi being unity, and the character of Identity being nine, that number 
must be one, and in addition, there must be two three-dimensional Irreps. The 
character of 4xi being unity, either 211 TTA ⊕⊕  or 12 2TA ⊕  must appear in the 

Representation. Thus the possible Representations are 211 TTEAD ⊕⊕⊕=   

and 12 2TEAD ⊕⊕= . 
 
Thus a body consisting of fibers with cube-symmetric alignment has one two-fold 
degeneracy, and two three-fold degeneracies in stiffness Eigenvalues. Thus the 
stiffness degeneracies are the same as those of cube-symmetry, even if the 
symmetry group is of order 24 instead of 48: there are three distinct stiffness 
Eigenvalues. 
 
Three-dimensional Isotropy might be characterized by the Icosahedral group of 
order 120. In the case of material consisting of fibers with helically arranged 
microfibrils, plane reflection symmetries are nonexistent, and such fibers being 
aligned according to three-dimensional isotropy, a corresponding finite symmetry 
group might be the Icosahedral rotation group of order 60. The results thus indicate 
that plane reflection and inversion symmetries being absent, the order of any 
symmetry group becomes reduced by a half. This is likely to be related to the fact 
that any rotation or line reflection can be produced in terms of two consequent 
plane reflections [11, 12, 13]. 
 
The above results indicate that the degeneracies in stiffness Eigenvalues might 
always be the same for a body consisting of fibers with microfibrils as they are for a 
non-fibrous body with symmetries corresponding to those of symmetries in fiber 
alignment. 
 
 
7. Fibers without Transverse Square-Symmetry 
 
A plant fiber does not necessarily show transverse square-symmetry, even if the 
microfibril angle would be neglected. For example, in the case of wood fibers, the 
tangential and radial cell walls may differ in thickness, as well as in chemical 
composition [15]. Further, the microfibril angle may not be the same in cell walls 
with different orientation; it is not uncommon that the microfibril angle is greater in 
radial cell walls, in comparison to tangential cell walls [16, 17, 18]. In such a case, 
the symmetry operations of a fiber are limited to three rotations by π and Identity. 
The symmetry group corresponds to the Vierergruppe 4/2. Neglecting the microfibril 
angle would increase the symmetries into those of group 8/3. Both of these groups 
are Abelian. A continuous body made of all-parallel fibers has the same symmetries 
as the single fiber.  
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In the case of fibers without transverse square-symmetry, orthotropy in fiber 
alignment distribution must include an angle of rotation with respect to fiber axis. 
The symmetry group of three-dimensional orthotropy again is 8/3, but plane 
reflections and inversion being excluded as symmetry operations, the symmetry 
group is reduced to the Vierergruppe 4/2. 
 
In the case of transverse square-symmetry in fiber alignment, in addition to 
orthotropy, the symmetry group would be 16/6, but plane reflections and inversion 
being excluded as symmetry operations, the symmetry group is reduced to 8/4. 
Transverse Isotropy would correspond to symmetry group 24/4, which however 
becomes reduced to 12/3. The symmetry group of cube-symmetry becomes 
reduced from order 48 to order 24.  
 
It appears that a structure consisting of all-parallel fibers has different properties 
depending on whether or not the fibers are transversely square-symmetric: in the 
symmetric case, there are two two-fold stiffness degeneracies, whereas in the non-
symmetric case there are none. Otherwise, a particular symmetry in fiber alignment 
always appears to correspond to the same symmetry group, regardless whether the 
fiber is square-symmetric or not. It is however worth noting that axial rotation of any 
fiber more easily breaks any fiber alignment symmetry if the fiber is not square-
symmetric.  
 
 
8. Eigen Deformations 
 
We are here denoting Eigen Deformations such changes in size and shape which 
are results of potential fields homogeneous (and isotropic) in space. Spatial partial 
derivatives of Eigen Deformations are denoted as Eigen Strains. Examples of such 
are hygroexpansive and thermal strains. Forces and correspondingly stresses are 
related to potential gradients. Mechanical strains are related to stresses through 
constitutive laws, specific to the material. The total deformation of a body depends 
on internal strains related to internal stresses, strains related to external forces or 
body forces, as well as Eigen Strains. 
 
According to the classical symmetry principle, or Curie’s principle, an effect always 
is at least as symmetric as the cause [7, 8]. In the particular case of Eigen 
Deformations as the effect, the structure of the body, together with the potential 
field, may be seen as the cause. The potential field inducing Eigen Deformations 
however being homogeneous, and a potential field always being isotropic, it has all 
possible symmetries in space. Thus the deformed structure of a body shows at 
least the symmetries of the undeformed structure of the body, and the symmetries 
of Eigen Strains are at least those of the material. 
 
