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Abstract

We present an approach to broad phonetic classification, defined as mapping
acoustic speech frames into broad (or clustered) phonetic categories. Our categories
consist of silence, general voiced, general unvoiced, mixed sounds, voiced closure,
and plosive release, and are sufficiently rich to allow accurate time-scaling of speech
signals to improve their intelligibility in e.g. voice-mail applications. There are three
main aspects to this work. First, in addition to commonly used speech features, we
employ acoustic time-scale features based on the intra-scale relationships of the
energy from different wavelet subbands. Secondly, we use and compare against dis-
criminatively learned Bayesian networks. By this, we mean Bayesian networks whose
structure and/or parameters have been optimized using a discriminative objective
function. We utilize a simple order-based greedy heuristic for learning discriminative
structure based on mutual information. Given an ordering, we can find the discrim-
inative classifier structure with O (N q) score evaluations (where q is the maximum
number of parents per node). Third, we provide a large assortment of empirical re-
sults, including gender dependent/independent experiments on the TIMIT corpus.
We evaluate both discriminative and generative parameter learning on both discrim-
inatively and generatively structured Bayesian networks and compare against gen-
eratively trained Gaussian mixture models (GMMs), and discriminatively trained
neural networks (NNs) and support vector machines (SVMs). Results show that:
(i) the combination of time-scale features and mel-frequency cepstral coefficients
(MFCCs) provides the best performance; (ii) discriminative learning of Bayesian
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network classifiers is superior to the generative approaches; (iii) discriminative clas-
sifiers (NNs and SVMs) perform better than both discriminatively and generatively
trained and structured Bayesian networks; and (iv) the advantages of generative
yet discriminatively structured Bayesian network classifiers still hold in the case of
missing features while the discriminatively trained NNs and SVMs are unable to
deal with such a case. This last result is significant since it suggests that discrimi-
native Bayesian networks are the most appropriate approach when missing features
are common.

Key words: Broad phonetic class recognition, wavelet transform, time-scale
features, Bayesian networks, discriminative learning.

1 Introduction

Automatic broad speech unit classification is crucial for a number of different
speech processing methods and various speech applications. We define broad
phonetic classification as processing that maps a speech signal into a sequence
of integers, where each integer represents a coarser-grained category than that
of a phone. While mapping to a sequence of phones, or at least a distribution
over such sequences, is a favored approach to automatic speech recognition
(ASR), broad phonetic classification is useful for a number of distinct appli-
cations.

For example, some speech coding and compression systems use broad phonetic
classification to determine the number of bits that should be allocated for each
speech frame (Kubin et al., 1993). Such a source-controlled variable rate coder
would for example allocate more bits to voiced and mixed frames than to un-
voiced frames, and would assign only a few bits to silence frames (Zhang
et al., 1997). In Internet telephony applications (Sanneck, 1998), for example,
the adaptive loss concealment algorithm is based on a voiced/unvoiced detec-
tor at the sender. This helps the receiver to conceal the loss of information
due to the similarity between the lost segments and the adjacent segments.

As another example, the utilization of information about broad phonetic
classes can improve the perceptual quality of time-scaling algorithms for speech
signals (Kubin and Kleijn, 1994) – a desirable capability in voice-mail and
voice-storage applications as it allows the user to listen to messages in a
fraction of the original recording time. A speech utterance can be efficiently

Email addresses: pernkopf@tugraz.at (Franz Pernkopf), v.t.pham@tugraz.at
(Tuan Van Pham), bilmes@ee.washington.edu (Jeff A. Bilmes).
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time-scaled by applying different scaling factors to different speech segments,
depending on the broad phonetic characteristics, without reducing its quality
and naturalness (Donnellan et al., 2003). It was concluded in Kuwabara and
Nakamura (2000) that voiced frames need to be more affected by time-scaling
than mixed frames, and much more than unvoiced frames (Campbell and Is-
ard, 1991). To maintain the characteristics of plosives or parts of plosives (a
closure or release), time-scale modification should not be so applied. Silence
frames, moreover, should be treated like voiced frames (Donnellan et al., 2003).

A broad phonetic classifier can also be used as a pre-classification step to sup-
port the phonetic transcription task of very large databases thereby making
the transcriber’s job much easier and less costly. Furthermore, it can be used
as a step in addition to word labeling for preparing corpora for concatena-
tive synthesis. Broad phonetic classification can also be fused into standard
speech recognition systems at levels other than the acoustic feature vector
(Subramanya et al., 2005; Bartels and Bilmes, 2007) and can also be used
to facilitate out-of-vocabulary (OOV) detection (Lin et al., 2007). In order
to improve robustness of automatic speech recognition, moreover, Kirchhoff
and her colleagues (Kirchhoff et al., 2002) investigated the benefits of artic-
ulatory phonetics by using 28 articulatory features, both as an alternative
to, and in combination with standard acoustic features for acoustic model-
ing. For a similar purpose, framewise phonetic classification of the TIMIT
database has been performed using Gaussian mixture models (GMMs) for 4
manner classes (Halberstadt and Glass, 1997), and support vector machines
(SVMs) (Salomon et al., 2002) and large margin GMMs (Fei and Saul, 2006)
have been used for 39 phonetic classes. Recently, ratio semi-definite classi-
fiers have been developed and applied to phoneme classification (Malkin and
Bilmes, 2008).

In this article, several general-purpose broad phonetic classifiers have been
developed for classifying speech frames into either four or six broad phonetic
classes. Beside the silence class (S), we also consider a voiced class (V) which
includes vowels, semivowels, diphthongs and nasals, an unvoiced class (U)
which includes only unvoiced fricatives, and a mixed-excitation class (M) in-
cluding voiced and glottal fricatives. Furthermore, we are interested in plosives
that are formed by two parts, a closing and a release (R) of a vocal-tract ar-
ticulator. Normally, plosives have a transient characteristic, whereas, voiced,
unvoiced, and mixed sounds are continuant sounds. While the closed interval
of unvoiced plosives is similar to silence, voiced plosives have a subtle voiced
closure interval (VC) which has a periodic structure at very low power (Olive
et al., 1993).

There are three main contributions of this work: 1) in tandem with more
traditional acoustic features, we employ wavelet derived acoustic features that
are useful to represent speech in e.g. the aforementioned VC interval; 2) we
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use discriminatively learned Bayesian network classifiers and their comparison
to standard discriminative models of various forms; and 3) we provide results
that compare the various classifiers in particular in the case of missing acoustic
features. These contributions are summarized in this section and then fully
described within the article.

First, in order to improve the detection of subtle cues in our broad phonetic
categories, we use wavelet derived features in addition to commonly used time
domain (Kedem, 1986; Childers et al., 1989) and mel-frequency cepstral co-
efficients (MFCC) features. We extract time-scale features by applying the
discrete Wavelet transform (DWT) and then by performing additional pro-
cessing thereafter (full details are given below). We show that the intra-scale
relations of the energy from different wavelet subbands are beneficial to reflect
the acoustic properties of our phonetic classes.

