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Data-driven Emotion Conversion In Spoken English

Zeynep Inanoglu, Steve Young ∗
University of Cambridge, Department of Engineering, Trumpington Street, Cambridge, CB2 1PZ, UK

Abstract

This paper describes an emotion conversion system that combines independent parameter transformation techniques to endow a
neutral utterance with a desired target emotion. A set of prosody conversion methods have been developed which utilise a small
amount of expressive training data (∼15 minutes) and which have been evaluated for three target emotions: anger, surprise and
sadness. Two alternative F0 generation methods are presented. Firstly, an HMM-based approach uses linguistic features at the
syllable level to model F0 segments in an effort to capture the affective and linguistic layers of intonation within a single framework.
Secondly, a segment selection approach utilises a concatenative framework to directly search for F0 segments in the training
corpus. In either case, phone durations are transformed using a set of regression trees and a GMM-based spectral conversion
technique is used to transform the voice quality. Each independent module and the combined emotion conversion framework were
evaluated through a perceptual study. Preference tests demonstrated that each module contributes a measurable improvement in
the perception of emotion and an emotion classification test showed that both methods of F0 generation communicate the desired
emotion above chance level. However, F0 segment selection outperforms the HMM-based F0 generation method both in terms of
emotion recognition rates as well as intonation quality scores, particularly in the case of anger and surprise. Furthermore, using
segment selection, the emotion recognition rates for the converted neutral utterances were comparable to the same utterences
spoken directly in the target emotion.

Key words: emotion conversion, expressive speech synthesis, prosody modeling

1. Introduction

The ability to output expressive speech via a Text-to-
Speech Synthesiser (TTS) will make possible a new genera-
tion of conversational human-computer systems which can
use affect to increase naturalness and improve the user ex-
perience. Typical examples include call centre automation,
computer games, and personal assistants.

To avoid building a separate voice for each required emo-
tion, a transformation can be applied to modify the acoustic
parameters of neutral speech such that the modified utter-
ance conveys the desired target emotion. However, learning
the complex rules that govern the expression of any target
speaking style is a significant challenge and although var-
ious rule-based transformation attempts exist in the liter-
ature (see [1] for a review), designing good rules for each
expressive style requires tedious manual analysis and even
then, only a very limited set of acoustic-prosodic diver-
gences can be captured.

∗ Corresponding author.
Email addresses: zeynep@gatesscholar.org (Zeynep Inanoglu),

sjy@eng.cam.ac.uk (Steve Young).

In this paper we explore a set of data-driven emotion
conversion modules which require only a small amount of
speech data to learn context-dependent emotion transfor-
mation rules automatically. The data-driven conversion of
acoustic parameters in speech has been widely-studied in
the field of voice conversion. However, whilst conceptually
emotion conversion can be thought of as just another form
of voice conversion, in practice, voice conversion techniques
have focused on the transformation of the vocal tract spec-
tra, and relatively little attention has been paid to adapting
long-term F0 and duration patterns[2][3][4]. For example, a
popular F0 transformation technique employed in conven-
tional voice conversion is Gaussian normalization, which
scales every pitch point in the source speaker’s F0 contour
to match the mean, µt and standard deviation, σt of the
target:

F (s) =
σt

σs
s + µt − σtµs

σs
(1)

where µs and σs are the mean and standard deviation of
the source.

More complex F0 conversion functions have been pro-
posed for voice conversion such as GMM based F0 transfor-
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mation[5], piecewise linear transformation based on salient
points in the contour[6] and codebook-based approaches
used to predict entire F0 segments using linguistic infor-
mation[7]. However, these methods have mainly been de-
signed and evaluated within the context of speaker conver-
sion where the focus is on transforming the prosodic char-
acteristics of one speaker to sound like another. In this sce-
nario, the speech is typically neutral and exhibits minimal
prosodic variability.

Due to the dominant role of F0 and duration patterns in
distinguishing emotional expressions [8][9][10], the focus of
this paper will be on the transformation and evaluation of
prosody in a unified emotion conversion framework. Simi-
lar to [7], we adopt a linguistically motivated approach to
emotion conversion, by making explicit use of text-based
linguistic details as predictors in our transformation meth-
ods. A recent study which attempts to analyze the inter-
action between part of speech tags, sentence position and
emotional F0 contours support this modeling approach [11].

Various methods of emotion conversion have been re-
ported in the literature. In [12], GMM-based spectral con-
version techniques were applied to emotion conversion but
it was found that spectral transformation alone is not suf-
ficient for conveying the required target emotion. In [14], a
unified conversion system was proposed using duration em-
bedded Bi-HMMs to convert neutral spectra and decision
trees to transform syllable F0 segments. In [15], the use of
GMM and CART-based F0 conversion methods were ex-
plored for mapping neutral prosody to emotional prosody
in Mandarin speech. Data-driven emotion conversion meth-
ods specifically for use in an HMM-based speech synthesis
framework have also been implemented [16][17].

In this paper we describe an emotion conversion system
for English which is independent of the underlying synthe-
sis system. It can therefore add an additional layer of ex-
pressiveness to an existing system without sacrificing qual-
ity. Prosody and voice quality are converted using methods
which operate at different time intervals: F0 is modelled at
the syllable level, duration is modelled at the phone level
and voice quality is modelled at the speech frame level. The
conversion system thus consists of the following modules:

(i) F0 Generation
(a) Syllable HMMs: a generative method for

modeling and synthesizing expressive F0 con-
tours using syllable HMMs based on a small
pool of linguistic features.

(b) Segment selection: as in unit-based speech
synthesis, this method expresses F0 conversion
as a search problem, where actual syllable seg-
ments from the target emotion are spliced to-
gether under contextual and physiological con-
straints.

(ii) Duration Conversion: a set of regression trees spe-
cific to each broad phone class are used to scale neu-
tral phone durations for a given target emotion.

(iii) Spectral Conversion: A GMM-based linear trans-
formation method applied to the vocal tract spectrum

in order to change vowel quality. The methods used
are similar to the work of [12].

Each of the two alternative methods for F0 generation are
compared within the full-conversion framework.