The symmetries of a body or structure depend on material symmetries, as well as 
geometrical symmetries. We will here discuss two kinds of structural geometries:  
volume elements with geometrical plane reflection symmetries on the one hand, 
and thin, initially flat sheets on the other hand. A volume element is here 
understood to be small enough to have essentially homogeneous strain state, 
whereas the thin sheet is taken as large enough that the strain state may vary 
within the sheet. Axis or planes of geometrical symmetries may or may not coincide 
with those of material symmetries. We will first discuss bodies with orthotropic 
material properties, and then bodies composed of fibers with helically wound 
microfibrils. 
 
 
8.1  Bodies with Geometrical Plane Reflection Symmetries, without Microfibrillar 
Structure 
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A three-dimensional orthotropic material retains its properties in eight symmetry 
operations, corresponding to group 8/3: three plane reflections, one with respect to 
each of the material symmetry planes, three rotations by π, Identity, and parity 
inversion (or point reflection).  
 
A plane reflection with respect to a co-ordinate plane reverses the sign of any shear 
strain appearing in the perpendicular co-ordinate planes. In case the geometrical 
symmetry planes of a volume element coincide with those of the material, the plane 
reflection symmetries make that on-axis shear strains cannot appear as Eigen 
Strains for an orthotropic volume element, small enough to have essentially 
homogeneous strain state. Thus Eigen Deformations of such an element may 
contain normal deformations only. On the other hand, if no one of the material 
symmetry axis coincides with any of the geometrical symmetry axis, the body does 
not have nontrivial spatial symmetry transformations. 
 
It is possible that one but only one of the material symmetry axis coincides with one 
of the geometrical symmetry axis. In such a case no-one of the material symmetry 
planes coincides with any of the geometrical symmetry planes, but the system does 
have a nontrivial spatial symmetry transformation. For a general orthotropic 
material this operation is a rotation by π. Consequently, any distortion of the body 
must repeat itself with an angular distance of π. Even if on-axis shear strains 
cannot appear as Eigen Strains for an orthotropic material, the symmetry 
transformation does allow shear deformations within the co-ordinate system 
defined by the geometrical symmetry axis of the body. 
 
There are more symmetry operations in some special cases. In case both the 
material and the body geometry show square-symmetry within the plane 
perpendicular to the common symmetry axis, rotations by ±π/2 are symmetry 
operations. Then, any distortion must repeat itself with an angular distance of π/2. 
This does not allow shear deformations within the co-ordinate system defined by 
the geometrical symmetry axis. In case both the material and the geometry show 
transverse isotropy, then any rotation with respect to the common symmetry axis is 
a symmetry operation, and the transverse shape of the body is retained in Eigen 
Deformations. 
 
Still one more special case is worth considering. In the case of three-dimensional 
isotropy, any geometrical symmetry axis is a material symmetry axis. Consequently, 
every geometrical symmetry operation is a symmetry operation for the entire 
structure. Further, in the case of isotropy, also Eigen Strains are isotropic, and the 
isotropic body retains its entire geometry in Eigen Deformations. 
 
A flat, thin sheet with orthotropic material properties retains its properties in the 
symmetry operations corresponding to group 8/3, provided one of the orthotropic 
material planes coincides with the plane of the sheet, and the sheet has suitable 
planar geometry. A consequence of the plane reflection symmetries is that the flat 
sheet must remain flat in Eigen Deformations.  
 
If no one of the orthotropic material planes coincides with the plane of the sheet, 
any orthotropic plane reflection will change the alignment of the sheet in space. The 
same applies to any rotation with respect to any symmetry axis of the material, as 
well as parity inversion. Thus such a structure does not have any nontrivial 
symmetry transformations in terms of rotations or reflections. 
 
8.2  Volume Elements with Microfibrillar Structure and Geometrical Plane Reflection 
Symmetries  
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A material consisting of fibers with helically wound microfibrils, the fibers aligned 
according to three-dimensional orthotropy, has symmetries of the Vierergruppe 4/2. 
The group of symmetry operations contains three mutually perpendicular rotations 
by π. Regarding a material element with the same symmetries in its geometry, the 
symmetries are retained in Eigen Deformations. Thus Eigen Deformations must be 
periodic within the three rotations by π. This allows shear deformations, for 
example. 
 