Numerous classification approaches have been proposed to classify speech units
given a set of speech features in the past with one of the earliest being that
of Atal and Rabiner (1976). In this work, by speech unit classification, we
specifically mean frame-by-frame classification, where the speech signal has
been segmented into overlapping fixed-length time windows, and where each
window is then input to a classifier whose goal it is to decide what the correct
category is of the speech at the center of that window. This then becomes
a standard pattern classification problem. Generally, there are two avenues
for such classifiers, generative and discriminative (Jebara, 2001; Bilmes et al.,
2001; Bahl et al., 1986; Ephraim et al., 1989; Ephraim and Rabiner, 1990;
Juang and Katagiri, 1992; Juang et al., 1997; Bishop and Lasserre, 2007;
Pernkopf and Bilmes, 2008). Let X1:N be a set of N features and C be a class
variable. Generative models in one way or another represent the joint distribu-
tion p(X1:N , C) or at least p(X1:N |C). Generative models can be trained either
generatively (which means optimizing an objective function that is maximized
when the joint distribution scores a data set highly, such as penalized maxi-
mum likelihood (ML)) or can also be trained discriminatively (which means
to use a discriminative objective to train a generative model (Pernkopf and
Bilmes, 2008)). Discriminative models are those that inherently represent ei-
ther the conditional distribution p(C|X1:N) directly, or alternatively represent
only the decision regions in X1:N between classes, and are specified based
on some discriminant function f(X1:N , C) which have no normalization con-
straints (and thus are not guaranteed to provide a probabilistic interpretation,
only the rank order is important). Discriminative models are trained using only
discriminative objective functions, such as conditional likelihood or some form
of exact or smoothed loss function (Bartlett et al., 2006).

Generative approaches (such as the Gaussian mixture model (Leung et al.,
1993; Duda et al., 2001) or the hidden Markov Model (Levinson et al., 1989;
Rabiner, 1989)) have in the past been used for phonetic classification as well as
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speech recognition. Some of the most prominent discriminative models are neu-
ral networks (Bishop, 1995; Mitchell, 1997; Duda et al., 2001) (NNs) and sup-
port vector machines (Schölkopf and Smola, 2001; Burges, 1998) (SVMs) which
have also been widely applied to the problem of speech classification Bourlard
and Morgan (1994); Minghu et al. (1996); Salomon et al. (2002); Smith and
Gales (2002); Pham and Kubin (2005); Borys and Hasegawa-Johnson (2005)
although this limited set of references does not do the field justice.

Our second main contribution in this work is that we employ discriminatively
learned Bayesian network classifiers. Specifically, we apply both discriminative
parameter learning by optimizing conditional likelihood (CL) and generative
maximum-likelihood (ML) parameter training on both discriminatively and
generatively structured Bayesian networks. We use either CL or classification
rate (CR) (equivalently, empirical risk) for producing discriminative structure.
These classifiers are further restricted to be either naive Bayes (NB) classifiers
(where all features are assumed independent given the class variable), and
relaxations of such an approach (where the features are no longer presumed
independent given the class, such as 1-tree or 2-tree augmented naive Bayes
(TAN)). We use an algorithm for discriminative structure learning of Bayesian
networks based on a computed variable order (Pernkopf and Bilmes, 2008).
The proposed metric for establishing the ordering of the features is based on
the conditional mutual information. Given a resulting ordering, we can find
the discriminative network structure with O (N q) score evaluations (constant
q limits the number of parents per node). Hence, e.g. the TAN classifier can be
discriminatively optimized in O (N2) queries using either either CL or CR as
a evaluative score function. We present results for framewise broad phonetic
classification using the TIMIT database (Lamel et al., 1986). We provide clas-
sification results using Bayesian network classifiers on time-scale features and
on MFCC features. Additionally, we compare our Bayesian network classifiers
to GMMs, NNs, and SVMs on the joint time-scale and MFCC feature set.
Gender dependent and gender independent experiments have been performed
to assess the influence on the classification rate (CR).

A third contribution of our work is in the case of missing features. A primary
advantage of our generative Bayesian networks over standard discriminative
models (such as NNs and SVMs) is that they can be applied to cases where
some of the features are at times missing (or known to be highly unreliable
and thus useless). This is done essentially by marginalizing over the unknown
(or unreliable) variables, something that is still possible since the model is
inherently generative, even if it is discriminatively trained. Spectro-temporal
regions of speech which are dominated by noise can, for example, be treated
as missing or unreliable (Cooke et al., 2001; Raj and Stern, 2005). What
is not known, however, is if discriminatively trained generative models still
hold a performance advantage in the broad phonetic classification domain,
something which we investigate and verify in this work. In particular, we
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find that discriminatively trained Bayesian network classifiers still hold an
advantage over generatively trained ones in the case of missing features.

The paper is organized as follows: Our DWT and multiresolution analysis is
introduced in Section 2.1. Section 2.2 studies intra-scale relations of the en-
ergy from different wavelet subbands with respect to the phonetic classes. This
section also introduces the time-scale features used for classification. Section 3
introduces Bayesian network classifiers and different network structures. The
most commonly used approaches for generative and discriminative structure
learning are summarized in Section 3.2. Section 3.3 describes our OMI heuris-
tic for efficient discriminative structure learning. Experiments on the TIMIT
database and the discussion are presented in Section 4. Section 5 concludes
and gives perspectives for future research. The abbreviations are summarized
in Appendix B.

2 Extraction of wavelet based time-scale features

2.1 Wavelet transform by multiresolution analysis

The potential advantage of a DWT in speech processing is its inherent mul-
tiresolution representation: namely, a DWT allows a multiscale representation
of speech signals in the time-scale domain. In other words, various positions
in the time-frequency plane are analyzed with different time-frequency reso-
lutions. This allows e.g. higher frequencies to be granted the higher temporal
resolution they naturally require, and lower frequencies to be granted the fine
spectral resolution they require.

A discrete-time signal x[k] can be represented as

x[k] =
M
∑

m=1

Nm
∑

n=1

〈ψm,n[k], x[k]〉ψm,n[k], (1)

where 〈·〉 denotes the inner product, M represents the number of scales, Nm =
Nf

2m
is the number of coefficients at the mth scale, and Nf is the number of

samples in one speech frame. The set of discrete-time wavelet basis functions
ψm,n[k] = a

−m/2
0 ψ(a−m

0 k − nb0) are generated by translating and dilating the
mother wavelet ψ(k) using iterated filters (Vetterli and Kovacevic, 1995). With
a0 = 2 and b0 = 1 we obtain the dyadic-parameter wavelet basis functions.
The discrete-time signal x[k] can be further decomposed into the sum of one
approximation plus M detail subbands at M resolution stages by a decimated
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non-uniform filterbank as follows:

x[k] =
Nm
∑

n=1

X(M)[2n] · g
(M)
0 [k − 2Mn]+

M
∑

m=1

Nm
∑

n=1

X(m)[2n+ 1] · g
(m)
1 [k − 2mn],

(2)

where X(M)[2n] and X(m)[2n + 1] are the approximation coefficients (low-
frequency part) and the detail coefficients (high-frequency parts) respectively.
They are defined as:

X(M)[2n] =
〈

h
(M)
0 [2Mn− l], x[l]

〉

, and

X(m)[2n+ 1] =
〈

h
(m)
1 [2mn− l], x[l]

〉

,
(3)

where g
(m)
j [k] is an equivalent filter obtained through m stages of synthesis

filters gj[k], each preceded by a factor of two upsampler, hm
j [k] is an equiv-

alent analysis filter where h
(m)
j [k] = g

(m)
j [−k], j ∈ {0, 1}, k,m, n ∈ Z. By

applying the DWT at the scale M = 4 on each speech frame, we obtain
one approximation subband and four detail subbands which form the se-

quence of wavelet coefficientsW4,i[n] =
{

X(4)[2n],
(

X(m)[2n+ 1]
)

m∈{1,2,3,4}

}

=
{

X(4)[2n], X(4)[2n+ 1], X(3)[2n + 1], X(2)[2n + 1], X(1)[2n + 1]
}

. The number

of coefficients in the 4th approximation subband is Na4 =
Nf

16
, and the four fol-

lowing detail subbands are denoted as
{

N4 =
Nf

16
, N3 =

Nf

8
, N2 =

Nf

4
, N1 =

Nf

2

}

.