The rest of the paper is organised as follows. In section
2, the HMM-based F0 generation method is described and
in section 3, the alternative F0 segment selection method
is presented. In section 4, the duration conversion module
is described and section 5 provides an overview of the spec-
tral conversion module. The experimental setup of the con-
version system is outlined in section 6. Finally, in section
7, the results of a perceptual study are reported.

2. F0 Generation From Syllable HMMs

HMMs have been used for the recognition of F0 related
features such as accent and tone for some time [18][19].
However, the use of HMMs as generators is more recent,
and is mostly due to the development of HMM-based syn-
thesis technology. The most popular HMM-based speech
synthesis system, HTS, [20] allows simultaneous modeling
and generation of F0 and speech spectra for full-spectrum
speech synthesis as long as a significant amount of data
is available to train the phone models. The appropriate-
ness of phone models for modeling F0 contours in isolation,
however, is arguable, since the syllable is widely consid-
ered to be the smallest temporal layer of F0 movement [21].
Hence, the system described here models F0 at the syllable
level based on features derived from word level transcrip-
tions. Of specific interest is the interaction between syllable
and word level linguistic identifiers and emotional F0 con-
tour shapes, an area “largely unexplored” according to a
study published by [22]. Furthermore, because detailed in-
formation regarding the phonetic identities of syllabic con-
stituents is ignored, the training data requirements for such
a model set is inherently much smaller than that of a com-
plete speech synthesis system.

2.1. Model Framework

The starting point of our models is the association of
syllables with their corresponding F0 movements. Unlike
phonetic symbols, syllables do not have a widely-accepted
form, symbol or label which provides a link to F0 move-
ments. Pitch accent classification schemes such as TOBI
(Tones and Breaks Indices System) have been used to model
and understand F0 movements in neutral speech [23], [24].
However, TOBI-derived units are far from ideal, since they
require manual labeling of training data by expert humans
and even then they manifest high inter-labeler disagree-
ment.

In this paper, we explore a set of text-based syllable
and word-level linguistic features that are common to all
emotional renderings of a given utterance. These features
are lexical stress (lex), position in word (wpos), position
in sentence (spos), part of speech of current word (pofs),
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Table 1
Percent of unseen contexts in the test data.

Number of Matching Features

7 features 6 features 5 features

Unseen Contexts 42.3% 2.8% 0%

part of speech of previous word (ppofs), onset type (on-
set) and coda type (coda), where the onset and coda are
either voiced, unvoiced or sonorant. Position in the sen-
tence is identified explicitly for the first three words and
the last three words in the sentence. All words in between
these sentence-initial and sentence-final groups are identi-
fied with a single tag (spos=4). Syllable position in the word
can take on one of four values: beginning of word (wpos=1),
middle of word (wpos=2), end of word (wpos=3) or a value
indicating a single-syllable word (wpos=0). Thirteen part-
of-speech tags were used based on a proprietary part-of-
speech tagger 1 .

Even though intonation movements are most meaningful
at the syllable level, microprosodic effects can be observed
at the segmental level: for instance, [25] finds strong effects
from the consonant class on the following vowel. Such find-
ings motivated the use of a broad classification scheme for
the onset and coda of the syllable. The choice of features
used here resulted from a literature review and informal
listening tests. Priority was given to features that are read-
ily available in a TTS context whilst keeping the context
space as compact as possible 2 .

Although not all feature permutations are feasible, for
example, there are syntactic limitations on part of speech
tag sequences, the potential set of features is still large and
hence some form of clustering is needed. To gain some in-
sight into this, Table 1 summarizes the percentage of un-
seen feature combinations in a test set (see section 6.1 be-
low) of 28 utterances given a training set of 272 utterances
containing a total of 2086 unique features combinations.
As can be seen, although 42.3% of the combinations in the
test set are unseen, only matching 6 of the 7 features re-
duces the unseen combinations to 2.8%, indicating that for
almost all the test data, a very similar if not exact context
has been observed in training data.

2.2. Model Training

In order to model the mix of voiced and unvoiced speech
in the F0 stream, Multi-Space Probability Distribution
HMMs (MSD-HMMs) were adopted as used in HMM-based
synthesis [26]. The voiced segment within each syllable
was aligned with the context-dependent syllable models
determined by the corresponding linguistic features. The
unvoiced regions in the training utterances were modeled

1 The part of speech tags were generated using the proprietary
tagger of Toshiba Research Speech Technology Group.
2 A detailed search for an optimal feature set which maximizes
emotion perception for a given emotion is an interesting area but
beyond the scope of this paper.
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(c) Syllable label boundaries after MSD-HMM training.

Fig. 1. Example syllable alignment for the phrase “over churchyards”.
Labels L1, L2, L3, and L4 represent linguistic feature combinations.

using a separate uv model which was always aligned with a
zero-dimensional unvoiced symbol as defined in the MSD-
HMM framework. Figure 1 illustrates an example of label
alignments for a short speech segment.

The F0 model training follows a conventional HTK
recipe[13]. The basic model topology is a three state left-
to-right HMM with three mixture components where two
of the mixtures represent the continuous voiced space and
the third represents the discrete “unvoiced” space. The in-
put feature stream consists of F0 values as well as their first
and second order differentials. Separate models were built
for each of the three emotions: surprised, sad and angry.

In speech recognition and HMM-based speech synthesis,
context-independent monophones are traditionally used for
initialization and then, once trained, they are cloned to
form the required context-dependent model set. However,
in the case of syllable F0 models, a core set of labels anal-
ogous to phones does not exist. Hence, in this case, each
model is initialised using a subset of the features chosen
to ensure a relatively balanced coverage per model. This
subset comprised word position in sentence (spos), syllable
position in word (wpos) and lexical stress (lex). This fea-
ture subset resulted in 56 base models plus a uv model for
unvoiced regions. The average number of training samples
per syllable model was 64. Full-context models were then
built by replicating the base models and using further it-
erations of embedded training. Due to sparsity of data and
the fact that a wide range of feature combinations are un-
seen, decision-tree based clustering was performed based
on a log-likelihood criterion. Trees were built for each posi-
tion in the sentence, and the initial, middle and final states
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Fig. 2. HMM-generated contours for three emotions using the same
utterance “Earwax affects koala bears terribly”

were clustered separately. The initial set of 6258 (2086 x 3)
states are reduced to 801, 779 and 529 clusters for surprise,
anger and sadness respectively.