Additional symmetries in fiber alignment reduce the possible Eigen Deformations. 
Square-symmetry regarding both the fiber alignment and body geometry makes 
that rotations by ± π/2 are symmetry operations. This no longer allows shear 
deformations within the plane of square-symmetry. Isotropy implies that the 
geometry of the body is retained in Eigen Deformations. In the particular case 
where one but only one of the material symmetry axis coincides with one of the 
geometrical symmetry axis, nontrivial symmetry operations consist of rotations with 
respect to this axis only.  
 
8.3  Thin Sheets with Orthotropic Orientation of Fibers 
 
For a structure with all fibers parallel to a plane and with three-dimensional 
orthotropic orientation distribution of fibers within the plane, the symmetry group is 
4/2, or the Vierergruppe. The group contains one in-plane rotation by π, and two 
out-of-plane rotations by π. Any out-of plane rotation converts any concave 
curvature convex, and vice versa. Thus the out-of-plane rotations as symmetry 
operations require that if a particular site of the body has concave curvature, the 
site which corresponds to the image of the first site must have convex curvature, 
and vice versa. The in-plane angular separation between a site and its image is two 
times the angle between the site and the axis of out-of-plane rotation. On the other 
hand, in-plane rotation by π is a symmetry operation for this structure. Thus the in-
plane rotation by π must not reverse curvature. The initially flat structure does not 
need to remain flat in Eigen Deformations, but it may have periodic out-of-plane 
deformations with an angular period of π. The curvature must be zero within the 
axis of the out-of-plane rotation symmetries (or the axis of fiber orientation 
symmetry). An example of a sheet with Eigen Deformations allowed for group 4/2 is 
shown in Fig. 3. 
  
Within a structure with all fibers parallel to a plane and with orthotropic orientation 
distribution of fibers within the plane, the fiber alignment is not necessarily 
orthotropic in three dimensions. In such a case out-of plane rotations are not 
symmetry operations for the sheet, and the symmetry group is of order two. In such 
a case curvature does not need to be reversed as a function of any in-plane 
rotation. It just needs to be retained in in-plane rotation by π. This allows the 
structure to adopt a paraboloidal or cup-like shape, in addition those where positive 
and negative curvatures alternate. An example of a sheet with Eigen Deformations 
allowed for the symmetry group of order 2 is shown in Fig. 4. Shear strains are 
invariant with rotations by π. Thus a thin sheet made of orthotropically aligned fibers 
may have Eigen Deformations in shear, regardless whether the fiber alignment 
orthotropy is two- or three-dimensional. 
 
 
8.4  Thin Sheets with Square-Symmetric Orientation of Fibers 
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For a structure with all fibers parallel to a plane and with square-symmetric 
orientation distribution of fibers within the plane, in addition to three-dimensional 
orthotropy in fiber alignment, the symmetry group is 8/4. The group contains three 
in-plane rotations, and four out-of-plane rotations. Any out-of plane rotation 
converts any concave curvature convex, and vice versa. The angular separation 
between the axis of the four out-of-plane rotations is π/4. Within any such axis, the 
curvature changes sign, and shows sign-reversal symmetry with respect to the axis. 
On the other hand, the in-plane rotations require the same kind of curvature to 
appear at angular intervals of π/2. The initially flat structure does not need to remain 
flat in Eigen Deformations, but it may have periodic out-of-plane deformations with 
an angular period of π/2. Such deformations must be symmetric, except for sign 
reversal, with respect to in-plane rotation with an angle which is the angular 
separation between an original position and any line of out-of-plane rotation 
symmetry multiplied by -2. An example of a sheet with Eigen Deformations allowed 
for group 8/4 is shown in Fig. 5. Shape shown in Fig. 3 would not be symmetric 
enough for this group – Fig. 5 illustrates the minimum of symmetries for Eigen 
Deformations within 8/4.  
 
Within a structure with all fibers parallel to a plane and with square-symmetric 
orientation distribution of fibers within the plane, the fiber alignment is not 
necessarily orthotropic in three dimensions. In such a case out out-of plane 
rotations are not symmetry operations for the sheet, and the symmetry group is 4/1. 
In such a case Eigen Deformations may produce a body which has the shape of a 
cup, or a paraboloid, or any structure where similar pattern of deformation is found 
at angular distances of π/2. An example of a sheet with Eigen Deformations 
allowed for group 4/1 is shown in Fig. 6. Shape shown in Fig. 4 would not be 
symmetric enough for this group– Fig. 6 illustrates the minimum of out-of-plane 
symmetries for Eigen Deformations within 4/1. 
 