2.2 Intra-scale energy relations and feature extraction

The power distribution in different subbands varies and largely depends on
the localized phonetic context. For our analysis, we apply our DWT at the 1st

decomposition scale on voiced, unvoiced, and mixed frames. We empirically
observed that the power of wavelet coefficients derived from voiced frames is
concentrated within the approximation part and not so much contained in the
detail part as depicted in Figure 1b. The opposite is true for the unvoiced
speech frames as shown in Figure 2b. For the mixed frames, the power differ-
ence between the approximation and detail coefficients is not as significant as
it is for voiced and unvoiced frames as visualized in Figure 3b.

Additionally, an analysis of intra-scale relations is performed by considering
the power change of the detail subbands at different scales. Figures 1c, 2c,
and 3c show the power variation of the detail coefficients which are derived
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Fig. 1. (a) A voiced speech segment (phoneme /a/), (b) Approximation (App.) and
detail (Det.) coefficients derived at 1st scale DWT, (c) Power variation of different
detail subbands (the 2nd, 3rd, and 4th details were upsampled to have the same
length as the 1st detail).
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Fig. 2. (a) An unvoiced speech segment (phoneme /s/), (b) Approximation (App.)
and detail (Det.) coefficients derived at 1st scale DWT, (c) Power variation of dif-
ferent detail subbands (the 2nd, 3rd, and 4th details were upsampled to have the
same length as the 1st detail).

at the 4th decomposed scale of voiced, unvoiced, and mixed speech segments,
respectively. The power of detail coefficients extracted from voiced frames
increases from scale 1 to scale 4. However, the opposite is observed for unvoiced
frames. There is less power change over various scales for mixed frames. All
derived sequences of wavelet coefficients were normalized to their absolute
maximum values.

Based on these observations, we extract several time-scale features (TSF) that
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Fig. 3. (a) A mixed speech segment (phoneme /j/), (b) Approximation (App.) and
detail (Det.) coefficients derived at 1st scale DWT, (c) Power variation of different
detail subbands (the 2nd, 3rd, and 4th details were upsampled to have the same
length as the 1st detail).

should make it relatively easy to distinguish between the three different classes
(V/U/M):

• Power delta (PD) is the power difference between the approximation and
detail subbands at 4th scale and the detail subband at 1st scale:

PD(i) =
1

2N4

2N4
∑

n=1

W 2
4,i[n]−

1

N1

Nf
∑

n=N1+1

W 2
4,i[n]. (4)

• First power ratio (PR1) is the power ratio between the approximation
subband at 4th scale and the three detail subbands from 4th scale to 2nd

scale:

PR1(i) =
N4 +N3 +N2

N4

∑N4

n=1W
2
4,i[n]

∑N1

n=N4+1W
2
4,i[n]

. (5)

• Second power ratio (PR2) is the power ratio between the two detail
subbands of the 2nd and 1st scale and the approximation and detail subbands
at the 4th scale:

PR2(i) =
2N4

N2 +N1

∑Nf

n=N2+1W
2
4,i[n]

∑2N4

n=1W
2
4,i[n]

. (6)

We also see that the VC interval of voiced plosives shows a periodic structure
similar to voiced sounds and a slightly higher energy in the approximation
subband derived at the 4th scale compared to silence. Hence, we use the power
of the approximation subband as a feature. Furthermore, to detect the weak
periodic structure of VC and some voiced consonants (mixed sounds), we de-
rive a peak delta feature from the autocorrelation function (estimated for each
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speech frame). While the release of plosives has a similar energy distribution
over the subbands compared to unvoiced sounds, it shows a lower standard de-
viation of the detail coefficients at the 1st scale. These features are summarized
in the following:

• Power of approximation (PA) subband at 4th scale:

PA(i) =
1

N4

N4
∑

n=1

W 2
4,i[n]. (7)

• Peak delta (PeD) is defined for every speech frame as follows:

PeD(i) = Ri(j1)− Ri(j2), (8)

where Ri is the autocorrelation function of speech frame i. A distance
between the peak values of the central lobe (at lag j1) and the first lobe
(at lag j2) is calculated. To select the peak value of the first lobe properly,
we first smooth the normalized autocorrelation coefficients by using a first
order recursive filter, then the smoothed coefficients are sorted and finally
the second biggest coefficient is chosen from the set of ranked coefficients.
• Standard deviation (SD) of coarsest detail subband derived at 1st scale:

SD(i) =

√

√

√

√

√

1

N1

Nf
∑

n=N1+1

(W4,i[n]−W4,i[n])2. (9)

Finally, some statistical measures from the time domain (Kedem, 1986; Childers
et al., 1989) such as the short-term energy and the zero crossing rate are also
used. The zero crossing rate of voiced sounds is low compared to unvoiced
sounds.

• Logarithmic short-term energy (LgSE):

LgSE = 0.5 +
16

ln(2)
ln



1 +

∑Nf

k=1 x[k]
2

32



 . (10)

• Zero crossing rate (ZCR) is the number of sign changes of successive
samples in a speech frame:

ZCR =
Nf
∑

k=1

|sgn(x[k])− sgn(x[k − 1])|. (11)

Figure 4 displays the trajectory of the extracted features for an utterance with
all 6 phonetic classes from the TIMIT database.
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Fig. 4. (a) Waveform of an utterance with phonetic classes transcribed from
the sequence of phonemes {/sil/}, {/p/}, {/ae/,/m/}, {/gcl/}, {/g/}, {/ih/},
{/v/}, {/s/}, {/dcl/}, {/d/}, {/r/,/ay/}, {/v/}, {/iy/}. The curly brackets of the
phonemes mark the phonetic classes in (a). (b) Power delta (PD), (c) First power
ratio (PR1), (d) Second power ratio (PR2), (e) Power of approximation (PA), (f)
Peak delta (PeD), (g) Standard deviation (SD), (h) Logarithmic short-term energy
(LgSE), (i) Zero crossing rate (ZCR).
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3 Bayesian network classifier

A Bayesian network (Pearl, 1988; Cowell et al., 1999) B = 〈G,Θ〉 is a directed
acyclic graph G = (Z,E) consisting of a set of nodes Z and a set of directed

edges E =
{

EZi,Zj
, EZi,Zk

, . . .
}

connecting the nodes where EZi,Zj
is an edge

from Zi to Zj. This graph represents factorization properties of the distribu-
tion of a set of random variables Z = {Z1, . . . , ZN+1}. Each variable in Z has
values denoted by lower case letters {z1, z2, . . . , zN+1}. We use boldface capital
letters, e.g. Z, to denote a set of random variables and correspondingly lower
case boldface letters denote a set of instantiations (values). Without loss of
generality, in Bayesian network classifiers the random variable Z1 represents
the class variable C ∈ {1, . . . , |C|}, |C| is the cardinality of C corresponding
to the number of classes, X1:N = {X1, . . . , XN} = {Z2, . . . , ZN+1} denote the
set of random variables of the N attributes of the classifier. Each graph node
represents a random variable, while the lack of edges specifies conditional inde-
pendence properties. Specifically, in a Bayesian network each node is indepen-
dent of its non-descendants given its parents. These conditional independence
relationships reduce both number of parameters and required computation.
The set of parameters which quantify the network are represented by Θ. Each
node Zj is represented as a local conditional probability distribution given its
parents ZΠj