2.3. Generation From Syllable HMMs

To generate an F0 contour, the required syllable label se-
quence is derived from the orthographic transcription and
syllable boundaries are either copied from the neutral ut-
terance or derived from the neutral utterance using the du-
ration conversion module described below. Parameter gen-
eration used the HTS framework 3 in the mode where the
state and mixture sequences are known [27], the latter be-
ing determined from the syllable boundaries and the du-
ration models [28]. The mixture component with the high-
est weight is used for generation. Once generated, the F0
stream can then be transplanted onto the neutral utterance
for perceptual evaluation.

The generative capacity of the trained F0 models is illus-
trated in Figure 2, which displays F0 contours generated
by the different emotion models for the same syllable la-
bel sequence. The full-context label sequence was extracted
from the test sentence “Earwax affects koala bears terribly”
which consists of 12 syllable models. The contours clearly
display the inherent characteristics of the three emotions:
sadness follows a slightly monotone shape with a tight vari-
ance; surprise and anger share some characteristics in the
beginning of the sentence while at the final voiced segment,
a sharp fall is generated for anger, and rising tone for sur-
prise, signaling a question-like intonation which is a com-
mon indicator of disbelief.

Finally, over-smoothing of the feature space is a known
shortcoming of HMM-based synthesis. A method has re-
cently been proposed to generate parameters based not only
on the log likelihood of the observation sequence given the
models but also on the likelihood of the utterance variance
which is referred to as global variance (GV) [29]. A single
mixture Gaussian distribution is used to model the mean
and variance of utterance variances. This model is trained
separately for each emotion and then integrated into the
parameter estimation framework. When applied to our syl-
lable F0 models, GV made a small difference to the over-
all utterance variances for surprise (Figure 3). However,
for anger and sadness, the addition of global variance to

3 HTS Version 2.1α was used
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Fig. 3. Surprised F0 contour for the utterance “Dry black-thorn is
grim stuff” with and without Global Variance (GV) based parameter
generation

the parameter generation framework made no perceptual
difference. Hence, in the perceptual evaluations of HMM-
based F0 contours described below, GV-based parameter
generation is only used in the case of surprise.

3. F0 Segment Selection

F0 segment selection makes use of a concatenative frame-
work similar to unit selection. A sequence of syllable F0 seg-
ments are selected directly from a small expressive corpus,
using target and concatenation costs. A similar idea has
been explored to predict F0 contours in a non-expressive
TTS framework from a large corpus of Mandarin speech
[30]. The goal of the method described here, however, is to
generate expressive prosody from limited data in a conver-
sion framework. Parallel neutral and emotional syllable F0
segments are stored as part of the unit definition as well as
their common linguistic context. The same linguistic fea-
tures are used as for the HMM-based system described in
section 2. We define a syllable target cost T and an inter-
syllable concatenation cost J such that the total cost over
S syllables for a given unit sequence U and input specifi-
cation sequence I is defined as

C(U, I) =
S∑

s=1

T (us, is) +
S∑

s=2

J(us−1, us). (2)

The target cost T is a weighted Manhattan distance con-
sisting of P subcosts

T (uj , is) =
P∑

p=1

wpTp(uj [p], is[p]). (3)

Eight target subcosts (P=8) are used. The first seven are
binary subcosts indicating whether the individual context
features (e.g. lexical stress) in the specification match the
corresponding syllable context in the unit. A matching fea-
ture results in zero cost whereas a mismatch results in a
unit cost of 1. The final subcost, Tf0, is the Root Mean
Squared (RMS) distance between the contour F0i of the in-
put syllable being converted and the neutral contour, F0n,
which is stored as part of the unit definition
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Tf0 =

√√√√ 1
L

L∑

l=1

(F0i(l)− F0n(l))2 (4)

where L is the length after interpolating the two segments
to have equal duration.

The weights for each subcost serve two functions: firstly
they normalize the different ranges of categorical and con-
tinuous subcosts and secondly they rank features according
to their importance for each target emotion.

The concatenation cost, J, is nonzero if and only if con-
secutive syllables in the input specification are “attached”,
i.e. within the same continuous voiced region. If the voiced
syllable segment for the input specification is−1 ends at
time t1 and the input specification is begins at time t2,
the concatenation cost for two candidate segments in the
target corpus with lengths, Ls−1 and Ls, is defined as the
difference between the last F0 point in segment F0s−1 and
first F0 point in segment F0s iff t1 is equal to t2:

J(us−1, us) =





wJ (F0s−1[Ls−1]− F0s[1]) if t1 = t2

0 otherwise.
(5)

The concatenation cost is included to avoid sudden seg-
ment discontinuities within voiced regions. A concatena-
tion weight, wJ is used to prioritize this cost relative to the
target subcosts when selecting segments.

Once all the costs are defined, segment selection becomes
a problem of finding the path, û, with the smallest cost
through a trellis of possible F0 segments given an utterance
specification. Viterbi search is used to find the minimum-
cost path, by tracing back locally optimal candidates. Note
that the concatenation cost is zero for all syllable voiced
segments that are detached from the preceding voiced seg-
ments due an intervening unvoiced region or a pause. There-
fore if an input utterance consists of only detached sylla-
bles, the concatenation cost plays no role in segment selec-
tion and the optimal path will simply be the sequence of
units which minimize target costs locally at each syllable
time step.

Weights for the subcosts are estimated separately for
attached and detached syllables. This distinction is moti-
vated by the fact that all weights for target subcosts are
likely to change when a concatenation cost exists (i.e. the
syllable is attached to its left context). Therefore, two sets
of weights are estimated on held-out utterances using the
least squares linear regression method described below.