Any shear strain within a plane perpendicular to the rotation axis changes its sign 
with a rotation by π/2. Thus such a rotation, as a material symmetry operation, does 
not allow shear strain within a small volume element with essentially homogeneous 
strain state. However, in the case of a macroscopic body with non-homogenous 
strain state, shear strains may appear. The just need to change their sign at 
angular intervals of π/2. An example of such a two-dimensionally deformed 
structure is shown in Fig. 7. Fig. 8 shows the combination of in-plane and out-of-
plane deformations within group 8/4.  
 
  
8.5  Thin Sheets with Isotropic In-Plane Orientation of Fibers 
 
For a structure with all fibers parallel to a plane and with isotropic orientation 
distribution of fibers within the plane, the symmetry was above described in terms 
of discrete symmetry group 12/3, which corresponds to in-plane quasi-isotropy in 
terms of a 60/0/60 – laminate. However, there are more symmetry operations: any 
rotation within the plane is a symmetry operation for this kind of a structure. An 
effect always being at least as symmetric as the cause, Eigen Deformations always 
retain the symmetries of the structure. Thus a thin sheet with isotropic fiber 
orientation distribution within the plane always retains in-plane rotation symmetries. 
One consequence is that such a body cannot have in-plane Eigen Deformations in 
shear. 
 
In-plane rotation symmetries being retained does not necessarily mean that the 
sheet remains planar. Even a conical or paraboloidal body has such rotation 
symmetries. However, the symmetry group 12/3 contains also out-of-plane 
rotations as symmetry operations. These being retained in Eigen Deformations 
does assure that the sheet remains planar. 
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Within a structure with all fibers parallel to a plane and with isotropic orientation 
distribution of fibers within the plane, the fiber alignment is not necessarily 
orthotropic in three dimensions. In other words, the in-plane isotropy is not 
necessarily invariant as a function of the co-ordinate perpendicular to the plane, 
since axial fiber rotation may differ. Then, out-of plane body rotations are not 
symmetry operations for the sheet, and the symmetry group corresponding to the -
60/0/60 – laminate is 6/1. In such a case Eigen Deformations may produce a body 
which has the shape of a cup or a paraboloid. Deformed sheets shown in Figs. 4 
and 6 are not symmetric enough to describe two-dimensional fiber alignment 
isotropy, which is illustrated in Fig. 9.  
 
 
9. Discussion 
 
The results indicate that plane reflection and inversion symmetries being absent, 
the order of any symmetry group becomes reduced by a half. Any rotation or line 
reflection can be produced in terms of two consequent plane reflections [11, 12, 
13]. Groups generated by reflections thus include rotations. On the other hand, 
groups generated by rotations do not include reflections.  
 
The results also indicate that the degeneracies in stiffness Eigenvalues might 
always be the same for a body consisting of fibers with microfibrils as they are for a 
non-fibrous body with material symmetries corresponding to those of fiber 
alignment symmetries. Let us try to clarify the mechanisms behind these 
observations. They may be explainable in terms of vectors generating “point 
groups” as spatial symmetry groups. 
  
In three-dimensional Euclidean space, any point group of spatial symmetry can be 
generated by three unit vectors.  Let us denote the generating vectors a, b and c. In 
order to generate a dicyclic symmetry group, the three vectors must satisfy dicycle 

conditions [12] ( ) ( ) ( ) 1−=== rqp cabcab , where the exponents refer to 
integers, and the product of any two vectors refers to the geometric product [11]. 
Explicit solutions for the geometric products are 
ab = eic´π/p 
bc = eia´π/q 
ca = eib´π/r. 
  
In the case of three-dimensional symmetry, the spherical triangle with the 
generating unit vectors as vertices must have a positive area. The area is given by 
the spherical excess formula [11]  
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                        (3). 
  
Then, the values of the integer parameters are restricted by   

1
111


rqp
++

            (4). 
 
We find that the smallest of the three integer parameters must be at most 2, and 
the three generating vectors are independent only if all of the parameters are 
greater than unity. Thus the smallest one must equal 2, and Eq. (2) restricts the 
values of the rest. Let us denote the parameter “r” to be 2. Then the parameter 
space is characterized by the values of p and q [12]. If q is 2, any value of p is 
allowed. If q is 3, possible values of p are 3, 4 and 5.  
 