. The joint probability distribution of the network is determined
by the local conditional probability distributions as

PΘ (Z) =
N+1
∏

j=1

PΘ

(

Zj|ZΠj

)

. (12)

Discriminative parameter learning by optimizing the CL and generative pa-
rameter learning, i.e. ML estimation and are summarized in Greiner and Zhou
(2002); Pernkopf and Bilmes (2005) and in Pearl (1988), respectively. One of
the key advantages of Bayesian networks over discriminative models (NN and
SVM) is that it is easy to work with missing features by marginalizing over
the unknown variables. Missing-feature approaches are useful in robust au-
tomatic speech recognition applications (Cooke et al., 2001; Raj and Stern,
2005; Parveen and Green, 2004).

3.1 Bayesian network structures

In this paper, we restrict the Bayesian network classifier to NB, TAN, and
2-tree structures, which we describe soon below. The NB network assumes
that all the attributes are conditionally independent given the class label. As
reported in the literature (Friedman et al., 1997), the performance of the NB
classifier is surprisingly good even if the conditional independence assumption
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between attributes is unrealistic in most of the data. The structure of the naive
Bayes classifier represented as a Bayesian network is illustrated in Figure 5a.

Class

Attributes

X1 X2
X3 XN

C

Class

Attributes

X1 X2
X3 XN

C

(a)

(b)

Fig. 5. Bayesian network: (a) NB, (b) TAN.

In order to correct some of the limitations of the NB classifier, Friedman et al.
(1997) introduced the TAN classifier. A TAN is based on structural augmenta-
tions of the NB network, where additional edges are added between attributes
in order to relax some of the most flagrant conditional independence properties
of NB. Each attribute may have at most one other attribute as an additional
parent which means that the tree-width of the attribute induced sub-graph is
unity, i.e. we have to learn a 1-tree over the attributes. The maximum number
of edges added to relax the independence assumption between the attributes
is N − 1. Thus, two attributes might not be conditionally independent given
the class label in a TAN. An example of a TAN network is shown in Figure 5b.
A TAN network is typically initialized as a NB network. Additional edges be-
tween attributes are determined through structure learning. An extension of
the TAN network is to use a k-tree, i.e. each attribute can have a maximum
of k attribute nodes as parents. TAN and 2-tree structures are restricted to
a parentless class node CΠ = ∅. Many different network topologies have been
suggested in the past. A good overview is provided in Acid et al. (2005).

3.2 Structure learning of TAN

Maximizing the CL for Bayesian networks is hard since CL is not decompos-
able, i.e. there is no efficient solution (Friedman et al., 1997) since it does
not factorize. Recently, heuristic approaches have been suggested to learn the
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structure and/or parameters discriminatively by maximizing the CL or the
classification rate (CR). In Greiner and Zhou (2002); Greiner et al. (2005), lo-
gistic regression is extended to more general Bayesian networks – they optimize
parameters with respect to the CL using a conjugate gradient method. Simi-
larly, Wettig et al. (2003); Roos et al. (2005) provide conditions for general
Bayesian networks under which correspondence to logistic regression holds.
In Grossman and Domingos (2004) the CL function is used to learn a dis-
criminative structure. The parameters are set using ML learning but they
use a greedy hill climbing search with the CL function as scoring metric,
where at each iteration one edge is added to the structure which conforms
to the restrictions of the network topology (e.g. tree augmented naive Bayes)
and the acyclicity property of Bayesian networks. In a similar algorithm, the
CR has also been used for discriminative structure learning (Keogh and Paz-
zani, 1999; Pernkopf, 2005). These structure learning algorithms are computa-
tionally expensive. Many generative structure learning algorithms have been
proposed and are overviewed in Heckerman (1995); Murphy (2002); Jordan
(1999); de Campos (2006). An experimental comparison of discriminative and
generative parameter training on both discriminatively and generatively struc-
tured Bayesian network classifiers has been performed in Pernkopf and Bilmes
(2005, 2008). In the experiments we use the generative structure learning ap-
proach from Friedman et al. (1997) and the discriminative greedy hill climbing
search using the CR introduced in Keogh and Pazzani (1999); Pernkopf (2005).

In the following, we describe a variety of both generative and discrimina-
tive structure and parameter learning algorithms that we later use to build
Bayesian network classifiers for broad phonetic classification. One of the al-
gorithms (the OMI algorithm) has been developed by the authors in previous
work (Pernkopf and Bilmes, 2008) and successfully applied to entirely different
data.

3.2.1 Generative structure learning

The conditional mutual information (CMI) (Cover and Thomas, 1991) be-
tween the attributes given the class variable is defined as

I (Xi;Xj|C) = EP (Xi,Xj ,C) log
P (Xi, Xj |C)

P (Xi|C)P (Xj |C)
. (13)

This measures the information between Xi and Xj in the context of C. Fried-
man et al. (1997) provide an algorithm for constructing a TAN network using
this measure. This is an extension of the algorithm in (Chow and Liu, 1968),
and is summarized herein:

(1) Compute the pairwise CMI I (Xi;Xj|C) ∀ 1 ≤ i ≤ N and i < j ≤ N .
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(2) Build a undirected 1-tree using the maximal weighted spanning tree algo-
rithm (Kruskal, 1956) where each edge connecting Xi and Xj is weighted
by I (Xi;Xj|C).

(3) Transform the undirected 1-tree to a directed tree. In other words, select
a root variable and direct all edges away from this root. Add to this tree
the class node C and the edges from C to all attributes X1, . . . , XN .

3.2.2 Greedy Discriminative structure learning

In the case of the TAN structure, the network is initialized to NB and with
each iteration we add the edge which gives the largest improvement of the
scoring function. The greedy hill climbing search is terminated when there is
no edge which further improves the score. This means that we might get a
partial 1-tree (forest) when learning the TAN structure.

As a scoring function, the CR (Keogh and Pazzani, 1999; Pernkopf, 2005)

CR (BS |S) =
1

MS

MS
∑

m=1

δ (BS (xm
1:N) , cm) (14)

or the CL (Grossman and Domingos, 2004)

CL (B|S) =
MS
∏

m=1

PΘ (C = cm|X1:N = xm
1:N) (15)

can be used for learning a discriminative network structure. The expression
δ (BS (xm

1:N ) , cm) = 1 if the Bayesian network classifier BS (xm
1:N) trained with

samples in S assigns the correct class label cm to the attribute values xm
1:N and

0 otherwise (this therefore corresponds to empirical risk based on 0/1 loss).
The training data consists of MS samples S = {zm}MS

m=1 = {(cm,xm
1:N)}MS

m=1.

This approach is computationally the most expensive one we consider, as a
complete re-evaluation of the training set is needed for each considered edge.
The CR, however, is the discriminative criterion that is perhaps closest to the
ideal criterion (true risk minimization), so we suspect that it may do well.
There are two approaches for accelerating this algorithm that we utilize:

(1) The data samples are reordered during structure learning so that misclas-
sified samples from previous evaluations are classified first. The classifica-
tion is terminated as soon as the performance drops below the currently
best network score (Pazzani, 1996).