3.1. Weight Estimation for Detached Syllables

For the detached syllable case, a set of P weights, wT
p ,

are estimated for each target subcost. For each held out
syllable F0 segment in the target emotion, the N-best and
N-worst candidates in the corpus are identified in terms of
their RMS distance to the held-out segment. This choice
emphasizes the units we most want our cost function to
select and the units we most want it to avoid. The cost

functions for these syllable segments are then set equal to
their RMS distances, which results in a system of linear
equations. Combining the equations for each of the M held-
out syllables and 2N candidates yields the following system
of 2NM equations which can be solved using least squares:

CW = D (6)

where C is a 2NM ×P matrix of subcosts, W is the P × 1
vector of unknown weights and D is the 2NM ×1 vector of
distances. In our system N was set to 5 and leave-one out
cross-validation was performed on all training utterances to
obtain the final system of equations. The weights obtained
for detached syllables are listed in Table 2. The different
contextual weights indicate which features are most rele-
vant for each target emotion. Lexical stress (lex) and sylla-
ble position in word (wpos) result in the highest categori-
cal weights across all emotions, indicating that a mismatch
in these categories should be strongly penalized. Position
in sentence (spos), on the other hand, seems to be one of
the least important categorical features for anger and sad-
ness, whereas for surprise it ranks higher. For anger, part of
speech (pofs) and previous part of speech (ppofs) seem to
be the most important features after lexical stress and word
position. The similarity of the input segment to a neutral
segment in the corpus also has a dominant effect on seg-
ment selection for this emotion (wF0 = 1.00). This implies
a more linear and regular relationship between neutral and
angry segment pairs than is the case with surprise or sad-
ness. Note that the low values for the weights wf0 is due
to the higher mean of the subcosts Tf0 compared to the
categorical subcosts.

Table 2
Estimated weights for detached syllables across three target emotions

Surprised Sad Angry

wlex 13.67 12.30 18.74

wwpos 24.52 11.29 18.47

wspos 11.33 4.91 3.31

wpofs 1.13 4.82 8.82

wppofs 24.27 6.49 10.54

wonset 15.08 0.33 5.54

wcoda 8.23 6.09 6.36

wF0 0.47 0.69 1.00

3.2. Weight Estimation for Attached Syllables

As noted above, a different set of target weights, wJ
p , are

applied to segments that are attached to their left-context,
along with an additional weight for the concatenation cost,
wJ . From (2) and (3), the local cost of attaching a unit uk

to a preceding unit uj during selection is:

5
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C(uk, is) =
P∑

p=1

wJ
p (Tp(is[p], uk[p])) + wJJ(uj , uk) (7)

For the joint estimation of target and concatenation cost
weights, we use only pairs of attached syllables (s, s+1) in
the held out data for which the first syllable s is detached
from any preceding syllable. While searching for the N-best
and N-worst candidates in the segment database, we now
look for segment pairs which minimize the combined dis-
tance to the consecutive held-out syllables, s and s+1. The
sum of RMS distances for the pair of syllable segments are
then set equal to the sum of the target costs of both syllables
plus the concatenation cost between the syllables, resulting
in a system of linear equations. Note that because syllable
s of the held-out pair is always detached, its target cost
uses the independent weights, wT

p , while syllable s+1 uses
the weights wJ

p and wJ which we are trying to estimate. In
practice, we estimate wT

p first using detached held-out seg-
ments as described in the previous section. These weights
can then be plugged into the system of equations for the
attached syllables, allowing the P +1 unknown weights for
attached syllables to be estimated using a least-squares.

The weights for attached syllables are listed in Table 3.
Most categorical features other than lexical stress are as-
signed zero weight due to the general dominance of the
concatenation cost wJ . This is reasonable since, physiolog-
ically, segments within the same intonation phrase can not
manifest sudden divergences from their continuous path.
The attached syllable cost, therefore, becomes a trade-off
between input F0 cost, Tf0, concatenation cost, J, and a
lexical stress match, Tlex. For surprise and sadness, higher
values of concatenation cost weight indicate the importance
of voiced segment continuity in these emotions. Interest-
ingly, for anger the subcost Tf0 still plays an important
role, as evidenced by its higher weight relative to the other
emotions (0.68). For angry segments with similar costs, the
segment with a more similar neutral counterpart in the cor-
pus will be chosen at the expense of introducing small dis-
continuities.

Table 3
Estimated weights for attached syllables across three target emotions

Surprised Sad Angry

wlex 17.89 6.43 15.98

wwpos 0.0 0.0 0.0

wspos 0.0 0.0 0.0

wpofs 0.0 0.0 0.0

wppofs 0.0 0.0 0.0

wonset 3.23 0.0 0.0

wcoda 0.0 0.0 8.74

wF0 0.27 0.37 0.68

wJ 0.74 0.70 0.48

3.3. Pruning

Even though Viterbi search is relatively efficient, the
number of potential candidate units for each syllable is
equal to the entire syllable corpus. Computation can be
reduced significantly by pruning F0 segments that are un-
likely given the input specification. To achieve this, we use
a syllable duration criterion to eliminate contour segments
with durations significantly different from the duration of
the input. To do this we set a duration pruning range which
is one tenth of the length of the input F0 segment. Hence,
for example, if an F0 segment is 300ms, the range is±30ms,
which results in pruning of all contours shorter than 270ms
and longer than 330ms. Note that these thresholds assume
that duration conversion is applied before F0 segment se-
lection so that the duration pruning does not cause search
errors when an emotion is characterized by markedly dif-
ferent durations compared to the neutral case.

4. Duration Conversion

Neutral phone durations for vowels, nasals, glides and
fricatives are transformed using a set of regression trees.
The durations of all other broad classes are left unmodi-
fied. In building the regression trees, phone, syllable and
word level contextual factors are used as categorical predic-
tors as well as the continuous input duration (origdur). The
leaf nodes of the trees are trained to predict scaling factors
rather than absolute durations, i.e. deviations relative to
neutral speech are modeled rather than the absolute dura-
tions of the target emotion. In addition to the syllable and
word level features listed in section 2 (lexical stress, posi-
tion in word, position in sentence, part of speech), features
relating to the basic phonetic context including phone iden-
tity (ph), identity of the previous phone (prev) and identity
of the next phone (next), are also included in the pool of re-
gression tree features. The phone set consists of 16 vowels,
2 nasals, 4 glides and 9 fricatives which make up the phone
identity values. To avoid data sparsity, neighboring phone
identity is expressed in terms of broad classes. The Matlab
Statistics Toolbox implementation of classification and re-
gression trees was used to build the trees. A minimum leaf
occupancy count of 10 samples was set as a stopping condi-
tion while growing the trees. Trees were then pruned using
10-fold-cross-validation on the training data. The pruning
level which minimized the prediction cost on the entire held
out set was chosen for the final tree.