Thus possible point groups in three-dimensional Euclidean space can be identified 
by notations p (for two-dimensional symmetry) and pq. In particular, these notations 
refer to reflection groups, which include rotations. On the other hand, rotation 
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groups do not include plane reflections. Groups missing some reflection 

symmetries are denoted as p , qp , qp , qp , and pq  [12]. 
 
Let us now discuss the reflection and rotation groups corresponding to orthotropic 
and fibrous materials. Transverse square-symmetry, in addition to orthotropy, 
corresponds to symmetry group 16/6. It can be written pq=42. On the other hand, a 
body with all-parallel, transversely square-symmetric fibers corresponds to 

symmetry group 8/4, which can be written 24=qp . The latter symmetry group 
also applies to a fibrous structure with all fibers parallel to a plane, and with square 
symmetric orientation distribution within the plane, or to any three-dimensional 
fibrous body with orthotropic and transversely square-symmetric fiber alignment 
distribution. All these materials have two two-fold degeneracies in stiffness 
Eigenvalues, and thus five of the Eigenvalues are distinct. 
 
Transverse quasi-isotropy, in addition to orthotropy, can be described in terms of 
symmetry group 24/4. It can be written pq=32. On the other hand, a fibrous 
structure with all fibers parallel to a plane, and with quasi-isotropic orientation 
distribution within the plane corresponds to symmetry group 12/3, which can be 

written 23=qp . The same symmetry group applies to any fibrous body with 
orthotropic and transversely quasi-symmetric fiber alignment distribution. All these 
materials have three two-fold degeneracies in stiffness Eigenvalues, and thus four 
of the Eigenvalues are distinct. 
 
Cube-symmetry corresponds to the full Octahedral group of order 48, or pq=43. 
The symmetry group of a structure with cube-symmetric alignment of fibers is the 

rotational Octahedral group of order 24, or 34=qp . Both of these groups 
represented in nine-dimensional strain space show one two-fold and two three-fold 
degeneracies in stiffness Eigenvalues. Thus there are three distinct stiffness 
Eigenvalues. 
 
The results indicate that the degeneracies in stiffness Eigenvalues might always be 
the same for a body consisting of fibers with microfibrils as they are for a non-
fibrous body with material symmetries corresponding to those of fiber alignment 
symmetries. Stiffness degeneracies appear to be controlled by the integer 
exponents of dicycle conditions applied on products of vectors generating 
symmetry groups. In other words, it appears that stiffness degeneracies of a 

material with symmetry group qp  are the same as those of a material with 
symmetry group pq.  
 
 
It appears that fibrous materials show very different Eigen Deformations, in 
comparison to corresponding orthotropic materials. Plane reflection symmetries 
being absent, shear deformations may appear as Eigen Deformations, and thin 
sheets do not retain their planar shape. Regarding thin sheets, some experimental 
observations have been published recently [19, 20]. A few other examples are 
familiar to anyone who has dried small wood specimens.  
 
An effect may display more symmetries than the cause [7, 8]. The Eigen 
Deformations of a fibrous body significantly differing from those of a corresponding 
orthotropic body – being less symmetric - does require that at least one of the 
dimensions of the body is not very much greater than the thickness of a fiber. In the 
case of a large body, the spatial separation of two adjacent fiber walls becomes 
negligible in relation to the size of the entire structure, and thus the behavior of a 
large body approaches that of the corresponding orthotropic structure.  
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Interestingly, the spatial symmetries of a structure are always retained in Eigen 
Deformations. The symmetries do not need to be related to fibrous structure: all 
features of the material, as well as the geometry of the body, affect the symmetries. 
For example, considering sawing and then drying of boards from tree trunks, a 
significant source of symmetry limitations is the alignment of growth rings. Boards 
with mutually perpendicular plane reflection symmetries will experience normal 
Eigen Deformations only, whereas boards with rotation symmetries only show 
shear deformations.  
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Figure 1. Cellular tissue of softwood. Courtesy of Pekka Saranpää. 
 

 
Figure 2. An individual fiber under polarized light. Courtesy of Pekka Saranpää. 
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Figure 3. A saddle-shaped structure with out-of-plane deformations with angular 
period of π, with out-of plane rotation symmetries by π. 
 

 Figure 4. A structure with out-of-plane deformations with angular period of π, 
without out-of plane rotation symmetries. 
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Figure 5. A structure with out-of-plane deformations with angular period of π/2, with 
out-of plane rotation symmetries by π. 
 
 

Figure 6. A structure with out-of-plane deformations with angular period of π/2, 
without out-of plane rotation symmetries. 
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Figure 7. An initially round sheet, showing in-plane shear strain which changes sign 
along with rotation by π/2. 
 