(2) During structure learning the parameters are set to the ML values. When
learning the structure we only have to update the parameters of those
nodes where the set of parents ZΠj

changes.
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3.3 The OMI algorithm

In this section, we describe our order-based greedy search heuristic (Pernkopf
and Bilmes, 2008) for efficient learning of the discriminative structure of a
Bayesian network classifier. It was first noticed in Buntine (1991); Cooper
and Herskovits (1992) that the best network consistent with a given variable
ordering can be found with O (N q) score evaluations where q is the upper
bound of parents per node. Our procedure first looks for a total ordering ≺
of the variables X1:N according to the conditional mutual information (Cover
and Thomas, 1991). If the graph is consistent with the ordering Xi ≺ Xj

then the parent XΠj
∈ XΠj

is one of the variables which appears before
Xj in the ordering, where XΠj

is the set of possible parents for Xj . This
constraint ensures that the network stays acyclic. In the second step of the
algorithm, we select XΠj

for Xj under constant k maximizing either CL or CR.
A generative structure learning approach over the space of orderings using a
decomposable score was presented in Teyssier and Koller (2005). Unlike this
approach, we establish only one ordering of variables and the goal is to learn
a discriminative structure. Our scoring cost is discriminative, and thus does
not decompose (Friedman et al., 1997).

3.3.1 Step 1: Establishing an order ≺

Our simple heuristic provides an ordering ≺ of the nodes using conditional
mutual information. The mutual information I (C;X1:N) measures the degree
of dependence between the features X1:N and the class, and we have that
I (C;X1:N) = H (C)−H (C|X1:N) where the negative entropy −H (C|X1:N) =
EP (C,X1:N ) logP (C|X1:N) is related to what ideally should be optimized.

Our approach of finding an order first chooses a feature that is most informa-
tive about C. The next node in the order is the node that is most informative
about C conditioned on the first node. More specifically, our algorithm forms
an ordered sequence of nodes X1:N

≺ =
{

X1
≺, X

2
≺, . . . , X

N
≺

}

according to

Xj
≺ ← arg max

X∈X1:N \X1:j−1

≺

[

I
(

C;X|X1:j−1
≺

)]

, (16)

where j ∈ {1, . . . , N}. The first node X1
≺ is the node with the largest in-

formation about C, i.e. it is most important for C. The next node X2
≺ is

the node among the remaining nodes X1:N\ {X
1
≺} which leads to the largest

I (C;X2
≺|X

1
≺) and so forth. We also note that any mutual information query

can be computed efficiently making use of the sparsity of the joint probabil-
ity distribution (i.e. by essentially making one pass over the training data).
Therefore, if we make a polynomial number of mutual-information queries, we
have an algorithm that is polynomial in the number of training data samples.
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3.3.2 Step 2: Select parent

Once we have the ordering X1:N
≺ , we select XΠj

∈ XΠj
= X

1:j−1
≺ for each X

j
≺

(j ∈ {3, . . . , N}). When the size of XΠj
(i.e. N) and of k are small we can even

use a computational costly scoring function to find XΠj
. In case of a large N ,

we can restrict the size of the parent set XΠj
similar to the sparse candidate

algorithm (Friedman et al., 1999). Basically, either the CL or the CR can
be used as a cost function to select the parents for learning a discriminative
structure. We restrict our experiments to CR for parent selection and call our
algorithm OMI-CR (empirical results show it performed better). We connect
a parent to Xj

≺ only when CR is improved, and otherwise leave Xj
≺ parentless.

This therefore might result in a partial 1-tree (forest) over the attributes. Our
algorithm can be easily extended to learn k-trees (k > 1) by choosing more

than one parent, leading to an O
(

N1+k
)

algorithm (corresponds to O (N q)).
The OMI-CR algorithm is summarized in Appendix A and more details are
given in Pernkopf and Bilmes (2008).

4 Experiments

We present results for framewise broad phonetic classification using the TIMIT
database. We provide classification results using Bayesian network classifiers
on time-scale features (TSF) and on MFCC features (see Section 4.3). In Sec-
tion 4.4, we compare our Bayesian network classifiers using NB, TAN, and
2-tree structures to GMMs, SVMs, and NNs on the joint TSF and MFCC fea-
ture set. Additionally, we give a comparison of OMI-CR to random orderings
at the end of the current section.

Different combinations of the following parameter/structure learning approaches
are evaluated for use to learn the Bayesian network classifiers:

• Generative (ML) (Pearl, 1988) and discriminative (CL) (Greiner et al., 2005)
parameter learning.
• CMI: Generative structure learning using CMI as proposed in Friedman

et al. (1997) (see Section 3.2.1).
• CR: Discriminative structure learning with the naive greedy heuristic using

CR as scoring function (Keogh and Pazzani, 1999; Pernkopf, 2005) (see
Section 3.2.2).
• OMI-CR: Discriminative structure learning using CMI for ordering the vari-

ables (step 1) and CR for parent selection in step 2 of the order-based
heuristic (see Section 3.3).
• RO-CR: Discriminative structure learning using a random ordering (RO) in

step 1 and CR for parent selection in step 2 of the order-based heuristic.
This method is used as a comparison against our ordering heuristic described
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above.
• For the order-based heuristic OMI-CR, we propose discriminative parameter

learning by optimizing CL during the selection of the parent in step 2 (for
which we utilize the abbreviation OMI-CRCL). All abbreviations are sum-
marized in Appendix B. Discriminative parameter learning while optimizing
the discriminative structure of the network is computationally feasible only
on rather small data sets due to the computational costs of the conjugate
gradient parameter optimization.

4.1 Experimental setup

For our Bayesian network classifiers, any continuous features were discretized
using the recursive minimal entropy partitioning (Fayyad and Irani, 1993)
where the codebook is produced using only the training data. This discretiza-
tion method uses the class entropy of candidate partitions to determine the
bin boundaries. The candidate partition with the minimal entropy is selected.
This is applied recursively on the established partitions and the Minimum
Description Length is used as stopping criteria for the recursive partitioning.
In Dougherty et al. (1995), an empirical comparison of different discretization
methods has been performed and the best results have been achieved with
this entropy-based discretization.

Throughout our experiments, we use exactly the same data partitioning for
each training procedure. We performed simple smoothing, where zero prob-
abilities in the conditional probability tables are replaced with small values
(ε = 0.00001). For discriminative parameter learning, the parameters are ini-
tialized to the values obtained by the ML approach. In Greiner et al. (2005), it
has been empirically observed that this is a good strategy. The termination of
gradient descent occurs after either the change in scores falls below a threshold
(2%), or after a specified maximum number of iterations (currently 20) has
been performed. Greiner et al. (2005) introduce a variant of cross validation
on the training data to establish the optimal stopping point for parameter
optimization

4.2 Data characteristics

Experiments have been performed on the data from the TIMIT speech cor-
pus. The standard NIST sets of 462 speakers and 168 speakers have been
used for training and testing, respectively. Framewise classification accuracies
are reported for 1344 utterances from 168 speakers. In the experiments, we
only use the sx and si sentences since the sa sentences introduce a bias for
certain phonemes in a particular context. The speech is sampled at 16 kHz
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and the DWT is applied at the 4th scale on windowed speech frames of 16ms
length and 8ms overlap (similarly for the MFCCs). We perform speaker in-
dependent experiments with only four classes V/U/S/M and all six classes
V/U/S/M/VC/R using 1691462 and 1886792 samples, respectively. The class
distribution of the four class experiment V/U/S/M is 58.63%, 14.69%, 23.36%,
3.32% and of the six class case V/U/S/M/VC/R is 52.55%, 13.17%, 20.94%,
2.97%, 3.54%, 6.81%. Additionally, we perform classification experiments on
data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe).
Speakers in the training set do not appear in the test set and vice versa.
The classification experiments have been performed with 8 TSF, 13 MFCC
(log-energy included) features, and the combination of both feature sets.