During conversion, the sequence of phones in the test ut-
terance and their durations are extracted along with the
relevant contextual factors. For the experiments described
below, the input durations are taken directly from the neu-
tral utterances of the speaker. Each phone duration and
context are then input into the appropriate broad class re-
gression tree to generate a duration tier for the utterance.
This duration tier is thus essentially a sequence of scaling
factors which determine how much each phone in the ut-

6



ACCEPTED MANUSCRIPT 
 

terance is going to be stretched or collapsed.

Table 4
The feature Groups tested for relative duration prediction

Feature Group 0 (FG0) input duration

Feature Group 1 (FG1) FG0 + phoneID

Feature Group 2 (FG2) FG1 + leftID, rightID

Feature Group 3 (FG3) FG2 + lex

Feature Group 4 (FG4) FG3 + spos

Feature Group 5 (FG5) FG4 + wpos

Feature Group 6 (FG6) FG5 + pofs

Trees were built using different features groups in order
to select the best feature combination for each emotion
and broad class based on RMS error (RMSE) between the
predicted and target durations in the test data. The feature
pool was grown by adding one or two new features at a
time. The feature groups (FG) are listed in Table 4 and the
best feature groups per emotion and broad class are listed
in Table 5.

In general the RMSE values did not improve beyond the
25-35ms range. For glides and nasals the same feature com-
bination, consisting of phone-level context and input dura-
tion, produced the minimum error across all emotions. Ad-
dition of higher level context did not improve the prediction
of nasal and glide durations. For sadness, vowel and frica-
tive durations also followed this pattern, where higher level
context did not improve the RMS values. For surprise, on
the other hand, target vowel durations were better approxi-
mated using the higher level features lexical stress, position
in word and position in sentence. Figure 4 illustrates the
tree used to convert neutral vowels to surprise. It is clear,
for instance, that the vowel scaling factors are heavily de-
pendent on whether the vowel is at the end of the sentence
(i.e. in the last word) since this is the question at the root of
the tree. Fricative durations for surprise also improved with
the addition of lexical stress and position in sentence. This
is analogous to our findings in the F0 segment selection sec-
tion, where position in sentence also gained a higher weight
for surprise compared to other emotions. For anger, simply
using the input duration along with phone identity yielded
the minimum error for vowel durations. Once again, anger
seems to rely heavily on the patterns in the neutral input
utterance. Fricative durations for anger were best approx-
imated using lexical stress in addition to neutral duration
and phonetic context.

Table 5
Feature Groups (FG) which resulted in minimum RMS errors
(RMSE) for all broad phone classes. RMSE is given in milliseconds

Vowels Glides Nasals Fricatives

RMSE FG RMSE FG RMSE FG RMSE FG

surprised 34.47 FG5 28.98 FG2 28.55 FG2 34.48 FG4

sad 29.69 FG2 29.48 FG2 21.09 FG2 28.67 FG2

angry 36.99 FG1 29.80 FG2 27.53 FG2 32.79 FG3
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Fig. 5. Long-term average magnitude spectra of vowel /ae/ taken
from neutral, emotional and converted test utterances in the case of
sadness and anger.

5. Spectral Conversion

A GMM-based spectral conversion method is used to
map each neutral spectrum to that of a desired target emo-
tion [2][3]. Line spectral frequencies (LSF) were used as
the acoustic features to be converted. To train the conver-
sion function, LSF parameter vectors of order 30 were com-
puted for parallel pairs of neutral-emotional utterances.
These were then time-aligned using the state-based pho-
netic alignments computed using HTK. The number of mix-
ture components was set to 16. An Overlap and Add (OLA)
synthesis scheme was used to combine the converted spec-
tral envelope with the neutral (unmodified) residual. Fig-
ure 5 illustrates the average spectra of all instances of vowel
/ae/ in neutral, emotional, and converted test utterances
in the case of sadness and anger. The average spectra of the
vowel in converted utterances approximate the target emo-
tion much better than the input neutral spectra. In general,
the spectral conversion module produced a breathy voice
quality for sadness as evidenced by a sharp spectral tilt and
a harsh voice quality for anger. The converted spectra for
surprise also sounded slightly tense compared to the neu-
tral input, although this tension did not necessarily make
the utterance more surprised.

6. Experimental Setup

A block diagram of the complete emotion conversion
system is illustrated in Figure 6. Spectral conversion is per-
formed using pitch-synchronous LPC analysis/synthesis
as the first step. Durations and F0 contours of the in-
put utterance are then modified using the Time Domain
Pitch Synchronous Overlap Add (TD-PSOLA) implemen-
tation provided by the Praat software [32]. If duration
conversion is performed, new syllable durations are com-
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Fig. 4. Regression tree for converting vowel durations from neutral to surprised: spos refers to position in sentence, wpos, to position in word,
origdur, to input neutral duration in seconds, ph to phone identity, prev and next, to the broad class identities of the left and right context.
For a more detailed discussion of the trees, see [31]

Fig. 6. Flowchart of Emotion Conversion System

puted and input into the selected F0 generation modules.
The generated F0 contour and is then applied using a
second pass of TD-PSOLA conversion. Speech samples
output by the conversion system are available online at
http://mi.eng.cam.ac.uk/∼zi201/conversions.html.

6.1. Emotional Speech Data

The emotional speech data used in this work was
recorded as part of a wider data collection effort organized
by the Speech Technology Group, Toshiba Research Eu-
rope. A professional female voice talent recorded parallel
speech data in three expressive styles (angry, surprised,
sad) as well as a neutral style. In expressing the emotions,

she was asked to assume a natural, conversational style
rather than a dramatic intensity. While three emotions
were used as case studies, the methods proposed in this
paper could be applied to any other target expressive style
which shows consistent acoustic behavior.