 Figure 8. A combination of the deformations shown in Figs 5 and 7.  
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 Figure 9. A cup-shaped structure, as a consequence or two-dimensional fiber 
alignment isotropy. 
 
 
 
Table 1. Character Table for Group 16/6. 

 I 2x3 2x1   

2x2 
4x3   

4´x3 
Mx12   Mx13  

Mx23  
mx13  
mx23  

i 
34 x   

34́ x  

13xm   

23xm  

A1g 1 1 1 1 1 1 1 1 1 1 
A2g 1 1 -1 1 1 -1 -1 1 1 -1 
B1g 1 1 1 -1 1 1 -1 1 -1 -1 
B2g 1 1 -1 -1 1 -1 1 1 -1 1 
Eg 2 -2 0 0 -2 0 0 2 0 0 
A1u 1 1 1 1 -1 -1 -1 -1 -1 1 
A2u 1 1 -1 1 -1 1 1 -1 -1 -1 
B1u 1 1 1 -1 -1 -1 1 -1 1 -1 
B2u 1 1 -1 -1 -1 1 -1 -1 1 1 
Eu 2 2 0 0 2 0 0 -2 0 0 
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Table 2. Character Table for Group Oh. 

 I 2x1 

2x2 

2x3   

4x1   

4’x1  

4x2   

4’x2  

4x3   

4’x3 

6*C2    8*C3   Mx12 

Mx13  
Mx23  

mx13  
mx23 
mx12  
mx32 
mx21  
mx31    

i i 4x1  

i 4’x1   

i 4x2   

i 4’x2   
 i 4x3    
i 4’x3 

8* 
 i C3 

A1g 1 1 1 1 1 1 1 1 1 1 
A2g 1 1 -1 -1 1 1 -1 1 -1 1 
Eg 2 2 0 0 -1 2 0 2 0 -1 
T1g 3 -1 1 1 0 -1 -1 3 1 0 
T2g 3 -1 -1 -1 0 -1 1 3 -1 0 
A1u 1 1 1 1 1 -1 -1 -1 -1 -1 
A2u 1 1 -1 -1 1 -1 1 -1 1 -1 
Eu 2 2 0 0 -1 -2 0 -2 0 1 
T1u 3 -1 1 1 0 1 1 -3 -1 0 
T2u 3 -1 -1 -1 0 1 -1 -3 1 0 

 
 
 
Table 3. Character Table for Group 12/3. 

 I 2x3 3x3   3´x3 6x3  6´x3 M1  M2 M3  m1  m2 m3 
A1 1 1 1 1 1 1 
A2 1 1 1 1 -1 -1 
B1 1 -1 1 -1 1 -1 
B2 1 -1 1 -1 -1 1 
E1 2 -2 -1 1 0 0 
E2 2 2 -1 -1 0 0 

 
 
Table 4. Character Table for Group 24/4. 

 I 2x3 3x3   

3´x3 
6x3  

6´x3 
M1  
M2 
M3 

m1  
m2 
m3 

Mx12   i 
33x   

33́ x  

36 x   

36́ x  

2x2   

2M   

3M  

1m    

2x1 

3m  

A1g 1 1 1 1 1 1 1 1 1 1 1 1 
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 
B1g 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
B2g 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 
E1g 2 -2 -1 1 0 0 -2 2 1 -1 0 0 
E2g 2 2 -1 -1 0 0 2 2 -1 -1 0 0 
A1u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 
A2u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
B1u 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 
B2u 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 
E2u 2 -2 -1 1 0 0 2 -2 -1 1 0 0 
E2u 2 2 -1 -1 0 0 -2 -2 1 1 0 0 
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Table 5. Character Table for Group 8/4. 

 I 2x3 2x1   2x2 4x3   4´x3 
13xm   

23xm  

A1 1 1 1 1 1 
A2 1 1 -1 1 -1 
B1 1 1 1 -1 -1 
B2 1 1 -1 -1 1 
E 2 -2 0 0 0 

 
 
 
Table 6. Character Table for Group 12/3. 

 I 2x3 3x3   3´x3 6x3  6´x3 2x1  L12 L’12  2x2  L6 L’6 
A1 1 1 1 1 1 1 
A2 1 1 1 1 -1 -1 
B1 1 -1 1 -1 1 -1 
B2 1 -1 1 -1 -1 1 
E1 2 -2 -1 1 0 0 
E2 2 2 -1 -1 0 0 
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