4.3 Classification results on TSF and MFCC features

Table 1 presents the classification rate for different generative/discriminative
Bayesian network classifiers for 4 and 6 phonetic classes.

For TAN structures, the proposed time-scale features perform slightly better
on the Ma+Fe and the Ma data set for both 4 and 6 phonetic classes than
the baseline MFCC features, whereas, for Fe data, MFCC mostly outperforms
TSF. In contrast, the NB classifier performs slightly better on the Ma, Fe,
and Ma+Fe data using MFCCs compared to TSF features. One reason for
this might be that the MFCCs are features whose elements tend in practice
to be fairly statistically independent, while this is not as much the case with
TSF. Hence, the TSF seem to be more suitable for the TAN classifier since it
can model the dependency between attributes.

By considering two more categories VC and R (i.e. 6 classes), the classification
accuracy drops by∼ 7% on average. For TSF we have only 8 features compared
to 13 MFCC features. This results in a lower complexity of the classifier and
faster learning. The small differences of classification performance between
Ma+Fe, Ma, and Fe open an approach for gender independent broad phonetic
classification.

The CR objective function for structure learning produces the best performing
network structures. However, the evaluation of the CR measure is computa-
tionally very expensive, since a complete re-evaluation of the training set is
needed for each considered edge. However, due to the ordering of the variables
in the order-based heuristics, we can reduce the number of CR evaluations
from O (N3) to O (N2) for TAN structures (TAN-CR versus TAN-OMI-CR).
The order-based heuristic TAN-OMI-CR achieves a similar performance at
lower computational cost.

Discriminative parameter learning (CL) produces (most often) a slightly but
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Table 1: Classification rate in [%] for 4 and 6 classes with standard deviation. Best results use bold font. The bottom line gives
the average performance for each classification approach.

Classifier NB TAN TAN TAN TAN

Struct. Learn. - CMI OMI-CR OMI-CRCL CR

Param. Learn. ML CL ML CL ML CL ML CL ML CL

Data set Features Class

Ma+Fe TSF 4 87.78 87.91 90.66 90.69 91.05 91.07 91.05 91.07 91.17 91.20

± 0.07 ± 0.07 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06

Ma TSF 4 87.74 87.93 90.84 90.87 90.82 90.83 90.82 90.83 91.28 91.29

± 0.09 ± 0.09 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.07 ± 0.07

Fe TSF 4 87.82 87.92 90.04 90.07 90.28 90.31 90.28 90.31 90.71 90.74

± 0.12 ± 0.12 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11

Ma+Fe MFCC 4 88.06 88.17 90.03 90.05 90.74 90.75 90.74 90.75 90.69 90.71

± 0.07 ± 0.07 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06

Ma MFCC 4 88.09 88.19 90.21 90.22 90.78 90.78 90.78 90.78 90.83 90.83

± 0.09 ± 0.09 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08

Fe MFCC 4 88.30 88.43 89.86 89.89 90.52 90.52 90.59 90.60 90.71 90.73

± 0.12 ± 0.12 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.11

Ma+Fe TSF 6 80.45 80.53 82.47 82.50 83.20 83.21 83.20 83.21 83.25 83.27

± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08

Ma TSF 6 80.28 80.37 82.34 82.39 83.26 83.27 83.26 83.27 83.24 83.25

± 0.10 ± 0.10 ± 0.10 ± 0.10 ± 0.09 ± 0.09 ± 0.09 ± 0.09 ± 0.09 ± 0.09

Fe TSF 6 80.97 81.02 82.55 82.60 82.86 82.88 82.86 82.88 83.17 83.20

± 0.14 ± 0.14 ± 0.14 ± 0.13 ± 0.13 ± 0.13 ± 0.13 ± 0.13 ± 0.13 ± 0.13

Ma+Fe MFCC 6 80.91 80.95 82.54 82.57 83.22 83.23 83.25 83.26 83.25 83.26

± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08

Ma MFCC 6 80.82 80.88 82.45 82.47 83.09 83.10 83.09 83.10 83.05 83.05

± 0.10 ± 0.10 ± 0.10 ± 0.10 ± 0.09 ± 0.09 ± 0.09 ± 0.09 ± 0.09 ± 0.09

Fe MFCC 6 81.18 81.23 82.47 82.49 82.88 82.88 82.90 82.91 83.16 83.16

± 0.14 ± 0.14 ± 0.14 ± 0.14 ± 0.13 ± 0.13 ± 0.13 ± 0.13 ± 0.13 ± 0.13

Average 84.37 84.46 86.37 86.40 86.89 86.90 86.90 86.91 87.04 87.06
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not significantly better classification performance than ML parameter learning
for all different classification approaches.

Discriminative parameter learning during discriminative structure learning us-
ing our order-based heuristics (TAN-OMI-CRCL) can slightly improve the
performance. However, the average performance is similar to TAN-OMI-CR.
This is possible only on small data sets due to the computational costs for the
conjugate gradient parameter optimization.

Table 2 presents a summary of the classification results over all experiments
from Table 1. We compare all pairs of classifiers (with ML parameter learn-
ing) using the one-sided paired t-test (Mitchell, 1997). The t-test determines
whether the classifiers differ significantly under the assumption that the paired
classification differences over the data sets are independent and identically
normally distributed. In this table, each entry gives the significance of the
difference in classification accuracy of two classification approaches. The ar-
row points to the superior learning algorithm and a double arrow indicates
whether the difference is significant at a level of 0.005.

This table shows that discriminative structure learning, TAN-OMI-CR, TAN-
OMI-CRCL, and TAN-CR, significantly outperform generative structure learn-
ing. However, TAN-CR does not significantly outperform our discriminative
structure learning approaches TAN-OMI-CR and TAN-OMI-CRCL.

Table 2
Comparison of different classifiers (with ML parameter learning) using the one-sided
paired t-test: Each entry of the table gives the significance of the difference of the
classification accuracy of two classifiers over the data sets. The arrow points to the
superior learning algorithm. We use a double arrow if the difference is significant at
the level of 0.005.

Classifier TAN TAN TAN TAN

Struct. Learn. CMI OMI-CR OMI-CRCL CR

Param. Learn. ML ML ML ML

NB-ML ⇑<0.00001 ⇑<0.00001 ⇑<0.00001 ⇑<0.00001

TAN-CMI-ML ⇑0.00001 ⇑0.00001 ⇑<0.00001

TAN-OMI-CR-ML ↑0.05215 ↑0.00704

TAN-OMI-CRCL-ML ↑0.01023

4.4 Classification results on the joint TSF and MFCC feature set

We observed that the TSF and the MFCC features complement each other.
Due to this fact, we report classification results on the joint feature space.
In addition to the previous experiment, we compare our Bayesian network
classifiers to state-of-the-art discriminative classifiers, i.e. NNs and SVMs,
and to the generative GMM which is popular in many speech applications.
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Since the log-energy is contained in both feature sets we removed it so that it
only occurs once.