A total of 300 utterances were recorded for each emo-
tion using prompt scripts extracted from the standard unit-
selection corpus used to train a commercial TTS system.
The sentences in this subset were chosen to preserve pho-
netic coverage. Of the 300 utterances, 272 were used for
training and 28 were reserved for testing. This training set
size is comparable to that used in other voice conversion
studies. For example, it is similar to the emotion conversion
experiments in [14] and smaller than the emotional prosody
conversion experiments described in [15]. The numbers of
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Table 6
Number of linguistic constituents in training and test sets

Utterances Words Syllables Phones

Training Corpus 272 2170 3590 10754

Test Corpus 28 215 367 1115

words, phones and syllables in the training and test sets
are given in Table 6. The mean word count per sentence is
7.9. The total duration of speech data used for training was
around 15 minutes for each emotion.

6.2. Annotations

For each data file in the corpus and its word level tran-
scription, a corresponding annotation file was automati-
cally generated. Phone and state boundaries were extracted
using HTK-based forced alignment [13]. The Cambridge
English Pronunciation dictionary was used to identify syl-
lable constituents for each word, as well as lexical stress po-
sitions[33]. A proprietary part-of-speech tagger was used to
mark each word with one of 16 part-of-speech tags. Based
on these extracted linguistic features and the boundary in-
formation, a hierarchical computational map of each utter-
ance was built in preparation for processing by the con-
version modules. Pitch contours and pitch marks were also
extracted directly from the waveform using Praat software
[32] and manually corrected for mistakes.

7. Perceptual Evaluation

In order to evaluate each conversion module in isolation
and integrated as a complete system, a series of percep-
tual listening tests were conducted using paid subjects who
were asked to judge various properties of the converted ut-
terances.

7.1. Evaluation of Spectral Conversion

A preference test was conducted to evaluate the effect of
spectral conversion on emotion perception. Subjects were
asked to listen to versions of the same utterance and decide
which one conveyed a given emotion more clearly. One ver-
sion had spectral conversion applied while the other had
the unmodified neutral spectrum. F0 contours for both ut-
terances were identical and were generated for the target
emotion by using the F0 segment selection method. No du-
ration modification was applied for this test.

Twenty subjects participated in the evaluation. Each
subject performed 15 comparisons, 5 in each emotion, re-
sulting in 100 comparisons per emotion. The layout of the
test for one emotion is illustrated in Figure 7.1. The sam-
ple test utterances in each emotion were changed after the
first ten subjects, in order to evaluate a wider range of ut-
terances. Table 7 displays the percentage preference rates.
As can be seen, spectral conversions were consistently pre-
ferred for anger and sadness (t-test, p << 0.01), while for

Fig. 7. The layout of the preference test

Table 7
Preference scores for GMM-based spectral conversion

Prefer no conversion Prefer conversion

angry 9% 91%

surprised 68% 32%

sad 13% 87%

0 10 20 30 40 50 60 70 80 90 100

Angry

Surprised

Sad

Percent Preference Scores

baseline
HMM

82.7%17.3%

67.3%32.7%

42.7% 57.3%

Fig. 8. Percent Preference Scores for syllable HMMs and Gaussian
Normalization (baseline).

surprise most people preferred unmodified spectra since the
conversion did not seem to add a notable surprise element
to the utterance and the original had a slightly crisper qual-
ity due to the lack of spectral processing.

7.2. Evaluation of HMM-based F0 Generation

The syllable-based HMM F0 generation was first com-
pared with the baseline Gaussian normalization scheme de-
fined by equation 1 of section 1. This baseline only takes
advantage of the means and variances of the source and tar-
get expressive styles and hence relies heavily on the shape
of the input neutral F0 contour. In order to show that the
HMM-models driven by linguistic features outperform con-
tours generated by this baseline, a preference test was con-
ducted asking subjects to compare two utterances which
were identical except for their pitch contours: in one of the
utterances, the original pitch contour was converted using
Gaussian normalization, and in the other it was generated
by the syllable HMMs. For both utterances, spectral con-
version to the target emotion was applied. The original
neutral durations were left unmodified.

30 subjects (15 male and 15 female) participated in this
test. 21 of the subjects were native speakers and of the re-
maining nine, English was a second language. Once again,
they were asked to choose which one of the utterances they
thought was angrier/more surprised/sadder. For each pair,
the different F0 conversion methods appeared in random
order. Five comparisons per emotion were presented to all
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subjects, resulting in 150 comparisons per emotion. The
utterances were changed for every ten subjects to cover a
wider range of sentences and contexts in the test set. This
resulted in the evaluation of 15 unique sentences per emo-
tion, each of which were evaluated by 10 subjects (Fig-
ure 8). Overall, the subjects strongly preferred the HMM-
generated contours for surprise (t-test, p << 0.01). This
confirms that simply scaling neutral F0 segments does not
really help convey the emotion and that actual segment
shapes are better modeled using the HMMs. For anger, on
the other hand, the overall preference scores did not point as
strongly to one or the other method but the result was still
significant (p = 0.027). In the case of sadness, HMM-based
contours were preferred 67.3% of the time (p << 0.01).
After completing the listening test, subjects were asked to
write down the emotion they found easiest to choose be-
tween the options and the one they thought was the hard-
est. The surveys revealed that subjects were divided evenly
between anger and sadness as the emotion for which they
had most difficulty making a choice.

7.3. Evaluation of Segment Selection

A three-way preference test was conducted in order to
compare the F0 segment selection approach with the two
methods evaluated in the previous section. Subjects were
asked to compare three utterances which were identical ex-
cept for the method used to convert the F0 contours: ut-
terances converted using segment selection, syllable HMMs
and Gaussian normalization were presented in random or-
der. Spectral conversion was applied to all utterances but
neutral durations were left unmodified. 30 subjects partic-
ipated in the test and each subject performed 10 compar-
isons per emotion. A total of 900 (30 x 10 x 3) comparisons
were performed. The percentage preference scores per emo-
tion are displayed as a stacked bar graph in Figure 9 and
the p-values resulting from t-tests for each pair of meth-
ods are shown in Table 8. As can be seen, for anger, seg-
ment selection was preferred significantly more frequently
compared to the other methods. Unlike the previous test,
however, the difference between the baseline and HMM-
based contours was not significant (p=0.83) in the case of
anger. Segment selection was also significantly more popu-
lar when compared with the other two methods in the case
of surprise (p << 0.01 in both cases). HMM-based contours
were also still significantly more popular than those favor-
ing the baseline. For sadness, HMM-based F0 generation
was preferred half the time and the other half of subject
preferences were split between the baseline and segment se-
lection. There was however a significant tendency for seg-
ment selection when compared with the baseline (p=0.02).
Overall, the shift in preferences can be explained by the
fact that the stored contour segments capture more realistic
F0 movements in contrast to the HMM-generated contours
that are typically over-smoothed. Additionally, the incor-
poration of the input contour into the target cost function
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Segment Selection

3% 38% 59%

20% 19.3% 60.7%

21.3% 47.3% 31.3%

Fig. 9. Preference scores for each method and emotion

for segment selection may help select more appropriate seg-
ments (this argument is also supported by the high weight
attached to this subcost for anger).
Table 8
The p-values resulting from t-tests performed on preferences for each
pair of methods in the three-way preference test. Baseline, HMM
and SegSel are used as abbreviations for Gaussian normalization,
HMM-based F0 generation and segment selection respectively

Baseline, HMM Baseline, SegSel HMM, SegSel

Angry 0.83 9.4× 10−16 4.8× 10−16

Surprised 1.8× 10−19 1.3× 10−28 4.8× 10−8

Sad 2.3× 10−7 0.02 6.1× 10−4

The distribution of preferences across each of the ten
comparisons are illustrated in Figure 10(a-c). The segment
selection method was strongly preferred for all conver-
sions to anger except utterance 2 and utterance 4. In the
utterance-specific analysis of surprise (Figure 10b), it may
be observed that the segment selection method is not con-
sistently preferred as in the case of anger. In fact, there are
some utterances where subjects strongly prefer the HMM-
based method and there are others where segment-selection
is clearly preferred, which suggests that both methods can
be effective for surprise. The analysis of sadness across
utterances is not as straightforward, since all methods
generate quite sad sounding contours particularly when
combined with the breathy voice quality which results
from spectral conversion. Overall, the HMM-based method
was selected most frequently but otherwise there was little
consistency in the results. These scores suggest that most
subjects were able to reduce their choices down to two and
then had to guess which one of the remaining two is sadder.
In fact, when subjects were asked explicitly which emotion
they had most difficulty choosing, 70% recorded a difficulty
with sadness compared to 40% reported in the two-way
test of the previous section (Figure 9). With the introduc-
tion of the segment selection approach, the difficulty with
anger seems to have been resolved since only 13% of the
subjects listed it as the emotion they had difficulty with
compared with 43.3% from the previous section. Surprise
continued to be an easy emotion to identify even with the
two competing methods of HMMs and segment selection.

7.4. Evaluation of Duration Conversion

In the previous two tests, the focus was on evaluating F0
contours generated by different methods leaving the neu-
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Fig. 10. Utterance specific analysis of preferences across three meth-
ods of F0 conversion

Table 9
Percent of subjects who identify a given emotion as “hardest to
choose” in the two-way test described in section 8.2 and the three-
way test described in this section

Two-Way Test Three-Way Test

Angry 43.3% 13.3%

Surprised 16.7% 16.7%

Sad 40% 70%

tral durations unmodified. In this section, the contribution
of duration conversion to the perception of a target emo-
tion is evaluated. The test organization was similar to that
shown in Figure 7.1. Each subject had to listen to two utter-
ances and decide which one sounded angrier/sadder/more
surprised. Both utterances had their spectra converted. In
one utterance, neutral phone durations were modified us-
ing the scaling factors predicted by the relative regression
trees. In the other, they were left unmodified. Addition-
ally, segment selection was applied to both utterances to
replace the neutral pitch contours. Note that the F0 seg-
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34%
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Fig. 11. Preference scores for duration conversion in each emotion
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Fig. 12. Selected F0 segments for utterance “Fingers smudge vital
information” before and after duration conversion (a) and the cor-
responding duration tier (b)

ments selected by this method actually depend on the in-
put durations. Therefore, for some utterance pairs, the F0
contours were not identical, i.e. the contours that are ap-
propriate for the modified durations may be different from
those selected for the neutral syllable durations. The pref-
erence test therefore evaluated the joint effects of duration
conversion and segment selection relative to the no dura-
tion conversion case.

The same 30 subjects participated in the test, where
each subject performed 10 comparisons per emotion (Fig-
ure 11). The results of the tests showed that converted du-
rations were preferred more frequently than unmodified du-
rations. This is was very significant for all emotions (p <<
0.01). The preferences for converted durations were slightly
stronger for the case of surprise. In fact, none of the subjects
listed “surprise” as an emotion they had difficulty with.

Figure 12a illustrates an example of a surprised utterance
where duration conversion was preferred strongly. Both F0
contours resulting from the different phone durations were
plotted for comparison. The corresponding duration tier is
also included in Figure 12b, where the scaling factors for
each neutral phone are identified explicitly. The horizan-
tal line indicates a scaling factor of 1 i.e. no change. Even
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though the overall contour shape does not change very dra-
matically for the two cases, the durations and intonation of
the final word “information” conveys surprise much more
effectively with the scaled durations. All nasals and vowels
are stretched in this final word, which results in the selec-
tion of a lower pitch movement in the lexically stressed syl-
lable “/m/-/ei/”. Furthermore, the duration of the vowel
/@/ in the final unstressed syllable is almost doubled pro-
viding the time necessary for the final rise to reach a higher
target. The combination of a very low stressed syllable with
a gradual high rise, results in a question-like intonation that
sounds amazed/surprised. The durations themselves pro-
vide room for this expression, and indirectly control the F0
movements selected by the search algorithm.

Contrary to this example, there were two of the ten ut-
terances where subjects did not consistently prefer dura-
tion conversion. This is thought to occur when the sequence
of neutral durations are already quite likely in the target
emotion. In such cases, further modification of durations
are ineffective. Overall, however, duration conversion will
often improve emotion conversion and rarely impair it. We
therefore conclude that it is better to include it consistently
in a conversion system framework.