Table 3 summarizes the classification performance for different generative/discriminative
Bayesian network classifiers for 4 and 6 phonetic classes on the joint TSF and
MFCC features. Additionally, we compare the Bayesian network classifiers to
the following generative and discriminative classification approaches:

• NB-Cont: Naive Bayes classifier on continuous features. We use a Gaussian
distribution to model the features so this really becomes a single diagonal
covariance Gaussian model.
• GMM-500: Gaussian mixture model with 500 components. We use diagonal

covariance matrices for each Gaussian component. The main reasons for
this are that they are computationally more efficient than full covariance
Gaussians, and with a sufficiently large number of components they can
represent a perhaps richer collection of different distributions than a smaller
number of full-covariance components can with a similar number of total
parameters.
• NN-2-100: Neural network (multi-layered perceptron) with 2 layers. The

number of units in the input and output layer is set to the number of features
and the number of classes, respectively. The number of units in the hidden
layer is set to 100. We use standard Levenberg-Marquardt backpropagation
for training, a hyperbolic tangent sigmoid transfer function for the units at
the hidden layer, and a linear transfer function at the output layer.
• SVM-1-0.1: The support vector machine with the radial basis function

(RBF) kernel uses two parameters C∗ and σ, where C∗ is the penalty pa-
rameter for the errors of the non-separable case and σ is the parameter for
the RBF kernel. We set the values for these parameters to C∗ = 1 and
σ = 0.1.

The optimal choice of the parameters, kernel function, number of neurons in
the hidden layer, and transfer functions of the above mentioned classifiers was
optimized in each case by performing extensive experiments. The numbers
given above were found to be the best for each classifier. In contrast, for the
Bayesian network classifiers we have to select the model family (e.g. TAN).
We also note that all these classifiers are applied exclusively on continuous
features (which gives them a distinct advantage).

The structure of Bayesian networks is implicitly regularized when we fix the
optimization a-priori over a given model family (e.g. 1-trees) assuming suffi-
cient training data. We noticed for 2-trees that the data will over-fit without
the use of regularization. Therefore, we introduce 5-fold cross validation on
the training data to find the optimal classifier structure. A similar validation
procedure has been also used for the training of the NN.
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Table 3: Classification accuracy in [%] for 4 and 6 classes with standard deviation using the joint TSF and MFCC feature set.
The bottom line gives the average performance for each classification approach.

Classifier NB TAN TAN 2-tree TAN NB-Cont GMM-500 NN-2-100 SVM-1-0.1

Struct. Learn. - CMI OMI-CR OMI-CR CR - - - -

Param. Learn. ML ML ML ML ML - - - -

Data set Class

Ma+Fe 4 87.13 90.37 90.79 91.35 91.10 88.89 90.12 92.58 92.78

± 0.07 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.07 ± 0.06 ± 0.06 ± 0.06

Ma 4 87.17 90.21 90.95 91.44 91.19 88.81 90.30 92.73 92.69

± 0.09 ± 0.08 ± 0.08 ± 0.07 ± 0.08 ± 0.08 ± 0.08 ± 0.07 ± 0.07

Fe 4 87.50 90.27 90.79 91.47 91.11 89.17 90.76 92.91 92.97

± 0.12 ± 0.11 ± 0.11 ± 0.10 ± 0.11 ± 0.12 ± 0.11 ± 0.10 ± 0.10

Ma+Fe 6 80.58 82.68 83.21 83.61 83.52 80.11 82.30 86.05 86.26

± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.08 ± 0.07 ± 0.07

Ma 6 80.43 81.60 83.29 83.64 83.30 80.13 82.08 86.04 86.16

± 0.10 ± 0.10 ± 0.09 ± 0.09 ± 0.09 ± 0.10 ± 0.10 ± 0.09 ± 0.09

Fe 6 81.16 82.23 83.33 84.02 83.40 80.47 82.95 86.37 86.65

± 0.14 ± 0.14 ± 0.13 ± 0.13 ± 0.13 ± 0.14 ± 0.13 ± 0.12 ± 0.12

Average 83.99 86.23 87.06 87.59 87.27 84.60 86.42 89.45 89.59
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Table 4: Comparison of different classifiers using the one-sided paired t-test: Each entry of the table gives the significance of the
difference of the classification accuracy of two classifiers over the data sets. The arrow points to the superior learning algorithm.
We use a double arrow if the difference is significant at the level of 0.05.

Classifier TAN TAN 2-tree TAN NB-Cont GMM-500 NN-2-100 SVM-1-0.1

Struct. Learn. CMI OMI-CR OMI-CR CR - - - -

Param. Learn. ML ML ML ML - - - -

NB-ML ⇑0.00041 ⇑0.00001 ⇑<0.00001 ⇑<0.00001 ↑0.08534 ⇑0.00009 ⇑<0.00001 ⇑<0.00001

TAN-CMI-ML ⇑0.00203 ⇑0.00011 ⇑0.00013 ⇐0.00008 ↑0.10376 ⇑0.00005 ⇑0.00005

TAN-OMI-CR-ML ⇑0.00004 ⇑0.00369 ⇐0.00003 ⇐0.00318 ⇑0.00002 ⇑0.00002

2-TREE-OMI-CR-ML ⇐0.00167 oogle⇐0.00001 ⇐0.00002 ⇑0.00009 ⇑0.00012

TAN-CR-ML ⇐0.00001 ⇐0.00052 ⇑0.00006 ⇑0.00008

NB-CONT ⇑0.00003 ⇑0.00002 ⇑0.00002

GMM-500 ⇑0.00003 ⇑0.00003

NN-2-100 ⇑0.01007
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The combination of both feature sets (i.e. TSF and MFCC) improves the
absolute classification accuracy by ∼ 0.5% on average (for comparison see
Table 1). The NB classifier on continuous features is slightly better than NB
on the discretized feature space. The discriminative 2-tree Bayesian network
classifier significantly outperforms all other Bayesian network classifiers and
GMM-500. Whereas, also the discriminatively trained TAN structures (i.e.
TAN-OMI-CR and TAN-CR) perform better that the generative GMM-500.
However, the best classification performance is achieved with NNs and SVMs
that use continuous features. In contrast to NN and SVM, however, a Bayesian
network even when discriminatively structured is a generative model which can
be easily applied to classification tasks with missing features.

The classification results of Table 3 for 4 classes are summarized graphically
in Figure 6 and for 6 classes in Figure 7.
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Fig. 6. Classification accuracy over the Ma+Fe, Ma, and Fe data sets for the 4 class
data.
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Fig. 7. Classification accuracy over the Ma+Fe, Ma, and Fe data sets for the 6 class
data.
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Table 4 presents a summary of the classification results over all experiments
from Table 3. All pairs of classifiers are compared using the one-sided paired
t-test (Mitchell, 1997). Each entry in this table depicts the significance of
the difference in classification accuracy of two classification methods. The
arrow points to the better classifier. If the arrow is doubled the difference
is significant at a level of 0.05. Minghu Generative models can easily deal
with missing features simply by marginalizing out from the model the missing
feature. We are particularly interested in a testing context which has known,
unanticipated at training time, and arbitrary sets of missing features for each
classification sample. In such case, it is not possible to re-train the model for
each potential set of missing features without also memorizing the training
set. Due to the local-normalization property of Bayesian networks and the
structure of any model with a parentless class node, marginalization is as easy
as an O(rk+1) operations on a k-tree , where r is the domain size of each
feature.