7.5. Overall Emotion Classification Performance

A final evaluation of the full conversion system was per-
formed using a multiple-choice emotion classification test,
where subjects were asked to identify the emotion in an
utterance. To avoid forcing the subjects to choose an emo-
tion when they were unsure, a “Can’t decide” option was
included in the available choices.

To provide a basis for comparison, the test was first con-
ducted using the original natural utterances of the voice
talent used to record the database. Five utterances per emo-
tion were presented to 30 subjects and the confusion matrix
for this test is summarized in Table 10.

Table 10
Percent confusion scores for the emotion classification task of orig-
inal emotional utterances spoken by the voice talent

Angry Surprised Sad Can’t decide

Angry 99.3% 0.7% 0% 0%

Surprised 20.0% 66.0% 0% 14.0%

Sad 0.7% 0% 96.0% 3.3%

Table 11
Confusion scores for the emotion classification task for utterances

where HMM-based contours are used

Angry Surprised Sad Can’t decide

Angry 64.7% 8.0% 4.7% 22.6%

Surprised 10.0% 60.7% 0% 29.3%

Sad 0.7% 0.7% 96.0% 2.6%

Table 12
Confusion scores for the emotion classification task for utterances

where F0 segment selection is used

Angry Surprised Sad Can’t decide

Angry 86.7% 0.7% 0% 12.6%

Surprised 8.7% 76.7% 0 14.7%

Sad 0.7% 0% 87.3% 12%

The same test was then conducted using converted neu-
tral utterances generated by our conversion system. 10 ut-
terances per emotion were classified by 30 subjects in ran-
dom order. Duration conversion and spectral conversion
were applied to all outputs. Additionally, there were two
hidden groups within each emotion: five of the conversions
were synthesized using HMM-based contours and the other
five were synthesized using segment selection. Confusions
between emotions were analyzed separately for the two F0
conversion methods (Table 11 and Table 12).

The conversion outputs using HMM-based F0 contours
conveyed sadness as well as the original sad speech, while
the recognition rate for surprise (60.7%) was slightly lower
than that of the naturally spoken surprised speech (66%)
and the rate for anger (64.7%) was much lower than that of
the naturally spoken anger (99%). There was considerable
indecision amongst subjects when classifying surprise and
anger.

With segment selection, the classification rate for anger
increased significantly up to 86.7%. This indicates that ap-
propriate F0 prediction is a critical component of anger de-
spite the fact that it is normally considered to be a voice-
quality dominated emotion. Surprise is also recognized bet-
ter using segment selection (76.7%), indeed, the converted
surprise utterances were identified more accurately than
the naturally spoken surprised utterances. This may be ex-
plained by the spectral conversion module which tends to
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Fig. 13. Categorical quality ratings for spectral conversion + duration
conversion + HMM-based contour generation
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Fig. 14. Categorical quality ratings for spectral conversion + duration
conversion + F0 Segment Selection
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over-smooth the converted spectra slightly. In the naturally
spoken utterances, there is a tension in some of the sur-
prised speech which may have created confusion between
anger and surprise. This tension is reduced and more con-
sistent in the converted surprised speech. The same effect,
however, may have slightly reduced the recognition rates
for anger, since the smoothing in that case resulted in con-
versions which did not sound as harsh as the naturally spo-
ken angry utterances. Overall, the effect of F0 prediction
method on emotion recognition rates was significant for all
emotions. Segment selection resulted in better recognition
in the case of anger (p = 0.0006) and surprise (p = 0.004),
while HMM-based contours resulted in higher recognition
scores for sadness (p = 0.018)

Finally, as part of the emotion classification test, we also
asked subjects to categorize each utterance in terms of into-
nation quality using the options “Sounds OK” or “Sounds
Strange.” The intonation quality ratings are illustrated in
bar charts for each method (Figures 13 and 14). The effect
of F0 prediction method on quality was significant only in
the case of surprise (p = 0.0006). For both methods, the
percentage quality ratings for sadness are identical and gen-
erally very high (90%“sounds OK”). Subjects also thought
that both methods attempted to convey anger naturally
most of the time, even though the actual emotion recogni-
tion rates are very different between the methods. For sur-
prise, on the other hand, quality perception improved sig-
nificantly with segment selection, where 73.3% of conver-
sions sounded OK compared with only 47.3% when HMM-
based contours were used. In the surveys, a number of sub-
jects noted that in some of the utterances, “the surprise
element was there” but it was “slightly misplaced”, which
made them choose the “Can’t decide” option. Therefore,
unlike anger, the recognition rates and quality ratings for
surprise were somewhat correlated.

8. Conclusions

A system for emotion conversion in English has been de-
scribed which consists of a cascade of modules for trans-
forming F0, durations and short-term spectra. Two dif-
ferent syllable-based F0 conversion techniques were im-
plemented and evaluated as well as a duration conversion
method which performs transformation on the segmental
level. Subjective preference tests confirmed that each mod-
ule augments emotional intensity when combined with the
others. The full conversion system with either F0 prediction
method was able convey the target emotions above chance
level. However, F0 segment selection produced more natu-
ral and convincing expressive intonation compared to syl-
lable HMMs, particularly in the case of surprise and anger.

The different modules also indirectly reveal interesting
characteristics of the target emotions. For example, exam-
ining the weights in the case of segment selection or the
regression trees for duration conversion highlight the con-
textual factors which have the most dominant role in the

expression of each target emotion. In general, surprise was
found to be an emotion whose prosody is quite different
from that of neutral speech and hence is highly dependent
on syllable and word-level linguistic factors. On the other
hand, the prosody of anger is more closely related to neu-
tral prosody and in that case the information in the input
F0 contours was a significant factor in selecting the best
target contour.

Finally, using only a modest amount of training data, the
perceptual accuracy achieved by the complete conversion
system was shown to be comparable to that obtained by a
professional voice talent. Hence it may be concluded that
the conversion modules which have been described in this
paper provide an effective and efficient means of extending a
single emotion TTS system to exhibit a range of expressive
styles.
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