In Figure 8, we present the classification accuracy of discriminative and gen-
erative structures assuming missing features using the Ma+Fe data for 4 and
6 phonetic classes. The x-axis denotes the number of missing features in each
frame. The curves are the average over 100 classifications of the test data
with uniformly at random selected missing features. Variance bars are omit-
ted to improve readability. We note, however, that the variance numbers over
the different test cases do indicate that the resulting differences are signifi-
cant. We use exactly the same missing features for each classifier. We observe
that discriminatively structured Bayesian network classifiers outperform TAN-
CMI-ML even in the case of missing features. This demonstrates, at least em-
pirically, that discriminative structured generative models do not loose their
ability to impute missing features.
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Fig. 8. Classification accuracy assuming missing features using the Ma+Fe data.
The x-axis denotes the number of missing features.

Four our last set of results, we empirically show that the chosen approach
(i.e. OMI) for ordering the variables improve the classification performance
compared to simple random orderings. We compare 2-tree-OMI-CR to 2-tree-
RO-CR using TSF+MFCC features in Table 5. We use 100 random orderings
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Table 5
Classification accuracy in [%] with 2-tree-RO-CR compared to 2-tree-OMI-CR for
4 and 6 classes. For Max (Min), we take the structure which achieves the maximum
(minimum) CR over the 100 random orderings on the training set and report the
performance on the test set. Best results use bold font.

Classifier 2-tree-OMI-CR 2-tree-RO-CR

Data set Features #Class Mean ± Std Median Min Max

Ma+Fe TSF+MFCC 4 91.35 91.26 ± 0.10 91.27 91.18 91.28

Ma TSF+MFCC 4 91.44 91.31 ± 0.09 91.32 91.39 91.38

Fe TSF+MFCC 4 91.47 91.43 ± 0.07 91.43 91.43 91.28

Ma+Fe TSF+MFCC 6 83.61 83.49 ± 0.15 83.51 83.37 83.01

Ma TSF+MFCC 6 83.64 83.49 ± 0.13 83.50 83.53 83.49

Fe TSF+MFCC 6 84.02 83.79 ± 0.12 83.81 83.85 83.28

Average 87.59 87.46 87.47 87.46 87.29

for 2-tree-RO-CR and report the mean (Mean), minimum (Min), and max-
imum (Max) classification accuracy. For Max (Min), we take the structure
which achieves the maximum (minimum) CR over the 100 random orderings
on the training set and present the performance on the test set. In some cases,
the structure with the best CR on the training set performs poorly on the
test set, presumably due to overfitting. These results show that our OMI-CR
heuristic improves over random orders.

Finally, the running time of the TAN-CMI, TAN-OMI-CR, and TAN-CR
structure learning algorithms is summarized in Table 6. The numbers rep-
resent the percentage of time that is needed for a particular algorithm com-
pared to TAN-CR. TAN-CMI is roughly 3 times faster than TAN-OMI-CR
and TAN-CR takes about 10 times longer for establishing the structure than
TAN-OMI-CR.

Table 6
Running time of structure learning algorithms relative to TAN-CR.

TAN-CMI TAN-OMI-CR TAN-CR

3.56% 11.47% 100.00%

5 Conclusion

Bayesian networks, Gaussian mixture models, neural networks, and support
vector machines are used to classify speech frames into the broad phonetic
classes of silence, voiced, unvoiced, mixed sounds, and two more categories
voiced closure and release of plosives. The classification is based on time-scale
features derived from the discrete Wavelet transform, on MFCCs, and on the
combination of both. Gender dependent/independent experiments have been
performed using the TIMIT database. Discriminative and generative param-
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eter and/or structure learning approaches are used for learning the Bayesian
network classifiers. We introduce a simple order-based greedy heuristic for
learning a discriminative Bayesian network structure. We show that the pro-
posed metric for establishing the ordering is performing better than simple
random ordering.

We observed that the time-scale features and the MFCC features complement
each other. The combination of both feature sets improves the (absolute) clas-
sification accuracy by ∼ 0.5%. Discriminative structure learning of Bayesian
networks is superior to the generative approach. In particular, the discrim-
inative 2-tree Bayesian network classifier significantly outperforms all other
Bayesian network classifiers and the Gaussian mixture model. The best clas-
sification performances are achieved with neural networks and support vector
machines. However, in contrast to neural network and support vector ma-
chines, a Bayesian network is a generative model. A generative model has
the advantage that it is easy to work with missing features, and generative
Bayesian network can still be trained and structured discriminatively without
loosing its generative capability. We show that discriminatively structured
Bayesian network classifiers are superior to generative approaches even in the
case of missing features.

Future work will focus on the application of the broad phonetic classifier for
speech modification such as time-scaling. Based on the phonetic information
of every speech frame, the proper time-scaling factors are assigned to achieve a
better quality and naturalness of scaled speech sound. Additionally, we intend
to investigate the influence of the broad phonetic classification to the selection
of proper smoothing strategies at concatenation points for preparing databases
for concatenative synthesis.
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A Appendix: OMI-CR algorithm

OMI-CR for learning a discriminative TAN structure is summarized in Algo-
rithm 1. We merge both steps, establish an ordering and parent selection,
into one loop. This is equivalent to considering both steps separately.

Algorithm 1 OMI-CR
Input: X1:N , C,S
Output: set of edges E for TAN network
X1

≺ ← arg maxX∈X1:N
[I (C;X)]

X2
≺ ← arg maxX∈X1:N\X1

≺

[

I
(

C;X|X1
≺

)]

E←
{

ENaive Bayes ∪ EX1
≺,X2

≺

}

j ← 2
CRold ← 0
repeat

j ← j + 1

X
j
≺ ← arg max

X∈X1:N\X1:j−1

≺

[

I
(

C;X|X1:j−1
≺

)]

X∗
≺ ← arg max

X∈X
1:j−1

≺

CR (BS |S) where

edges of BS are E←
{

E ∪E
X,Xj

≺

}

CRnew ← CR (BS |S) where

edges of BS are E←
{

E ∪E
X∗

≺,Xj
≺

}

if CRnew > CRold then

CRold ← CRnew

E←
{

E ∪ E
X∗

≺
,Xj

≺

}

end if

until j = N
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B Appendix: Abbreviations

CL Conditional likelihood

CR Classification rate

CMI Conditional mutual information

DWT Discrete Wavelet transform

Fe Female speakers

GMM Gaussian mixture model

LgSE Logarithmic short-term energy (feature)

M Mixed-excitation (class)

Ma Male speakers

MFCC Mel-frequency cepstral coefficient

ML Maximum likelihood

NB Naive Bayes

NN Neuronal network

OMI Order mutual information

PA Power of approximation (feature)

PD Power delta (feature)

PeD Peak delta (feature)

PR1 First power ratio (feature)

PR2 Second power ratio (feature)

R Release of plosive (class)

RBF Radial basis function

RO Random ordering

S Silence (class)

SD Standard deviation (feature)

SVM Support vector machine

TAN Tree augmented naive Bayes

TSF Time-scale features

U Unvoiced (class)

V Voiced (class)

VC Voiced closure (class)

ZCR Zero crossing rate (feature)
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